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Abstract

The arrangement graph An;k is not only a generalization of star graph (nÿ k � 1), but also more ¯exible. In this

investigation, we elucidate the problem of embedding of multiple spanning trees in an arrangement graph with the

objective of congestion-free. This result is to report how to exploit 2�nÿ k� edge disjoint spanning trees in an ar-

rangement graph, where each congestion-free spanning tree's height is 2k ÿ 1. Our scheme is based on a subgraph-

partitioning scheme. First, we construct 2�nÿ k� base spanning trees in every Anÿk�2;2. Then, we recursively construct

2�nÿ k� spanning trees from every Anÿk�2;2 up to An;k by a bottom-up approach. This is a near-optimal result since all of

possible edges in the base subarrangement Anÿk�2;2 are fully utilized. Ó 2001 Published by Elsevier Science B.V. All

rights reserved.
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1. Introduction

Designing large multi-processor systems frequently involves organizing into various con®gurations. One
of the widely studied interconnection network topologies is the star graph [10,12,13]. As a member of the
Cayley graphs, the star graph possesses several attractive features such as its diameter-to-node-degree ratio,
scalability, partitionability, symmetry, and high degree of fault tolerance [1,4]. However, the star graph is
limited with respect to its number of nodes: n! for an n-dimensional star graph. A new interconnection
topology, arrangement graph, has recently been proposed [5]. As a family of undirected graphs that contains
the star graph family, the arrangement graph has desired properties, such as symmetric vertex and sym-
metric edge, strong resilience and maximal fault-tolerance. Arrangement graph is more ¯exible than the star
graph in terms of choosing major design parameters, i.e. member of vertices, degree and diameter, while
preserving most of the excellent properties of the star graph.
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The arrangement graph has received considerable attention in [2,5±9,11]. First, Day and Tripathi [6]
designed a shortest-path routing algorithm for the arrangement graphs. According to their results, the
arrangement graph can be embedded cycles whose length ranges from three to the size of the graph [7].
Moreover, the arrangement graph can be decomposed into vertex disjoint cycles in many di�erent ways [7].
Furthermore, multi-dimensional graphs, hypercube and one spanning tree can be embedded in arrange-
ment graph [8]. The spanning tree can support broadcasting communication in the arrangement graph. Tsai
and Horng proposed an e�cient scheme to embed hypercube on arrangement graphs [11]. Heieh and Chen
[9] further demonstrated that the arrangement graph remains a ring even if it is faulty. Bat et al. [2] recently
proposed a distributed fault-tolerant algorithm for one-to-all broadcasting only in the one-port commu-
nication model on the arrangement graph.

In the light of above discussion, this work elucidates the problem of construction of multiple spanning
trees in arrangement graphs. In this investigation, we assume that a node consists of a processor with bi-
directional communication links to each of its adjacent nodes. Therefore, the term edge-disjoint spanning
trees can be interchangeably adopted to re¯ect that no two edges of our spanning trees share a same direct
communication link. To our knowledge, this work reports to the feasibility of embedding 2�nÿ k� spanning
trees in An;k, at the same time, keeping the edge-congestion free. Similar results for the star graph can be
found in [3,14].

A tree is a common structure to represent inter-task communication pattern of a parallel algorithm. In
this work, we propose a new spanning tree in an arrangement graph An;k that has nice property that 2�nÿ k�
copies of such trees can be embedded simultaneously in the network with edge-congestion free. In this
paper, we consider the embedding of multiple spanning trees in an arrangement graph with the objective of
congestion free. Chen et al. recently proposed a scheme to embed nÿ k spanning trees [3]. Further, this
paper exploits the double number of spanning trees than Chen et al.'s scheme.

The rest of this paper is organized as follows. Section 2 introduces preliminaries. Section 3 presents the
scheme of embedding 2�nÿ k� spanning trees. Conclusions are ®nally drawn in Section 4.

2. Preliminaries

The arrangement graph is denoted by An;k, where speci®ed by integers n and k and 16 k6 nÿ 1. Denote
nh i � f1; 2; . . . ; ng. Let P n

k

ÿ �
be the set of permutations of k symbols taken from nh i. These k symbols are

denoted as X � x1x2 � � � xk: Refer xi as the ith element of X. The (n; k)-arrangement graph, denoted as An;k,
de®ned in [6] is an undirected graph �V ;E� as follows:

V � fX � x1x2 � � � xkjxi in nh i and xi 6� xj for i 6� jg � P n
k

ÿ �
;

E � f�x; y�jx and yin V and for some i in kh i; xi 6� yj and xj � yj for j 6� ig:
�

Fig. 1 depicts an example of A4;2 and A5;3. The edge of An;k connecting neighboring nodes, which di�er in
exactly one of their k positions. The vertices of An;k are the arrangements of k elements of nh i. For example,
in A4;2; the node p� 41 is connected to the nodes � 42, 43, 21 and 31. An edge of An;k connecting two
arrangements p and q, which di�er only in position i, is called an i-edge: For all values of n and k, An;k is a
regular graph on n!=�nÿ k�! nodes that is regular of degree k�nÿ k�, and a diameter 3=2kb c [6]. For an
arrangement X � x1x2 � � � xk; we de®ne EXT �X � � nh i ÿ fx1; x2; . . . ; xkg to be the nÿ k elements of nh i not
appearing in the arrangement X. Let INT �X � � fx1; x2; . . . ; xkg � nh i ÿ EXT �x� to be the k elements of hni
appearing in the arrangement X : For example, we consider the node p � 412 in the arrangement graph A5;3,
so EXT �p� � f3; 5g and INT �p� � f1; 2; 4g.

In an An;k, each node p performs an adjacent function ADJx;y�p� to arrive at adjacent node q, where x is
the position of label of node and y is the changed label in EXT �p�. Given X � x1 � � � xx � � � xk 2 INT �X �, the
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adjacent function ADJx;y�X � is the adjacent nodes of X obtained by changing xx in X as y, where 16 x6 k
and y 2 EXT �X �. Consider an arrangement graph A5;3, adjacent nodes for node p � 412 are 413, 415, 432,
452, 312 and 512, where EXT �p� � f3; 5g; INT �p� � f1; 2; 4g;ADJ1;3�p� � 312;ADJ1;5�p� � 512;ADJ2;3�p� �
432;ADJ2;5�p� � 452;ADJ3;3�p� � 413, and ADJ3;5�p� � 415.

The An;k is with recursive structure [6] i.e., an An;k can be partitioned into n copies of Anÿ1;kÿ1; each
embedded Anÿ1;kÿ1 is conveniently denoted by h�kÿ1ain;k, where a 2 f1; 2; . . . ; ng; (where � represents a

Fig. 1. The example for arrangement graph: (a) A4;2; (b) A5;3.
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``don't care'' symbol). For example, h� � 3i4;3 represents an embedded A3;2 of A4;3; contains six nodes: 123,
143, 213, 243, 413, and 423. From other point of view, there are n copies of h�kÿ1ain;k, which are obtained by
performing a split operation on h�kin;k; where a 2 f1; 2; . . . ; ng: This operation is called k-partition. Gen-
erally, An;k can be partitioned into n!=�nÿ p�! node-disjoint copies of Anÿp;kÿp in n!=�p!�nÿ p�!� di�erent
ways and that in total An:k contains k

p

� �
�n!�=��nÿ p�!� copies of Anÿp;kÿp, for 16 p6 k ÿ 1.

As a conclusion, the drawback of star graph [10,12,13] is limited with respect to its number of nodes,
which is equal to n!. This implies what the low scalability will be. The proposed arrangement graph [6] is
motivated by having the high scalability. The arrangement graph is more ¯exible than the star graph in
terms of choosing major design parameters, i.e. member of vertices, degree and diameter, while preserving
most of the excellent properties of the star graph. However, the potential troubles of the arrangement graph
[6] is the high-degree problem, which is k�nÿ k�. This problem leads to troublesome development of a VLSI
layout for the real machine.

3. Congestion-free embedding of 2�nÿ k� spanning trees

This section presents a novel embedding scheme of embedding 2�nÿ k� edge-disjoint spanning trees. Our
construction scheme adopts a bottom-up manner. An An;k can be partitioned into n!=�nÿ k � 2�! copies of
Anÿk�2;2. Each Anÿk�2;2 initially construct 2�nÿ k� base spanning trees. For each Anÿk�3;3, there are nÿ k � 3
copies of Anÿk�2;2. Each Anÿk�3;3 will perform a concatenation operation among nÿ k � 3 copies of Anÿk�2;2

to construct 2�nÿ k� spanning trees in the Anÿk�3;3: Recursively performing the concatenation operations
allow us to ®nally construct 2�nÿ k� spanning trees in an An;k.

Our 2�nÿ k� spanning trees are constructed by two phases:
· Phase 1. Generate 2�nÿ k� base spanning trees in each Anÿk�2;2.
· Phase 2. Perform a recursive concatenation operation to embed 2�nÿ k� edge-disjoint spanning trees.
These phases are described as follows.

3.1. Phase 1: Generate 2�nÿ k� base spanning trees in an Anÿk�2;2

After a splitting-operation on An;k, n!=��nÿ k � 2�!� copies of Anÿk�2;2s are obtained. According to dif-
ferent values of n and k; 2�nÿ k� base spanning trees in each Anÿk�2;2 can be generated as follows:
· Step 1. Locate 2�nÿ k� roots nodes.
· Step 2. Generate 2�nÿ k� base spanning trees in each Anÿk�2;2.

3.1.1. Step 1. Locating 2�nÿ k� roots in an Anÿk�2;2

This section describes how to locate 2�nÿ k� root nodes in an Anÿk�2;2. An Anÿk�2;2 is partitioned into
nÿ k � 2 copies of Anÿk�1;1, where each Anÿk�1;1 is a (nÿ k � 1)-node complete graph. The SWP1;2�R�
function is de®ned to swap the ®rst and second bits of R. Denote these 2�nÿ k� root nodes as
R1;R2; . . . ;Rnÿk and P1; P2; . . . ; Pnÿk, which are constructed as follows:
· Let R1 � �y1x2x3 � � � xk� be any node of one Anÿk�1;1. Other root nodes R2 � �y2x2x3 � � � xk�;

R3 � �y3x2x3 � � � xk�; . . . ; and Rnÿk�1 � �ynÿk�1x2x3 � � � xk� by exchanging the ®rst bit of R1 with a; where
a 2 EXT �R1� � fy2; . . . ; ynÿk�1g. This work is achieved as follows:

Ri � ADJ1;a�R1�; where 26 i6 nÿ k � 1 and a 2 EXT �R1�:
Clearly, each pair of R1;R2; . . . ; and Rnÿk�1 are adjacent since R1;R2; . . . ; and Rnÿk�1 belong to an Anÿk�1;1

(a complete graph (�x2x3 � � � xk)). Note that node Rnÿk�1 is used to be a template node to ensure con-
gestion-free in our embedding.
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· Let Pi � SWP1;2�Ri�; where 16 i6 nÿ k � 1: Note that P1; P2; . . . ; and Pnÿk�1 also belong to a distinct
Anÿk�1;1 (a complete graph (x2 � x3 � � � xk)). Similarly node Pnÿk�1 is used to be a template node to ensure
congestion-free in our embedding.
Intuitively, every Ri is only di�erent in the ®rst bit, and every Pi is only di�erent in the second bit. Root

nodes Ri; 16 i6 nÿ k; are selected from ��x2x3 � � � xk�. Other root nodes Pi; 16 i6 nÿ k; are selected from
�x2 � x3 � � � xk�. Clearly, both ��x2x3 � � � xk� and �x2 � x3 � � � xk� are Anÿk�1;1 or �nÿ k � 1�-node complete graph.
Note that root nodes R1;R2; . . . ;Rnÿk and P1; P2; . . . ; Pnÿk satisfy the following property.

Root±location property. There are 2�nÿ k� root nodes Ri and Pi; 16 i6 nÿ k; in same subarrangement
graph. Root nodes Ri; i � 1; . . . ; nÿ k; belong to an Anÿk�1;1; Pi; i � 1; . . . ; nÿ k; belong to a distinct Anÿk�1;1;
so Pi � SWP1;2�Ri�; for i � 1; . . . ; nÿ k:

Root nodes Ri and Pi; i � 1; . . . ; nÿ k, are used to expand 2�nÿ k� base spanning trees in an Anÿk�2;2. Fig.
2 illustrates an example by setting R1 � 21; R2 � 31 and P1 � 12; P2 � 13. Node R3 � 41 and P3 � 14 are
the template nodes. This root±location property is very useful during constructing 2�nÿ k� spanning trees.

3.1.2. Step 2. Generate 2�nÿ k� base edge-disjoint spanning trees in an Anÿk�2;2

The 2�nÿ k� base spanning trees are constructed from root Ri and Pi; 16 i6 nÿ k, in an Anÿk�2;2. The
fact that each Anÿk�1;1 is a complete graph accounts for why 2�nÿ k� base spanning trees can be constructed
if we can connect each root node to distinct node of all other Anÿk�1;1s. This is because we have the following
result and Fig. 3 gives an example.

Lemma 1. For a j-node complete graph G, there exist j disjoint spanning trees with height one. Notably, each
node in G is the root node of each spanning tree.

Now we explain how to construct 2�nÿ k� base spanning trees in each Anÿk�2;2 such that each tree's
height is 3. Given 2�nÿ k� root nodes Ri and Pi; 16 i6 nÿ k. Consider any pair of nodes R 2 Ri and P 2 Pi,
where R � SWP1;2�P�. There are nÿ k pairs. As stated in Section 2, a n-dimensional arrangement graph
contains n subarrangements that we use to derive the desired spanning trees. Let R and P are one of these;

Fig. 2. Four base edge-disjoint spanning trees in an A4;2.
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we must connect R and P to other nÿ 1 subarrangements. For each of R and P, we use a single edge to
connect the R and P to nÿ k of subarrangements. We use an intermediate node in same subarrangement as
the bridge node to connect R and P to the remaining k ÿ 1 subarrangements by two edges. If k � 2, then
there is only one subarrangement connecting by two edges.

Rules A1 and A2 formalize our basic spanning tree construction.
A1 (Single edge). Let nodes _R and _P denote two nodes in every nÿ k subarrangements.

_R � ADJ2;a�R�; where a 2 EXT �R�:
_P � ADJ2;a�P �; where a 2 EXT �P �:

(

Note that _P � SWP1;2� _R�:
A2 (Two edges). Let nodes �R and �P denote as two nodes in one of remaining k ÿ 1 subarrangements,
which are connected by two edges (Note that in this case, k � 2). Recall in phase 1, nodes Rnÿk�1

and Pnÿk�1 are the intermediate nodes for nodes R and P, respectively. Note that
Rnÿk�1 � SWP1;2�Pnÿk�1�:

�R � ADJ2;b�Rnÿk�1�;where b is the first bit value in R:
�P � ADJ2;b�Pnÿk�1�;where b is the second bit value in P :

�
Note that �P � SWP1;2��R�: Fig. 2(a) shows that root node 21 uses distinct single edge to connecting nodes
23 and 24, and connecting node 42 by two edges. Fig. 2(b) displays that root node 31 directly connects to
32 and 34 but connects 43 by two edges. Fig. 2(c) gives example for other root nodes 12 and 13.
In the following, we describe the existence of 2�nÿ k� base spanning trees. Some notations are de®ned

®rst. Given root nodes Ri and Pi; 16 i6 nÿ k, are constructed by phase 1. An Anÿk�2;2 can be partitioned
into nÿ k � 2 copies of Anÿk�1;1 or A0nÿk�1;1 along dimension two or one. Firstly, assume that an Anÿk�2;2 is
partitioned into nÿ k � 2 copies of Anÿk�1;1 along second dimension, where Ri, 16 i6 nÿ k; located in one
of Anÿk�1;1: Let IE�Ri�; 16 i6 nÿ k; denote a set of all possible internal edges within each Anÿk�1;1. Let
EE�Ri� denote a set of all possible external edges outgoing each Anÿk�1;1: Secondly, an Anÿk�2;2 is partitioned
into nÿ k � 2 copies of A0nÿk�1;1 along ®rst dimension, where Pi, 16 i6 nÿ k; located in one of A0nÿk�1;1: Let
IE�Pi�, 16 i6 nÿ k; denote a set of all possible internal edges within each A0nÿk�1;1. Let EE�Pi� denote a set

Fig. 3. Four spanning trees with height 1 in a 4-node complete graph.
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of all possible external edges outgoing each A0nÿk�1;1: Further, let E�x; y� denote as edge beginning from node
x to destination node y. Note that E�x; y� and E�y; x� represent di�erent edges since the link is assumed as
full duplex. For example, as illustrated in Fig. 4(a), all bold edges are IE�Ri� and all dash edges are EE�Ri�:
In Fig. 4(b), all bold edges are IE�Pi� and all dash edges are EE�Pi�:

Some important properties are used later as stated herein. For 16 i6 nÿ k; we have following prop-
erties:

P1. Edges in IE�Ri� are equal to edges in EE�Pi�.
Fig. 4(a) shows that E�21; 31� 2 IE�Ri� and E�21; 31� 2 EE�Pi�:

P2. Edges in IE�Pi� are equal to edges in EE�Ri�.
Fig. 4(b) displays that E�21; 23� 2 IE�Pi� and E�21; 23� 2 EE�Ri�:

P3. Edges in IE�Ri� and edges in EE�Ri� are equal to all edges in the Anÿk�2;2.
P4. Edges in IE�Ri� and edges in EE�Ri� are distinct.
P5. Edges in IE�Pi� and edges in EE�Pi� are distinct.

Lemma 2. There exist nÿ k edge-disjoint spanning trees STnÿk�2;2�Ri� in an Anÿk�2;2; for 16 i6 nÿ k.

Fig. 4. Edge distribution in an A4;2: (a) all internal edges within each Anÿk�1;1 in A4;2;; (b) all internal edges within each A0nÿk�1;1 in A4;2.

Y.-S. Chen et al. / Journal of Systems Architecture 47 (2001) 73±86 79



Proof. Given root nodes Ri; 16 i6 nÿ k, are located in one of partitioned Anÿk�1;1. Every root node needs to
connect to other Anÿk�1;1: Therefore, nÿ k spanning trees STnÿk�2;2�Ri�, for 16 i6 nÿ k, are mutually dis-
joint due to the fact that every root node satis®es the following conditions:
1. All edges of R1;R2; . . ., and Rnÿk connecting to the same Anÿk�1;1 are disjoint.
2. All nodes in the same Anÿk�1;1 connecting to R1; R2; . . ., and Rnÿk di�er from each other.

The reason is stated as follows: recalled again, since k � 2, for all Ri; we use nÿ 2 distinct single edges
connecting to nÿ 2 copies of Anÿk�1;1 and use two edge to connect with remaining one Anÿk�1;1. Intuitively,
all edges connecting from R1;R2; . . . ; and Rnÿk to template node Rnÿk�1 are distinct since all of these nodes
located in a �nÿ k � 1�-node complete graph (or Anÿk�1;1). Recall previous notation, edges in all possible
Anÿk�1;1 are denoted as IE�Ri� and all edges in all possible A0nÿk�1;1 are denoted as EE�Ri�: For condition 1, all
edges of R1; R2; . . ., and Rnÿk connecting to the same Anÿk�1;1 are disjoint because every edge belongs to
di�erent A0nÿk�1;1. Remember, these edges are belong to EE�Ri�: For condition 2, all nodes in the same
Anÿk�1;1 connecting to R1; R2; . . ., and Rnÿk di�er from each other due to the fact that each of these nodes
belongs to distinct A0nÿk�1;1. �

Based on node symmetry, we have the following similar result.

Lemma 3. There exist nÿ k edge-disjoint spanning trees STnÿk�2;2�Pi� in an Anÿk�2;2 , for 16 i6 nÿ k.

To make the clear description of lemma 6, some notations are de®ned. Let SE�Ri;A�;A 2 Anÿk�1;1 or
A0nÿk�1;1; denote a set of spanning edges which exist in tree ST �Ri� belonging to subarrangement A: In the
same way, SE�Pi;A�;A 2 Anÿk�1;1 or A0nÿk�1;1; denote a set of spanning edges which exist in tree ST �Pi� be-
longing to subarrangement A: For example in Fig. 4(b), edges E�21; 23� and E�21; 24� belong to
SE�21; h2�i� 2 EE�21�: Edges E�24; 21� and E�24; 23� belong to SE�12; h2�i� 2 IE�12�:

Two other important properties are stated. For 16 i6 nÿ k; we have the following properties:

P6:
Spanning edges in tree ST �Ri� belonging to Anÿk�1;1; i:e:; SE�Ri;Anÿk�1;1�;2 IE�Ri�
Spanning edges in tree ST �Ri� belonging to A

0
nÿk�1;1; i:e:; SE�Ri;A

0
nÿk�1;1�;2 EE�Ri�

�
For instance as shown in Fig. 4(a) and (b), E�24; 14� 2 SE�21; h�4i4;2� 2 IE�21� and E�21; 24�
2 SE�21; h2�i4;2� 2 EE�21�:

P7:
Spanning edges in tree ST �Pi� belonging to A0nÿk�1;1; i:e:; SE�Pi;A

0
nÿk�1;1�;2 IE�Pi�

Spanning edges in tree ST �Pi� belonging to Anÿk�1;1; i:e:; SE�Pi;Anÿk�1;1�;2 EE�Pi�
�

For instance as illustrated in Fig. 4(b) and (a), E�24; 21� 2 SE�12; h2�i4;2� 2 IE�12� and
E�14; 24� 2 SE�12; h�4i4;2� 2 EE�12�:

Lemma 4. Each pair of STnÿk�2;2�Ri� and STnÿk�2;2�Pi�, for 16 i6 nÿ k; are mutually disjoint.

Proof. Initially, all edges of root nodes Ri connecting to template node Rnÿk�1 located in one �nÿ k � 1�-
node complete graph, namely Ânÿk�1;1; and all edges of root nodes Pi connecting to template node Pnÿk�1

located in another one �nÿ k � 1�-node complete graph, namely Â0nÿk�1;1: Note that, all spanning trees
STnÿk�2;2�Ri� do not use any internal edge of Â0nÿk�1;1 and all spanning trees STnÿk�2;2�Pi� do not use any
internal edge of Ânÿk�1;1: For example as shown in Fig. 4, edges for R1 and R2 connecting to template node
Rnÿk�1 belong to a complete graph Anÿk�1;1 � A3;1 � h�1i4;2. And edges for P1 and P2 connecting to template
node Pnÿk�1 belong to another complete graph A

0
nÿk�1;1 � A

0
3;1 � h1�i4;2. Clearly, all of these edges are dis-

joint. Based on P1 and P2 property, for all STnÿk�2;2�Ri� and STnÿk�2;2�Pi�; 16 i6 nÿ k; may spread its
subtree in same subarrangement A0nÿk�1;1 or Anÿk�1;1: For an Anÿk�1;1 containing root node Ri, 16 i6 nÿ k;
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using nÿ 1 edges connecting to other Anÿk�1;1 denote as SE�Ri;A
0
nÿk�1;1� 2 EE�Ri� � IE�Pi�. Each pair of

STnÿk�2;2�Ri� and STnÿk�2;2�Pi�, for 16 i6 nÿ k; are said to be mutually disjoint if and only if we can prove
that SE�Ri;A

0
nÿk�1;1� and SE�Pi;A

0
nÿk�1;1�; 16 i6 nÿ k are edge-disjoint and SE�Ri;Anÿk�1;1� and

SE�Pi;Anÿk�1;1�; 16 i6 nÿ k; are edge-disjoint. These two cases are stated as follows:
(1) Initially, we show that all of spanning tree edges in tree ST �Ri� and ST �Pi� belonging to same sub-

arrangement A
0
nÿk�1;1; i.e., SE�Ri;A

0
nÿk�1;1� and SE�Pi;A

0
nÿk�1;1�; 16 i6 nÿ k; are edge-disjoint. Note that,

SE�Ri;A
0
nÿk�1;1� 2 EE�Ri� � IE�Pi� and SE�Pi;A

0
nÿk�1;1� 2 IE�Pi� � EE�Ri�: The reason of SE�Ri;A

0
nÿk�1;1� and

SE�Pi;A
0
nÿk�1;1� being edge-disjoint is stated as follows. For every spanning tree STnÿk�2;2�Pi� may spread its

subtree in same A0nÿk�1;1 beginning from a node, namely ®rst node. SE�Ri;A
0
nÿk�1;1� and SE�Pi;A

0
nÿk�1;1� are

edge-disjoint if all of ®rst nodes are di�erent in same A
0
nÿk�1;1: In every same A0nÿk�1;1; SE�Ri;A

0
nÿk�1;1� 2

EE�Ri� � IE�Pi� and SE�Pi;A
0
nÿk�1;1� 2 IE�Pi� � EE�Ri�; 16 i6 nÿ k; are edge-disjoint because the corre-

sponding ®rst node is di�erent. This is because that all ®rst nodes are located in di�erent Anÿk�1;1.
(2) Next, we prove that all of spanning tree edges in tree ST �Ri� and ST �Pi� belonging to same subar-

rangement Anÿk�1;1; i.e, SE�Ri;Anÿk�1;1� and SE�Pi;Anÿk�1;1�; 16 i6 nÿ k; are edge-disjoint. Note that
SE�Ri;Anÿk�1;1� 2 IE�Ri� � EE�Pi� and SE�Pi;Anÿk�1;1� 2 EE�Pi� � IE�Ri�: Due to node symmetry, so we
omit the detail, but SE�Ri;Anÿk�1;1� and SE�Pi;Anÿk�1;1�; 16 i6 nÿ k are edge-disjoint in the same Anÿk�1;1 by
the similar reason in the case 1. �

Fig. 4 illustrates an example that let R1 � 21, it has two direct edges SE�21; h2�i4;2� 2 EE�21� connecting
to subarrangement h�3i4;2; h�4i4;2 � A3;1 with nodes 23; 24 and one edge SE�21; h4�i4;2� 2 EE�21� for node
41 connecting to another subarrangement h�2i4;2 � A3;1 with node 42. Spanning tree ST4;2�R1�; ST4;2�P1� and
ST4;2�P2�, respectively spread their subtrees in h2�i4;2 � A03;1 by ®rst node 21; 24; 23 and spread subtrees in
h4�i4;2 � A03;1 by ®rst node 41; 42; 43. We can ®nd that the edges for all spanning trees spread its subtrees in
subarrangement h2�i4;2 � A03;1 and h4�i4;2 � A03;1 are disjoint from each other due to the fact that all the ®rst
nodes are di�erent and located in di�erent A3;1.

Theroem 1. There exist 2�nÿ k� base edge-disjoint spanning trees STnÿk�2;2�Ri� and STnÿk�2;2�Pi� in an Anÿk�2;2,
where 16 i6 nÿ k: Each spanning tree's height is 3.

Proof. Given root nodes Ri and Pi, where 16 i6 nÿ k. First, there exist nÿ k spanning trees STnÿk�2;2�Ri�
and STnÿk�2;2�Pi� in an Anÿk�2;2; for 16 i6 nÿ k, in Lemmas 2 and 3. Lemma 4 illustrates that each pair of
STnÿk�2;2�Ri� and STnÿk�2;2�Pi� , for 16 i6 nÿ k; are mutually disjoint. Hence the theorem. �

3.2. Phase 2. Construction of 2�nÿ k� edge-disjoint spanning trees in an An;k

The above section constructed 2�nÿ k� base spanning trees in Anÿk�2;2; and each base spanning tree's
height is 3. In this section, we describe how to construct 2�nÿ k� spanning trees STn;k�Ri� and STn;k�Pi�, for
16 i6 nÿ k in an An;k, where the height of each spanning tree is 2k ÿ 1:

For induction, we construct 2�nÿ k� spanning trees in an An;k by using 2n�nÿ k� spanning tress in n
copies of Anÿ1;kÿ1. Our major task is to connect 2n�nÿ k� spanning subtrees into 2�nÿ k� spanning trees
STn;k�Ri� and STn;k�Pi�,16 i6 nÿ k:

Consider an An;k which is partitioned into n copies of Anÿ1;kÿ1. Assume that 2�nÿ k� spanning trees
STnÿ1;kÿ1�Ri� and STnÿ1;kÿ1�Pi�, i � 1; . . . ; nÿ k; can be constructed in each Anÿ1;kÿ1 if their root nodes sat-
is®ed the root±location property. A randomly selected Anÿ1;kÿ1 serves as beginning spanning tree. From this
Anÿ1;kÿ1; there exist 2�nÿ k� spanning trees STnÿ1;kÿ1�Ri� and STnÿ1;kÿ1�Pi�,16 i6 nÿ k; where Ri and Pi are
root nodes. Let root nodes Ri and Pi connect to root nodes R0i and P 0i , where R0i and P 0i located in other
Anÿ1;kÿ1. If R0i and P 0i satisfy the root-location property, therefore we can embed 2�nÿ k� spanning trees
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STn;k�Ri� and STn;k�Pi�,16 i6 nÿ k; on each of the Anÿ1;kÿ1, so we can recursively construct 2�nÿ k� span-
ning trees in an An;k:

Given 2�nÿ k� root nodes Ri and Pi; 16 i6 nÿ k. Consider any pair of nodes R 2 Ri and P 2 Pi, where
R � SWP1;2�P �. Note that there are nÿ k pairs. A n-dimensional arrangement graph contains n subar-
rangements that we use to derive the desired spanning trees. Let R and P are one of these; we must connect
R and P to other nÿ 1 subarrangements. For each of R and P, we use a single edge to connect the R and P
to nÿ k of subarrangements. We also use an intermediate node in same subarrangement as the bridge node
to connect R and P to the remaining k ÿ 1 subarrangements by two edges.

Rules A10 and A20 formalize our recursively spanning tree construction.
A10 (Single edge). The part is same as A1. Let nodes _R and _P denote two nodes in every nÿ k subarrange-
ment.

_R � ADJ2;a�R�; where a 2 EXT �R�:
_P � ADJ2;a�P �; where a 2 EXT �P �:

�
Note that _P � SWP1;2� _R�:
A20 (Two edges). This part is same as A2. Let nodes �R and �P denote as two nodes in one of remaining
k ÿ 1 subarrangements which connected by two edges. Nodes Rnÿk�1 and Pnÿk�1 are the intermediate
nodes for nodes R and P, respectively. Note that Rnÿk�1 � SWP1;2�Pnÿk�1�:

�R � ADJ2;b�Rnÿk�1�;where b is the first bit value in R:
�P � ADJ2;b�Pnÿk�1�;where b is the second bit value in P :

�
Note that �P � SWP1;2��R�: (See example in Fig. 5).
Assume that R0i and P 0i , 16 i6 nÿ k; are new connecting root nodes in each of other �nÿ 1�-subar-

rangement. Ensuring that root nodes R0i and P 0i satis®ed the root±location property would allow us to es-
tablish our spanning trees STn;k�Ri� and STn;k�Pi�; for i � 1; . . . ; nÿ k. In the following, we show the
correctness that root nodes R0i and P 0i satis®ed root±location property, for i � 1; . . . ; nÿ k.

Lemma 5. There are 2�nÿ k� root nodes R0i and P 0i ; 16 i6 nÿ k; in same subarrangement graph and satisfy
the root±location property.

Proof. Without loss of generality, assume that nÿ k root nodes Ri, 16 i6 nÿ k; represented as
�aby3y4 � � � yk� 2 h� � y3y4 � � � ykin;k and Pi; 16 i6 nÿ k; represented as �bay3y4 � � � yk� 2 h� � y3y4 � � � ykin;k;Ri

and Pi connect to R0i and P 0i ; 16 i6 nÿ k, respectively. Our results demonstrate that root nodes R0i and P 0i ;
16 i6 nÿ k; in same subarrangement graph and satisfy the root±location property. Three possible cases
are discussed.

(1) (Both links are single edge) Since EXT �Ri � �aby3y4:; . . . ; yk�� � EXT �Pi � �bay3y4 � � � yk��; so it is
possible to let R0i ��aby3y4 � � � ykÿ1c� and P 0i ��bay3y4 � � � ykÿ1c�, where c belongs to a set of elements which
are not used in all root nodes R1; . . . ; and Rnÿk or P1; . . . ; and Pnÿk, which can be represented as
c 2 EXT �R1� \ EXT �R2� \ � � � \ EXT �Rnÿk� � EXT �P1� \ EXT �P2�\; . . . ;\EXT �Pnÿk�: Obviously, P 0i � SWP1;2

�R0i� 2 h� � y3y4 � � � ykÿ1cin;k satis®es the root±location property. For instance, 215! 214; 125! 124;
315! 314; and 135! 134; where 214 � SWP1;2�124� and 314 � SWP1;2�134�:

(2) (One link is single link, other link is two edges) For 16 i 6� j6 nÿ k; let Ri � �aby3y4 � � � yk�;Rj �
�bby3y4 � � � yk�; Pi � �bay3y4 � � � yk�; and Pj � �bby3y4 � � � yk� 2 h� � y3y4 � � � ykin;k: Note that Pi � SWP1;2�Ri�,
Pj � SWP1;2�Rj�. First, if b 2 EXT �Ri� � EXT �Pi�; then R0i � �aby3y4 � � � ykÿ1b� and P 0i � �bay3y4 � � � ykÿ1b�:
Second, if b 2 INT �Rj� � INT �Pj�; two edges are needed for Rj and Pj to connect R

0
j and P

0
j in subar-

rangement h� � y3y4 � � � ykÿ1bin;k, respectively. Then let x 2 EXT �Rj�; we can obtain Rj � �bby3y4 � � � yk� !
�xby3y4 � � � yk� ! �xby3y4 � � � ykÿ1 b� � R0j and Pj � �bby3y4 � � � yk� ! �bxy3y4 � � � yk� ! �bxy3y4 � � � ykÿ1b� � P 0j :
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(a)

(b)

(c)

(d)

Fig. 5. Example of four spanning trees in an A5;3: (a) from root node 215; (b) from root node 315; (c) from root node 125; (d) from root

node 135.
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Fig. 6. Example of proof in Lemma 5.
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Therefore, P 0i � SWP1;2�R0i� and P 0j � SWP1;2�R0j� 2 h� � y3y4 � � � ykÿ1bin;k satisfy the root±location property.
Fig. 6 provides an example that 215! 213; 125! 123; 315! 415! 413; and 135! 145! 143; where
213 � SWP1;2�123� and 413 � SWP1;2�143�:

(3) (Both links are two edges) For 16 i6 nÿ k; let Ri � �aby3y4 � � � yk� and Pi � �bay3y4 � � � yk�. Due to
b 2 INT �Ri� � INT �Pi�; two edges are needed for Ri and Pi to connect R

0
i and P

0
i in subarrangement

h� � y3y4 � � � ykÿ1bin;k, respectively. Without loss of generality, if c belongs to a set of elements which are not
used in root nodes R1; . . . ; and Rnÿk; we can obtain that Ri � �aby3y4 � � � yk� ! �acy3y4 � � � yk� !
�acy3y4 � � � ykÿ1b� � R0i, and Pi � �bay3y4 � � � yk� ! �cay3y4 � � � yk� ! �cay3y4 � � � ykÿ1b� � P 0i : Therefore, P 0i �
SWP1;2�R0i� 2 h� � y3y4 � � � ykÿ1bin;k satis®es the root±location property. For example, 215! 245! 241;
125! 425! 421; 315! 345! 341; and 135! 435! 431; where 241 � SWP1;2�421� and
341 � SWP1;2�431�. �

Lemma 6. All edges for Ri and Pi; 16 i6 nÿ k; respectively connect to root nodes R
0
i and P

0
i which are located

in other subarrangement graphs are all edge-disjoint.

Proof. Note that root nodes Ri and Pi; 16 i6 nÿ k; are all distinct, and Ri and Pi use same rule to connect
with R

0
i and P

0
i , therefore Ri and Pi are also di�erent from each other. Due to di�erent source and desti-

nation, all edges for Ri and Pi, respectively connect to root nodes R
0
i and P

0
i which are located in other

subarrangement graphs are all edge-disjoint. �

Lemma 7. The height of 2�nÿ k� edge disjoint spanning trees STn;k�Ri� and STn;k�Pi� in an An;k is 2k ÿ 1:

Proof. There are k steps to construct STn;k�Ri� and STn;k�Pi�; 16 i6 nÿ k. Each step needs at most two edges
except that the ®nal step in Anÿk�1;1 needs one single edge since Anÿk�1;1 is a complete graph. The height is
2�k ÿ 1� � 1 � 2k ÿ 1. �

Theroem 2. There exist 2�nÿ k� edge-disjoint spanning trees STn;k�Ri� and STn;k�Pi� with height 2k ÿ 1 in an
An;k; where i � 1; . . . ; nÿ k.

4. Conclusions

In this paper, we consider the problem of congestion-free embedding of multiple spanning trees in an
arrangement graph. This is ®rst result to exploit multiple spanning trees. In this paper, we develop a
bottom-up congestion-free embedding of 2�nÿ k� spanning trees with height 2k ÿ 1 in an (n; k)-dimensional
arrangement graph. A well-known application of edge-disjoint multiple spanning trees is the broadcasting
algorithm. Work is currently underway to develop the optimal number of spanning trees in An;k by ex-
ploiting O�k�nÿ k�� edge-disjoint spanning trees.
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