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Abstract 
Human Leukocyte Antigen (HLA) genes are crucial determinant of transplant rejection and susceptibility to a 
variety of autoimmune-related diseases. However, large-scale and accurate typing of HLA alleles is laborious 
and expensive. In this paper, we aim to develop an algorithm for selecting a small subset of Single Nucleotide 
Polymorphisms (SNPs), called tag SNPs, which is able to capture HLA alleles. The HLA alleles can be indi-
rectly predicted by alleles of these tag SNPs without performing direct HLA typing. The developed program is 
tested on the SNP and HLA map in four human populations. The experimental results indicate that the predic-
tion accuracy of our tag SNPs is high in all populations. The HLATag program is freely available at 
http://www.cs.ccu.edu.tw/~ythuang/Tool/HLATag/. 
 
 
Background 
 

Major Histocompatibility Complex (MHC) is a genomic region located on chromosome 6 containing Hu-
man Leukocyte Antigen (HLA) class I and class II genes. These HLA genes encode antigen-presenting pro-
teins which are essential in adaptive immune response. The class I HLA antigens (e.g., HLA-A and HLA-B) 
produce peptides on the cell-surface, whereas class II HLA antigens (e.g., HLA-DQA and HLA-DQB) present 
phagocytosed antigens from outside of the cell to T-lymphocytes. Each individual expresses different HLA 
class I and class II proteins for activating the process of the immune response and pathogen clearance. The 
HLA class I and class II genes are highly polymorphic among human populations (Hertz and Yanover, 2007). 
For example, more than one hundred alleles are found on the HLA-A gene. Thus, the chance of two unrelated 
individuals having identical HLA alleles is relatively low.  

 
The determination of HLA alleles of an individual (called HLA typing) is important in clinical immunology 

research. In order to reduce the risk of transplant rejection, accurate HLA typing is curial in modern transplan-
tation medicine (Gourraud et al., 2005). Furthermore, the variations of HLA alleles have been shown to corre-
late with a variety of autoimmune-related diseases (e.g., Hepatis C Virus) (Gaudieri et al., 2007; Thorsby and 
Lie, 2007; Timm et al., 2007). In practice, HLA typing is often done by sequence-specific oligonucleotide 
probes (SSOP) or PCR amplification, making large-scale HLA typing laborious and expensive. In addition, if 
the differences of HLA alleles fall outside the typed region, these methods may output inaccurate results 
(Listgarten et al., 2008). In addition, if an individual is heterozygous at one locus (i.e., possess two distinct 
HLA alleles), the allele information tends to be mixed up at that locus. As a consequence, efficient and accu-
rate methods for typing HLA alleles are still highly demanded. 

 
Recently, a few studies reported that HLA alleles are often highly correlated with alleles of flanking Single 

Nucleotide Polymorphisms (SNPs) (de Bakker et al. 2006; Malkki et al., 2005). SNP is a sort of nucleotide 
substitution at one locus which is kept through the heredity. A set of linked SNP alleles on the same chromo-
some is called a haplotype. In recent years, the advent of high-throughput genotyping technologies greatly re-
duces the cost of genotyping thousands of SNPs (Altshuler et al., 2005;Zhang et al., 2003, 2004). Through 
analysis of Linkage Disequilibrium (LD) across the entire MHC region, de Bakker et al. (2006) showed that 
HLA alleles tend to exhibit strong LD with flanking SNP alleles. Therefore, a small subset of SNPs (called tag 
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SNPs) is sufficient to capture partial HLA alleles. Consequently, some HLA alleles can be indirectly deter-
mined by alleles of tag SNPs using cost-effective SNP genotyping, instead of using laborious HLA typing. 
Figure 1(A) illustrates a high LD example of HLA alleles and surrounding SNPs. The alleles A and C at SNP2 
are perfectly correlated with HLA-C 1801 and 0702 alleles, respectively. Therefore, SNP2 can be the tag SNP 
for HLA-C. However, the majority of HLA genes have more than two alleles, which is impossible to be tagged 
using only one SNP (see Figure 1(B)). Moreover, because of chromosome recombination, the same HLA allele 
may lie on multiple haplotype backgrounds (see Figure 1(C)). As a consequence, the selection of appropriate 
tag SNPs for capturing all HLA alleles is challenging.  
 

In this paper, we design and implement algorithms for the selection of tag SNPs and for the prediction of 
HLA alleles. We use a two-stage approach for selecting tag SNPs, which are able to capture distinct haplotype 
backgrounds of each HLA allele. The developed program is tested on a variety of real data sets. The experi-
mental results indicate that our program has high prediction accuracy in many data sets. We observed the ma-
jority of tag SNPs is specific to each population, indicating many HLA alleles lie on different haplotype back-
grounds in distinct populations. 
 
 
Implementation 
 
Samples and Data Collection 

The samples in this experiment are downloaded from the SNP and HLA map created by deBakker et al. 
(2006). This data set contains 90 African (YRI), 90 European descendants (CEU), 45 Chinese (HCB) and 44 
Japanese (JPT), corresponding to the samples used in the international HapMap project (Altshuler et al., 2005). 
There are 7543 SNPs and dele-tion-insertion polymorphisms were genotyped and 5754 passed the quality 
control. The al-leles of class I HLA genes (HLA-A, HLA-B, and HLA-C) and class II HLA genes (HLA-DQA, 
HLA-DQB, and HLA-DRB) are typed by PCR-SSOP. 

 
In this section, we describe our algorithms for the selection of tag SNPs and for the prediction of HLA al-

leles. Our selection algorithm for tag SNPs consists of two stages. The first stage aims to select a minimum set 
of tag SNPs for distinguishing all distinct HLA alleles. The second stage aims to select a set of tag SNPs for 
capturing distinct haplotypes sat by one HLA allele. The SNP and HLA data are obtained from deBakker et al. 
(2006). Details of their data set are described in the next section. We retrieve the SNPs locating within the ex-
tended 100Kb regions of each HLA gene. In the first stage of our algorithm, we remove all SNPs having more 
than one allele mapping to the same HLA allele. For the example in Figure 1(B), SNP1 will be removed, since 
it contains two alleles C and T mapping to HLA 1801 allele. These removed SNPs are either noise or indica-
tive of HLA alleles lying on multiple haplotype backgrounds, which will be processed in the second stage of 
our algorithm. The prediction algorithm is used for predicting the HLA allele of one haplotype using the tag 
SNP alleles on that haplotype. 
 
Stage I: Selection of Tag SNPs for Distinguishing Distinct HLA Alleles 

We reformulate the problem of selecting tag SNPs into variant of the Set Covering (SC) Problem. Given a 
set of elements E and a collection of subsets C over E, the SC problem asks for a minimum subcollection C’ of 
C, which includes (covers) all elements in E. We first reformulate each pair of HLA alleles as elements and 
map each SNP as a subset. For the example in Figure 1(B), there are three elements (1801,0701), (1801,0702) 
and (0701,0702), and three subsets corresponding to the three SNPs. For each SNP, the corresponding subset 
will contain elements that can be distinguished by this SNP. For example, SNP2 in Figure 1(B) can distinguish 
two allele pairs: 1801/0702 and 0701/0702. Therefore, the subset corresponding to SNP2 will contain two 
elements (1801,0702) and (0701,0702). Note that the subsets corresponding to SNP2 and SNP3 covers all the 
three elements. In other words, the combination of SNP2 and SNP3 is sufficient to distinguish all pairs of HLA 
alleles and thus can be the tag SNPs.  
 

However, the SC problem is known to be NP-hard, implying no polynomial time algorithms are found so far. 
Hence, we use a greedy approximation algorithm which selects a SNP that distinguishes most pairs of HLA 
alleles at a time and repeats this selection process until no other pairs of HLA alleles can be distinguished 
(Huang et al., 2005). If all allele pairs are distinguished, the set of selected SNPs is outputted as the solution. 
Otherwise, those undistinguished allele pairs are processed in the second stage. 
 
Stage II: Selection of tag SNPs for HLA Alleles on Multiple Haplotype Backgrounds 



After the first stage, there could be many pairs of HLA alleles still not distinguished. This is because these 
HLA alleles lie on multiple haplotypes and SNPs associated with these haplotypes are excluded in the first 
stage. In the second stage, we retrieve these excluded SNPs and consider those undistinguished HLA allele 
pairs. Note that these removed SNPs have multiple alleles mapping to some of these undistinguished HLA al-
leles. We reformulate this relationship into another instance of the SC problem. The element set E of the SC 
problem are pairs of haplotypes having different HLA alleles, and the subsets for covering elements are the 
unused SNPs. For the example in Figure 2, there are six haplotypes carrying two distinct HLA alleles. The re-
formulated SC problem contains nine elements (e.g., (h1, h4) and (h2, h4)) and two subsets SNP1 and SNP2. For 
each SNP, the corresponding subset will contain elements that can be distinguished by this SNP. For example, 
SNP2 can distinguish six pairs of haplotypes (e.g., (h2, h4) and (h3, h6)). Similarly, if all pairs of haplotypes 
(having different HLA alleles) are distinguished by a set of SNPs (e.g., combination of SNP1 and SNP2), the 
haplotypes defined by these SNPs will represent the distinct haplotype background sat by each HLA allele.  
 

Consequently, we use a similar greedy algorithm which selects a SNP distinguishing most pairs of haplo-
types at one time and repeat this process until all pairs of haplotypes are distinguished. Following the same 
example, SNP2 and SNP3 are the tag SNPs defining distinct haplotypes for each HLA allele. Combining the 
tag SNPs selected in the first and second stages, these SNPs are the tag SNPs picked by our algorithm. 
 
Algorithm for Predicting HLA Alleles  

Given the alleles of selected tag SNPs on one individual, the prediction algorithm is used for predicting the 
HLA allele carried by the individual. Our prediction algorithm consists of two phases. The first phase used tag 
SNPs selected in the first stage and the second phase used the tag SNPs in the second stage. The tag SNPs se-
lected in the first phase are used for identifying the set of possible HLA alleles. If there is only one HLA allele 
remained, this individual is predicted to carry that allele. Otherwise, we will use the tag SNPs selected in the 
second stage and compare the haplotype of this individual with those of all HLA alleles. The most similar one 
is outputted as the predicted HLA allele.  

 
 
Results and Discussion 
 

We download the database of SNP and HLA map from deBakker et al. (2006). This data set contains 90 Af-
rican (YRI), 90 European descendants (CEU), 45 Chinese (HCB) and 44 Japanese (JPT), corresponding to the 
samples used in the international HapMap project (Altshuler et al., 2005). There are 7543 SNPs genotyped. 
The alleles of class I HLA genes (HLA-A, HLA-B, and HLA-C) and class II HLA genes (HLA-DQA, 
HLA-DQB, and HLA-DRB) are typed by PCR-SSOP. For each HLA gene, we retrieve the SNPs within the 
100kb window centered on each gene. The tag SNP selection algorithm is run on each of the class I and class 
II HLA genes, separately for each of the four populations. Table 1 summarizes the number of tag SNPs found 
on each HLA gene for each population. In general, the number of tag SNPs is proportional to the ratio of dis-
tinct haplotypes to distinct HLA alleles at the gene locus within the population. For example, HLA-DRB is the 
most polymorphic gene with 40 distinct alleles and thus requires more tag SNPs than other genes in class II. 

The prediction accuracy of our tag SNPs are evaluated using a leave-one-out cross-validation. That is, each 
haplotype is removed alternately and the other haplotypes are used for selecting tag SNPs. These tag SNPs are 
then use for predicting the HLA allele of the removed haplotype. In this experiment, we remove singleton 
HLA alleles and only consider alleles typed with four digit resolution (e.g., HLA-A 0301). The prediction ac-
curacy of our tag SNPs are shown in Table 2. The experimental results indicate that the prediction accuracy are 
very high in class I HLA genes in all populations. The average prediction accuracy of class I HLA genes in all 
populations is about 95%. On the other hand, the average prediction accuracy in class II HLA genes is rela-
tively low (88%). However, some of these class II HLA genes still achieve near 100% accuracy. In particular, 
the HLA-B and HLA-DRB have the lowest accuracy in class I and class II, respectively. This is because these 
two genes have the largest number of alleles in each class (e.g., 29 alleles in HLA-B in YRI), but the sample 
size in our training data set is insufficient. We also observe that when mixing Chinese and Japanese samples as 
one population, the accuracies (average 86.87% in class I and 80.57 in class II) are lower than separate results 
of each population. Thus, this phenomenon implies that the same HLA alleles of Chinese and Japanese popu-
lations lie on distinct haplotype background with different phylogenetic history. 
 
 



Conclusion 
 

This paper presented algorithms for the selection of tag SNPs which are able to capture untyped HLA alleles. 
The HLA alleles can be indirectly predicted by our prediction algorithm using alleles at these tag SNPs. The 
developed program was tested on a number of real data sets. The experimental results indicated that the pre-
diction accuracy of our tag SNPs is high in all HLA genes and populations. We observed the majority of tag 
SNPs is specific to each population, indicating many HLA alleles lie on different haplotype backgrounds in 
distinct populations. 
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Figures 

Figure 1 – Examples of LD among tag SNPs and HLA alleles. 
 
(A) SNP2 can be the tag SNP for capturing alleles at HLA-C.; (B) There are three alleles at the HLA-C locus. 
The combination of SNP2 and SNP3 are predictive of alleles at HLA-C; (C) The allele 1801 at HLA-C lies on 
multiple haplotype backgrounds. 

 

Figure 2 – Examples of reformulation into a set cover instance 
 
The reformulated SC problem for one pair of undistinguished HLA alleles. There are six haplotypes (h1, …, h6) 
carrying two distinct HLA alleles and create a set of nine elements E to be covered. The combination of SNP2 
and SNP3 can still be the tag SNPs distinguishing these two HLA allele classes. 
 



Additional Files 

Additional File 1 – The HLATag source code and program  

The HLA.zip is compressed using WinZip and contains the C code and the binary code compiled on Linux 
platform. 



Tables 

Table 1. The number of tag SNPs selected for each HLA gene in each population. The total number of tag 
SNPs are the summation of numbers in the four populations. The shared number of tag SNPs is the number of 
tag SNPs included in all populations. 
 

 

Table 2. Prediction accuracy (%) of our tag SNPs in leave-one-out cross-validation. The average accuracy in 
each row is based on the four populations.  

 YRI CEU HCB JPT Average 

HLA-A 94 97 97.8 95.2 96 

HLA-B 89.8 95.6 83.5 96.3 91.3 

HLA-C 98.3 94.9 100 98.8 98 

Average 94.03 95.83 93.77 96.77 95.1 

HLA-DQA 97.5 96.7 76.1 93 90.83 

HLA-DQB 98.3 99.4 92 74.7 91.1 

HLA-DRB 77.6 93.1 76.2 82.1 82.25 

Average 91.13 96.4 81.43 83.27 88.06 

 YRI CEU HCB JPT Total 

HLA-A 160 47 68 33 195 

HLA-B 24 85 41 97 126 

HLA-C 19 29 27 9 58 

HLA-DQA 5 4 28 19 30 

HLA-DQB 10 8 11 6 13 

HLA-DRB 39 41 37 56 68 

 


