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Abstract. In this paper, a new channelization code tree structure, namely an ROVSF (rotated-orthogonal
variable spreading factor) code tree, is defined and investigated. Most existing code assignment schemes
are investigated on the OVSF (orthogonal variable spreading factor) code tree in WCDMA systems. The
main work of this investigation is to exploit and justify the new properties of the ROVSF code tree. We
show that the ROVSF code tree offers the same code capability to that of the conventional OVSF code tree,
but our ROVSF code tree additionally has the code-locality capability. With the code-locality capability, a
fast code-assignment strategy is developed on the ROVSF code tree. Compared to existing code assignment
schemes on OVSF code trees, a fast code assignment scheme is developed with lower search costs and a low
blocking rate, due to its code-locality capability. Finally, the simulation results illustrate that our proposed
scheme on the ROVSF code tree actually has lower search costs and a better blocking rate.
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1. Introduction

The rapid growth of requirements for mobile communication has led to much research
and many developments into a new generation of wireless systems. In the second-
generation (2G) CDMA system [7], such as IS-95, each user is assigned a single orthog-
onal constant spreading factor (OCSF) [7]. Services provided by existing 2G systems
are typically limited to voice, facsimile, and low-bit-rate data. In [10], Hung et al. pro-
posed multiple OCSF codes to support high-rate services. Different from 2G services,
high-rate services of file transmissions and QoS-guaranteed multimedia applications
are expected to be supported by third-generation (3G) systems [16]. In the 3G wireless
standard, UMTS/IMT-2000, WCDMA was selected as the kernel technology and for use
in the UMTS terrestrial radio access (UTRA) FDD operation by the European Telecom-
munication Standards Institute (ETSI) [2,6,8,9]. To satisfy different requirements, 3G
wireless systems have to provide variable data rates. The WCDMA can flexibly support
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mixed-rate and variable-rate services. For WCDMA, a spread-out spectrum is used to
transmit multiple channels over a common bandwidth, and the capacity of the WCDMA
system is limited by the interference from other channels. Hence, in 3G technical speci-
fications [2], OVSF codes are usually selected to be the channelization codes which are
used for spreading.

The OVSF codes are normally represented as a code tree, namely an OVSF code-
tree, which is formally defined in [1,14]. The normal data rates of OVSF codes are
always the square of the lowest-data-rate codes. Two important issues which must be
addressed in such environments are the code assignment problems and code reassign-
ment problems [18]. The code-assignment places new calls into the code tree such that
the tree avoids having too many fragmented codes; this may have a significant impact on
the code utilization by the system. Code-reassignment relocates the OVSF codes when
a new call arrives and no proper place can be found to accommodate it. This can reduce
the rate of call blocking, but code reassignment costs still increase. Many existing re-
sults are divided into OVSF-based and OVSF-like-based schemes, which are discussed
as follows. OVSF-based schemes [3–5,12,13,15,17–19] have been intensively investi-
gated. Tseng et al. [18,19] proposed single-OVSF code [18] and two-OVSF code [19]
assignment/reassignment schemes in the WCDMA system. The single-code reassign-
ment algorithm is simple, but it possibly incurs many fragmental codes which produce a
code-blocking problem. Although the two-OVSF code assignment/reassignment scheme
reduces the code-blocking problem by using the code-movement operation to enlarge
the code-capacity, unfortunately, the code-movement operation incurs high system com-
plexity. Recently, Minn and Siu [13] developed a dynamic assignment of OVSF codes
to a WCDMA to provide an optimal dynamic code assignment (DCA) scheme, which
assigns codes with minimum costs. But the DCA scheme has a slower reaction time
because the transmitter and the receiver must reconnect after a connecter allocates a
spreading code. Observe that the rate information must be transmitted using extra band-
width. Moreover, Liao [12] investigated the effect of OVSF code assignments on the
PAR (peak-to-average ratio). The assignment method is presented for the purpose of
reducing the PAR based on the concept of even distribution. Cheng and Lin [17] pro-
posed an OVSF code channel assignment for IMT-2000 which provides a multi-rate
service using multi-code transmission with lower complexity. Finally, Chen et al. [4]
proposed implementation of an efficient channelization code assignment to offer an
efficient BLRU (best-fit least recently used) code assignment algorithm with less frag-
mentation. One important property of the OVSF-based scheme is that if any code of the
OVSF code-tree is used, then all of its descendant codes of the OVSF code-tree cannot
be used. A high code-blocking rate is easily generated when the OVSF-based scheme is
used.

It is worth developing an OVSF-like scheme, which aims to reduce the code-
blocking rate without the code-movement operation. Under an OVSF-like scheme, if
a code of the new code-tree is used, the descendant codes of the new code-tree can
possibly be used. The motivation for the existing OVSF-like scheme is to reduce the
code-blocking rate. The OVSF-like-based result [17] was also recently developed to
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allow code assignment/reassignment on a non-conventional OVSF code tree. Tsaur
et al. [17] developed symbol rate adoption and blind rate detection using FOSSIL (forest
for OVSF-sequence-set-inducing lineage). The rate information is implied between some
codes without occupying extra bandwidth. A completely new code-tree is developed
which tries to provide code sequences with different lengths for different users who
communicate at different constant symbol rates. Unfortunately, even though the FOSSIL
code-based scheme can dynamically adjust the spreading factor, it greatly loses its
efficiency, however, because fewer total FOSSIL codes are available compared to OVSF
codes.

In this work, we develop a new channelization code tree structure, namely the
ROVSF (rotated-orthogonal variable spreading factor) code tree, as illustrated in figure 1.
The main work of this investigation is to exploit and justify the new properties of the
ROVSF code tree. We show that the ROVSF code tree offers the same code capability
as the conventional OVSF code tree, but our ROVSF code tree additionally has code-
locality capability. With the code-locality capability, a fast code-assignment strategy is
developed on the ROVSF code tree. Compared to existing code assignment schemes on
OVSF code trees, a fast code-assignment scheme is developed with lower search costs

Figure 1. Our ROVSF code tree.
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and a low blocking rate due to its code-locality capability. Finally, the simulation results
illustrate that our proposed scheme on the ROVSF code tree actually has lower search
costs and a better blocking rate.

The rest of this paper is organized as follows. Section 2 introduces the basic ideas
and challenges of our work. Section 3 defines the ROVSF code tree. The fast code
assignment algorithm on an ROVSF code tree is presented in Section 4. Section 5
illustrates the simulation results. Section 6 finally concludes this paper.

2. Basic idea and challenges

In a WCDMA system [16], two operations, channelization and scrambling operations,
are normally used. Data symbols are spread in the channelization operation and scram-
bled in the scrambling operation [16] as illustrated in figure 2. The channelization
operation mainly transforms each data symbol into a number of chips for the purpose
of increasing the bandwidth of data symbols. The number of chips per data symbol
is represented as the spreading factor (SF). The higher the ratio of chips per data
symbol is, the higher data the rate will be. Observe that channelization codes in the
WCDMA system normally adopt the orthogonal variable spreading factor (OVSF)
codes [3–5,12,13,15,17–19] to identify the down/up-link channels. Both down-links
and up-links in a WCDMA system apply OVSF codes to match the requested data rate.

Before describing our new OVSF-like code tree structure, we initially review the
OVSF code tree structure as follows. The OVSF codes are arranged in a tree structure
for code allocation purposes [3–5,12,13,15,17–19]. The allocation rule of the OVSF
code tree is shown in figure 3(a). The code at the k-th layer spawns two descendant
codes, (C, C) and (C, C̄), if code (C) is at the (k − 1)-th layer of an OVSF code tree as
shown in figure 3(a), where C̄ is the complement of C . The height of the OVSF code
tree is dependent on the value of the maximum spreading factor (Max SF). This paper
assumes that the Max SF = 256. Each OVSF code is denoted CSF,k , where SF is the

Figure 2. Channelization and scrambling operations of the multi-code transmission system.
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Figure 3. OVSF code tree structure.

spreading factor and k is the index number, 1 ≤ k ≤ log2 Max SF . For example as
illustrated in figure 3(b), consider that the root code is C1,1 = (1), and the codes at the
second level are C2,1 = (1, 1) and C2,2 = (1, −1). Observe that C2,1 and C2,2 are said
to be a brother-code pair. The total number of OVSF codes at the k-th layer is also equal
to SF = 2k , where the root of the OVSF code tree is assumed to be at the 0-th layer.
Consequently, a short-length OVSF code, near the root of the OVSF code tree, offers a
higher data rate. Similarly, a long-length OVSF code, near the extremity of the OVSF
code tree, offers a lower data rate. Some important properties of OVSF code trees are
reviewed in [3–5,12,13,15,17–19] and illustrated as follows.

• Each pair of OVSF codes (brother-code pair) at the same k-th layer is orthogonal.

• Each pair of OVSF codes, α and β, at different layers is orthogonal if α and β do not
have the ancestor-descendant relationship.

• Each code in the leaf node of the OVSF code tree has the minimal data rate of R.

• In an OVSF code tree, if the data rate is R′ for any OVSF code at the k-th layer, then
the data rate is 2R′ for any OVSF code at the (k − 1)-th layer.

• If a code of an OVSF code tree is chosen, then the ancestors and descendants of the
chosen code are unavailable codes, as shown in figure 4.

The “transmission unit” that can be assigned to a user consists of the “codes”. In
particular, two users should not be given two codes that are not orthogonal. When a new
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Figure 4. Assigned and unavailable (ancestor and descendant) codes in an OVSF code tree.

request call with rate k R arrives, where k is a power of 2, a free code of rate of k R is
allocated to it. The code assignment problem is to address the allocation policy when
multiple such free codes exist in a code tree. When no such free code exists but the code
tree has sufficient free capacity (>k R), two conditions exist. The first one is to reject
this call, which is normally called code blocking. Bad assignment possibly leads to the
high code-blocking rate. Efforts are made in this investigation to develop a fast code
assignment scheme with a lower blocking rate in the ROVSF code tree.

3. Definitions and properties of ROVSF code trees

In this section, a new code tree, a rotated OVSF (ROVSF), with the code-locality ca-
pability is developed. Several definitions and properties of our proposed ROVSF are
investigated. Each ROVSF code is denoted RCSF,k , where SF is the spreading factor, k
is the index number, 1 ≤ k ≤ log2 Max SF , and Max SF is the maximum spreading
factor. Observe that any ROVSF code RCX,Y is orthogonal to its two children codes,
RC2X,2Y−1 and RC2X,2Y .

Definition 1 (ROVSF Code Tree). The root node of the ROVSF code tree is assumed
to be 1, and the two children codes of the root node are initially set to (−1, −1) and
(−1, 1), respectively. Consider a pair of neighboring ROVSF codes, RCi, j = (A) and
RCi, j−1 = (B), at k-th level, i = 2k, of the code tree, where A and B denote as the
ROVSF codes of RCi, j and RCi, j−1, respectively. Two children codes of RCi, j at the
(k + 1)-th level of the ROVSF code tree are RC2i,2 j = (−B, B) and RC2i,2 j−1 =
(−B, −B). Similarly, two children codes of RCi, j−1 are RC2i,2 j−2 = (−A, A) and
RC2i,2 j−3 = (−A, −A). Two codes (P, Q) and (R, S) are said as brother codes if Q = S
and P is the complement of R, i.e., P = −R. The rule is also illustrated in figure 5(a).

For example as shown in figure 5(b), let the root code of the ROVSF tree be
RC1,1 = (1), and the two children codes at the second level be RC2,1 = (−1, −1)
and RC2,2 = (−1, 1). Figure 5(b) also shows that RC4,1 = (1, −1, 1, −1), RC4,2 =
(1, −1, −1, 1), RC4,3 = (1, 1, 1, 1), and RC4,4 = (1, 1, −1, −1).

Definition 2. Without loss of generality, we also let RCx,y logically denote the node
corresponding to code RCx,y of the ROVSF code tree. Consider RCx,y as an ancestor of
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Figure 5. ROVSF code tree structure.

RCx ′,y′ , codes RCx,y and RCx ′,y′ are both cyclically orthogonal, where the unit cyclic
length is GCD(x, x’), and GCD(x, x’) is the greatest common divisor of x and x’. Given an
ROVSF code RCx,y , if RCx,y can be partitioned into m equal-sized disjointed sub-codes,
then the n-th sub-code is denoted n

m RCx,y , where RCx,y = ⋃n
i=1

i
m RCx,y .

For instance as shown in figure 5(b), if RC4,1 = (1, −1, 1, −1), then 1
2 RC4,1 =

(1, −1) and 2
2 RC4,1 = (1, −1). Therefore, RC2,1 ·1 4

GC D(2,4) =2
RC4,1 = RC2,1 ·12 RC4,1 =

(−1, −1)·(1, −1) = −1+1 = 0 and RC2,1 ·22 RC4,1 = (−1, −1)·(1, −1) = −1+1 = 0,
where the unit cyclic length is GC D(2, 4) = 2; so the ROVSF codes of RC2,1 and RC4,2

are cyclically orthogonal.
Some important properties of our ROVSF code tree are discussed as follows.

Property 1. The maximum data rate of an n-layer ROVSF tree is denoted Max DR(n),
where Max DR(n) is 2n−1 R.

For example, the maximum data rate of a 5-layer ROVSF tree is Max DR(5) =
25−1 R = 16R.

Property 2. Two ROVSF codes, RCx,α and RCx,β , at k-th level of the ROVSF code
tree are orthogonal, where x = 2k and 1 ≤ α, β ≤ x . The code length of code RCx,α is
x .

For example as shown in figure 5(b), the code lengths of RC2,1 and RC2,2 are
both equal to 2. Each pair of two codes selected from RC4,1 = (1, −1, 1, −1), RC4,2 =
(1, −1, −1, 1), RC4,3 = (1, 1, 1, 1), and RC4,4 = (1, 1, −1, −1) are orthogonal.
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Lemma 1. Any ROVSF code, RCi, j , is cyclically orthogonal to its two children codes,
RC2i,2 j and RC2i,2 j−1.

Proof. Based on Definition 1, we assume that an ROVSF code, RCi, j , is (A, B) where
i and j are any integers; thus its brother code is RCi, j−1 = (A, −B). Two children codes
of code RCi, j are RC2i,2 j = (RCi, j−1, RCi, j−1) = (−A, B, A, −B) and RC2i,2 j−1 =
(RCi, j−1, ¯RCi, j−1) = (−A, B, −A, B). Consequently, we have the results of RCi, j ·
1

2i
GC D(i,2i) =2

RC2i,2 j = (A, B) · (−A, B) = −1 + 1 = 0 and RCi, j · 2
2 RC2i,2 j = (A, B) ·

(A, −B) = 1 − 1 = 0. Observe that 1
2 RC2i,2 j is equal to 1

2 RC2i,2 j−1, and that 2
2 RC2i,2 j

is the complement of 2
2 RC2i,2 j−1; therefore, RCi, j · 1

2 RC2i,2 j−1 = (A, B) · (−A, B) =
−1 + 1 = 0 and RCi, j · 2

2 RC2i,2 j−1 = (A, B) · (−A, B) = −1 + 1 = 0.

For example as illustrated in figure 5(b), RC2,1 = (−1, −1) is cyclically orthogonal
to the two children codes, RC4,1 = (1, −1, 1, −1) and RC4,2 = (1, −1, −1, 1).

Lemma 2. An ROVSF code, RCi, j , is cyclically orthogonal to any descendant codes
of RCi, j .

Proof. By linear algebra [11], if vector V is orthogonal to vector V ′ and vector V ′ is
orthogonal to vector V ′′, then vector V is also orthogonal to vector V ′′. This indicates
that the transitive property exists for the orthogonal relations. This transitive property
is also applied to cyclically orthogonal cases. Based on Lemma 1, RCi, j is cyclically
orthogonal to its two children codes, RC2i,2 j and RC2i,2 j−1. Continuing, RC2i,2 j and
RC2i,2 j−1 are cyclically orthogonal to their respective children codes. Based on the
transitive property, RCi, j is cyclically orthogonal to the children codes of RC2i,2 j and
RC2i,2 j−1. Furthermore, RCi, j is cyclically orthogonal to any descendant code of RCi, j .

Lemma 3. Given a pair of brother codes, RCi, j = (A, B) and RCi, j−1 = (−A, B),
RCi, j (or, RCi, j−1) is not cyclically orthogonal to any descendant code of RCi, j−1 (or,
RCi, j ).

Proof. Consider a pair of brother codes, RCi, j = (A, B) and RCi, j−1 = (−A, B), we
show that RCi, j = (A, B) is not cyclically orthogonal to the children codes, RC2i,2 j−2 =
(−A, −B, A, B) and RC2i,2 j−3 = (−A, −B, −A, −B) of RCi, j−1. This is because
RCi, j · 1

2 RC2i,2 j−2 = (A, B) · (−A, −B) = −1 − 1 �= 0 and RCi, j · 1
2 RC2i,2 j−3 =

(A, B)·(−A, −B) = −1−1 �= 0. Based on Lemma 2, RCi, j is not cyclically orthogonal
to the children codes of RCi, j−1, and children codes of RCi, j−1 are cyclically orthogonal
to all descendant codes of children codes of RCi, j−1. Therefore, RCi, j (or RCi, j−1) is
not cyclically orthogonal to any descendant code of RCi, j−1 (or, RCi, j ).

Let RCα,β be the ancestor code of RCi, j and RCi, j−1. Then, neither RCi, j nor
RCi, j−1 is cyclically orthogonal to the brother codes of RCα,β . For the OVSF code
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assignment scheme, a high-cost tree-traversal operation is performed to search for an
available code in the OVSF code tree according to the OVSF code tree management
strategy. In the worst case, it is possible to traverse all nodes of the OVSF code tree to
search for feasible codes. The ROVSF code assignment scheme offers a simple search
mechanism in order to reduce the cost of searching for a feasible code in the ROVSF code
tree. The mainly differences between the OVSF and ROVSF code trees are illustrated
in figure 1. Every node of the OVSF code tree can directly map to the corresponding
node of the ROVSF code tree as shown in figure 1(a). These mapping nodes form a tree
path, and the path is denoted a linear code chain. Observe that, one or more linear code
chains may exist for an ROVSF code tree. The main contribution of our ROVSF code
assignment scheme is to assign request data rate codes to the linear code chain. The
formal definition of linear code chain is given here.

Definition 3 (Linear Code Chain). Given a data rate, Rmax = 2log2 Rmax (or called a
chain-max-code), S is denoted a linear code chain as follows.

• Let linear code chain S be a subset of Sk = [Rmax, Rmax
21 , Rmax

22 , Rmax
23 , . . . , Rmax

2k ], where
0 ≤ k ≤ log2(Rmax), or

• Let linear code chain S = Sk ∪ { Rmax
2k } = [Rmax, Rmax

21 , Rmax
22 , Rmax

23 , . . . , ( Rmax
2k , Rmax

2k )],
where ( Rmax

2k , Rmax
2k ) are on the same level of the ROVSF code tree, where 0 ≤ k ≤

log2(Rmax).

For example as shown in figure 6(b), a linear code chain is [8R, 4R, 2R, 1R, 1R].

Figure 6. Examples of linear code chains.
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Lemma 4. Given a linear code chain with a chain-max-code, where the chain-max-code
is located on the α-layer of the n-layer ROVSF code tree, the total data rate of the linear
code chain is 2α R.

Proof. Since the chain-max-code is 2α−1 R, the total data rate of the linear code chain is
(2α−1+2α−2+· · ·+2+1+1)R = [(2α−1+2α−2+· · ·+2+1)+1]R = 2α R. Consider a 5-
layer ROVSF code tree as shown in figure 6. For case 1 of Definition 3, linear code chains
[8R, 4R, 2R, 1R], [8R, 4R, 2R], and [8R, 4R] are illustrated in figures 6(a), (c), and
(e), respectively. For case 2 of Definition 3, linear code chains [8R, 4R, 2R, 1R, 1R

︸ ︷︷ ︸
],

[8R, 4R, 2R, 2R
︸ ︷︷ ︸

], and [8R, 4R, 4R
︸ ︷︷ ︸

] are illustrated in figures 6(b), (d), and (f), respec-

tively, where 1R, 1R
︸ ︷︷ ︸

, 2R, 2R
︸ ︷︷ ︸

, and 4R, 4R
︸ ︷︷ ︸

are respectively on the same level of the

ROVSF code tree. For example as shown in figure 7, a 6-layer ROVSF code tree is
given. Figure 7(a) shows that there is one linear code chain with chain-max-code of
16R. Figure 7(b) illustrates that there are two linear code chains with chain-max-codes
of 8R. Figure 7(c) displays four linear code chains with chain-max-codes of 4R.

Furthermore, for case 1 of Definition 3, we may use (k + 1) bit-word BW =
(bk, bk−1, bk−2, . . . , b1, b0) to represent the linear code chain S as a subset of Sk = [Rmax,
Rmax
21 , Rmax

22 , Rmax
23 , . . . , Rmax

2k ], where k = log2(Rmax), if bi = 1 indicates that Rmax
2k−i exists,

and bi = 0 indicates that Rmax
2k−i does not exist, where 0 ≤ i ≤ k. For example as shown in

Figure 7. Examples of linear code chains of different lengths.
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figure 6(a), a linear code chain with bit-word (1, 1, 1, 1) exists. For case 2 of Definition
3, we also denote (k+2) bit-word BW = (bk, bk−1, bk−2, . . . , (b j , b j ), 0, . . . , 0), where
0 ≤ j ≤ k, as the linear code chain S as a subset of Sk = [Rmax, Rmax

21 , Rmax
22 , Rmax

23 ,· · ·,
( Rmax

2 j , Rmax
2 j )], if bi = 1 indicates that Rmax

2k−i exists, and if bi = 0 indicates that Rmax
2i does

not exist, where 1 ≤ i ≤ k + 1. For example, the bit-words of [8R, 4R, 2R, 1R] and
[8R, 4R, 2R, 1R, 1R] are (1, 1, 1, 1) and (1, 1, 1, (1, 1)), respectively, and the bit-words
of [8R, 4R] and [8R, 4R, 4R] are (1, 1, 0, 0) and (1, (1, 1), 0, 0), respectively.

Each linear code chain has its own bit-word BW . Consider for an n-layer ROVSF
code tree, 2n−α−1 linear code chains exist with chain-max-code Rmax = 2α−1, where the
chain-max-code is located on the α-layer of the n-layer ROVSF code tree. Therefore,
there are 2n−α−1 bit-word BW s in an n-layer ROVSF code tree. In our ROVSF scheme,
a bit-word sequence [BW1, BW2, . . . , BW2n−α−1 ] is used to record the code assignment
status of each ROVSF code tree. Figures 7(a)–(c) show the three bit-word sequences
[(1, 1, 1, 1, (1, 1))], [(1, 1, 1, (1, 1)), (1, 1, 1, (1, 1))], and [(1, 1, (1, 1)), (1, 1, (1, 1)),
(1, 1, (1, 1)), (1, 1, (1, 1))], respectively.

4. The fast code assignment scheme on an ROVSF code tree

In the following, we present our code assignment scheme on an ROVSF code tree, which
is divided into two phases, linear-code chain (LCC) assignment phase and non-linear-
code chain (NCC) assignment phase. In addition, a dynamic adjustment operation of the
linear code chain in the LCC phase is introduced to dynamically adjust the length of the
linear code chain and to reduce the rate-blocking problem. In our scheme, we initially
search for a feasible data rate code using the LCC assignment scheme and then apply
the NCC assignment scheme. The detailed operations are presented as follows.

4.1. LCC assignment phase

Consider that 2n−α−1 linear code chains exist, and the value of the chain-max-code is
Rmax = 2α−1 in an n-layer ROVSF code tree. The LCC assignment phase attempts to
assign an incoming data rate, X R, to one of 2n−α−1 linear code chains. This work is
achieved by checking for the bit-word sequence, [BW1, BW2, . . . , BW2n−α−1 ]. The LCC
scheme offers a checking function to check if incoming data rate X R can be assigned
to the i-th linear code chain. Using the left-most strategy, we initially try to assign the
incoming data rat, X R, to BW1. If this fails, we continually attempt to assign X R to
BW2. The above operation is repeatedly executed until X R can be assigned to BW j ,

where j ≤ 2n−α−1. If X R can still not be assigned to BW2n−α−1 , then we perform the
NCC phase, which is described later.

First, we describe the code assignment that assigns X R to bitword BW , where
BW = (bk, bk−1, bk−2, . . . , b1, b0), bi = 1, 0, or (1, 1), and 0 ≤ i ≤ k. Let β = log2 X ,
and the following assignment rules are given.
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Figure 8. Example of the LCC assignment phase.

(A1) If (bk, bk−1, bk−2, . . . , (b j , b j ), 0, . . . , 0) exists and β < j , then the assignment
fails even if bβ = 0. For instance as shown in figure 8(a), data rate 1R can-
not be assigned to linear code chain [8R, 2R, 4R, 2R], where the bit-word is
(1, 1, (1, 1), 0).

(A2) If bβ = 1 and there is bγ = 1 where r < β, then the assignment fails. For instance
as shown in figure 8(b), data rate 2R cannot be assigned to linear code chain
[8R, 1R, 4R, 2R], where the bit-word is (1, 1, 1, 1).

(A3) If bβ = 1 but there is no bγ = 1 where r < β, then we can assign X R so
that the linear code chain is (bk, bk−1, bk−2, . . . , (b j , b j ), 0, . . . , 0). For instance,
2R can assign linear code chain [8R, 4R, 2R] with bit-word (1, 1, 1, 0) to be
[8R, 4R, 2R, 2R] with bit-word (1, 1, (1, 1), 0).

Consider an n-layer ROVSF code tree for which 2n−α−1 linear code chains exist.
Given incoming data rate X R, where β = log2 X , we give the formal algorithm of the
LCC assignment as follows.

(B1) Repeatedly attempt to assign incoming data rate X R to the i-th linear code chain
with bit-word BWi until one is successful, where 1 ≤ i ≤ 2n−α−1.

(B2) If incoming data rate X R cannot be assigned to the last linear code chain with
bit-word BW2n−α−1, then enter the NCC assignment phase.

For example, in the LCC assignment operation shown in figures 9(a)–(c), [8R, 4R,

1R] is successful assigned to the first linear code chain with bit-word (1, 1, 0, 1). Then,
[8R] is assigned to the second linear code chain with bit-word (1, 0, 0, 0) as shown in
figure 9(d). This completes the LCC operations. The third incoming 8R causes the NCC
operation to be executed.
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Figure 9. Example of the LCC assignment phase.

4.2. NCC assignment phase

The purpose of the NCC assignment phase is to assign the new incoming data rate Y R.
Observe that Y R failed to be assigned to any linear code chains in the LCC assignment
phase. An attempt is made to assign Y R to the ROVSF code tree as follows. The LCC
assignment process tries to assign Y R to the OVSF code tree, and we have the following
assignment rules, where γ = log2 Y.
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Figure 10. Example of the NCC assignment phase.

(C1) If linear code chain (bk = 1, 0, 0, 0, . . . , 0) exists and γ = k, then we may assign
Y R to a neighboring node of node N of the linear code chain on the same level of
the ROVSF code tree, where the data rate of node N is 2k . For instance as shown
in figure 10(a), 8R is assigned to the neighboring code on the second linear code
chain.

(C2) If (0, 0, . . . , 0, (b j , b j ), 0, . . . , 0), b j = 1 exists and γ = j , then we can assign
Y R to a neighboring node of node N of the linear code chain on the same level of
the ROVSF code tree, where the data rate of node N is 2 j . For instance as shown
in figure 10(b), 4R is assigned to the neighboring code of the first linear code
chain with bit-word (0, (1, 1), 0, 0).

We give the formal algorithm of the NCC assignment operation as follows.

(D1) Repeatedly assign incoming data rate Y R to neighboring codes of the i-th linear
code chain until one is successful, where 1 ≤ i ≤ 2n−α−1.

(D2) If data rate Y R cannot be assigned to neighboring codes of any linear code chain,
then there having a rate blocking occurs.

For example as shown in figure 10(a), 8R cannot be assigned to the first linear
code chain, but can be assigned to the second linear code chain.
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Figure 11. Example of the dynamic adjustment operation.

4.3. Dynamic adjustment operation

A dynamic adjustment operation of the linear code chain is introduced in the LCC
phase for the purpose of dynamically changing the length of the linear code chain. This
operation attempts to possibly improve rate-blocking. By using the dynamic adjustment
scheme, no fixed length of the linear code chain is required. We add one new rule for
assigning X R to BW = (bk, bk−1, bk−2, . . . , b1, b0), where bi = 1, 0, or (1, 1), and
0 ≤ i ≤ k. Let β = log2 X, as follows.

(E1) If (bk, bk−1, bk−2, . . . , (b j , b j ), 0, . . . , 0) exists and β < j , then the assignment
fails even if bβ = 0.

(E2) If bβ = 1 and there is bγ = 1 where r < β, then the assignment fails.

(E3) If bβ = 1 but there is no bγ = 1 where r < β, then the we can assign X R such
that the linear code chain is (bk, bk−1, bk−2, . . . , (b j , b j ), 0, . . . , 0).

(E4) If there is (bk, (bk−1, bk−1), 0, . . . , 0) or (bk, bk−1, bk−2, . . . , b j , 0, . . . , 0) where
bi = 1 and j ≤ i ≤ k, if the incoming data rate is 2k+t , 1 ≤ t ≤ n − k,

we can adjust the linear code chain to (bk+t , . . . , bk, (bk−1, bk−1), 0, . . . , 0) or
(bk+t , . . . , bk, bk−1, bk−2, . . . , b j , 0, . . . , 0). For example as shown in figure 11,
the linear code chain [8R, 4R, 4R] is adjusted to be [16R, 8R, 4R, 4R].

5. Performance analysis

In this section, we develop a simulator using C++ to evaluate the performances of
our proposed ROVSF-based scheme. The simulation programs have been designed to
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Table 1
Simulation parameters.

Parameter Value

Maximum SF of the ROVSF code tree 128 or 256
Radio propagation range 10 m
Request data rate 1–16 R
Linear code chain length 3–6
Status of the dynamic adjustment operation on or off

simulate the channelization operation in the WCDMA system. The system parameters
are given in Table 1. The performance metrics of our study are given.

• Search Cost (SC): the total search time in which a successful feasible code is found
in the OVSF or ROVSF code tree.

• Blocking Rate (BR): the failure probability that a new incoming request data rate
cannot be assigned a feasible code in the OVSF or ROVSF code trees.

In the following, we show that our ROVSF-based scheme reduces the search costs
and the blocking rate, compared to the crowed-first strategy on the OVSF code tree
which was proposed by Tseng et al. [18]. Observe that the performance of the blocking
rate of the crowed-first strategy outperforms other strategies presented in [18].

5.1. Performance of search costs

The performance of the search costs for our scheme and the OVSF-based scheme are
compared herein. The search cost is the time period required to search for an available
code in the ROVSF or OVSF code trees. In our simulation, the search cost is obtained
by counting the number of tree-traversals until an available code is found or code-
blocking occurs. For simplicity, we use the symbol, SCSFmax

x , to express the search cost
under different simulation environments, where the maximum spreading factor SFmax =
{128, 256} and code tree type x = {ROVSF, OVSF}. For example, search cost SC128

ROVSF
is evaluated on the ROVSF code tree, where the maximum spreading factor is 128. In
general, figure 12 illustrates that the greater the number of requests there is, the higher
the search cost will be. Figure 12(a) shows that as the number of requests increases,
the corresponding search costs SC128

OVSF and SC128
ROVSF also increase. The increase in the

curve of SC128
OVSF is much faster than that of SC128

ROVSF. Figure 12(b) shows that as the
number of requests increases, the corresponding search costs SC256

OVSF and SC256
ROVSF also

increase. Similarly, the increase in the curve of SC256
OVSF is also faster than that of SC256

ROVSF.
As displayed in figures 12(a) and (b), the search cost of the ROVSF-based scheme is
lower than that of the OVSF-based scheme. This is because that our ROVSF-based
scheme provides a novel code tree structure to offer a faster code-assignment strategy.
When the spreading factor is increasing, the search cost of the OVSF-based scheme
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Figure 12. Performance of search costs under maximum spreading factors (Max SF) of (a) 128 and (b) 256.

Figure 13. Improvement rates under the maximum spreading factors (Max SF) of (a) 128 and (b) 256.

increases more quickly than that of the ROVSF-based scheme. To illustrate the effect of
the improvement ratio between our ROVSF-based scheme and the OVSF-based scheme,
an improvement rate, I R = SO−SR

SO , is defined, where SO and SR are the search costs
of the OVSF-based scheme and our ROVSF-based scheme, respectively. Figures 13(a)
and (b) show the results of I R, where Max SF = 128 and Max SF = 256. In general,
the greater the number of requests is, the higher the improvement rate will be. The
higher the maximum spreading factor is, the higher the improvement rate will be. This
result demonstrates that our ROVSF-based scheme performs better performance than
the OVSF-based scheme does.

5.2. Performance of the blocking rate

The simulation result of the blocking rate of the OVSF-based and ROVSF-based code
trees are discussed here. The blocking rate is the failure probability that a new in-
coming request cannot be assigned a feasible code in the (OVSF or ROVSF) code
tree.
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Figure 14. Relationships of blocking rates among BROVSF and BR
′
ROVSF with (a) BR3

ROVSF, (b) BR4
ROVSF,

(c) BR5
ROVSF, and (d) BR6

ROVSF.

For simplicity, let BROVSF denote the blocking rate of the crowed-first strategy on
the OVSF code tree [18]. Let BR

′
ROVSF denote the blocking rate of our scheme on the

ROVSF code tree using the dynamic adjustment operation, where the initial length of
LCC is set to �maximum length of LCC

2 � = � 6
2� = 3. Let BRlen

ROVSF represent the blocking rate
of our scheme without the dynamic adjustment operation, where the length of LCC,
len, ranges from 3 to 6. For instance, BR5

ROVSF is the blocking rate of our ROVSF-based
scheme without the dynamic adjustment operation, where the length of LCC is 5.

Figure 14 illustrates the comparison results of the blocking rate vs. the request
data rate of our scheme and the OVSF-based crowed-first strategy [18]. Initially, fig-
ure 14(a) shows the result that B R′

ROVSF < B R3
ROVSF < B ROVSF. If the request data rate

increases, the corresponding blocking rates B R′
ROVSF, B ROVSF, and B R3

ROVSF increase.
The increase in the curve of B ROVSF is larger than that of B R3

ROVSF, and the increase
in the curve of B R3

ROVSF is also larger than that of B R′
ROVSF. The similar comparison

results of B ROVSF and B R′
ROVSF with B R4

ROVSF, B R5
ROVSF, and B R6

ROVSF are shown in
figures 14(b)-(d). We have found the results that B R′

ROVSF < B R4
ROVSF < B ROVSF,

B R′
ROVSF < B R5

ROVSF < B ROVSF, and B R′
ROVSF < B R6

ROVSF < B ROVSF. This simu-
lated results indicate that our scheme outperforms the crowed-first strategy on the OVSF
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code tree [18]. Furthermore, our scheme with the dynamic adjustment operation is bet-
ter than that without the dynamic adjustment operation. In addition, we observed that
B R5

ROVSF < B R4
ROVSF < B R3

ROVSF < B R6
ROVSF as illustrated in figure 14. This indicates

that the value of 5 for LCC is more suitable for our scheme when the dynamic adjustment
operation is not used.

As a summary, our ROVSF-based code-assignment scheme has a better blocking
rate than that of the existing OVSF-based code-assignment scheme [18].

6. Conclusions

This paper presents a new channelization code scheme, namely the ROVSF (rotated-
orthogonal variable spreading factor) to provide a fast searching code scheme for a code
assignment scheme in the WCDMA system. The OVSF-based scheme always takes a
lot of time to search for a feasible code. Our ROVSF-based scheme provides a faster
code assignment strategy with lower search costs based on the newly proposed code tree
structure. Our ROVSF scheme offers the same code capability as OVSF-based schemes,
and with most of the properties of the OVSF code tree. Finally, the simulation results
illustrate the fast-searching achievement of our ROVSF-based scheme. Future work will
consider the multi-code assignment and reassignment on the developed ROVSF code
tree.
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