Wireless Personal Communications (2006) DOI: 10.1007/s11277-006-9014-0

© Springer 2006

A Credit-Based On-Demand QoS Routing Protocol Over Bluetooth 2 WPANs*

3 YUH-SHYAN CHEN and KENG-SHAU LIU

4 Department of Computer Science and Information Engineering, National Chung Cheng University, Chiayi,

5 Taiwan, 621, R.O.C.

6 E-mail: yschen@cs.ccu.edu.tw

7 Abstract. The quality-of-service (QoS) communication that supports mobile applications to guarantee bandwidth 8 utilization is an important issue for Bluetooth wireless personal area networks (WPANs). In this paper, we address 9 the problem of on-demand QoS routing with interpiconet scheduling in Bluetooth WPANs. A credit-based QoS 10 (CQ) routing protocol is developed which considers different Bluetooth packet types, because different types 11 of Bluetooth packets have different bandwidth utilization levels. This work improves the bandwidth utilization of 12 Bluetooth scatternets by providing a new interpiconet scheduling scheme. This paper mainly proposes a centralized 13 algorithm to improve the bandwidth utilization for the on-demand QoS routing protocol. The centralized algorithm incurs the scalability problem. To alleviate the scalability problem, a distributed algorithm is also investigated 14 15 in this work. The performance analysis illustrates that our credit-based QoS routing protocol achieves enhanced 16 performance compared to existing QoS routing protocols.

Keywords: Bluetooth, mobile computing, quality-of-service (QoS), routing protocol, wireless personal area net work.

22 1. Introduction

Bluetooth is a low-power short-range wireless network technology that is designed to provide 23 24 a cableless wireless communication environment for various kinds of personal communica-25 tion system (PCS) devices, such as mobile phones, laptop computers, cordless headsets, and personal digital assistants (PDAs). On the basis of the IEEE 802.15.1 standard [1], Bluetooth 26 devices establish wireless personal area networks (WPANs) that are similar to ad hoc network 27 environments to provide wireless PCSs for supporting many valuable mobile applications. 28 To build WPANs, Bluetooth devices can be used to provide useful services such as wireless 29 Internet access or mobile multimedia applications in mobile ad hoc network (MANET) sys-30 31 tems [2, 3]. Recently, wireless sensor networks (WSNETs) have been widely investigated, and these are constituted by a large number of low-power sensor nodes. According to limitations 32 of low power and low costs of each sensor node, the characteristic of the Bluetooth is most 33 closely matched to WSNETs, especially with regard to supporting multimedia services with 34 high bandwidth requirements. 35

The design issues of a Bluetooth scatternet are still an open issue, because no detailed definition of scatternet formation is defined in the Bluetooth specifications [1]. Many scatternet

*This work was supported by the National Science Council of the Republic of China under grant nos. NSC-92-2213-E-194-022 and NSC-93-2213-E-194-028.

16:57

formation protocols have recently been proposed [4–7]. In addition, a number of researchers 38 have addressed the issues of routing, scheduling, and QoS-extension routing in Bluetooth 39 networks. First, on-demand routing approaches in Bluetooth scatternets were investigated 40 [8-10]. Liu et al. [9] proposed an on-demand routing approach which combined scatternet 41 formation techniques. With this on-demand protocol, it is not necessary to update and maintain 42 the routing information in a routing table, but the Bluetooth core protocols need to be changed 43 in order to offer on-demand routing capability. Bhagwat et al. [8] proposed an efficient method 44 for route discovery and packet forwarding by encoding source route paths. Recently, Prabhu 45 et al. [10] considered the power control capability in order to increase the network lifetime of 46 Bluetooth scatternets. 47

In the Bluetooth specifications [1], round-robin (RR) scheduling is used, but has a time-48 slot wastage problem. Many scheduling results for Bluetooth networks have been investigated 49 [11-13], and these attempted to ameliorate the time-slot wastage problem. First, an efficient 50 pattern-matching polling (PMP) policy for data-link scheduling was proposed by Lin et al. 51 [12]. To consider a piconet, the PMP policy calculates different combinations of Bluetooth 52 packet types to search for better polling patterns. The system bandwidth is thus improved, 53 especially for asymmetrical traffic. Yang et al. [13] proposed two scheduling policies, look-54 ahead (LA) and look-ahead round robin (LARR), to improve the conventional RR scheduling 55 policy. Lin et al. [11] additionally proposed a power-saving scheduling scheme which utilizes 56 the sniff mode. These protocols only provide piconet scheduling results. 57

Many researchers [14–17] have recently attempted to develop QoS-extension routing 58 scheduling in Bluetooth scatternets. First, Cordeiro et al. [16] proposed dynamic slot assign-59 ment (DSA) and enhanced DSA (EDSA) schemes. A direct slave-to-slave communication 60 model is presented in [16] to provide QoS requirements with better bandwidth utilization, 61 shorter delays, lower overhead, and lower power utilization. Unfortunately, no interpiconet 62 scheduling mechanism has been devised for when the source and destination nodes are lo-63 cated in distinct piconets. Baatz et al. [14, 15] indicated some scheduling design difficulties; 64 for instance, a master cannot assume its slaves are always in the listening mode. They [14, 15] 65 addressed the credit scheme and adaptive presence point density (APPD) scheme to provide a 66 scatternet scheduling mechanism. Using the sniff mode, their scheduling mechanisms can be 67 achieved without modification of the Bluetooth specifications [14, 15]. 68

A QoS scheduling mechanism for scatternets was recently investigated by Kim et al. 69 [17]. They presented a QoS-aware scheduling algorithm to resolve the contentious problem 70 of bridge devices for Bluetooth scatternets, and investigated both centralized and distributed 71 scheduling algorithms. The algorithms proposed by Kim et al. are only suitable for treestructure scatternets [7]. The success rate of QoS-aware scheduling algorithms drops off for 73 non-tree-structure scatternets. It also degrades the bandwidth utilization of each Bluetooth 74 device. 75

In this paper, we address these on-demand quality-of-service routing and interpiconet 76 scheduling problems. A credit-based QoS (CQ) routing protocol is developed which considers 77 different Bluetooth packet types which have different bandwidth utilization levels [12]. This 78 concept can improve the bandwidth utilization of Bluetooth scatternets. Interpiconet schedul-79 ing problems can be resolved by using our CQ approach. Observe that this paper mainly 80 proposes a centralized algorithm to improve the bandwidth utilization for the on-demand QoS 81 routing protocol. The centralized algorithm incurs the scalability problem. To alleviate the 82 scalability problem, a distributed algorithm is also investigated in this work. The simulation 83 results illustrate that our CQ routing algorithm performs better than Kim et al.'s approach [17]. 84

The rest of this paper is organized as follows. Section 2 introduces some preliminary concepts. In Section 3, we develop the centralized QoS routing protocol, and the distributed QoS routing protocol is presented in Section 4. Section 5 discusses the experimental results. Finally, Section 6 concludes this paper.

89 2. Preliminary Concepts

In this section we discuss some background of this work. We give an overview of information
on Bluetooth technology. Existing result presented by Kim et al. [17] which motivated our
investigation is described.

93 2.1. ACL/SCO LINK PROPERTIES OF BLUETOOTH

94 According to Bluetooth specifications [1], each Bluetooth device [1] performs inquiry/inquiry scan and page/page scan processes to form a piconet. A scatternet is usually comprised of a set 95 96 of piconets via relay (bridge) devices to extend the transmission range. After the inquiry/inquiry scan and page/page scan processes have been carried out, a Bluetooth device may enter into the 97 connection state. In the connection state, two types of traffic links are used: the asynchronous 98 99 connectionless (ACL) link and the synchronous connection-oriented (SCO) link. The ACL link provides data communication, while the SCO link supports circuit-switched connections for 100 time-bounded information, such as audio transmissions. Observe that packets in SCO links are 101 not retransmitted. This paper only discusses QoS problems for data transmission in ACL links. 102 In the following, we only investigate QoS issues in ACL links. The packet of an ACL link 103 may have one, three, or five time slots as shown in Table 1 [1, 12]. The DM and DH packet types 104 stand for data with medium and high rates, respectively. DM-type packets contain a forward 105 error correction (FEC), but the DH-type packets do not contain the FEC. The bandwidth 106 utilization is calculated by the amount of the data payload (bytes) for one packet type (DM1, 107 DM3, DM5, DH1, DH3, or DH5) divided by the number of time slots used by that packet 108 type. For instance, the bandwidth utilization of the DM5 packet is 44.8 bytes/slot (224/5 =109 44.8), where the payload of the DM5 packet is 224 bytes and the number of time slots used 110 is five. In addition, the bandwidth utilizations of the DM1, DM3, DM5, DH1, DH3, and DH5 111 packets are shown in Table 1. For instance, the bandwidth utilization of DM1 (17.0) <that 112 of DM3 (40.3) < that of DM5 (44.8). Similar results for DH1, DH3, and DH5 are given in 113 Table 1. This fact motivated us to develop an efficient QoS routing protocol in this work by 114 taking different packet types with various bandwidth utilization levels into account. 115

Туре	Used payload (bytes)	FEC (forward error correction)	Bandwidth utilization bytes/slot)
DM1	17	Yes	17.0
DM3	121	Yes	40.3
DM5	224	Yes	44.8
DH1	27	No	27.0
DH3	183	No	61.0
DH5	339	No	67.8

Table 1. Bluetooth ACL data packets

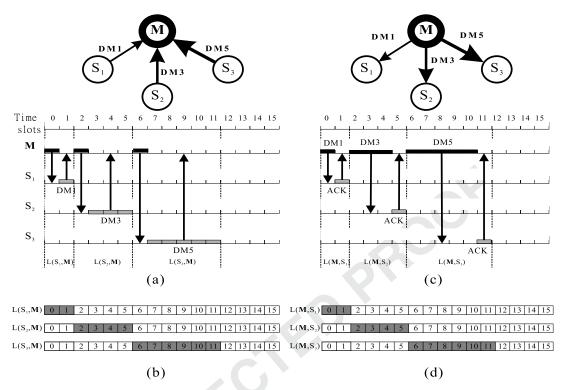
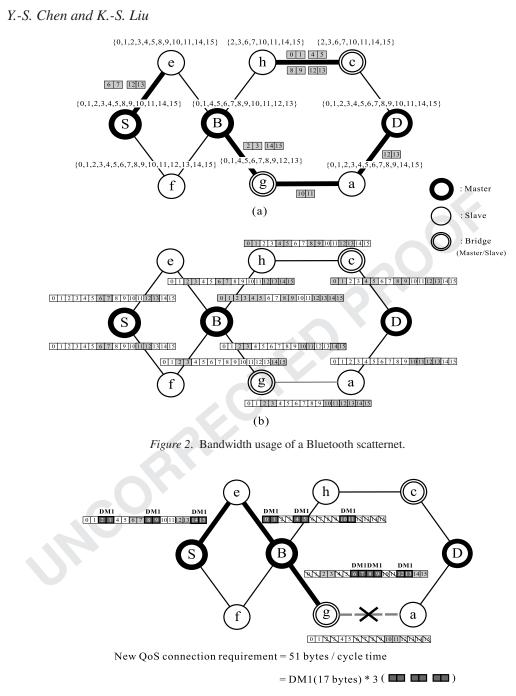


Figure 1. All conditions concerning communication between master and slaves.

In a piconet, a master transmits data to slaves in even-numbered time slots, and slaves 116 always transmit data to the master in odd-numbered time slots. This can be achieved since 117 the packet numbers of DMx and DHx are odd numbers, where x is 1, 3, or 5. One master and 118 three slaves exist in a piconet, and the DMx packets are used for transmitting data as shown 119 in Figure 1. For instance, the master polls the slaves, and the slaves transmit DM1, DM3, and 120 DM5 packets back to the master as shown in Figure 1(a). The master directly transmits DM1, 121 DM3, and DM5 packets to slaves as shown in Figure 1(c), and then the ACK. message is 122 returned from the slave to the master. 123

A high-performance QoS routing protocol is designed if the protocol has better time slot 124 utilization. To explain time-slot utilization, let L(X, Y) or XY denote the traffic link between 125 Bluetooth devices X and Y, where X and Y are the source and destination devices, respectively. Assume that there are δ time slots in a polling interval or cycle time. The black time 127 slot denotes the busy time slot. Let $(\alpha_1, \alpha_2, \ldots, \alpha_l)$ denote the time slots in a polling interval of a Bluetooth device, where l = 16 or 32. As illustrated in Figure 1(b), a polling interval 129 has 16 time slots. Time slots 1 and 2 are busy time slots for $L(S_1, M)$, time slots 2, 3, 4, 130 and 5 are busy for $L(S_2, M)$, and time slots from 6 to 11 are busy for $L(S_3, M)$. This con-131 dition can be formally represented as DM1, DM3, and DM5 packets occupying time slots 132 $(\alpha_1, \alpha_2), (\alpha_1, \alpha_2, \alpha_3, \alpha_4), and (\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5, \alpha_6)$, respectively. For instance as shown in 133 Figure 1(b), $L(S_1, M), L(S_2, M)$, and $L(S_3, M)$ occupy time slots (0,1), (2, 3, 4, 5), and (6, 7, 1348, 9, 10, 11), respectively. Other examples are shown in Figure 1(d).

Consider link $L(S_1, M)$ as illustrated in Figure 1(a), master M polls slave S_1 in time 136 slot "0", and slave S_1 transmits packet DM1 to master M in time slot "1". Transmission 137


DM1 uses even-numbered time slots. Other links, $L(S_2, M)$ and $L(S_3, M)$, for DM3 and DM5 using even-numbered time slots are also given in Figure 1(a). Similar results for links $L(M, S_1), L(M, S_2)$, and $L(M, S_3)$ with DM1, DM3, and DM5 packets using even-numbered time slots are illustrated in Figure 1(c). To simplify our presentation, we only discuss the time-slot reservation scheme for even-numbered time slots to indicate the fact that each traffic pair adds the POLL or ACK, packets.

144 2.2. BASIC IDEA OF THE CQ PROTOCOL

Lower bandwidth utilization of each Bluetooth device is the drawback of Kim et al.'s approach 145 146 [17], because their approach mainly attempts to improve the success rate of searching for a QoS route by only utilizing DM1 packets. Using only DM1 packets leads to the problem of lower 147 bandwidth utilization. For simplicity, we only describe the case of handling DM-type packets 148 in our CQ protocol. Similar operations can be applied to DH-type packets. Furthermore, Kim 149 150 et al.'s approach [17] is only suitable for tree-structure scatternets [7]. Lower success rates of searching for QoS routes are obtained with non-tree-structure scatternets. To improve the 151 152 bandwidth utilization and success rate, a new QoS scheduling scheme was investigated which not only adopts DM1 packets but also uses DM3 and DM5 packets for the QoS scheduling. The 153 basic idea of this protocol is to take advantage from the different types of Bluetooth packets 154 155 that allow obtaining different bandwidth utilization levels, in contrast with previous works in which only DM1 packets are used, deriving in a lower bandwidth utilization. 156

Let $\{\alpha_1, \alpha_2, \ldots, \alpha_k\}$ denote a free time slot list of a Bluetooth device. For example, given 157 sub-path (B,g,a) as shown in Figure 2(a), two DM1 packets at time slots (2, 3) and (14, 15) 158 are used in link Bg, and one DM1 packet at time slot (10, 11) is used in link ga, where g is 159 a bridge device and free time slot lists of *B*, *g*, and *a* are {0, 1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}, 160 {0, 1, 4, 5, 6, 7, 8, 9, 12, 13}, and {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 15}, respectively. Before de-161 scribing our basic idea, we point out the result of Kim et al.'s scheme by giving an example. 162 In the example, we find a QoS route (S, e, B, g, a, D) with the QoS requirement of transmit-163 ting 51 bytes. Figure 2(b) shows the initial bandwidth utilization of the Bluetooth scatternet. 164 The divide-and-conquer approach in [17] repeatedly splits the *traffic-load* matrix into *traffic*-165 load sub-matrices until the sub-matrix contains only DM1 packets. This work guarantees the 166 contention-free of the time slot reservation. Only DM1 packets are used to construct a QoS 167 route. For example as shown in Figure 3, three DM1 packets, (2, 3), (8, 9), and (14, 15), are 168 used in link Se, three DM1 packets, (0, 1), (4, 5), and (10, 11), are used in link eB, and three 169 DM1 packets, (6, 7), (8, 9), and (12, 13) are used in link Bg. But since it cannot find three 170 DM1 packets in link ga, therefore it failed to search for a QoS route. 171

To transmit 51 bytes, we can use three DM1 packets (six time slots) or one DM3 packet 172 (four time slots) from Table 1. Our main idea is to use DM5, DM3, and DM1 packets to achieve 173 the goal of using fewer free time slots. This work mainly improves the bandwidth utilization 174 and increases the success rate when searching for a QoS route. Given the same scenario as in 175 Figure 2, the QoS scheduling is failed as shown in Figure 3. Figure 4 gives a successful QoS 176 scheduling result using our new scheduling scheme. In this example, a DM3 packet (0, 1, 2, 177 3) is used in link Se, a DM3 packet (8, 9, 10, 11) is utilized in link eB, three DM1 packets, 178 (0, 1), (4, 5), and (12, 13), are used in link Bg, and the DM3 packet (6, 7, 8, 9) is occupied in 179 link \overline{ga} . The DM3 packet (6, 7, 8, 9) is finally used in link aD. Therefore, a QoS route (S, e, 180 B, g, a, D with the QoS requirement of transmitting 51 bytes is successfully constructed. 181

Figure 3. QoS scheduling result using Kim et al.'s algorithm.

It is mentioned in Table 1 that the bandwidth utilization of different packet types greatly 182 differs. Packets with different types of support for QoS requests produce different band-183 width utilization levels. When a slave retains data to be transmitted, the slave must wait for 184 a POLL packet sent from the master during a polling interval. If a scheduling method only 185 uses DM1 packets for the QoS requirement, then the master wastes a great number of time 186 slots when sending the POLL packet. This obviously causes the problem of low bandwidth 187



Figure 4. QoS scheduling result using our scheme.

utilization and degradation of the success rate. Developing a new scheduling scheme by adopt-188 ing DM1, DM3, and DM5 packets is the key idea of our work. From Johansson et al.'s [18] 189 investigation, the scheduling problem of finding the minimum assigned time slots in Blue-190 tooth scatternets is an NP-complete problem. Some scheduling schemes were developed by 191 Chen et al. [2, 3] for mobile ad hoc networks (MANETs). Chen et al. [2, 3] investigated 192 the hidden-terminal problem between each mobile node when searching for a QoS route in 193 MANETs. The key difference between developing QoS routes in MANETs and in Bluetooth 194 scatternets is that a Bluetooth device cannot participate in more than one piconet at the same 195 time. Efforts are made to develop a new, efficient QoS scheduling mechanism for Bluetooth 196 197 scatternets. In the following, we propose centralized and distributed algorithms to develop efficient QoS scheduling in Bluetooth scatternets. The objectives of this work were not only 198 199 to improve the bandwidth utilization but also increase the success rate of constructing a QoS 200 route.

201 3. A Centralized On-Demand QoS Routing Protocol

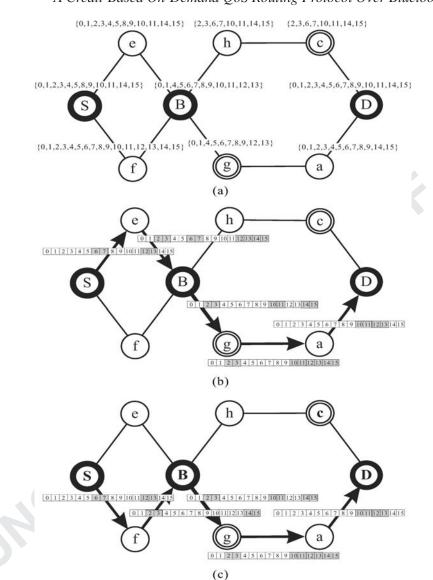
To optimize the bandwidth utilization of a QoS route in a Bluetooth WPAN, a centralized 202 QoS routing protocol is presented in this section. The main contribution of this work is to 203 develop the centralized algorithm. The centralized algorithm is used to construct a QoS route 204 which satisfies the QoS requirement, from a source node to a destination node, over a preformed 205 Bluetooth scatternet [4–7]. A multi-hop scatternet is initially constructed by existing scatternet 206 formation algorithms [4–7]. Each bridge device between two piconets in a scatternet maintains 207 two different piconet clocks and corresponding hopping sequences to support the reasonable 208 assumptions of the OoS time-slot reservations [4–7]. 209

To improve the system performance, we developed a new and more-efficient QoS routing protocol by taking the factor of different-type packets with different bandwidth levels of utilization into account. To achieve high bandwidth utilization and high success rates of finding a QoS route, the centralized on-demand QoS routing protocol uses the development of free time-slot information collection and time-slot reservation phases. In the free time-slot information collection phase, many different paths, from a source node, with all free time-slot

information of all links, are received at the destination node. In the time-slot reservation phase, 216 both credit-based and optimal algorithms of time-slot reservation are given. 217

3.1. PHASE I: FREE TIME-SLOT INFORMATION COLLECTION

218


A Bluetooth scatternet is assumed to initially be formed by existing formation protocols [4, 5, 219 6, 7]. The detailed collection of free time-slot information from source to destination nodes is 220 performed. The source node initiates the QoS_REQuest, or BQ_REQ, packet and floods into 221 Bluetooth scatternets until the BQ_REQ packets arrive at the destination node. Each BQ_REQ 222 packet records all free time-slot information of links along a path from the source node to the 223 destination node. The destination node receives information on many different paths, therefore 224 a sub-graph with useful free time-slot information from the source node to the destination node 225 is rebuilt at the destination node. Utilizing the sub-graph with useful free time-slot information 226 allows us to develop near-optimal and optimal time-slot reservations.

In the following, we describe how to calculate free time slots between two adjacent nodes in 228 Bluetooth scatternets. Let { $\alpha_1, \alpha_2, \ldots, \alpha_k$ } denote a free time-slot set for a Bluetooth device in a 229 Bluetooth scatternet. For instance as shown in Figure 5(a), {0, 1, 2, 3, 4, 5, 8, 9, 10, 11, 14, 15} 230 is the free time-slot set of node *S*. Given a pair of adjacent nodes, *A* and *B*, free timeslot sets of *A* and *B* are { $\alpha_1, \alpha_2, \ldots, \alpha_{k_1}$ } and { $\beta_1, \beta_2, \ldots, \beta_{k_2}$ } where $k_1 \neq k_2$. As men-232 tioned in Section II, *AB* denotes the link between adjacent nodes *A* and *B*. An intersec-233 tion function, \cap ({ $\alpha_1, \alpha_2, \ldots, \alpha_{k_1}$ }, { $\beta_1, \beta_2, \ldots, \beta_{k_2}$ }) = { $\gamma_1, \gamma_2, \ldots, \gamma_{k_3}$ }, is executed for link 234 *AB* to calculate the shared free time slots of nodes *A* and *B*, where { $\gamma_1, \gamma_2, \ldots, \gamma_{k_3}$ } \in 235 { $\alpha_1, \alpha_2, \ldots, \alpha_{k_1}$ }, { $\beta_1, \beta_2, \ldots, \beta_{k_2}$ }, and $k_3 \leq \min(k_1, k_2)$. For example as illustrated in Figure 236 5(b), the free time-slot list of link *Bg* is {0, 1, 4, 5, 6, 7, 8, 9, 12, 13} = \cap ({0, 1, 4, 5, 6, 7, 8, 237 9, 10, 11, 12, 13}, {0, 1, 4, 5, 6, 7, 8, 9, 12, 13}). The BQ_REQ packet is defined as BQ_REQ 238 (S_ADDR, D_ADDR, FT, PL, FTSL, BR, TTL), where the detailed definition is given in Table 2. 239 The algorithm of free time-slot information collection is given below. 240

- (A1) Source node *S* initiates and floods a BQ_REQ(S_ADDR = *S*, D_ADDR = *D*, FT = 241 $\{\alpha_1, \alpha_2, \dots, \alpha_{k_1}\}$, PL={}, FTSL={}, BR, TTL) packet into a Bluetooth scatternet, where 242 *D* is the destination node, BR is the QoS requirement, and TTL is the time-to-live value. 243
- (A2) If node *e* receives a BQ_REQ(S_ADDR= *S*, D_ADDR= *D*, current_FT, current_PL, current_FTSL, BR, current_TTL) packet from node *e'* in the Bluetooth scatternet, the current_TTL and D_ADDR fields are checked, and four cases are considered.

Packet field	Field description
S_ADDR	Source node address
D_ADDR	Destination node address
FT	Free time slots of the current node
PL	List of node information that records the path from the source to the current traversed node
FTSL	Free time-slot list of links, each of which records the shared free time siots among the current traversed node and the last node recorded in the PL
BR	QoS requirement of the source host
TTL	Time to live: limitation of the hop-length in the search path

Table 2. Detailed definition of a **BQ_REQ** packet

A Credit-Based On-Demand QoS Routing Protocol Over Bluetooth WPANs

Figure 5. Free time slots of each node and the shared free time-slot list of each link.

247	(B1) If current_TTL is equal to zero and node e is not equal to D_ADDR of the BQ_REQ
248	packet, then the current BQ_REQ packet is dropped.
249	(B2) If the shared free time slots $\{\gamma_1, \gamma_2, \dots, \gamma_{k_3}\}$ of link $e'e$ cannot satisfy the QoS
250	requirement, BR, then the current BQ_REQ packet is dropped.
251	(B3) If node e is equal to D_ADDR, then go to step A3.
252	(B4) Node <i>e</i> appends <i>e</i> into the current_PL field and adds $\{\gamma_1, \gamma_2, \ldots, \gamma_{k_3}\}$ into the
253	current_FTSL field, and decreases the value of the current_TTL. Node e floods
254	BQ_REQ(S, D, itself_FT, {current_PL, e}, current_FTSL \cup { $\gamma_1, \gamma_2, \ldots, \gamma_{k3}$ }, BR, cur-
255	rent_TTL - 1) into the Bluetooth scatternet, where itself_FT is the free time-slot list
256	of node <i>e</i> .

(A3) Destination node *D* waits for a period of time to receive many different BQ_REQ packets 257 from the source node.

For example as shown in Figure 5(b)(c), BQ_REQ(S, D, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 15}, 259 {S, e, B, g, a, D}, [{0, 1, 2, 3, 4, 5, 8, 9, 10, 11, 14, 15}, {0, 1, 4, 5, 8, 9, 10, 11}, {0, 1, 4, 5, 260 6, 7, 8, 9, 12, 13}, {0, 1, 4, 5, 6, 7, 8, 9}], 51, 0) and BQ_REQ(S, D, {0, 1, 2, 3, 4, 5, 6, 7, 8, 261 9, 14, 15}, {S, f, B, g, a, D}, [{0, 1, 2, 3, 4, 5, 8, 9, 10, 11, 14, 15}, {0, 1, 4, 5, 6, 7, 8, 9, 10, 262 11, 12, 13}, {0, 1, 4, 5, 6, 7, 8, 9, 12, 13}, {0, 1, 4, 5, 6, 7, 8, 9, 12, 13}, {0, 1, 4, 5, 6, 7, 8, 9, 12, 13}, {0, 1, 4, 5, 6, 7, 8, 9, 12, 13}, {0, 1, 4, 5, 6, 7, 8, 9, 12, 13}, {0, 1, 4, 5, 6, 7, 8, 9}], 51, 0) packets are received 263 at destination node D.

3.2. PHASE II: TIME-SLOT RESERVATION

To reserve time slots for constructing a QoS route with better and optimal bandwidth utilization, two centralized algorithms, (1) a credit-based algorithm and (2) an optimal algorithm, 267 are presented as follows. 268

3.2.1. Credit-Based Algorithm

Packets comprised of different packet types used for the same QoS requirement result in 270 different bandwidth utilization levels. To assign time slots to each link while considering 271 different packet types, a better QoS route with high bandwidth utilization is presented. First, 272 each link is assigned a different priority value. This value indicates the degree of influence with 273 that link has with its neighboring links. A credit-based algorithm is developed based on the 274 priority value of finding a QoS route with lower influence by neighboring links. The detailed 275 description follows. 276

After collecting many BQ.REQ packets from a source node, all free time-slot information 277 is obtained at the destination node. The destination node chooses one of them and performs the 278 following operation. Without loss of generality, a path $(s_0, M_1, s_1, M_2, ..., M_i, s_i)$ is chosen 279 where the source and destination nodes are s_0 and s_i . A shared free-time slot matrix, M_f , is used 280 to indicate information of the shared free time slots of links s_0M_i , $M_1s_1, s_1M_2, ..., and <math>M_is_i$ 281 of route $(s_0, M_1, s_1, M_2, ..., M_is_i$. Each row of matrix M_f denotes the shared free time slots 282 of links $s_0M_1, M_1s_1, s_1M_2, ..., and M_is_i$. For instance, consider route (S,e,B,g,a,D) as il-283 lustrated in Figure 5(b), matrix M_f is constructed of links L(S, e), L(e, B), L(B, g), L(g, a), 284 and L(a,D) as illustrated in Figure 8(a). The first row of matrix M_f is $\{0, 1, 2, 3, 4, 5, 285$ 8, 9, 10, 11, 14, 15 $\}$ for L(S,e). Let F(X, Y) and B(X, Y) respectively denote the free 286 time slots and busy time slots of link L(X, Y) or XY. For example as shown in Figure 6, 287 $F(e, B) = \{0, 1, 4, 5, 8, 9, 10, 11\}$ and $B(e, B) = \{2, 3, 6, 7, 12, 13, 14, 15\}$.

Given route $(s_0, M_1, s_1, M_2, ..., W, X, Y, Z..., M_i, s_i)$, we consider three adjacent links, 289 WX, XY, and YZ along the route. Number list $P(\delta)_{L(X,Y),L(Y,Z)}$ is constructed by $P(\delta_i)_{L(X,Y)}$, 290 $_{L(Y,Z)}$ where $0 \le i \le$ polling_interval. Each $P(\delta_i)_{L(X,Y),L(Y,Z)}$ denotes a credit value of *i*-th 291 time slots for links L(X, Y) and L(Y, Z) as follows. 292

$$P(\delta_i)_{L(X,Y),L(Y,Z)} = \begin{cases} 0, & \text{if } \delta_i \in B(X,Y), \\ 1, & \text{if } \delta_i \in F(X,Y) \cap F(Y,Z), \\ 0 \le i < \text{polling_interval} \\ 2, & \text{otherwise;} \end{cases}$$
(1)

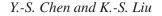
265

269

L(S,e) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
L(e, B) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
$P(\delta)_{L(e,B),L(S,e)} 1 \ 1 \ 0 \ 0 \ 1 \ 1 \ 1 \ 0 \ 0 \ 1 \ 1$
(a)
L(B ,g) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
L(e, B) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
$P(\delta)_{_{L(e,B), L(B,g)}} \ \ 1 \ 1 \ 0 \ 0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 1$
(b)
$(\delta)_{L(e,B), L(S,e)} + P(\delta)_{L(e,B), L(B,g)} \ 2 \ 2 \ 0 \ 0 \ 2 \ 2 \ 0 \ 0 \ 2 \ 2 \ $
(c)

Figure 6. Example of the priority of the time-slot operation.

293 Similarly, number list $P(\delta)_{L(X,Y),L(W,X)}$ is used to denote the credit values of links L(X, Y)294 and L(W, X), where every $P(\delta_i)_{L(X,Y),L(W,X)}$ is defined below.


P(

$$P(\delta_i)_{L(X,Y),L(W,X)} = \begin{cases} 0, & \text{if } \delta_i \in B(X,Y), \\ 1, & \text{if } \delta_i \in F(X,Y) \cap F(W,X), & \text{where} \\ & 0 \le i < \text{polling_interval} \\ 2, & \text{otherwise;} \end{cases}$$
(2)

295 For instance as shown in Figure 6(a) and (b), $P(\delta)_{L(e,B),L(B,g)} = 1100110011220000$ and $P(\delta)_{L(e,B),L(S,e)} = 1100110011110000$. Each number in the number list of $P(\delta_i)_{L(X,Y),L(Y,Z)}$ and 296 $P(\delta_i)_{L(X,Y),L(W,X)}$ ranges from 0 to 2, where '0' denotes that the *i*-th time slot of XY is busy, 297 '1' denotes that the *i*-th time slots of XA and WX are free, and '2' denotes that the *i*-th time 298 slot of XA is free but the *i*-th time slot of WX cannot be used. The value of '2' is the case 299 of low influence of neighboring nodes. Therefore, the value of '2' has the highest priority. A 300 similar rule can be applied to $P(\delta_i)_{L(X,Y),L(W,X)}$. Finally, a sum of the number list is calculated 301 302 by $P(\delta)_{L(X,Y),L(Y,Z)} + P(\delta)_{L(X,Y),L(W,X)}$, where each number in the number list ranges from 0 to 4. For instance, $P(\delta)_{L(e,B),L(S,e)} + P(\delta)_{L(e,B)(B,g)} = 2200220022330000$. The higher value in 303 the sum number list is picked first because it has a lower influence capability. 304

Let *p* denote the permutation of any packet types to satisfy the QoS requirement. For example as shown in Figure 7, the QoS requirement is 224 bytes per cycle time, and four different packet types are produced, i.e., p = 4; (1) a DM5 packet, (2) two DM3 packets, (3) one DM3 packet and eight DM1 packets, and (4) 16 DM1 packets. For the other example shown in Figure 8(a), p = 2 for the QoS requirement of 51 bytes for L(e, B) and one DM3 packet and three DM1 packets are produced.

With $P(\delta)_{L(e,B),L(S,e)} + P(\delta)_{L(e,B),L(B,g)}$, there are *m* conditions of time reservation if we only consider one kind of packet type to satisfy the QoS requirement. For the same example of L(e, B) shown in Figure 8(a), if we consider one DM3 packet, it can be reserved for time slot (8, 9, 10, 11). Therefore, m = 1. If we consider three DM1 packets, they can be reserved on (0, 1), (4, 5), and (8, 9) or (0, 1), (4, 5) and (10, 11). Therefore, m = 2. Therefore, a computation time on $O(m \cdot p)$ is needed for the one-hop time reservation.

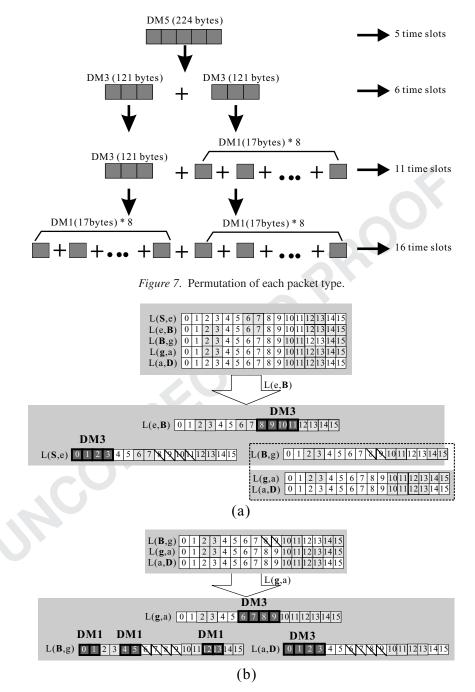


Figure 8. Time slots reserved step-by-step by the CCQ approach.

Given path $(s_0, M_1, s_1, M_2, ..., W, X, Y, Z, ..., M_i, s_i)$, if we have matrix M_f and information on the summed number lists $P_{(\delta)L(e,B),L(S,e)} + P(\delta)_{L(e,B),L(B,g)}$ then time-slot reservation 318 is given as follows. 319

(C1) Link L(X, Y) is selected from $(s_0, M_1, s_1, M_2, \ldots, W, X, Y, Z, \ldots, M_i, s_i)$ with a lower 320 number of shared free time slots, such that route $(s_0, M_1, s_1, M_2, \ldots, W, X, Y, Z, \ldots, 321)$

- 322 M_i, s_i) can be divided into two subpaths, $(s_0, M_1, s_1, M_2, ..., W, X)$ and $(Y, Z, ..., M_i, S_i)$, with two sub-matrices, M'_f and M''_f , where $M_f = M'_f + M''_f$. If there is more than 324 one link with the same fewer number of free time slots, then we randomly select one 325 link from them.
- 326 (C2) With the QoS requirement, we first try possible DM5 packets to satisfy the QoS re-327 quirement of link L(X, Y). If these do not satisfy the QoS requirement, we continue 328 to try possible DM3 packets to satisfy the QoS requirement. Then, if the QoS re-329 quirement is still not satisfied, we continue to try possible DM1 packets to satisfy 330 it. All of the above operations depend on the priority of the summed number lists of 331 $P(\delta)_{L(X,Y),L(Y,Z)} + P(\delta)_{L(X,Y),L(W,X)}$.
- (D1) The time-slot reservation operations of steps C1 and C2 on sub-path $(s_0, M_1, s_1, M_2, ..., W, X)$ are recursively performed with sub-matrix M'_f .
- (D2) The time-slot reservation operations of steps C1 and C2 on sub-path $(Y, Z, ..., M_i, S_i)$ are recursively performed with sub-matrix M''_f .
- For instance as shown in Figure 8(a), a route (S, e, B, g, a, D) with M_f is split into two sub-paths, (S, e) and (B, g, a, D), with M'_f and M''_f . since eB has eight free time slots. The QoS requirement is 51 bytes per cycle time. As illustrated in Figure 8(a), DM3 is reserved to L(e, B), and DM3 is recursively reserved to L(S, e). Sub-matrix M''_f for (B, g, a, D) is split into (B, g) and (a, D) after DM3 is allocated to L(g, a). Finally, three DM1 packets are reserved in L(B, g) and one DM3 is allocated to L(a, D).
- After performing the time-slot reservation operation, the destination node replies with a REPly (RREP) packet from the destination node to the source node to reserve time slots with the QoS requirement and which releases all unrelated time slots in all other routes. The time complexity of the credit-based algorithm is given.
- **Lemma 1.** If *n* hops exist in a route from a source to the destination, then the time complexity of the credit-based algorithm is $O((m \cdot p)^n)$, where *m* is the number of all free time slots that can be used for a traffic pattern, and *p* is the permutation number of all traffic patterns.
 - **Proof:** As there are *n* hops in a route, then our matrix is constructed from *n* rows. Therefore, the time complexity of the credit-based algorithm is $O((m \cdot p)^n)$.

349

350 3.2.2. Optimal Algorithm

- To provide an optimal solution for constructing a QoS route, an optimal algorithm is presented as follows. Given route $(s_0, M_1, s_1, M_2, \ldots, W, X, Y, Z, \ldots, M_i, s_i)$ and matrix M_f , the optimal time slot reservation is given.
- (E1) Every link L(X, Y) is selected from $(s_0, M_1, s_1, M_2, \ldots, W, X, Y, Z, \ldots, M_i, s_i)$ by splitting $(s_0, M_1, s_1, M_2, \ldots, W, X, Y, Z, \ldots, M_i, s_i)$ with matrix M_f into the two sub-paths, $(s_0, M_1, s_1, M_2, \ldots, W, X)$ and (Y, Z, \ldots, M_i, s_i) , with the two sub-matrices, M'_f and M''_f , where $M_f = M'_f + M''_f$.
- 358 (E2) A credit-based scheme is applied to reserve time slots on link L(X, Y). This work takes 359 a computation time of $O(m \cdot p)$.
- (E3) The time-slot reservation operations of steps E1 and E2 are recursively carried out on sub-path $(s_0, M_1, s_1, M_2, ..., W, X)$ with sub-matrix M'_f until all links in sub-path $(s_0, M_1, s_1, M_2, ..., W, X)$ have been selected for the time-slot reservation.

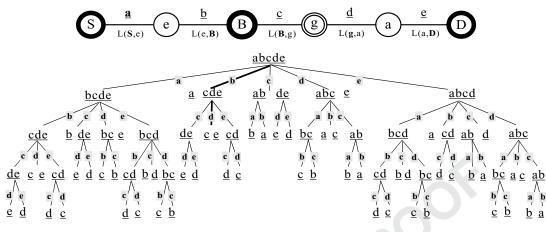


Figure 9. Examples of time-slot reservation in link L(e, B).

(E4) The time slot reservation operations of steps E1 and E2 are recursively carried out on subpath $(Y, Z, ..., M_i, s_i)$ with sub-matrix M''_f until all links in sub-path $(Y, Z, ..., M_i, s_i)$ 364 have been selected for time-slot reservation. 365

All of the above recursive operations can be represented as a traversal tree as shown 366 in Figure 9. This tree is named the time-slot reservation tree. For example as shown in 367 Figure 9, to easily express the reservation operation, a, b, c, d, and e are used to indicate 368 links L(S, e), L(e, B), L(B, g), L(g, a), and L(a, d), respectively. The root of the tree is represented as <u>abcde</u>. After choosing links <u>a, b, c, d</u>, and e for the time-slot reservations, the 370 children nodes of the root, <u>bcde</u>, <u>a cde</u>, <u>ab de</u>, <u>abc e</u>, and <u>abcd</u>, form the first level of the tree. 371 The tree is constructed by recursively expanding all possible children nodes of every node on 372 each level of the tree. Every path from the root to a leaf node produces a time-slot reservation pattern. For instance, the leftmost path, comprised of links <u>a, b, c</u>, and <u>d</u>, is a time-slot 374 reservation pattern. The second one is comprised of links <u>a, b, c</u>, and e. For instance, detailed 375 time-slot reservations for selecting links <u>b and d(L(e, B) and L(g, a)</u>) are given in Figs. 10 376 and 11.

The total number of nodes of the tree is n!, where the hop number of the original route is 378 n. Therefore, the time complexity of the optimal algorithm is $O(m \cdot p)^{n!}$). 379

Lemma 2. If n hops exist in a route from a source to the destination, then the time complexity 380 of the optimal algorithm is $O((m \cdot p)^{n!})$, where m is number of all free time slots that can be 381 used for a traffic pattern and p is permutation number of all traffic patterns. 382

However, the centralized QoS on-demand routing protocol suffers from a scalability problem in that all route paths and their time-slot information are stored in BQ_REQ packets. To reduce the scalability problem, a simple distributed QoS on-demand QoS routing protocol based on the centralized credit-based (CCQ) algorithm was developed in Section 4.

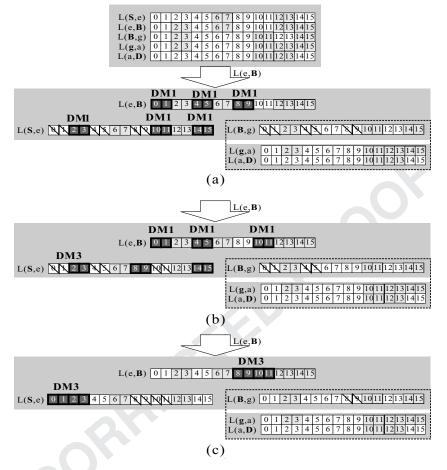
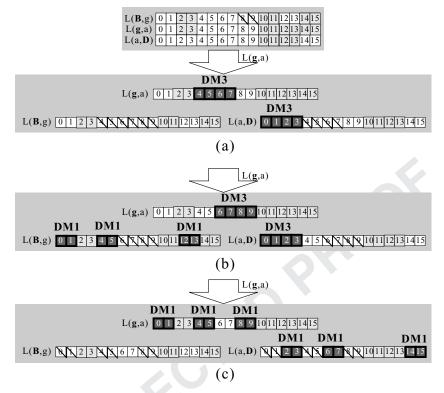


Figure 10. All conditions of time slot reservation of the optimal algorithm.


387 4. A Distributed On-Demand QoS Routing Protocol

This section presents a distributed credit-based QoS (DCQ) routing protocol. The DCQ protocol is directly modified from the CCQ protocol. In the DCQ protocol, a hop-by-hop distributed algorithm is designed by adopting the advantages of the credit-based algorithm.

The DCQ protocol floods a BQ_REQ packet every three hops and performs a time-slot reservation operation. The time-slot reservation packet (TSRP) is sent back through the preceding nodes to confirm the time-slot reservation. The detail definition of the time-slot reservation packet (TSRP) is given in Table 3. The above operation is repeatedly executed until arriving at the destination node; in this way, a QoS route is constructed.

In our DCQ algorithm, an extra field is appended, hop counter (HC), which limits the current
BQ_REQ packet to three hops. The new BQ_REQ packet is redefined as BQ_REQ(S_ADDR,
D_ADDR, FT, PL, FTSL, BR, HC, TTL). The TSRP is defined as TSRP(S_ADDR, D_ADDR,
BQPL, TSRL, TTL). The DCQ algorithm is formally given as follows.

400 (F1) Source node S initiates and floods the BQ_REQ(S_ADDR = S, D_ADDR = D, FT = 401 $\{\alpha_1, \alpha_2, \dots, \alpha_{k_1}\}, PL = \{\}, FTSL = \{\}, BR, HC = 1, TTL\}$ packet in a Bluetooth scatternet,

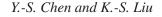
Figure 11. Examples of time-slot reservation in link L(g, a).

where D is the destination node, and HC is the hop counter. 402

- (F2) When node *e* receives a BQ_REQ(S_ADDR = *S*, D_ADDR = *D*, current_FT, current_PL, $_{403}$ current_FTSL, BR, current_HC, current_TTL) packet from node *e'* in a Bluetooth scatternet, after determining the value for current_FTSL, BR, current_HC, and current_TTL, $_{405}$ some situations are evaluated. $_{406}$
 - (G1) If the TTL is equal to zero and node e is not equal to D_ADDR of the BQ_REQ packet, 407then the current BQ_REQ packet is dropped. 408
 - (G2) If the shared free time slots $\{\gamma_1, \gamma_2, \dots, \gamma_{k_3}\}$ of link e'e cannot satisfy the QoS 409 requirement, BR, then the current BQ_REQ packet is dropped. 410
 - (G3) If the HC is smaller than three, node *e* calculates the shared free time slots { $\gamma_1, \gamma_2, \ldots, \gamma_{11}$

Packet field	Field description
S_ADDR	Current node address
D_ADDR	Preceding third node address acquired from the PL of the BQ_REQ packet
BQPL	Path list with information of the preceding three hops acquired from the PL of the BQ_REQ packet
TSRL	All information of reserved time slots for the preceding three nodes
TTL	Time to live: hop-length within three hops

Table 3. Detail definition of a TSRP packet


 412 413 414 415 416 417 418 	 γ_{k3}} of link e'e, then adds the value to the field of FTSL. Moreover, the value of the HC is increased and the other fields of the BQ_REQ, such as the PL and TTL are updated. Finally, the BQ_REQ(<i>S</i>, <i>D</i>, itself_FT, {current_PL, e}, current_FTSL ∪{γ₁, γ₂,, γ_{k3}}, BR, current_HC+1, current_TTL-1) packet is reconstructed and forwarded to all neighboring nodes. (G4) If the HC is equal to three, then node e performs steps F3 and F4 to execute the time-slot reservation.
419 420	(F3) Node <i>e</i> acquires all shared free time-slot lists from the FTSL in the BQ_REQ. Matrix M_f is constructed by three adjacent links: $L(W, X)$, $L(X, Y)$, and $L(Y, Z)$.
421 422 423 424	 (H1) To select link L(X, Y), matrix M_f is split into two submatrices, M'_f and M''_f, where M_f = M'_f+M''_f, M'_f contains only link L(W, X), and M''_f contains only link L(Y, Z). (H2) The credit value of P(δ)_{L(X,Y),L(Y,Z)} + P(δ)_{L(X,Y),L(W,X)} is calculated to perform the credit-based time-slot reservation.
425	(F4) After successful time-slot reservation, the following operations are executed.
426 427 428 429 430 431 432 433 434	 (I1) Node <i>e</i> recalculates the shared free time slots {γ₁, γ₂,, γ_{k3}} of link <i>e'e</i>. Then, node <i>e</i> reconstructs the BQ_REQ(S_ADDR= <i>S</i>, D_ADDR= <i>D</i>, itself_FT, {current_PL, e}, {γ₁, γ₂,, γ_{k3}}, BR, HC= 2, current_TTL-1) packet and forwards it to the next hop until the destination node receives the BQ_REQ packet or the TTL is equal to zero. (I2) Node <i>e</i> constructs a TSRP(S_ADDR, D_ADDR, BQPL, TSRL, TTL) which contains the result of the time-slot reservation for the preceding three nodes. Node <i>e</i> sends the TSRP back through the preceding three nodes to confirm the time-slot reservation.
435 436 437 438 439 440	For example as shown in Figure 12(a), node g receives the BQ_REQ packet and performs the time-slot reservation since the value of HC is 3. The distributed time-slot reservation for (S,e,B,g) is executed as illustrated in Figure 13(a). After that, node D receives the BQ_REQ packet from g as shown in Figure 12(b), and a distributed time-slot reservation for (B, g, a, D) is again executed as shown in Figure 13(b). The time complexity of the DCQ algorithm is given.

441 **Lemma 3.** If *n* hops exist in a route from a source to the destination, then the time complexity 442 of the DCQ algorithm is $O((m \cdot p)^n)$, where *m* is number of all free time slots that can be used 443 for a traffic pattern and *p* is the permutation number of all traffic patterns.

Proof: The local three-hop computation time is $O((m \cdot p)^2)$. The total number of the time slots reserved is about $\frac{n}{2}$. Therefore, the total computation time of the DCQ algorithm is $O((m \cdot p)^n)$.

445 **5. Performance Analysis**

446 Our study mainly presents a new credit-based time-slot reservation protocol. To evaluate our 447 credit-based protocol and Kim et al.'s protocol [17], we implemented them using the Network

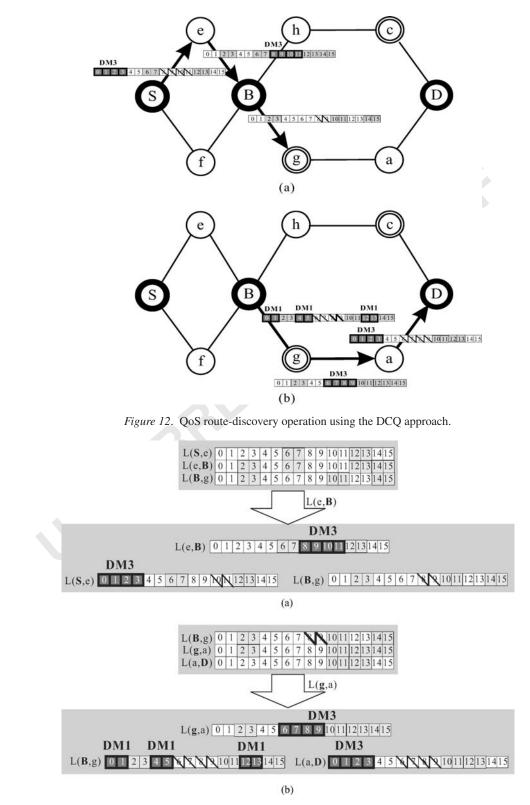
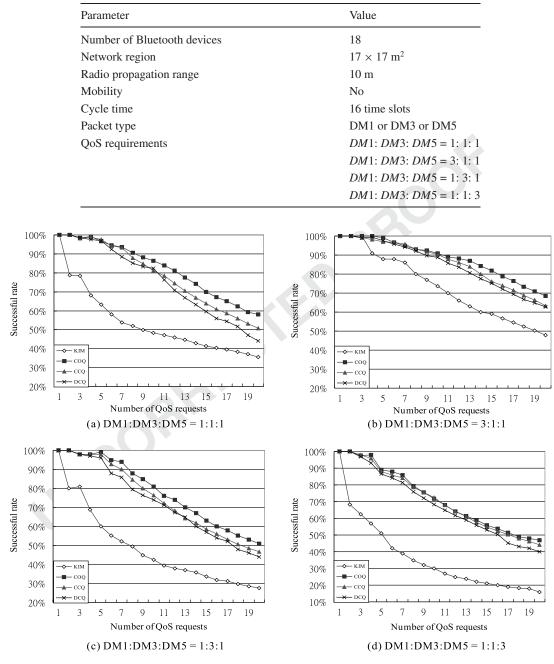
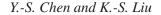
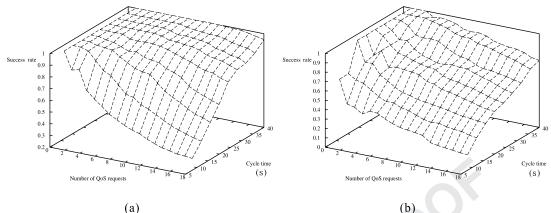


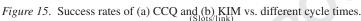
Figure 13. Time slots reserved step-by-step using the DCQ approach.

Table 4. Detailed simulation parameters


Figure 14. Success rate vs. the number of QoS requests.

448 Simulator (ns-2) [19] and BlueHoc [20].


In the following simulation, we used KIM, COQ, CCQ, and DCQ to denote Kim et al.'s algorithm [17], our centralized optimal QoS algorithm, our centralized credit-based QoS algorithm, and our distributed credit-based QoS algorithm, respectively. The system parameters

452 are given in Table 4. For instance, four QoS requirement patterns of DM1: DM3: DM5 = 1:

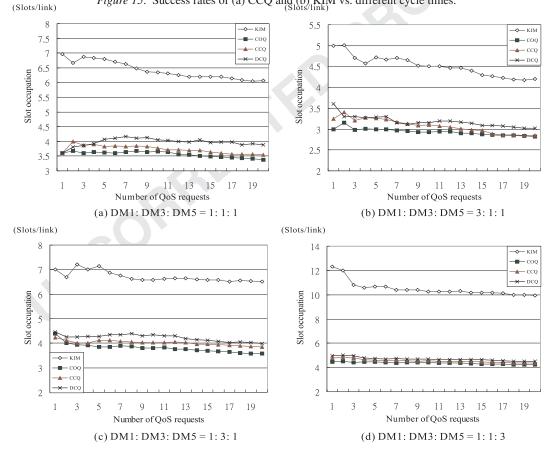
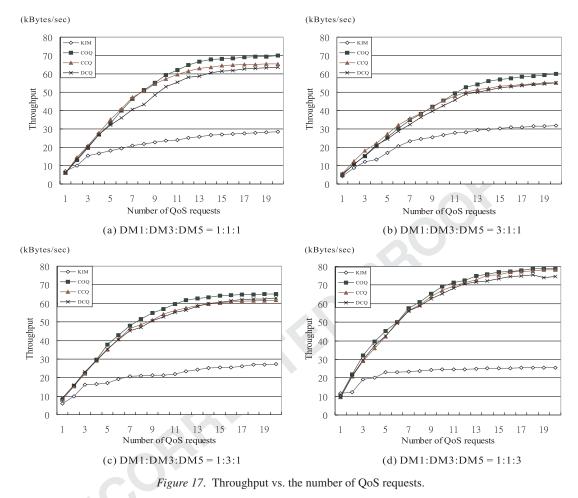
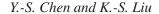



Figure 16. Slot occupation vs. the number of QoS requests.

1: 1, 3: 1: 1, 1: 3: 1, and 1: 1: 3 were used. The QoS requirement pattern used was DM1: 453 DM3: DM5 = 1: 1: 3 to indicate that the probability of data transmission using packet DM5 = 454is higher than those of DM1 and DM3, while DM1: DM3: DM5 = 1: 1: 1 indicates the same 455 probabilities of data transmission of using the DM1, DM3, and DM5 packets. The performance 456 metrics of the simulation are given below. 457

Success rate: the number of successful QoS route requests divided by the total number of
 QoS route requests.

• *Bandwidth efficiency*: the average number of data bytes which can be transmitted per time slot for a successful QoS route.


462 • *Slot occupation*: the average number of time slots occupied by a successful QoS route.

• *Throughput*: the number of data bytes received by all Bluetooth devices per unit time.

464 It is worth mentioning that an efficient on-demand QoS routing protocol over Bluetooth 465 WPANs is achieved with a high success rate, a high bandwidth efficiency, a lower slot occu-466 pation, and high throughput. In the following, we illustrate our simulation results for success 467 rate, bandwidth efficiency, slot occupation, and throughput from several aspects.

468 5.1. PERFORMANCE OF SUCCESS RATE

We first investigated the effect of various numbers of QoS requests. Figure 14 shows the success rate vs. number of QoS requests for four QoS requirement scenarios: DM1: DM3: DM5 = 1: 1: 1, 3: 1: 1, 1: 3: 1, and 1: 1: 3 as respectively illustrated in Figure 14(a), (b), (c), and (d). In general, COQ, CCQ, and DCQ had higher success rates than did KIM. This is because KIM

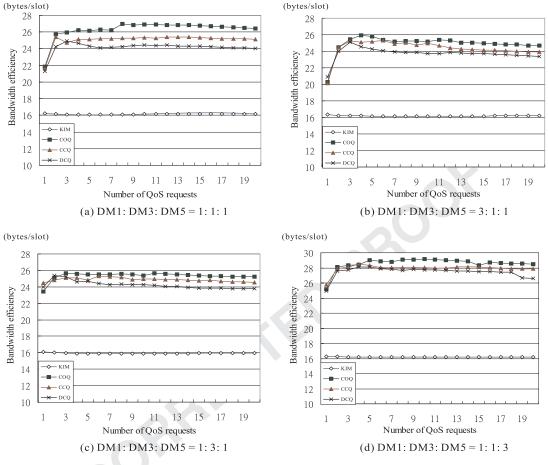


Figure 18. The bandwidth efficiency vs. the number of QoS requests.

wastes too many POLL time slots using DM1 packets. For instance, if a QoS requirement is 473 136 bytes/cycle time, KIM uses eight time slots (136/17 = 8 DM1) and eight POLL packets. 474 To satisfy the QoS requirement, only DM1 packets are used in KIM. It is possible that KIM 475 consumes most of the time slots for the POLL time slots in a cycle time, therefore the success 476 rate quickly decreases. The low success rate for KIM seriously occurred in the case of *DM*1: 477 *DM*3: *DM*5 = 1: 1: 3 as shown in Figure 14(d). 478

On the other hand, COQ, CCQ, and DCQ consider the QoS requirement using different 479 packet types of DM5, DM3, and DM1; therefore, the utilization of POLL packets in a cycle 480 time is lower than KIM. This leads to COQ, CCQ, and DCQ having better success rates than 481 KIM. Generally speaking, the success rate of COQ > that of CCQ > that of DCQ > that of 482 KIM as illustrated in Figure 14. This is because DCQ is a distributed algorithm, and COQ 483 and CCQ are centralized algorithms. Figure 14 shows that the average success rate for KIM is 484 about 66% of the average success rates of COQ, CCQ, and DCQ. Also with various numbers 485 of QoS requests as shown in Figure 15, we studied the success rate with different values for 486 cycle time. Figure 15 was obtained for the traffic pattern of DM1: DM3: DM5 = 1: 1: 1 for 487 CCQ and KIM. It is obvious that our CCQ scheme had a higher success rate than KIM under 488 different cycle times.

490 5.2. PERFORMANCE OF SLOT OCCUPATION

Figure 16 gives the simulation results of slot occupation vs. the number of QoS requests un-491 der four QoS requirement scenarios. Basically, the slot occupation of COQ < that of CCQ492 < that of DCQ < that of KIM for the four QoS requirement scenarios illustrated in Fig-493 ure 16. The simulation results show that the average slot occupation of COQ, CCQ, and 494 495 DCQ was about 57% that of KIM. It is interested that in the case of DM1: DM3: DM5 =1: 1: 3, COQ, CCQ, and DCQ had approximately the same slot occupation rates. This indi-496 cates that under the high QoS requirement scenario, we can use DCQ or CCQ protocol to 497 have the good performance in slot occupation and by avoiding the high computation time 498 if using COQ protocol. The performance of slot occuption of DCQ is better than that of 499 CCQ. 500

501 5.3. PERFORMANCE OF THROUGHPUT

Figure 17 shows throughput vs. the number of QoS requests under four QoS requirement 502 scenarios. The higher the success rate is, the higher the throughput will be. For instance, 503 when the number of QoS requests was fewer than seven, the success rates of our schemes 504 were greater than 90% as illustrated in Figure 14(a), then the throughput of our schemes 505 506 gradually increased as shown Figure 17(a). But when the number of QoS requests increased, the success rate dropped as illustrated in Figure 14(a), throughput slowly increased as shown 507 in Figure 17(a). Fig 17 shows that the throughput of COQ > that of CCQ > that of DCQ >508 that of KIM for the four QoS requirement scenarios. In addition, Figure 17(a), (c), and (d) 509 show the lower performance of KIM when the number of QoS requests increases. Observe 510 that the wastage of POLL time slots is more serious the higher the QoS requirement is. That 511 is, the order of wastage of POLL time slots is DM1: DM3: DM5 = 3: 1: 1 < 1: 1: 1 < 1512 1: 3: 1 < 1: 1: 3. Therefore, the number of successful connections for supporting the QoS 513 requirement decreases for the case of DM1: DM3: DM5 = 1: 1: 3. Therefore, KIM had the 514 lowest throughput. This also explains why DM1: DM3: DM5 = 3: 1: 1 has smooth curves 515 for the success rate and throughput in Figures 14(b) and 17(b), respectively. Figure 17 shows 516 that the average throughput of KIM was about 50% of those values for COQ, CCQ, and 517 DCQ. 518

519 5.4. PERFORMANCE OF BANDWIDTH EFFICIENCY

Figure 18 shows the bandwidth efficiency vs. number of QoS requests under four QoS require-520 ment scenarios. Basically, Figure 18 illustrates that the bandwidth efficiency of COQ > that 521 of CCQ > that of DCQ > that of KIM for the four QoS requirement scenarios. Based on the 522 same reason that KIM only adopts DM1 packets and thus wastes POLL time slots, our scheme 523 adopts DM1, DM3, and DM5 packets, and therefore the bandwidth efficiency can be improved 524 as shown in Figure 18. Basically, the lower the QoS requirement is, the lower the bandwidth 525 efficiency of our scheme will be. For instance, DM1: DM3: DM5 = 3: 1: 1 had the lowest 526 bandwidth efficiency of our scheme ($24 \sim 26$ bytes/slot). The higher the QoS requirement is, 527 528 the better bandwidth efficiency of our scheme will be. For instance, DM1: DM3: DM5 = 1: 1: 3 had the best bandwidth efficiency of our scheme (28 30 bytes/slot). Finally, Figure 18 shows 529 that the average bandwidth efficiency of KIM was about 66% of those values for COQ, CCQ, 530 and DCQ. 531

In summary, a new on-demand QoS routing protocol is achieved with a high success rate, 532 high bandwidth efficiency, lower slot occupation, and high throughput, especially with high 533 QoS data requirements. 534

6. Conclusions

In this paper, we address on-demand QoS routing and interpiconet scheduling problems. Different packet types have different bandwidth utilization levels. The basic idea of our developed protocol is to take advantage from the different types of Bluetooth packets that allow obtaining different bandwidth utilization levels, in contrast with previous works in which only DM1 packets are used, deriving in a lower bandwidth utilization. A centralized credit-based QoS routing protocol was mainly developed which considers different Bluetooth packet types. This work mainly improves the bandwidth utilization of Bluetooth scatternets. The interpiconet scheduling problem can also be resolved by our CCQ approach. However, the centralized algorithm incurs the scalability problem. To alleviate the scalability problem, a distributed that of DCQ protocol. In addition, the simulation result illustrates that our CCQ and DCQ protocols had better performance compared to Kim et al.'s approach. The QoS scheduling may be designed in the L2CAP to possibly implement our scheduling scheme in actual Bluetooth devices.

Acknowledgment

The authors appreciate the helpful comments and suggestions provided by the anonymous 551 reviewers. 552

References

1.	Bluetooth Special Interest Group, "The Bluetooth Specification Version 1.2", Technical report, available at	554
	http://www.bluetooth.com, November 2003.	555
2.	YS. Chen, YC. Tseng, JP. Sheu, and PH. Kuo, "An On-Demand, Link-State, Multi-Path QoS Routing in	556
	a Wireless Mobile Ad-Hoc Network," Computer Communications, Vol. 27, pp. 27-40, January 2004.	557
3.	YS. Chen and YT. Yu, "Spiral-Multi-Path QoS Routing Protocol in a Wireless Mobile Ad-Hoc Network,"	558
	IEICE Transactions on Communications, Vol. E87-B, pp. 104-116, January 2004.	559
4.	CT. Chang, CY. Chang, and JP. Sheu, "BlueCube: Constructing a Hypercube Parallel Computing and Com-	560
	munication Environment over Bluetooth Radio System," In Proceedings of the 2003 International Conference	561
	on Parallel Processing (ICPP), Taiwan, October 2003, pp. 447-454.	562
5.	TY. Lin, YC. Tseng, KM. Chang, and CL. Tu, "A New BlueRing Scatternet Topology for Bluetooth with	563
	Its Formation, Routing, and Maintenance Protocols," Wireless Communications and Mobile Computing, Vol.	564
	3(4), pp. 517–537, 2003.	565
6.	C. Petrioli, S. Basagni, and M. Chlamtac, "Configuring BlueStars: Multihop Scatternet Formation for Bluetooth	566
	Networks," IEEE Transactions on Computers, Vol. 52, no. 6, pp. 779–790, June 2003.	567
7.	M. T. Sun, CK. Chang, and TH. Lai, "A Self-Routing Topology for Bluetooth Scatternets," In Proceedings	568
	of International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN), Makati City, Metro	569
	Manila, Philippines, May 2002, PP. 13–18.	570

550

553

- P. Bhagwat and A. Segall, "A Routing Vector Method (RVM) for Routing in Bluetooth Scatternet," in *Proceedings of the Sixth IEEE International on Mobile Multimedia Communications (MOMUC)*, San Diego, CA, November 1999, pp. 375–379.
- Y. Liu, M. J. Lee, and T. N. Saadawi, "A Bluetooth Scatternet-Route Structure for Multihop Ad Hoc Networks," *IEEE Journal on Selected Areas in Communications*, 21 pp. 229–239, February 2003.
- 576 10. B. J. Prabhu and A. Chockalingam, "A Routing Protocol and Energy Efficient Techniques in Bluetooth Scatternets," in *Proceedings of the IEEE International Conference on Communications (ICC)*, New York, May 2002, Vol. 5, pp. 3336–3340.
- T.-Y. Lin and Y.-C. Tseng, "An Adaptive Sniff Scheduling Scheme for Power Saving in Bluetooth," *IEEE Wireless Communications*, Vol. 9, no. 6, pp. 92–103, December 2002.
- 12. T.-Y. Lin, Y.-C. Tseng, and Y.-T. Lu, "An Efficient Link Polling Policy by Pattern Matching for Bluetooth
 Piconets," *Computer Journal*, Vol. No. 2, pp. 169-178, March 2004.
- 13. D. Yang, G. Nair, B. Sivaramakrishnan, H. Jayakumar, and A. Sen, "Round Robin with Look Ahead: A New
 Scheduling Algorithm for Bluetooth," In *Proceedings of the International Conference on Parallel Processing Workshops (ICPPW)*, Vancouver, Canada, August 2002, pp. 45–50.
- 14. S. Baatz, M. Frank, C. Kuhl, P. Martini, and C. Scholz, "Adaptive Scatternet Support for Bluetooth using
 Sniffer Mode," in *Proceedings of the 26th Annual Conference on Local Computer Networks (LCN)*, Tampa,
 Florida, November 2001, pp. 112–120
- S. Baatz, M. Frank, C. Kuhl, P. Martini, and C. Scholz, "Bluetooth Scatternets: An Enhanced Adaptive Schedul ing Scheme," in *Proceedings of the 21st Annual Joint Conference of the IEEE Computer and Communications Society (INFOCOM)*, New York, June 2002, Vol. 2, pp. 782–790.
- 16. C. Cordeiro, S. Abhyanker, and D. P. Agrawal, "Design and Implementation of QoS-driven Dynamic Slot
 Assignment and Piconet Partitioning Algorithms over Bluetooth WPANs," In *Proceedings of the Twenty-third Annual Joint Conference of the IEEE Computer and Communications Society (INFOCOM)*, Hong Kong, March
 2004.
- Y. M. Kim, T.-H. Lai, and A. Arora, "A QoS-Aware Scheduling Algorithm for Bluetooth Scatternets," In
 Proceedings of the International Conference on Parallel Processing, Kaohsiung, Taiwan, October 2003, pp.
 455–462.
- 18. N. Johansson, U. Korner, and L. Tassiulas, "A Distributed Scheduling Algorithm for a Bluetooth Scatternet," in
 Proceedings of the Seventeenth International Teletraffic Congress (ITC), Salvador da Bahia, Brazil, September
 2001, pp.
- VINT Project, "Network Simulator version 2 (ns2)," Technical report, available at http://www.isi.edu/nsnam/ns,
 June 2001.
- IBM research, "BlueHoc, IBM Bluetooth Simulator," Technical report, available at http://www124.ibm.com/
 developerworks/opensource/bluehoc/, February 2001.

Yuh-Shyan Chen received the B.S. degree in computer science from Tamkang University, Taiwan, Republic of China, in June 1988 and the M.S. and Ph.D. degrees in Computer Science and Information Engineering from the National Central University, Taiwan, Republic of China, in June 1991 and January 1996, respectively. He joined the faculty of Department of Computer Science and Information Engineering at Chung-Hua University, Taiwan, Republic of China, as an associate professor in February 1996. He joined the Department of Statistic,

National Taipei University in August 2000, and joined the Department of Computer Science and Information Engineering, National Chung Cheng University in August 2002. Dr. Chen served as Co-Editors-in-Chief of International Journal of Ad Hoc and Ubiquitous Computing (IJAHUC), Editorial Board Member of Telecommunication System Journal, International Journal of Internet Protocol Technology (*IJIPT*) and The Journal of Information, Technology and Society (JITAS). He also served as Guest Editor of Telecommunication Systems, special issue on "Wireless Sensor Networks" (2004), and Guest Editor of Journal of Internet Technology, special issue on "Wireless Internet Applications and Systems" (2002) and special issue on "Wireless Ad Hoc Network and Sensor Networks" (2004). He was a Vice Co-Chair, Wireless IP Symposium of WirelressCOM2005, USA (2005) and a Workshop Co-Chair of the 2001 Mobile Computing Workshop, Taiwan. Dr. Chen also served as IASTED Technical Committee on Telecommunications for 2002–2005, WSEAS International Scientific Committee Member (from 2004), Program Committee Member of IEEE ICPP'2003, IEEE ICDCS'2004, IEEE ICPADS'2001, ICCCN'2001-2005, MSN'2005, IASTED CCN'2002-2005, IASTED CSA'2004–2005, IASTED NCS'2005, and MSEAT'2003–2005. His paper wins the 2001 IEEE 15th ICOIN-15 Best Paper Award. Dr. Chen was a recipient of the 2005 Young Scholar Research Award given by National Chung Cheng University to four young faculty members, 2005. His recent research topics include mobile ad-hoc network, wireless sensor network, mobile learning system, and 4G system. Dr. Chen is a member of the IEEE Computer Society, IEICE Society, and Phi Tau Phi Society.

Keng-Shau Liu received the M.S. degree in Computer Science and Information Engineering from National Chung Cheng University, Taiwan, Republic of China, in July 2004. His research includes wireless LAN, Bluetooth, and mobile learning.