
Multinode broadcasting in a wormhole-routed 2-D
torus using an aggregation-then-distribution
strategy

Y.-S.Chen and C.-Y.Chen

Abstract: An ef®cient multinode broadcasting algorithm in a wormhole-routed 2-D torus is
presented where there are an unknown number of s source nodes located on unknown positions
each intending to broadcast a message of size m bytes to the rest of network. The torus is assumed
to use the all-port model and the popular dimension-ordered routing. Most existing results are
derived based on ®nding multiple edge-disjoint spanning trees in the network. The main technique
used is an aggregation-then-distribution strategy. First, the broadcast messages are aggregated into
some positions of the torus. Then, a number of independent subnetworks are constructed from the
torus. These subnetworks, which are responsible for distributing the messages, can well exploit
the communication parallelism and the characteristic of wormhole routing. It is shown that such
an approach is more appropriate than those using edge-disjoint trees for ®xed-connection network
such as tori. This is justi®ed by performance analysis.
1 Introduction

A massively parallel computer (MPC) consists of a large
number of identical processing elements interconnected by
a network. One basic communication operation in such a
machine is broadcasting. Two commonly discussed
instances are one-to-all broadcast and all-to-all broadcast,
where one or all nodes need to broadcast messages to the
rest of the nodes. A more complicated instance is the
many-to-all (or multinode) broadcast, where an unknown
number of nodes located in unknown positions each
intending to perform a broadcast operation. The focus of
this paper is on the multinode broadcast problem, whose
many applications can be found in parallel graph algo-
rithms, parallel matrix algorithms, fast Fourier transforma-
tion, parallel compilation, and cache coherence. In addition
to multinode broadcasting, many collective communication
patterns, such as one-to-all broadcasting, all-to-all broad-
casting, complete exchange, scatter, gather, and reduction,
have all intensive attention recently in [1, 2].

The multinode broadcast problem has been studied on a
variety of interconnection networks [3±8]. Saad and
Schultz [3, 4] initially de®ned this problem and proposed
a simple routing algorithm for hypercubes. Stamoulis and
Tsitsiklis [5] proposed to use n edge-disjoint spanning
trees in an n-cube to solve this problem. A similar related
work is to embed a complete binary tree in the star graph,
proposed by Tseng and Chen et al. [9]. A distributed
approach to improve the load imbalance problem in [5]
was presented by Tseng [6] for hypercubes and star graphs.
Efforts were made by Varvarigos [7] to solve the more
complicated problem where each source node may have

IEE, 2000

IEE Proceedings online no. 20000887

DOI: 10.1049/ip-cdt:20000887

Paper ®rst received 20th July 1999 and in revised form 22nd September
2000

The authors are with the Department of Statistics, National Taipei
University, Taipei, 10433, Taiwan
IEE Proc.-Comput. Digit. Tech, Vol. 147, No. 6, November 2000
several messages (of the same length) to broadcast. More
recently, Susanne et al. [8] proposed a scheme called s-to-p
broadcasting, where the authors tried to align the broadcast
messages into a regular pattern before they are distributed.

The aforementioned results are all based on ®nding
edge-disjoint spanning trees in a network and are appro-
priate for non®xed connection networks [10, 11]. One
problem with this is that the number of edge-disjoint
trees that could be offered by a network is ®xed [10].
The other problem is that the characteristic of wormhole
routing, which is assumed in this paper, is not well
exploited in [12]. We study the scheduling of message
distribution for many-to-all broadcast in a wormhole-
routed 2-D torus, which type of architecture has been
adopted by parallel machines such as Cray T3D and T3E
(3-D tori). Observe that 2-D and 3-D torus are ®xed-
connection networks. The recently popular wormhole rout-
ing technology is assumed. Sending a packet involves two
costs: start-up-time and transmission time. Attempts to
minimise both these costs are made.

Our approach is based on an aggregation-then-distribu-
tion strategy. First, the network partitioning techniques
proposed in [12] are used to get multiple independent
subnetworks (which are different from edge-disjoint span-
ning trees) in a torus. The number of independent sub-
networks is actually an adjustable parameter. Given a
multinode broadcast problem with an unknown number
of s source nodes located on unknown positions in an n� n
torus each intending to broadcast an m-byte message, our
approach can solve it ef®ciently in time O(dlog5 neTs�
max{dlog5 dn/he, h}e(s/h)mTc), where h is the number of
independent subnetworks. It is shown that this number has
outperformed the aforementioned schemes using edge-
disjoint-spanning trees.

2 Basic idea

2.1 System model

A massively parallel computer is formally represented as
G� (V, C), where V denotes the node set and C speci®es
403

the channel connectivity. Each node contains a separate
router to handle its communication tasks. We consider G as
a two-dimensional torus Tn1 � n2

with n1� n2 nodes. Each
node is denoted as Pi; j, 1� i� n1, 1� j� n2 and Pi1;i2

has
an edge connected P�i1�1�mod n1;i2

along dimension one and
an edge to Pi1;�i2�1�mod n2

along dimension two. Each edge is
considered consisting of two directed communication links
pointing in opposite directions.

The wormhole routing model is assumed [13]. Under
such a model, each packet is partitioned into smaller units
called ¯its, which are sent in a pipelined manner. In the
absence of congestion, the communication latency in the
networks is proportional to the sum of message length and
routing distance. Speci®cally, the time required to deliver a
packet of L bytes from a source node to a destination node
can be formulated as Ts� LTc, where Ts is the start-up time
containing the channel setup and software overhead, and Tc

represents the transmission time per data byte. In this
paper, attempts are made to counter the trade-off between
the start-up and the transmission costs.

In addition we adopt the all-port model, in that a node
can simultaneously send and receive messages along all
outgoing and incoming links, and the dimension-ordered
routing [6], in that every message must travel in a strictly
increasing order in terms of link dimensions.

2.2 Network partitioning

Our work is based on partitioning the torus into some
subnetworks. In the following we review some de®nitions,
based on the work in [11]. Consider a torus Tn1 � n2

.
Suppose h is an integer which divides both n1 and n2 .
We de®ne k data-distribution network DDNk � (Vk , Ck),
k� 0..h7 1 as follows:

Vk � fpi;jji � ah� k; j � bh� k;

for all a � 0::�n1=h� ÿ 1 and b � 0::�n2=h� ÿ 1g

Ck � fall channels at rows ah� k and column bh� kg

Intuitively, each DDN is a dilation-h torus of size (n1/h)�
(n2/h), in the sense that each edge is dilated by a path of h
edges. An example is shown in Fig. 1 with four dilated-4,
4� 4 tori embedded in a 16� 16 torus. Also, we partition
the Tn1 � n2

into n1� n2/h2 data collecting network

Fig. 1 Network partioning scheme
404
DCNa;b� (Va;b , Ca;b), a� (0..n1 7 1)/h, b� (0..n2 7 1)/h,
as follows:

Va;b � fpi;jji � a� h� x; j � b� h� y

for all x; y � 0:: hÿ 1g

Ca;b � fthe set of edges induced by Va;b in Tn1�n2
g

Intuitively, these DDNs are obtained by evenly slicing the
torus into n1� n2/h2 blocks, each being a square h� h
submesh. Fig. 1 illustrates this de®nition when h� 4.
According to [12], these DDNs and DCNs have the
following properties:

� DDN0 , DDN1, . . . , DDNh71 are mutually independent
(under the given port model)
� DCN0 , DCN1, . . . , DCNk71 are mutually independent
(under the given port model) and they together contain
all nodes of G.
� DDNi and DCNj intersect in at least one node, for all
0� i< h and 0� j< (n1� n2/h2).
� DDN0 , DDN1, . . . , DDNh71 are isomorphic.
� DCN0 , DCN1, . . . , DCNk71 are isomorphic.

2.3 Aggregation-then-distribution strategy

Existing multinode broadcasting schemes [5±7] mainly use
multiple spanning trees such that all source nodes are
evenly distributed submessages to root nodes of all span-
ning trees. As mentioned these approaches are suitable for
the non®xed connection network [5±7]. Observe that
exploiting the maximum number of multiple spanning
trees is not feasible for the ®xed-connection network [12,
14]. For instance, the maximum number of spanning trees
in 2-D tori is four. In 2-D tori, s source nodes evenly
deliver their messages to four disjoint spanning trees. The
limitation in number of spanning trees can be ef®ciently
improved by our aggregation-then-distribution scheme,
because our scheme utilises the property of the network
partitioning scheme.

The original 2-D network is partitioned into arbitrary
size of h DDNs and k DCNs. The main function of
aggregation-then-distribution scheme is outlined as
follows.

2.3.1 Aggregation phase: The broadcast messages
are aggregated into some regular positions of the torus.
That is, the aggregation phase is to regularise the data
pattern from unknown location of s source nodes. Observe
that the load imbalance problem unfortunately occurs. A
tuning operation is needed to overcome the load imbalance
problem.

2.3.2 Distribution phase: A number of independent
subnetworks are constructed. These subnetworks, which
are responsible for distributing the messages, can well
exploit the communication parallelism and the character-
istic of wormhole routing. The distribution phase is to
broadcast a message on every DDN in parallel.

3 Multinode broadcasting scheme

3.1 Aggregation phase

Consider a torus Tn� n with n2 nodes; s source nodes intend
to broadcast to the rest of the network. Messages of source
nodes are initially aggregated into some diagonals of
partitioned subtori DCNs. This operation is very ef®cient
IEE Proc.-Comput. Digit. Tech, Vol. 147, No. 6, November 2000

for the many-to-all collective communication problem as
the communication pattern has been regularised in
advance. The aggregation scheme is divided into two
steps: diagonal-based data-aggregation operation, and
balancing-load operation.

Section 3.1.1 presents a fundamental operation, namely
a diagonal-based data-aggregation operation. Susanne et
al. proposed s-to-p routing [8] adopting similar location-
repositioning work. The main difference is that our algo-
rithm is to aggregate messages into disjoint subtori DDN0 ,
DDN1, . . . , and DDNh71 . Unfortunately, diagonal-based
data aggregation causes a load imbalance problem. To
overcome this, a balancing-load operation is performed
in Section 3.1.2. Our approach exploits the communication
parallelism rather than the s-to-p routing.

3.1.1 Diagonal-based data-aggregation operation:
The sizes of DDN0 , DDN1, . . . , DDNh71 and DCN0 ,
DCN1, . . . , DCNk71 are initially determined. It is a trade-
off problem to determine the value of h and k. Basically,
the higher the value of h is, the lower latency will be.

Given a node Pi; j and an integer k, let D(Pi; j, k) denote a
sequence of k nodes. For instance, the main diagonal in a
square Tn� n torus passing node P0;0 is the sequence
D(P0;0n). The node Pi; j �P0;0 then the sequence of the

Fig. 2 Data aggregation

a Aggregation pattern
b Aggregation operation h� 5
c Aggregation operation when h� 25
IEE Proc.-Comput. Digit. Tech, Vol. 147, No. 6, November 2000
diagonal nodes is P1;1, P2;2, . . . , and Pn71;n71. A torus can
be viewed as n diagonals D(Pi;0, n) or Li , i� 0..n7 1. The
purpose of the data-aggregation operation is to aggregate n
diagonals into LÄ j diagonals, where j� 0..dn/he7 1 and
LÄ j � Lj0 for j0 � j*dn/he. In other words, data are aggregated
into the main diagonal for every DCN.

The time-cost of data aggregation depends on the value
of h. During each data-aggregation operation, every node
Pi; j in the main diagonal of each DCN has aggregated
messages from nodes Pi71;j, Pi�1;j, Pi; j72, and Pi; j�2 as
shown in Fig. 2a. This also implies that LÄ j or Lj0 diagonals
aggregates messages from L72�j0 , L71�j0 , L1�j0 and L2�j0 as
illustrated in Fig. 2b. All communication patterns are
clearly congestion-free. The communication latency is
determined by the size of h, not the value of n. If h> 4,
the data-aggregation operation can be recursively executed
within dlog5 he time units. Fig. 2c illustrates this operation
if h� 25. Therefore we have the following result if h> 4:

Lemma 1: Diagonal-based data-aggregation operation is
recursively performed on a Tn� n within time

dlog5 heTs �
Xdlog5 heÿ1

i�1

5iÿ1mTc

� dlog5 heTs �
5dlog5 he ÿ 1

4
mTc

Fig. 3 Data aggregation

a Diagonal based
b Aggregation result
405

where h> 4.
Further, each data-aggregation operation may aggregate

messages from partial nodes by four neighbouring nodes if
it is one of the source nodes. Consider 20 source nodes
intending to send a message to the rest of the network as
shown in Fig. 3a. After performing data-aggregation once,
the result is shown in Fig. 3b. Assume that h� 5, the work
loads, of DDN0 , DDN1, DDN2 , DDN3 , and DDN4 are 1, 6,
9, 2, and 2. Obviously, there is a load imbalance.

3.1.2 Balancing-load operation: Recall the aggre-
gation result in Fig. 3b; every one of DDNs has different
amount of messages. A balancing-load operation aims to

Fig. 4 Simple pre®x-sum procedure for ®ve nodes

a Basic forwarding stage
b Order of backward
c Basic backward stage

Fig. 5 Simple pre®x-sum procedure for ®ve nodes

a First forward
b Second forward
c First backward
d Second backward
406
achieve the load balance. This operation is achieved by
maintaining a pre®x-sum value. Using the pre®x-sum value
allows us to execute a data tuning procedure. Finally, every
DDN will keep the same amount of messages. This opera-
tion makes our algorithm with high parallelism. Two main
procedures are

� pre®x-sum procedure: calculate pre®x-sum value
� data tuning procedure: perform message tuning proce-
dure to achieve the load balance

3.1.2.1 Pre®x-sum procedure: First, the pre®x-sum
procedure is to exchange information of the amount of
collected messages to get the pre®x-sum value. This
procedure only propagates the control message across the
2-D tori network. The pre®x-sum procedure needs (a)
forward stage and (a) backward stage. For ease of presen-
tation a simple pre®x-sum procedure for ®ve nodes is
initially explained.

(i) Basic forward stage: Node Pk;k containing message c
receives messages a, b, d, and e from nodes Pk;k72, Pk71;k,
Pk�1;k, and Pk;k�2, as illustrated in Fig. 4a. Note that node
Pk;k must maintain values of a, b, c, d, and e on each
forward stage to calculate a partial pre®x-sum in future
backward stage.

(ii) Basic backward stage: Assume that node Pk;k gets a
local partial pre®x-sum value c0 (from the previous back-
ward stage), then node Pk;k must send backward value c0
plus partial pre®x-sum to nodes Pk;k72, Pk71;k, Pk�1;k, and
Pk;k�2, according to the order shown in Fig. 4b. That is,
node Pk;k sends value of c0, c0 � a, c0 � a� b,
c0 � a� b� c, and c0 � a� b� c� d to nodes Pk;k72,
Pk71;k, Pk;k, Pk�1;k, and Pk;k�2, respectively, as illustrated

Fig. 6 Simple pre®x-sum procedure for ®ve nodes

a Basic forward on diagonal
b Basic backward on diagonal
IEE Proc.-Comput. Digit. Tech, Vol. 147, No. 6, November 2000

in Fig. 4c.

Due to the fact that all nodes with messages are always
located in the diagonal of tori (by the data-aggregation
operation), so a diagonal-based recursive pre®x-sum proce-
dure is needed. Nodes Pk72;k72, Pk71;k71, Pk�1;k�1, and
Pk72;k�2 are located in a diagonal, so two communication
steps are performed as illustrated in Fig. 5. The ®rst
communication step is to let diagonal nodes Pk72;k72,
Pk71;k71, Pk�1;k�1 and Pk�2;k�2 send corresponding
messages to Pk;k72, Pk71;k, Pk�1;k, and Pk;k�2 as shown
in Fig. 4a. Clearly, this communication step is congestion-
free and takes one time step. A second communication step
performs the basic forward stage. Similarly, for the back-
ward stage in reverse. Collectively, each of the diagonal-
based forward and backward stages takes two time steps.
Now recursively perform the basic forward and backward
stages for dlog5 ne times, as shown in Fig. 6. Each of the
recursive forward and backward stage works within time
dlog5 ne(Ts� Tc). This implies that the recursive forward
and backward stage on the diagonal needs time
2dlog5 ne(Ts� Tc). Further, incoming data must be kept
for the backward stage, so each node must use 5dlog5 ne
extra memory. Consequently, the time complexity of
pre®x-sum procedure is 4dlog5 ne(Ts� Tc). For example,
a pre®x-sum procedure is operated in Figs. 7±9. First, all
information is collected into the main diagonal as shown in
Fig. 7a (this operation is also a basic forward stage). The

Fig. 7 Example of pre®x-sum procedure

a Collecting information into main diagonal
b First forward stage
IEE Proc.-Comput. Digit. Tech, Vol. 147, No. 6, November 2000
®rst and second forward stages on the diagonal are shown
in Figs. 7b and 8a. Then the ®rst and second backward
stages on the diagonal are displayed in Figs. 8b and 9a.
Finally, all partial pre®x-sums are distributed from the
main diagonal (this operation is a basic backward stage)
and then the ®nal result of the pre®x-sum procedure is
obtained in Fig. 9b.

3.1.2.2 Data tuning procedure: The data tuning
procedure balances the work load among all DDNs. The
task is split into two parts: ®nding a destination list, and
performing data-movement operation. For each node with
broadcast messages, two important pieces of information is
kept: the pre®x-sum value and the number of broadcast
messages. Using these two values, a destination list can be
obtained. For node x, which is located in DDNj , each
element i in the destination list indicates that node x should
move one copy of message to DDNi . The detailed algo-
rithm is given below.

(i) Finding a destination list: The pre®x-sum value and
number of messages are a and b respectively. The original
destination list is {a, a� 1, . . . , a� b� 1}. If the number
of DDNs is h, let the destination list be F� {amod h,
(a� 1)mod h, . . . , (a� b� 1)mod h}. For instance in Fig.
10, if h� 5 one node whose pre®x sum is 9, the number of
collected messages is 3 and the original destination list is

Fig. 8 Example of pre®x-sum procedure

a Second forward stage
b First backward stage
407

{9, 10, 11} then F� {4, 0, 1}. Since this node is located in
DDN1, so the three messages should be moving from
DDN1 to DDN0 , DDN1, and DDN4 . This task can be
further accomplished as follows. Let Pk;k 0 located in
diagonal of DDNi change destination list F as F0, and F 0
is obtained as follows. For every t2F, let j� t7 i, if
j> h/2 then let j� j7 h and F0 �F0 [j. For instance, for
a destination list F� {4, 0, 1}, so F0 � {72, 71, 0},
where i� 1 and h� 5. Each element of F0 represents the
offset value from each DDN (See also Figs. 11 and 12).
Further, the rest of the destination lists F0 are displayed in
Fig. 13.

(ii) Data-movement operation: Based on destination list
F 0, a congestion-free data-movement operation is
performed to balancing the load among all the DDNs.
Suppose that Pk;k 0 located in the diagonal in every DDN
and each node has messages to be exchanged with nodes

Fig. 9 Example of pre®x-sum procedure

a Second backward stage
b Distribution from main diagonal

Fig. 10 Data movement pattern
408
Pk�l;k 0�l when l�� 1 and � 2. Every node Pk;k 0 exchanges
one message with node Pk�l;k 0�l, l�� 1 and � 2 within
two time steps as shown in Fig. 10. Fig. 11 illustrate the
®rst and second communication pattern. There is no

Fig. 11 Data-movement operations

a First data-movement operation
b Second data-movement operation

Fig. 12 Data movement operation if h> 5
IEE Proc.-Comput. Digit. Tech, Vol. 147, No. 6, November 2000

Fig. 13 Final destination list

Fig. 14 First data-movement operation

Fig. 15 Second data-movement operation
IEE Proc.-Comput. Digit. Tech, Vol. 147, No. 6, November 2000
communication congestion. Each node Pk;k 0 exchanges
only one message with node Pk�l;k 0�l, where l2F0. Further,
if

.
h> 5, a hierarchial congestion-free communication

pattern is also given in Fig. 12. Intuitively, it works
within 2dlog5 he time steps. For instance, a data-movement
operation is executed as illustrated in Figs. 14, 15 when
l�� 1 and � 2. Each communication stage only propa-
gates message m at most; this stage needs time
2dlog5 he(Ts�mTc). The time complexity of data tuning
procedure is 2dlog5 he(Ts�mTc).

3.2 Distribution phase

We now introduce the distribution phase. After executing
the aggregation phase mentioned in Section 3.1, each
independent subnetwork can have the same number of
messages. These subnetworks, which are responsible for
distributing the messages, can well exploit the commu-
nication parallelism and the characteristic of wormhole
routing. The distribution phase is divided into three steps.

� Alignment operation: For each DDN, messages of source
nodes located in the same DDN are collected into its main
diagonal. A simple all-to-all broadcasting operation is then
performed on the main diagonal to achieve the purpose of
each node, which in the main diagonal contain the same
number of messages.
� Broadcast operation: Each DDN performs dilated-
diagonal broadcasting scheme [15].
� Data-collection operation: Each DCN collects all
messages.

3.2.1 Alignment operation: After the aggregation
phase, each DDN can keep the same number of messages
indicated that each DDN will have equal communication
latency. The purpose of the alignment phase lies in a
preparation process for the distribution phase of multinode
broadcasting. Two procedures are needed.

(i) Alignment procedure to main diagonal: All possible
messages are collected into the main diagonal of the
corresponding DDN. This task can be easily achieved by
recursively performing the diagonal-based data redistribu-
tion operation as introduced in Section 3.1. Intuitively, it
takes time dlog5(dn/he)e(Ts�mÄ Tc), where mÄ � sm/h.

(ii) All-to-all broadcasting procedure on diagonal: This
procedure is to collect messages of each node in the main
diagonal from other nodes in the same diagonal. For
instance, consider a T5� 5, each node in the main diagonal
of a DDN will keep a different message as shown in Fig.
16a. After executing the all-to-all-diagonal-broadcasting
operation, all nodes in the main diagonal will keep
messages from all other nodes as illustrated in Fig. 16b.
The all-to-all-diagonal-broadcasting procedure is to recur-
sively perform data-distribution and data-collection stages.
We explain it by an example on a T5� 5. The tasks is
divided into two stages. In data-distribution each node Pi;i
in the diagonal distributes its own message to two neigh-
bouring nodes Pi;i72 and Pi;i�2 according to a data-distri-
bution pattern as shown in Fig. 17a. In data-collection
each node Pi;i in diagonal then collect four messages from
four neighbouring nodes Pi71;i71 and Pi�1;i�1Pi72;i and
Pi�2;i according to a data-collection pattern as illustrated in
Fig. 17b. Therefore ®ve nodes can contain all other nodes'
messages in the same diagonal as shown in Figs. 17c and
16b. Repeating these data-redistribution and data-collec-
tion operations, an all-to-all-diagonal-broadcasting can be
409

applied on the diagonal of DDN with any size. A larger
example of a T25� 25 is illustrated in Fig. 18. Since data-
distribution and data-collection stages needs time
2(Ts�mÄ Tc), the time complexity is 2dlog5dn/hee
(Ts�mÄ Tc), where mÄ � sm/h.

3.2.2 Broadcast operation: After the alignment
operation, every node in the diagonal of each DDN
contains the same broadcast message. The next step
performs the dilated-diagonal broadcasting algorithm [15]
on each DDN in parallel. In other words, we perform a
dilated-diagonal broadcasting operation on each DDN. The
main diagonal D(P0;0,dn/he) has all source packet's data,
and the broadcasting is based on a recursive structure. The
main diagonal sends messages to four diagonals and lets
them also have the same messages. That is, each node of
the main diagonal sends messages to four neighbouring
diagonal nodes. The time complexity of broadcast phase is
dlog5dn/hee(Ts�mÄ Tc), where mÄ � sm/h.

3.2.3 Data collection operation: For each data
collecting network (which is an h� h mesh) the diagonal
nodes have received packets (M0 , M1, . . . , Mh71). Every
packet contains whole DCN messages. Each packet (M0 ,
M1, . . . , Mh71) has messages. These messages should be
propagated to every node of the DCN. This is implemented
in two stages: row broadcasting followed by column broad-
casting. The row broadcasting stage is done by applying a
recursive scheme. We evenly partition DCN into three
parts. The node located in a diagonal sends its own
messages to two nodes located in the trisection part of
the row of the DCN and recursively propagates to subtri-
section until the distance is one. The row broadcasting
pattern is shown in Fig. 19a. This takes dlog3 he commu-
nication phases and incurs cost T1�dlog3 he(Ts�mÄ Tc).

Fig. 16 Alignment procedures

a Nodes in main diagonal keep different messages
b All-to-all diagonal broadcast procedure
410
Every node collects the partial messages from the row
broadcasting stage. The messages belong to its column
nodes; every node will concurrently send separate message
to other nodes with the pipelined scheme. We ®rst embed a
logical (directed) ring on each column of the DCN. This is
done by ®rst visiting even nodes down the column and then
odd nodes up the column. Fig. 19b gives an example of
such embedding. This gives a dilation-2 embedding. With
this embedding, every node then pipeline propagates its
own message following the ring of the h� h DCN. Figs. 20
and 21 illustrate the row broadcasting in a 10� 10 2-D
torus if h� 5. The broadcasting result is shown in Fig. 22.
The column broadcasting stage runs within
T2� (h7 1)(Ts�mÄ Tc) Summing T1 and T2, the time
complexity of data collecting is T� T1� T2�
(dlog3 he� h7 1)(Ts�mÄ Tc), where mÄ � sm/h.

4 Performance analysis

We discuss the performance analysis of multinode broad-
casting under two strategies; our proposed aggregation-
then-distribution strategy and the well known result of
edge-disjoint spanning trees (EDSTs) approach [5±7].
The time complexity of computation and communication
latency of aggregation and distribution phases of our
multinode broadcasting is given.

Fig. 17 Alignment procedures

a Data distribution pattern
b Data collection pattern
c Data collection stage
IEE Proc.-Comput. Digit. Tech, Vol. 147, No. 6, November 2000

Fig. 18 Larger example of all-to-all diagonal broadcast in T25�25
Fig. 19 Data collection operation: row broadcasting

a Row broadcasting pattern
b Dilated-2 ring embedded in column

Fig. 20 Row broadcasting in T10�10 2D torus
IEE Proc.-Comput. Digit. Tech, Vol. 147, No. 6, November 2000
Lemma 2: The aggregation phase can be executed in a
Tn� n torus within cost

O

��
4dlog5 ne � 3dlog5 he � 2 log5

n

h

l m�
Ts

� 2dlog5 he � 5dlog5 he ÿ 1

4

� �
m

�
�
�

4dlog5 ne � 2 log5

n

h

l m��
Tc

�
where m is one unit message size.

Proof: The diagonal-based data-aggregation operation
takes time dlog5 heTs� (5dlog5he7 1)/4mTc . The balan-

Fig. 21 Recursive row broadcasting
411

412
Table 1: Comparison of communication latency of multinode broad-
casting using various schemes

Strategy Start-up comp. Trans. comp.

EDSTs [7] O(2bn/2cTs) O(2bn/2c�sm/4Tc)

Ours O(max{dlog5 ne, h}Ts) O(max{dlog5dn/hee, h}s/hmTc)
cing-load operation takes time (4dlog5 ne� 2dlog5 n/he)
(Ts� Tc)� 2dlog5 he(Ts�mTc). Therefore the time
complexity of aggregation phase is

O

��
4dlog5 ne � 3dlog5 he � 2

�
log5

n

h

��
Ts

� 2dlog5 he � 5dlog5 he ÿ 1

4

� �
m

�

�
�

4dlog5 ne � 2

�
log5

n

h

���
Tc

�
:

Lemma 3: The distribution phase can be executed in a Tn� n

torus within time

O

��
4 log5

n

h

l ml m
�
�

log3 h

�
� hÿ 1

�
Ts

�
�

4 log5

n

h

l ml m
�
�

log3 h

�
� hÿ 1

�
~mTc

�
where mÄ � sm/h.

Proof: The alignment operation needs time 3dlog5dn/
hee(Ts�mÄ Tc), where mÄ � sm/h. The broadcasting opera-
tion takes time dlog5dn/hee(Ts�mÄ Tc). The data collection
operation uses time (dlog3 he� h7 1)(Ts�mÄ Tc). There-
fore the time complexity of distribution phase is�

4 log5

n

h

l ml m
� dlog3 he � hÿ 1

�
Ts

�
�

4 log5

n

h

l ml m
� dlog3 he � hÿ 1

�
~mTc

where mÄ � sm/h. u

Based on lemmas 2 and 3, the time complexity of the
multinode broadcasting in 2-D torus using aggregation-
then-distribution strategy is given.

Fig. 22 Broadcasting result
Theorem 1: The multinode broadcasting algorithm with
aggregation-then-distribution strategy can be executed in a
Tn� n tours within

O

��
6 log5

n

h

l ml m
�3dlog5 he�dlog3 he�4dlog5 ne�hÿ1

�
Ts

�
�

4 log5

n

h

l ml m
� dlog3 he � hÿ 1

�
~m

�
�

2dlog5 he � 5dlog5 he ÿ 1

4

�
m

�
�

4dlog5 he � 2 log5

n

h

l ml m�
Tc

� O�dlog5 neTs �max

�
log5

n

h

l ml m
; h

�
~mTc

�
where mÄ � sm/h and m is one unit message size.

Note that four edge-disjoint spanning trees can be
constructed in a 2-D tori Tn� n [2], where the height of
the spanning tree is D� 2 and D� 2�bn/2c is the
diameter in Tn� n. The time complexity of multinode
broadcasting in 2-D tori using edge-disjoint spanning
trees approach is O(bn/2cTs� (2bn/2c�sm/4)Tc) illustrated
in Table 1. Table 1 re¯ects the fact that multinode broad-
casting using aggregation-then-distribution strategy is
more ef®cient than multinode broadcasting using the
edge-disjoint spanning trees approach. The overall commu-
nication latency depends on the transmission complexity.
Observe that the transmission complexity of our scheme is
O(dlog5dn/heesmTc/h. The transmission complexity of
our scheme is better than the edge-disjoint spanning
trees-based approach owing to O(dlog5dn/heesmTc/h)<
O(2bn/2c�sm/4)Tc). We conclude this Section with the
observation that the multinode broadcasting using our
aggregation-then-distribution strategy is truly more ef®-
cient than multinode broadcasting using edge-disjoint
spanning trees approach.

5 Conclusions

We have shown how to solve the multinode broadcast
problem in a 2-D torus using an aggregation-then-distribu-
tion strategy. The underlying assumptions are wormhole
and dimension-ordered routing, as currently used. The
main technique is to partition the torus into independent
subnetworks. Timing analyses have shown that this scheme
is promising. Work is currently underway to develop
multinode broadcasting of personalised messages and to
extend to higher dimensional tori and other networks.

6 Acknowledgments

This work was supported by the National Science Council,
R.O.C., under contract NSC89-2218-E-305-002.
IEE Proc.-Comput. Digit. Tech, Vol. 147, No. 6, November 2000

7 References

1 ROBINSON, D.F., MCKINLEY, P.K., and CHENG, B.H.: `Optimal
multicast communication in wormhole-routed torus networks', IEEE
Trans. Parallel Distrib. Syst., 1995, 6, (10), pp. 1029±1042

2 KESAVAN, R., and PANDA, D.K.: `Multiple multicast with minimized
node contention on wormhole k-ary n-cube networks', IEEE Trans.
Parallel Distrib. Syst., 1999, 10, (4), pp. 371±393

3 SAAD, Y., and SCHULTZ, M.: `Data Communication in hypercubes', J.
Parallel Distrib. Comput., 1989, 6, (1), pp. 115±135

4 SAAD, Y., and SCHULTZ, M.: `Data communication in parallel
architectures', Parallel Comput., 1989, 11, (5), pp. 131±150

5 STAMOULIS, G.D., and TSITSIKLIS, J.N.: `An ef®cient algorithm for
multiple simultaneous broadcasts in the hypercube', Inf. Process. Lett.,
1989, 46, (12), pp. 219±224

6 TSENG, Y.C.: `Multi-node broadcasting in hypercubes and star graph',
J. Inf. Sci. Eng., 1998, 14, (4), pp. 809±820

7 VARVARIGOS, E.A., and BERTSEKAS, D.P.: `Partial multinode
broadcast and partial exchange algorithms for d-dimension meshes',
J. Parallel Distrib. Comput., 1994, 23, (5), pp. 177±189

8 HAMBRUSCH, S.E., KHOKHAR, A.A., and LIN, Y.: `Scalable S-to-P
broadcasting on message-passing MPPs', IEEE Trans. Parallel Distrib.
Syst., 1998, 9, (8), pp. 758±768
IEE Proc.-Comput. Digit. Tech, Vol. 147, No. 6, November 2000
9 TSENG, Y.C., CHEN, Y.S., JUANG, T.Y., and CHANG, C.J.: `Conges-
tion-free, dilation-2 embeding of complete binary tree in star graphs',
Networks, 1999, 33, (3), pp. 221±231

10 COSNARD, M., and TRYSTRAM, D.: `Parallel algorithms and archi-
tectures' (Thomson Computer Press, Boston, MA, 1995)

11 CHEN, Y.S., JUANG, T.Y., and TSENG, E.H.: `Ef®cient broadcast in an
arrangement graph using multiple spanning trees', IEICE Trans.
Fundam. Electron., Commun. Comput. Sci., 2000, E83-A, (1), pp.
139±149

12 TSENG, Y.C., WANG, S.Y., and HO, C.W.: `Ef®cient broadcasting in
wormhole-routed multicomputers: a network-partitioning approach',
IEEE Trans. Parallel Distrib. Syst., 1999, 10, (1), pp. 44±61

13 LEIGHTON, F.T.: `Introduction to parallel algorithms and architectures:
arrays-trees-hypercube' (Morgan Kaufmann, San Mateo, CA, 1992)

14 BRUCK, J., CYPHER, R., and HO, C.T.: `Fault-tolerant de Bruijn and
shuf¯e-exchange networks', IEEE Trans. Parallel Distrib. Syst., 1994, 5,
(5), pp. 548±553

15 TSENG, Y.C.: `A dilated-diagonal-based scheme for broadcast in
a wormhole-routed 2D torus', IEEE Trans., 1997, C-46, (8), pp. 947±
952
413

	Abstract
	1 Introduction
	2 Basic idea
	3 Multinode broadcasting scheme
	4 Performance analysis
	5 Conclusions
	6 Acknowledgments
	7 References

