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Abstract

In this paper, we investigate the multi-node broadcasting problem in a 3-D torus, where there are an unknown

number of s source nodes located at unknown positions each intending to broadcast a message of size m bytes to the rest

of the network. The torus is assumed to use the all-port model and the popular dimension-ordered routing. Existing

congestion-free results are derived based on finding multiple edge-disjoint spanning trees in the network. This paper

shows how to efficiently perform multi-node broadcasting in a 3-D torus. The main technique used in this paper is an

aggregation-then-distribution strategy, which is characterized by the following features: (i) the broadcast messages are

aggregated into some positions on the 3-D torus, then a number of independent subnetworks are constructed from the 3-

D torus; and (ii) these subnetworks, which are responsible for distributing the messages, fully exploit the communication

parallelism and the characteristic of wormhole routing. It is shown that such an approach is more appropriate than

those using edge-disjoint trees for fixed-connection networks such as tori. Extensive simulations are conducted to

evaluate this multi-broadcasting algorithm.
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1. Introduction

A massively parallel computer (MPC) consists

of a large number of identical processing elements

interconnected by a network. One basic commu-

nication operation which uses such a machine is

broadcasting. Two commonly discussed instances
are: one-to-all broadcasts and all-to-all broadcasts,
ed.
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where one or all nodes need to broadcast messages

to the rest of the nodes [2]. A more complicated

instance is the many-to-all (or multi-node) broad-

cast, where there is an unknown number of nodes

located at unknown positions each intending to

perform a broadcast operation. The focus of this
paper is the multi-node broadcast problem, which

has been applied to parallel graph algorithms,

parallel matrix algorithms, fast Fourier transfor-

mations, and cache coherence [3,5,7,12,14]. This is

especially true for those collective communication

patterns, such as broadcasting and multi-casting,

which involve more than one source. Moreover, it

is an important primitive communication opera-
tion for data-redistribution communication of a

parallelizing compiler [16].

The wormhole routing technology [13,15] has

been s adopted by many new-generation parallel

computers, such as the Intel Touchstone DELTA,

Intel Paragon, MIT J-machine, Caltech MOSAIC,

and Cray T3D. In such networks, a packet is

partitioned into a sequence of flits, which are sent
in a worm-like (or pipelined) manner. In the ab-

sence of congestion, the communication latency in

such networks is proportional to the additive fac-

tor of message length and routing distance (while

on the contrary the latency in a store-and-forward

network is proportional to the multiplicative factor

of message length and routing distance). It is for

this reason that communication latency for net-
work with wormhole routing is recognized to be

quite distance-insensitive. Many routing algo-

rithms have been proposed to utilize this property.

For instance, [15] shows how to perform one-to-all

broadcast in wormhole-routed all-port tori using

as least communication phases as possible, where a

phase consists of a set of congestion-free commu-

nication paths; paths of different lengths can
co-exists in a phase, but the corresponding com-

munications are expected to complete in about the

same time due to wormhole routing�s distance-

insensitive property.

Multi-node broadcast problems have been

studied in a variety of interconnection networks

[5,9–12,14]. Saad and Schultz [9,10] initially de-

fined this problem and proposed a simple routing
algorithm for hypercubes. Stamoulis and Tsitsiklis

[11] proposed a method of using n edge-disjoint
spanning trees in an n-dimensional hypercube to

solve this problem. A distributed approach to

improve the load imbalance problem in [11] was

presented by Tseng [12] for hypercubes and star

graphs. Efforts were made by Varvarigos and

Bertsekas [14] to solve the more complicated
problem where each source node may have several

messages (of the same length) to broadcast.

Hambrusch et al. [5] proposed a scheme called

s-to-pbroadcasting, where the authors try to align

broadcast messages into a regular pattern before

the broadcasting. Recently, Kesavan and Panda

[6] investigated a multiple multicast with mini-

mized node contention on wormhole k-ary n-cube
networks. However, their approach attempted to

reduce the node-contention problem, which does

not produce a congestion-free result.

The aforementioned congestion-free results are

all based on finding edge-disjoint spanning trees in

a network and are appropriate for non-fixed con-

nection networks [3]. One problem with this is that

the number of edge-disjoint trees that can be of-
fered by a network is fixed [3]. The other problem is

that the characteristic of wormhole routing, which

is assumed in this paper, is not well exploited [13].

In this paper, we consider multi-dimensional tori,

which have been adopted by Cray T3D and T3E

and are fixed-connection networks. The currently

popular wormhole routing technology is assumed.

In the literature, sending a packet involves two
costs: start-up time and transmission time. Attempts

to minimize both of these costs are made.

This paper addresses the multi-node broad-

casting problem in wormhole-routed 3-D tori. Our

approach is designed based on a proposed aggre-

gation-then-distribution strategy. The major con-

tribution of this paper is to present a way to

develop a multi-node broadcasting using an
aggregation-then-distribution strategy in worm-

hole-routed 3-D tori, which is characterized by the

following features: (i) broadcast messages are

aggregated into some positions of the 3-D torus,

then a number of independent subnetworks are

constructed from the 3-D torus, and (ii) these

subnetworks, which are responsible for distributing

the messages, can fully exploit communication
parallelism and the characteristics of wormhole

routing. We adopt an algebraic foundation [15] to
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develop our multi-node broadcasting algorithm.

Using algebraic presentation allows us to develop

an efficient multi-node broadcast algorithm in

wormhole-routed 3-D tori. Our aggregation-then-

distribution strategy is divided into two phases.

First, network-partitioning techniques proposed in
[13] are used to obtain multiple independent sub-

networks (which differ from edge-disjoint spanning

trees) in a torus. The number of independent

subnetworks is actually an adjustable parameter.

For a multi-node broadcast problem with an un-

known number of s source nodes located at un-

known positions in an torus each intending to

broadcast an m-byte message, our approach can
solve it efficiently in time Oðmaxðdlog7 ne; hÞTs þ
maxðdlog7 n

h

� �
e~m; hm0ÞTcÞ, where h is the number of

independent subnetworks, ~m ¼ n
h2 m, and m0 ¼ n

h m.
It is shown that this number has outperformed the

aforementioned congestion-free scheme using

edge-disjoint spanning-trees.

The rest of this paper is organized as follows.

The basic ideas are given in Section 2. Section 3
presents our multi-node broadcasting in a 3-D

torus. Timing analyses and comparisons are

in Section 4, and conclusions are drawn in Sec-

tion 5.
2. Basic ideas

2.1. System model

A massively parallel computer (MPC) is for-

mally represented as G ¼ ðV ;CÞ, where V denotes

the node set and C specifies the channel connec-

tivity. Each node contains a separate router to

handle its communication tasks. In this paper, we

consider G as a 3-D torus Tn1�n2�n3 with n1�n2 � n3
Vu;v ¼
n
Pi;j;lji ¼ ahþ ððuþ vÞmodhÞ; j ¼ bhþ v; l ¼ ch

for all a ¼ 0; . . . ;
n1
h

l m

 1; b ¼ 0; . . . ;

n2
h

l m

 1;

Cu;v ¼ fall channels of the x-axis ahþ uþ v; y-axis bh
nodes. In 3-D tori, each node is denoted as Pi;j;k,
16 i6 n1, 16 j6 n2, 16 k6 n3, and Pi1;i2;i3 has an

edge connected to Pði1	1Þmodn1;i2;i3 along dimension

one, an edge to Pi1;ði2	1Þmod n2;n3 along dimension

two, and an edge to Pi1;i2;ði3	1Þmod n3 along

dimension three. Each edge is considered to consist
of two directed communication links pointing in

opposite directions.

The wormhole routing model is assumed [7].

Under such a model, each packet is partitioned

into smaller units called flits, which are sent in a

pipelined manner. In the absence of congestion,

the communication latency in the networks is

proportional to the factor of the sum of the mes-
sage length and the routing distance. Specifically,

the time required to deliver a packet of L bytes

from a source node to a destination node can be

formulated as Ts þ LTc, where Ts is the start-up

time containing the channel setup and software

overhead, and Tc represents the transmission time

per data byte. In this paper, attempts are made to

maximize the trade-off between the start-up and
transmission costs. In addition, we adopt the all-

port model, that a node can simultaneously send

and receive messages along all outgoing and

incoming links, and dimension-ordered routing [12],

that is every message must traverse links in a

strictly increasing order.

2.2. Network partitioning scheme on a 3-D torus

We expand the network partitioning scheme in

2-D tori [13] into 3-D tori as follows. Consider a 3-

D torus Tn1�n2�n3 . Suppose that an integer h exists

such that n1; n2, and n3 are divisible by h. We define

an h� h data-distribution network DDNu;v ¼ ðVu;v;
CuÞ ¼ DDNi, u; v ¼ 0; . . . ; h
 1 and i ¼ u � hþ v,
as follows:
þ u;

c ¼ 0; . . . ;
n3
h

l m

 1

o
;

þ v; and z-axis chþ ug:
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Each DDN is a dilation-h 3-D torus of size

dn1h e � dn2h e � dn3h e, such that each edge is dilated by a

path of h edges. Fig. 1 illustrates an example where

the block nodes denote DDN and the gray zone

represents DCN. The 3-D torus Tn1�n2�n3 is parti-

tioned into a n1�n2�n3
h3 data collecting network

DCNk ¼ ðVa;b;c;Ca;b;cÞ, a ¼ 0; . . . ; n1 
 1, b ¼ 0; . . . ;
n2 
 1, c ¼ 0; . . . ; n3 
 1, and 16 k6 n1�n2�n3

h3 , as

follows:

Va;b;c ¼ fPi;j;lji ¼ ahþ x; j ¼ bhþ y; l ¼ chþ z;
for all x; y; z ¼ 0; . . . ; h
 1g;

Ca;b;c ¼ fthe set of edges induced

by Va;b;c in Tn1�n2�n3g:
These DDNs and DCNs have the following

properties.

1. DDN0;DDN1; . . . , and DDNh2
1 are mutually

independent (under the given port model).

2. DCN0;DCN1; . . . , and DCNk
1 are mutually

independent (under the given port model), and

together they contain all nodes of G.
3. DDNi and DCNj intersect in at least one node,

for all 06 i < h2 and 06 j < n1�n2�n3
h3 .

4. DDN0;DDN1; . . . , and DDNh2
1 are isomorphic.
5. DCN0;DCN1; . . . , and DCNk
1 are isomorphic.
(a)

(b)

Fig. 1. (a) An example of DDNs a
2.3. Algebraic notation

In the following, we adopt algebraic notation

defined in [15] to represent the routing algorithm.

The torus of size n is an undirected graph. Each
node is denoted as Px1;x2;...;xk , 06 xi6 n, 16 i6 k.
Our routing algorithm is based on the concept of

a ‘‘span of vector spaces’’ in linear algebra. The

algebraic notation is used to represent the k-D
torus from other perspectives. The torus is mapped

into a Euclidean integer space Zk, where Z is in the

domain f0; 1; . . . ; n
 1g. Conveniently, the i-th
positive (resp., negative) elementary vector is de-
noted as~ei (resp.,~e
i) of Zk, i ¼ 1; . . . ; k. We may

rewrite ~ei1 þ~ei2 as ~ei1;i2 , ~ei1 
~ei2ð¼~ei1 þ~e
i2Þ as
~ei1;
i2 , and ~ei1 þ � � � þ~eim as ~ei1;...;im . For instance,
~e1;3 ¼~e1 þ~e3 and~e1;
3 ¼~e1 
~e3.

Lemma 1. In Zk, given node x, a q-tuple of vectors
B ¼ ð~b1;~b2; . . . ;~bqÞ, and a q-tuple of integer
N ¼ ðn1; n2; . . . ; nqÞ, the span of x by vectors B and
distances N is defined as

SPANðx;B;NÞ ¼ x

(
þ
Xq

ai~bij06 ai6 ni

)
:

nd (b) DCN in a 3-D torus.
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This notation is used to represent some sub-

groups in a tori. For instance, the main diagonal

line of torus Tn�n is represented as SPANðP0;0;
ð~e1;2Þ; nÞ; an XY -plane passing through node P0;0;i in
Tn�n�n is denoted as SPANðP0;0;i; ð~e1;~e2Þ; ðn; nÞÞ. A
3-D torus is viewed as SPANðP0;0;0; ð~e1;~e2;~e3Þ;
ðn; n; nÞÞ.

We should introduce some notations to facili-

tate our routing algorithm. Considering a 3-D

torus, we introduce the two matrices of delivery

routing and distance. A delivery routing matrix
R ¼ ½ri;j�3�3 is a matrix with entries )1, 0, 1 such

that each row indicates a message delivery; if

ri;j ¼ 1 (resp. )1), the corresponding message will
travel along the positive (resp. negative) direction

of dimension j; if ri;j ¼ 0, the message will not

travel along dimension j. A distance matrix
D ¼ ½di;j�3�3 is an integer diagonal matrix (all non-

diagonal elements are 0); di;i represents the dis-

tance to be traveled by the i-th message described

in R along each dimension.

For instance, the six message deliveries in Fig.
2(a) have three directions and thus can be repre-

sented by a delivery routing matrix:

R ¼
~e1;3
~e2;3
~e3

2
4

3
5 ¼

1 0 1

0 1 1

0 0 1

2
4

3
5:

In general, the node pi;j;k sends M to the six
nodes piþa1;j;kþa1 , pi;jþa2;kþa2 , pi;j;kþa3 , piþa
1;j;kþa
1

,

pi;jþa
2;kþa
2
, and pi;j;kþa
3

, (note that a	i � 	 it
7
,

where t is block size; see Section 3 for details on

deriving t). So two distance matrices can be used:
Fig. 2. Examples of (a) a routing matrix
Dþ ¼
a1 0 0

0 a2 0

0 0 a3

2
64

3
75 and

D
 ¼
a
1 0 0

0 a
2 0

0 0 a
3

2
64

3
75;

and the 6 message deliveries in Fig. 2(a) are rep-

resented by matrix multiplication:

Dþ � R ¼
a1 0 a1

0 a2 a2

0 0 a3

2
64

3
75 and

D
 � R ¼
a
1 0 a
1

0 a
2 a
2

0 0 a
3

2
64

3
75:

For instance, given

Dþ ¼
1 0 0
0 1 0

0 0 1

2
4

3
5 and D
 ¼


1 0 0
0 
1 0

0 0 
1

2
4

3
5;

and

Dþ � R ¼
1 0 1

0 1 1

0 0 1

2
64

3
75 and

D
 � R ¼

1 0 
1

0 
1 
1

0 0 
1

2
64

3
75;
and (b) collection routing matrix.



580 Y.-S. Chen et al. / Journal of Systems Architecture 50 (2004) 575–589
then node pi;j;k may send M to the six nodes

piþ1;j;kþ1; pi;jþ1;kþ1; pi;j;kþ1; pi
1;j;k
1; pi;j
1;k
1, and

pi;j;k
1.

Further we define a similar routing matrix,

namely the collection routing matrix C. A collection
routing matrix C ¼ ½ci;j�3�3 is a matrix with entries

)1, 0, 1 such that each row indicates the path of a

collected message; if ci;j ¼ 1 (resp. )1), the corre-

sponding message will be collected from neigh-

boring nodes along the positive (resp. negative)

direction of dimension j; if ci;j ¼ 0, the message will

not be collected from neighbors along dimension j.
Normally, if matrices C and R have the same en-
tries, their representative routing path denotes

the opposite direction. For instance as shown in

Fig. 2(b), given a collection routing matrix

C ¼
~e1;3
~e2;3
~e3

2
4

3
5 ¼

1 0 1

0 1 1

0 0 1

2
4

3
5;

then matrix multiplication,

Dþ � C ¼
1 0 1

0 1 1

0 0 1

2
64

3
75 and

D
 � C ¼

1 0 
1

0 
1 
1

0 0 
1

2
64

3
75;

indicates that node pi;j;k collects six distinct mes-

sages from nodes piþ1;j;kþ1; pi;jþ1;kþ1; pi;j;kþ1; pi
1;j;k
1;
pi;j
1;k
1, and pi;j;k
1. Observe that the collection
routing matrix C is always used in the aggregation

phase, and delivery routing matrix R is adopted in

the distribution phase.
3. Multi-node broadcasting in 3-D tori

Now we introduce our multi-node broadcasting
algorithm. The network partition scheme is ap-

plied to a 3-D torus, so that h2 number of DDNs
and dnhe � dnhe � dnhe number of DCNs exist.

3.1. The aggregation-then-distribution strategy

Existing multi-node broadcasting results are

based on the construction of multiple-spanning
trees [11,12,14] such that all source nodes are

evenly distributed to root nodes in all trees. As

mentioned in Section 1, this approach is suitable

for non-fixed connection networks [4,11,12,14].

However, limiting the maximum number of mul-

tiple-spanning trees is not suitable for fixed-con-
nection networks [1,8,13]. The largest number of

spanning trees in multi-dimensional tori is as many

as the degree. It is worth mentioning that there are

only six edge-disjoint spanning trees in 3-D tori.

This motivates us to develop a truly efficient

scheme to improve the limination.

Our proposed scheme, namely the aggregation-
then-distribution scheme, is based on the network
partitioning scheme; a torus network is partitioned

into numbers of DDNs and DCNs. The main func-

tion of the aggregation-then-distribution scheme is

outlined.

1. Aggregation phase: There are many source

nodes located at unknown positions, and each

one intends to broadcast its message. Source
messages are aggregated into some regular posi-

tions of h� h DDNs. The purpose of the aggre-
gation operation is to regularize the data

pattern. Unfortunately, this operation causes

load-imbalance problem. A tuning operation

is presented for the purpose of load balancing.

2. Distribution phase: A number of independent
subnetworks (h� h DDNs) are constructed from
the 3-D torus. These subnetworks, which are

responsible for distributing messages, can fully

exploit the communication parallelism. Multi-

node broadcasting is accomplished by means

of these independent subnetworks.

In the following, the aggregation and distribu-

tion phases of multi-node broadcasting are pre-
sented, respectively.

3.2. Aggregation phase

Assume that there are s source nodes, and each

one intends to broadcast its message. Initially,

messages in all source nodes attempt to be aggre-

gate to DDN0;DDN1; . . . ;DDNh2
1. This operation

is very efficient for the many-to-all communication

pattern because the communication pattern is
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regulated in advance. The aggregation phase is

divided into two steps:

• Step 1: diagonal-based data-aggregation opera-

tion; and

• Step 2: balancing-load operation.

3.2.1. Step 1: Diagonal-based data-aggregation

operation

The main function of the data-aggregation

operation is to standardize the communication

pattern before multi-node broadcasting. The sizes

of DDN0;DDN1; . . . ;DDNh2
1 and DCN0;DCN1;
. . . ;DCNk
1 are initially determined, where k ¼ n3

h3.
Let a 3-D torus be represented as SPANðP0;0;0;

ð~e1;3;~e1;2;~e1Þ; ðn; n; nÞÞ. Each DCN is viewed as

SPANðPx;y;z; ð~e1;3;~e1;2;~e1Þ; ðh; h; hÞÞ, where 06 x ¼
ih; y ¼ jh; z ¼ kh < n. The data-aggregation oper-

ation attempts to aggregate all possible messages

to a special plane in each DCN which is denoted

as a diagonal plane represented by SPANðPx;y;z,
ð~e1;3;~e1;2Þ; ðh; hÞÞ. That is, all nodes aggregate
messages into the diagonal plane SPANðPx;y;z,
ð~e1;3;~e1;2Þ; ðh; hÞÞ. Initially, we let h ¼ 7; then every

node Pi;j;k in the diagonal plane of each DCN
aggregates messages from nodes Pi
1;j;k, Piþ1;j;k,

Pi;j
2;k, Pi;jþ2;k, Pi;j;k
3, and Pi;j;kþ3 as shown in Fig.

3(a). This operation is represented by

C ¼
1 0 0
0 1 0
0 0 1

" #
; Dþ ¼

1 0 0
0 2 0
0 0 3

" #
;

D
 ¼

1 0 0
0 
2 0
0 0 
3

" #
;

Fig. 3. (a) Data-aggregation pattern when h ¼ 7 a
and

Dþ � C ¼
1 0 0

0 2 0

0 0 3

2
4

3
5 and

D
 � C ¼

1 0 0

0 
2 0

0 0 
3

2
4

3
5:

Obviously, this communication pattern is con-

gestion free. If h > 7, each distinct group can
aggregate messages from seven different nodes,

and then each of the seven groups can aggregate

messages into a diagonal plane. Finally, all mes-

sages are aggregated into one diagonal plane,

which is executed in dlog7 he steps. Fig. 3(b) illus-

trates an example when h ¼ 49; six messages from

nodes Pi
t;j;k, Piþt;j;k, Pi;j
2t;k, Pi;jþ2t;k, Pi;j;k
3t, and

Pi;j;kþ3t are aggregated to node Pi;j;k, where t ¼ 1
and 7. This operation is represented by

C ¼
1 0 0

0 1 0

0 0 1

2
4

3
5; Dþ ¼

t 0 0

0 2t 0

0 0 3t

2
4

3
5;

D
 ¼

t 0 0

0 
2t 0

0 0 
3t

2
4

3
5;

and

Dþ � C ¼
t 0 0

0 2t 0

0 0 3t

2
4

3
5 and

D
 � C ¼

t 0 0

0 
2t 0

0 0 
3t

2
4

3
5:
nd (b) data-aggregation pattern when h > 7.
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Lemma 2. Diagonal-based data-aggregation oper-
ations can be recursively performed on a torus
Tn�n�n in dlog7 heTs þ

Pdlog7 he
i¼0 7imTc ¼ dlog7 heTsþ

7dlog7 he
1
6

mTc.

3.2.2. Step 2: Balancing-load operation

After applying the data-aggregation operation,

each DDN0;DDN1; . . . , and DDNh2
1 has a different

number of messages. This is load imbalance, so a

data tuning procedure is presented in order to

achieve load balance. This part is divided into two

procedures:

• Prefix-sum procedure: Each message-retaining

node calculates a prefix-sum value; and

• Data tuning procedure: A data tuning operation

is performed to achieve the load balance.

3.2.2.1. Prefix-Sum Procedure. The prefix-sum

procedure exchanges information for calculating

the prefix-sum value. After the data-aggregation
operation, all source nodes� messages are aggre-

gated to regular positions, which are in diagonal

plane SPANðPx;y;z; ð~e1;3;~e1;2Þ; ðh; hÞÞ, where 06 x ¼
ih; y ¼ jh; z ¼ kh < n. All those planes constitute a

special cube SPANðP0;0;0; ð~e1;3;~e1;2;~e1Þ; ðn; n; dnheÞÞ.
In the following, we describe a simple diago-

nal-based recursive prefix-sum procedure. Our

diagonal-based recursive prefix-sum procedure
calculates a prefix-sum value for each message-

retaining node in SPANðP0;0;0; ð~e1;3;~e1;2;~e1Þ;
Fig. 4. (a) Plane to line if h > 7, (b) plane to line if h ¼ 7, (c) diagona
ðn; n; dnheÞÞ. The diagonal-based prefix-sum proce-

dure is divided into forward and backward stages.

In the forward stage, information on the number

of messages is aggregated from a cube to a plane,

and then from a plane to a line, and then from a

line to one node. After the forward stage, the total
number of whole source messages is kept in one

node. In the backward stage, the partial prefix-

sum value is returned from the node to a line, and

then from a line to a plane, and eventually from a

plane to a cube. Herein we omit the detailed

operations. Two examples of plane-to-line and

line-to-node operations are illustrated in Figs. 4

and 5. After the backward stage, every node in
SPANðP0;0;0; ð~e1;3; ~e1;2;~e1Þ; ðn; n; dnheÞÞ has its own

prefix-sum value for calculating a unique ranking

number. Using ranking numbers allows each node

in SPANðP0;0;0; ð~e1;3;~e1;2;~e1Þ; ðn; n; dnheÞÞ to move

extra messages to other DDNs to satisfy the load

balance. Consequently, the total time cost of the

prefix-sum procedure is ð8dlog7 ne þ 2dlog7 dnheeþ
1Þ ðTs þ TcÞ.

3.2.2.2. Data tuning procedure. This task is divided

into two parts: (1) finding a destination list and (2)

performing a data tuning operation. Two impor-

tant values are needed: one is the prefix-sum value

and the other is the number of retained-messages.

The destination list is calculated based on these

two values. Assume that node x is located in
DDNi;j, with a destination list. The information on
l plane pattern, (d) prefix-sum collection into a diagonal plane.



Fig. 5. (a) First stage of line to node, (b) second stage of line to node, (c) first stage collection pattern, (d) second stage collection

pattern.
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the destination list indicates that node x should

move a message to certain neighboring nodes. To

satisfy this purpose, for node x, if ðk; lÞ 2 desti-

nation list, one message from DDNi;j (node x) is

moved to DDNk;l. That is, every node x performs

the following operation.

S1. Finding a destination list: Having a prefix-sum
value a and number of retained-messages b,
then the destination list is F ¼ famodh2;
ða þ 1Þmodh2; . . . ; ða þ bÞmodh2g if the num-

ber of DDNs is h2. Two communication steps

are needed if one intends to move message

from DDNi;j to DDNk;l. One is for moving mes-

sage from DDNi;j to DDNk;j (called row tuning

operation) and other one is to move message
from DDNk;j to DDNk;l (called column tuning

operation). Finally, a destination sequence F0

is constructed to find the destination DDNk;l

for DDNi;j. Note that F0 is a sequence of pairs

which is constructed as follows. For every

t 2 F, let ði ¼ tmodh; j ¼ t=hÞ 2 F0, where i; j
indicate the offset value of row and column

tuning operations in the data tuning opera-
tion. For instance, if h2 ¼ 49, if a ¼ 47 and

b ¼ 6, then F ¼ f47; 48; 0; 1; 2; 3g. If a node

is in DDN5;5, then F ¼ f47; 48; 0; 1; 2; 3g and

F0 ¼ fð5; 6Þ; ð6; 6Þ; ð0; 0Þ; ð1; 0Þ; ð2; 0Þ; ð3; 0Þg.
S2. Data tuning operation: The data tuning opera-

tion is divided into row tuning and column

tuning operations which are formally de-

scribed below.
T1. Row tuning operation (DDNi;j ! DDNk;j): An

extra alignment operation is executed due to

the dimension-order routing. If ji
 kj6 3,

then we allow DDNi;j ! DDNi	1;j;DDNi	2;j,

and DDNi	3;j within two communication

steps. For each node in the diagonal plane

of DDNi;j, we first align DDNi	1;j along dimen-

sion X with distance 	1, DDNi	2;j along
dimension Y with distance 	2, and DDNi	3;j

along dimension Z with distance ±3 to six

meta-nodes, as shown in Fig. 6(a). Every node

Px;y;z in diagonal plane DDNi;j distributes its

messages to six nodes Px
1;y
1;z; Pxþ1;yþ1;z;
Px;y
2;z; Px;yþ2;z; Px;y;z
3, and Px;y;zþ3, which are

represented by

R ¼
1 1 0

0 2 0

0 0 3

2
64

3
75; where

Dþ ¼
1 0 0

0 1 0

0 0 1

2
64

3
75 and

D
 ¼

1 0 0

0 
1 0

0 0 
1

2
64

3
75:

Let nodes Px;y
2;z, Px;yþ2;z, Px;y;z
3, and Px;y;zþ3 act

as meta-nodes. Second, meta-nodes Px;y
2;z and

Px;yþ2;z forward messages to Px
2;y
2;z and Pxþ2;yþ2;z

along dimension X , and meta-nodes Px;y;z
3, and
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Px;y;zþ3 forward messages to Px;y
3;z
3 and Px;yþ3;zþ3

along dimension Y as shown in Fig. 6(b). Further

if ji
 kj > 3, then this procedure can be generally

performed in time 2dlog7 heðTs þ mTcÞ.
T2: Column tuning operation (DDNk;j ! DDNk;l):

Due to dimension-order routing, an extra
alignment operation is performed. If

jj
 lj6 3, then we allow DDNk;j ! DDNk;j	1,

DDNk;j	2, and DDNk;j	3 within two communi-

cation steps. In the first step, a node in DDNk;j

sends a message to DDNk;j
1 and DDNk;jþ1 and

aligns the message along dimension Z with

distance 	2 to two meta-nodes. That is, every

node Px;y;z directly sends a message to Px
1;y;z
1

and Pxþ1;y;zþ1 and sends a message to two

meta-nodes Px;y;z
2 and Px;y;zþ2, which are rep-

resented by

R ¼
1 0 1

0 0 2

0 0 0

2
64

3
75; where Dþ ¼

1 0 0

0 1 0

0 0 1

2
64

3
75

and D
 ¼

1 0 0

0 
1 0

0 0 
1

2
64

3
75:

In the second step, DDNk;j directly moves

a message to DDNk;j	3 and, at the same time,

two meta-nodes forward messages to destination

DDNx;j	2. That is, every node Px;y;z sends a message

to Px
3;y;z
3 and Pxþ3;y;zþ3. Simultaneously, meta-
Fig. 6. (a), (b) Row tuning actions, an
nodes Px;y;z
2 and Px;y;zþ2 send messages to Px
2;y;z
2

and Pxþ2;y;zþ2 along dimension X . Further, if

ji
 kj > 3, then this task is generally completed in

time 2dlog7 heðTs þ mTcÞ.
The total time cost of the data tuning operation

is 4dlog7 heðTs þ mTcÞ. Note that the communica-
tion pattern of the row and column tuning oper-

ations is congestion free.

3.3. Distribution phase

After the aggregation phase, each of the data

distribution networks DDN0;DDN1; . . . ;DDNh2
1

has the same number of messages. These subnet-
works, which are responsible for distributing

messages can fully exploit the communication

parallelism of wormhole routing. The distribution

phase is divided into three steps.

Step 1: (Alignment operation) For every DDN ,
messages of nodes are aligned to the diag-

onal plane, and then an all-to-all broad-
cast operation is executed such that all

nodes in each diagonal plane has the

same number of broadcast messages.

Note that different diagonal plane would

have distinct broadcast messages.

Step 2: (Broadcast operation) Every DDN per-

forms a diagonal plane broadcast scheme

[15], such that all DDNs have the same
copies of the broadcast messages.
d (c), (d) column tuning actions.
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Step 3: (Data-collection operation) Each node in

every DCN collects messages from all

other nodes in the same DCN .
3.3.1. Step 1: Alignment operation

Each DDN retains the same number of

messages which indicates that each DDN has

equal communication latency. The original 3-D

torus is virtually partitioned into h� h subto-

rus ?tul> DDNs. Each pair of DDNs is mutually

disjoint. The alignment operation, which is di-

vided into two stages, allows congestion-free

linking.

S1. Alignment to the diagonal plane: All possi-

ble messages are aligned into the diagonal

plane. This task can be easily achieved by

performing the diagonal-based data-aggre-

gation operation as introduced in Section

3.1, which takes time dlog7 ðdnheÞeðTs þ ~mTcÞ,
where ~m ¼ s

h2 m.
S2. All-to-all broadcasting procedure on the diago-

nal plane: This procedure collects messages of

each node in the diagonal plane SPANðPx;y;z;
ð~e1;3;~e1;2Þ; ðdnhe; dnheÞÞ from other nodes located

in the same diagonal plane. The plane can be

viewed as having dnhe rows or dnhe columns.

Two broadcasting operations are needed.

Basically, this procedure is the row and col-
umn tuning operations with different distance

matrices of Dþ and D
.

B1. Row broadcasting operation: This procedure is

the same as the row tuning (T1) operation

with the modification of

R ¼

1 1 0

0 2 0

0 0 3

2
664

3
775; where Dþ ¼

h 0 0

0 h 0

0 0 h

2
664

3
775

and D
 ¼


h 0 0

0 
h 0

0 0 
h

2
664

3
775:

B2. Column broadcasting operation: This proce-

dure is the same as the column tuning (T2)
operation with modification of
R ¼

1 0 1

0 0 2

0 0 0

2
664

3
775; where Dþ ¼

h 0 0

0 h 0

0 0 h

2
664

3
775

and D
 ¼


h 0 0

0 
h 0

0 0 
h

2
664

3
775:

Further, if dnhe > 7, the diagonal plane is parti-

tioned into d n
7he � d n

7he groups. All-to-all broad-

casting operations are executed in d n
7he � d n

7he
groups in time 4dlog7 ðdnheÞeðTs þ ~mTcÞ, where
~m ¼ s

h2 m. Each communication step of row and

column broadcasting operations is obviously
congestion free. This is because messages travel

along distinct dimensions during broadcasting

operations.
3.3.2. Step 2: Broadcast operation

After the alignment operation, every node in the

diagonal plane of each DDN contains the same

broadcast messages. The next step is to perform a
well-known result, the diagonal broadcast scheme

in a 3-D torus [15], on each DDN in parallel. The

diagonal plane SPANðPx;y;z; ð~e1;3;~e1;2Þ; ðdnhe; dnheÞÞ has
partial source messages, and the broadcasting is

based on recursively sending messages from a

diagonal plane to six planes. Note that the oper-

ation is executed in time dlog7 dnheeðTs þ ~mTcÞ,
where ~m ¼ s

h2 m.
3.3.3. Step 3: Data collection operation

For each data collecting network (which is an

h� h� h mesh), each diagonal plane receives

messages M0, M1; . . . , and Mh2
1. Each received

message contains all messages of one DDN . These
messages should be propagated to every node of

the DCN . This is implemented in three stages: row
broadcasting followed by column and horizontal

broadcasting.

In the row broadcasting stage, we use a recur-

sive scheme. Nodes located in the diagonal plane

send messages to two nodes with distance 	 1
3
h and

recursively propagate the message. This requires

dlog3 he communication phases and incurs the time

cost T1 ¼ dlog3 heðTs þ ~mTcÞ, where ~m ¼ s
h2 m.
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Every node collects partial messages from the

row broadcasting stage. The messages belong to its

column nodes; every node concurrently sends

separate messages to other nodes in a pipelined

scheme. We first embed a logical (directed) ring in

each column of the DCN . This is done by first
visiting even nodes down the column and then odd

nodes up the column. This produces dilation-2

embedding. With this embedding, every node then

pipeline-propagates its own messages following the

ring. The same scheme is executed in horizontal

broadcasting, i.e., pipeline-propagates messages in

the Z-axis direction of the h� h� h DCN . The

column broadcasting stage runs in time T2 ¼
ðh
 1ÞðTs þ ~mTcÞ, where ~m ¼ s

h2 m, and horizontal

broadcasting runs in time T3 ¼ ðh
 1ÞðTs þ m0TcÞ,
where m0 ¼ s

h m. The total time cost of the data

collecting operation is T ¼ ðdlog3 he þ 2h
 2ÞTs þ
½ðdlog3 he þ h
 1Þ~mþ ðh
 1Þm0�Tc, where ~m ¼ s

h2 m
and m0 ¼ s

h m.
4. Performance comparison

We begin with a discussion of time complexity,

and then a simulation result is given to verify the

effectiveness of our proposed scheme.

4.1. Performance analysis

The time complexity of our proposed scheme is

given herein.

Lemma 3. The aggregation phase can be executed
in a Tn�n�n torus within

8dlog7 ne
�

þ 5 log7 hd e þ 2 log7
n
h

l m
þ 1

�
Ts

þ 4dlog7 he
��

þ 7dlog7 he 
 1

6

�
m

þ 8dlog7 ne
�

þ 2 log7
n
h

l m
þ 1

��
Tc;

where m denotes the size of a unit message.

Lemma 4. The distribution phase can be executed
in a Tn�n�n torus within
6 log7
n
h

l ml m�
þ log3 hd e þ 2h
 2

�
Ts

þ 6 log7
n
h

l ml m�h
þ log3 hd e þ h
 1

� s
h2
m

þ ðh
 1Þ s
h
m
i
Tc:

Theorem 5. The multi-node broadcasting algorithm
with the aggregation-then-distribution strategy can
be performed in a Tn�n�n torus within

O maxðdlog7 ne; hÞTs
�
þmax log7

n
h

l ml m s
h2
m; sm

� �
Tc
�
:

A simple comparison of the time complexity is

given. Since there are six edge-disjoint spanning

trees [3] in a 3-D tori, where the height of a

spanning tree is Dþ 2, and D ¼ 3bn
2
c is the diam-

eter in Tn�n�n. Therefore, the time complexity of

the scheme using edge-disjoint spanning trees is

Oð3bn
2
cTs þ ð3bn

2
c � sm

6
ÞTcÞ. Table 1 shows that our

scheme is more efficient than the edge-disjoint

spanning-tree scheme due to the fact that

Oðdlog7 n
h

� �
e s
h2 mTcÞ < Oð3bn

2
c � sm

6
ÞTcÞ.

4.2. Simulation results

We have developed a simulator to study the

performance issue. We mainly compared our
scheme against the multiple-spanning-tree scheme

[11] under various situations. Parameters used in

our simulations are listed below.

• The torus size is 16 · 16 · 16.
• Startup time Ts ¼ 30 ls and Tc ¼ 1 ls.
• Dilation h ¼ 7 or 14.

• The message size rangs from 2 to 10k.

Below, we show our simulation results from

three prospects.

(A) Effects of the number of sources: Fig. 7

shows the multi-node broadcast latency when

Ts ¼ 30 ls and Tc ¼ 1 ls for various numbers of

sources. Our scheme when h ¼ 7 incurs higher



Fig. 7. Multi-node broadcast latency in a 16 · 16· 16 torus for

various numbers of source nodes. Fig. 8. Multi-node broadcast latency in a 16· 16 · 16 torus for

various numbers of transmitted messages.

Table 1

Comparison of the communication latency of multi-node broadcasting using various schemes

Strategy Start-up computation Trans. computation

Edge-disjoint spanning trees (3-D) [14] Oð3bn
2
cTsÞ Oð3bn

2
c � sm

6
TcÞ

Aggregation-based (3-D) Oðmaxðdlog7 ne; hÞTsÞ Oðmaxðdlog7 n
h

� �
e s
h2 m; smÞTcÞ
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latency than multiple-spanning-tree scheme, while

our scheme when h ¼ 14 has a lower latency than

the multiple-spanning-tree scheme. This reflects

the fact that our scheme performs better than the

multiple-spanning-tree scheme with various num-

ber of sources.
(B) Effects of message length: Fig. 8 shows the

multi-node broadcast latency when Ts ¼ 30 ls and
Tc ¼ 1 ls at various message lengths. Our scheme

when h ¼ 7 incurs a higher latency than that the

multiple-spanning-tree scheme, while our scheme

when h ¼ 14 has a lower latency than the multiple-

spanning-tree scheme. Our scheme truely has bet-

ter performance than the multiple-spanning-tree
scheme for various message length. Furthermore,

Fig. 8 also illustrates that our scheme has better

performance as more message are generated in the

MPC.

(C) Effects of value of h: The value of h reflects

the number of subnetworks, and thus the level of

communication parallelism. So a larger h generally
delivers a better performance. Figs. 7 and 8 com-
pare multi-node broadcast latency when h ¼ 7 and
14. Observe that our scheme has a lower latency

when h ¼ 14 than when h ¼ 7. This verifies that

the higher the level of communication parallelism

is, the better the performance will be.

By comparing Figs. 7 and 8, our scheme can
exploit a higher level of communication parallel-

ism than can the multiple-spanning-tree scheme.

Generally speaking, it is worth mentioning that

there is significant improvement in communication

latency due to our scheme being able to exploit

higher communication parallelism.
5. Conclusions

In this paper, we have shown how to solve the

multi-node broadcast problem in a 3-D torus using

a proposed aggregation-then-distribution strategy.

The underlying assumptions are wormhole and

dimension-ordered routing, which are currently in

general use. The main technique is to partition the
torus into a certain number of independent



588 Y.-S. Chen et al. / Journal of Systems Architecture 50 (2004) 575–589
subnetworks such that all messages can be trans-

mitted in parallel. This aggregation-then-distri-

bution scheme is proposed for fixed-degree

interconnection networks. Timing analysis has

shown that this scheme is promising over con-

ventional schemes using multiple-spanning trees.
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