
IEICE TRANS. FUNDAMENTALS, VOL.E83–A, NO.1 JANUARY 2000
139

PAPER

Efficient Broadcasting in an Arrangement Graph

Using Multiple Spanning Trees∗

Yuh-Shyan CHEN†, Tong-Ying JUANG††, and En-Huai TSENG†, Nonmembers

SUMMARY The arrangement graph An,k is not only a gen-
eralization of star graph (n − k = 1), but also more flexible.
Designing efficient broadcasting algorithm on a regular intercon-
nection network is a fundamental issue for the parallel processing
techniques. Two contributions are proposed in this paper. Ini-
tially, we elucidate a first result to construct n − k edge-disjoint
spanning trees in an An,k. Second, we present efficient (one/all)-
to-all broadcasting algorithms by using constructed n − k span-
ning trees, where height of each spanning tree is 2k − 1. The
arrangement graph is assumed to use one-port and all-port com-
munication models and packet-switching (or store-and-forward)
technique. Using n − k spanning trees allows us to present effi-
cient broadcasting algorithm in the arrangement graphs and out-
performs previous results. This is justified by our performance
analysis.
key words: arrangement graph, broadcast, interconnection net-
work, parallel processing, routing

1. Introduction

Designing large multi-processor systems frequently in-
volves organizing into various configurations. One of
the widely studied interconnection network topologies
is the star graph [9], [11], [12]. As a member of the Cay-
ley graphs, the star graph possesses several attractive
features such as its diameter-to-node-degree ratio, scal-
ability, partitionability, symmetry, and high degree of
fault tolerance [1], [3]. However, the star graph is lim-
ited with respect to its number of nodes: n! for an
n-dimensional star graph.

A new interconnection topology, arrangement
graph, has recently been proposed [4]. As a family of
undirected graphs that contains the star graph fam-
ily, the arrangement graph has desired properties, such
as symmetric vertex and symmetric edge, strongly re-
silience and maximally fault-tolerance. Arrangement
graph is more flexible than the star graph in terms of
choosing major design parameters, i.e. member of ver-
tices, degree and diameter, while preserving most of the
excellent properties of the star graph.

Manuscript received April 19, 1999.
Manuscript revised August 16, 1999.

†The authors are with the Department of Computer Sci-
ence and Information Engineering, Chung-Hua University,
Hsin-Chu, 30067, Taiwan, Republic of China.

††The author is with the Department of Statistics, Na-
tional Chung Hsing University, Taipei, Taiwan, Republic of
China.

∗This paper was presented at ICPADS ’98 conference,
and this work was supported by the National Science Coun-
cil, R.O.C., under Contract NSC88-2213-E-216-011.

The arrangement graph has received consider-
able attention in [2], [4]–[8], [10]. Firstly, Day and
Tripathi [5] designed a shortest-path routing algorithm
for the arrangement graphs. According to their results,
the arrangement graph can be embedded cycles whose
length ranging from three to the size of the graph [6].
Moreover, the arrangement graph can be decomposed
into vertex disjoint cycles in many different ways [6].
Furthermore, multi-dimensional grads, hypercube and
one spanning tree can be embedded in arrangement
graph [7]. The spanning tree can support broadcasting
communication in the arrangement graph. Tsai and
Horng proposed an efficient scheme to embed hyper-
cube on arrangement graphs [10]. Heieh and Chen [8]
further demonstrated that the arrangement graph re-
mains a ring even if it is faulty. Bat et al. [2] recently
proposed a distributed fault-tolerant algorithm for one-
to-all broadcasting only in the one-port communication
model on the arrangement graph.

In light of above discussion, this work elucidates
the broadcast problem on arrangement graphs in one-
port and all-port communication model. In this work,
the network adopts the packet-switching or store-and-
forward technique. By following the formulation of
many works (e.g. [13]), assume the existence of two
kinds of cost: start-up time and transmission time. In
particular, a packet of b bytes is sent along a link takes
Ts+bTc time, where Ts denotes the time to initialize (or
start-up) the communication link and Tc represents the
latency to transmit a byte. An attempt to minimize ei-
ther the start-up time cost and the transmission cost is
the underlying motivation of this work. Typically, the
start-up time is significant in current machines, while
the transmission time should not be neglect when the
packet is long.

Note that Bat et al. [2] proposed broadcast algo-
rithm only optimize the start-up time, but not consider
the transmission time. In contrast to earlier solution in
arrangement graph [2], [7], this work aims to minimize
start-up time and transmission costs simultaneously.
The major approach used herein is to construct mul-
tiple spanning trees. For the broadcasting algorithm,
we propose a new scheme to construct multiple span-
ning trees in an arrangement graph An,k that has a
desired property that n− k copies of such trees can be
embedded simultaneously in the network without edge-
congestion. By concurrently transmitting data along

140
IEICE TRANS. FUNDAMENTALS, VOL.E83–A, NO.1 JANUARY 2000

these trees in a pipelined manner, our results are an
improvement over the schemes of deriving one spanning
tree in [7] by order O(n − k) in the transmission time.
In this investigation, we assume that a node consists of
a processor with bidirectional communication links to
each of its adjacent nodes. Therefore, the term edge-
disjoint spanning trees can be interchangeably adopted
to reflect that no two edges of our spanning trees share
a same direct communication link.

To our knowledge, this work reports for the first
time on feasibility of embedding multiple O(n−k) span-
ning trees in an An,k while, at the same time, keep-
ing the edge-congestion free. Similar results for the
star graph can be found in [13]. A broadcast algo-
rithm is proposed herein by the subgraph-partitioning
scheme. Under the all-port model, the proposed one-to-
all broadcast algorithm can be executed in An,k in time

(
√

(2k − 1)Ts +
√

mTc

n−k)2, where m denotes the size of
the broadcast message. Under the one-port model, the
one-to-all broadcast algorithm can be implemented in
An,k in time O(k(n− k)(2k− 1)Ts + kmTc). Under the
all-port model, the all-to-all broadcast algorithm can be
implemented in An,k in time O(2k×Ts+ mn!

(n−k)(n−k)!Tc).
Under the one-port model, the all-to-all broadcast al-
gorithm can be performed in An,k in time O(2k2(n −
k)Ts + kmn!

(n−k)!Tc).
The rest of this paper is organized as follows. Sec-

tion 2 introduces preliminaries. Section 3 presents how
to construct multiple spanning trees. Section 4 com-
pares our broadcasting results with those of other re-
lated works. Conclusions are finally drawn in Sect. 5.

2. Preliminaries

The arrangement graph is denoted by An,k, where spec-
ified by integers n and k and 1 ≤ k ≤ n − 1. Denote
〈n〉 = {1, 2, . . . , n}. Let P

(
n
k

)
be the set of permuta-

tions of k symbols taken from 〈n〉. These k symbols
are denoted as X = x1x2 · · ·xk. Refer xi as the i’th
element of X . The (n, k)-arrangement graph, denoted
as An,k, defined in [5] is an undirected graph (V,E) as
follows.

V = {X = x1x2 · · ·xk|xi in 〈n〉 and xi
= xj for

i
= j} = P
(
n
k

)},
E = {(x, y)|x and y in V and for some i in 〈k〉

xi
= yj and xj = yj for j
= i}.
Figure 1 depicts an example of A4,2 and A5,3. The

edge of An,k connecting neighboring nodes which dif-
fer in exactly one of their k positions. The vertices of
An,k are the arrangements of k elements of 〈n〉. For ex-
ample, in A4,2, the node p = 41 is connected to the
nodes = 42, 43, 21 and 31. An edge of An,k con-
necting two arrangements p and q which differ only
in position i, is called as an i-edge. For all values

of n and k, An,k is a regular graph on n!
(n−k)! nodes

that is regular of degree k(n − k), and a diameter⌊
3
2k
⌋

[5]. For an arrangement X = x1x2 . . . xk, we de-
fine EXT (X) = 〈n〉 − {x1, x2, . . . , xk} to be the n − k
elements of 〈n〉 not appearing in the arrangement X .
Let INT (X) = {x1, x2, . . . , xk} = 〈n〉 − EXT (X) to
be the k elements of <n> appearing in the arrange-
ment X . For example, we consider the node p = 412 in
the arrangement graph A5,3, so EXT (p) = {3, 5} and
INT (p) = {1, 2, 4}.

In an An,k, each node p performs an adjacent func-
tion ADJ x,y(p) to arrive at adjacent node q, where x
is the position of label of node and y is the changed la-
bel in EXT (p). Given X = x1 · · ·xx · · ·xk ∈ INT (X),
the adjacent function ADJx,y(X) is the adjacent nodes
of X obtained by changing xx in X to be y, where
1 ≤ x ≤ k and y ∈ EXT (X). Consider an A5,3, adja-
cent nodes for node p = 412 are 413, 415, 432, 452, 312
and 512, where EXT (p) = {3, 5}, INT (p) = {1, 2, 4},
ADJ 1,3(p) = 312, ADJ 1,5(p) = 512, ADJ 2,3(p) = 432,
ADJ 2,5(p) = 452, ADJ 3,3(p) = 413, and ADJ 3,5(p) =
415.

The An,k is with recursive structure [5]. That is,
an An,k can be partitioned into n copies of An−1,k−1

each embedded An−1,k−1 is conveniently denoted by
<∗k−1α>n,k, where α ∈ {1, 2, · · · , n}, (where ∗ repre-
sents a “don’t care” symbol). For example, <∗ ∗ 3>4,3

represents an embedded A3,2 of A4,3, contains six
nodes: 123, 143, 213, 243, 413, and 423. From other
point of view, there are n copies of <∗k−1α>n,k which
are obtained by performing a splitting operation on
<∗k>n,k, where α ∈ {1, 2, . . . , n}. This operation is
called as k-partition. Generally, An,k can be parti-
tioned into n!

(n−p)! node-disjoint copies of An−p,k−p in
n!

p!(n−p)! different ways and that in total An.k contains(
k
p

)
n!

(n−p)! copies of An−p,k−p, for 1 ≤ p ≤ k − 1.
In this paper, we adopt the packet-switching (or

store-and-forward) model and, thus, the latency to
transmit a packet of b byte along a link is Ts + bTc,
where Ts denotes the time to initialize the communi-
cation link and Tc represents the time to transmit a
byte. Each (undirected) edge is regarded as bidirec-
tional communication links. Two communication mod-
els are also considered. In the one-port model, a node
can send and receive at most one packet at a time.
While in the all-port model, a node can simultaneously
send and receive a packet along all k(n − k) ports.

Lemma 1: A lower bound for one-to-all broadcasting
in a store-and-forward An,k is max

{⌊
3
2k
⌋
Ts,

m
k(n−k)Tc

}
under the all-port model, and max

{⌊
3
2k
⌋
Ts,

log n!
(n−k)!�Ts,mTc

}
under the one-port model, where

m is the size of the broadcast message.

Lemma 2: A lower bound for all-to-all broadcast-

CHEN et al: BROADCASTING IN ARRANGEMENT GRAPH
141

(a)

(b)

Fig. 1 An example of arrangement graphs (a) A4,2 and (b) A5,3.

ing in a store-and-forward An,k is max
{⌊

3
2k
⌋
Ts,

n!
(n−k)! · m

k(n−k)Tc

}
under the all-port model, and

max
{⌊

3
2k
⌋
Ts, log n!

(n−k)! �Ts,
n!

(n−k)! · mTc

}
under the

one-port model, where m denotes the size of the broad-
cast message.

3. Congestion-Free Embedding of Multiple
Spanning Trees

This section presents a scheme to embed n − k edge-
disjoint spanning trees in an An,k. Our construction
scheme adopts a bottom-up manner. An An,k can
be partitioned into n!

(n−k+2)! copies of An−k+2,2. Each

An−k+2,2 initially construct n− k base spanning trees.
For each An−k+3,3, there are n−k+3 copies of An−k+2,2

and each one containing n− k base spanning trees. We
propose a concatenation operation to construct larger
n − k spanning trees in an An−k+3,3. Recursively per-
forming the concatenation operations allow us to finally
construct n − k spanning trees in an An,k.

Our n − k spanning trees are constructed by two
phases:

• Phase 1: Generate n − k base spanning trees in
each An−k+2,2.

• Phase 2: Perform a recursive concatenation oper-
ation to embed n− k edge-disjoint spanning trees.

These phases are described as follows.

142
IEICE TRANS. FUNDAMENTALS, VOL.E83–A, NO.1 JANUARY 2000

3.1 Phase 1: Generate n − k Base Spanning Trees in
an An−k+2,2

After a splitting-operation on An,k, n!
(n−k+2)! copies of

An−k+2,2’s are obtained. According to different values
of n and k, n− k base spanning trees in each An−k+2,2

can be generated as follows.

• Step 1: Locate n − k roots nodes.
• Step 2: Generate n−k base spanning trees in each

An−k+2,2.

3.1.1 Step 1: Locating n − k Roots in an An−k+2,2

We now describe how to locate n − k root nodes in
an An−k+2,2. Initially, we let each An−k+2,2 be parti-
tioned into n − k + 2 copies of An−k+1,1, where each
An−k+1,1 is a (n − k + 1)-node complete graph. De-
note these n − k root nodes as R1, R2, . . ., and Rn−k

as follows. Let R1 = (y1x2x3 · · ·xk) be any node in an
An−k+1,1. Other root nodes R2 = (y2x2x3 · · ·xk), R3 =
(y3x2x3 · · ·xk), . . ., and Rn−k+1 = (yn−k+1x2x3 · · ·xk)
by exchanging the first bit of R1 with α, where α ∈
EXT (R1) = {y2, . . . , yn−k+1}. This task can be
achieved as follows.

Ri = ADJ 1,α(R1), where 2 ≤ i ≤ n − k + 1 and
α ∈ EXT (R1).

Each pair of R1, R2, . . ., and Rn−k+1 are adjacent
since R1, R2, . . ., and Rn−k+1 belong to an An−k+1,1 (a
complete graph ∗x2x3 · · ·xk). Note that node Rn−k+1

is used to as a template node to ensure congestion-free
in our embedding.

Intuitively, every Ri is only different in the first
bit. Root nodes Ri, 1 ≤ i ≤ n − k, are selected from
∗x2x3 · · ·xk. Clearly, ∗x2x3 · · ·xk is an An−k+1,1 or
(n−k+1)-node complete graph. Root nodes R1, R2, . . .,
Rn−k satisfy the root-location property. This root-
location property is very useful during constructing
n − k spanning trees.

Root-Location Property: There are n− k root
nodes Ri, 1 ≤ i ≤ n − k, in same subarrangement
graph. Root nodes Ri, i = 1..n − k, belong to an
An−k+1,1.

Root nodes Ri, i = 1..n − k, are used to expand
n − k base spanning trees in an An−k+2,2. Figure 2
illustrates an example that four root nodes are 21 and
31. Template node is 41.

3.1.2 Step 2: Generate n−k Base Edge-Disjoint Span-
ning Trees in an An−k+2,2

We now describe how to construct n− k base spanning
trees from root Ri, 1 ≤ i ≤ n − k, for every An−k+2,2.
The height of base spanning tree is 3. The fact that

(a) (b)

Fig. 2 Two base edge-disjoint spanning trees in an A4,2.

(a) (b) (c) (d)

Fig. 3 Four disjoint spanning trees whose tree height = 1 in a
4-node complete graph.

each An−k+1,1 is a complete graph accounts for why
n− k base spanning trees can be constructed if we can
connect each root nodes to distinct node of all other
An−k+1,1’s. This is because that we have the following
result and Fig. 3 gives an example.

Lemma 3: For a κ-node complete graph G, there ex-
ist κ disjoint spanning trees with height one. Notably,
each node in G is the root node of each spanning tree.

Now we explain how to construct n− k base span-
ning trees in each An−k+2,2. As stated in Sect. 2, a n-
dimensional arrangement graph contains n subarrange-
ments that we use to derive the desired spanning trees.
Given n− k root nodes Ri, 1 ≤ i ≤ n− k, let R be one
of these; we must connect R to other n− 1 subarrange-
ments. For node R, we use a single edge to connect the
R to n − k of subarrangements. We use an intermedi-
ate node in same subarrangement as the bridge node to

CHEN et al: BROADCASTING IN ARRANGEMENT GRAPH
143

connect R to the remaining k − 1 subarrangements by
two edges. If k = 2, then there is only one subarrange-
ment connecting by two edges.

Rules A1 and A2 formalize the construction.

A1: (Single edge) Let node Ṙ denote connected node
in every n − k subarrangements.

Ṙ = ADJ 2,α(R), where α ∈ EXT (R).

A2: (Two edges) Let node R̈ denote connected node
in one of remaining k − 1 subarrangements which
connected by two edges (Note that in this case,
k = 2). Recall in phase 1, node Rn−k+1 is the
intermediate nodes for node R.

R̈ = ADJ 2,β(Rn−k+1), where β is the first bit
value in R.

Figure 2 (a) shows that root node 21 uses distinct
single edge to connecting nodes 23 and 24, and connect-
ing node 42 by ADJ 2,2(41), where node 41 is template
node. Figure 2 (b) displays that root node 31 directly
connects to 32 and 34 but connects 43 by ADJ 2,3(41).

Now we verifies the correctness of n−k base span-
ning trees in an An−k+2,2. Some notations are defined
firstly. Given root nodes Ri, 1 ≤ i ≤ n − k, are con-
structed by phase 1 of Sect. 3. An An−k+2,2 can be par-
titioned into n − k + 2 copies of An−k+1,1 or A′

n−k+1,1

along dimension two or one. First, let an An−k+2,2 be
partitioned into n− k + 2 copies of An−k+1,1 along sec-
ond dimension. Root nodes Ri, 1 ≤ i ≤ n − k, located
in one of An−k+1,1. Let IE(Ri), 1 ≤ i ≤ n−k, denote a
set of all possible internal edges within every An−k+1,1.
Let EE(Ri) denote a set of all possible external edges
outgoing every An−k+1,1. For example as illustrated in
Fig. 4 (a), all bold edges are IE(Ri) and all dash edges
are EE(Ri). Similarly, the same An−k+2,2 can be par-
titioned into n − k + 2 copies of A′

n−k+1,1 along first
dimension as shown in Fig. 4 (b).

Some important properties are used later as stated
herein. For 1 ≤ i ≤ n−k, we have following properties.

P1: Edges in IE(Ri) and edges in EE(Ri) are equal
to all edges in the An−k+2,2.

P2: Edges in IE(Ri) and edges in EE(Ri) are distinct.

Lemma 4: There exist n − k edge-disjoint spanning
trees STn−k+2,2(Ri) in an An−k+2,2, for 1 ≤ i ≤ n− k.

Proof. Given root nodes Ri, 1 ≤ i ≤ n−k, are located
in one of partitioned An−k+1,1. Every root node needs
to connect to other An−k+1,1. Therefore, n−k spanning
trees STn−k+2,2(Ri), for 1 ≤ i ≤ n − k, are mutually
disjoint due to the fact that every root node satisfy the
following conditions:

1: All edges of R1, R2, . . ., and Rn−k connecting to
the same An−k+1,1 are disjoint.

2: All nodes in the same An−k+1,1 connecting to R1,
R2, . . ., and Rn−k differ from each other.

(a)

(b)

Fig. 4 Edge distribution in an A4,2; (a) all internal edges
within each A3,1 in A4,2, (b) all internal edges within each A′

3,1
in A4,2.

The reason is stated as follows. Recalled again,
since k = 2, for all Ri, we use n−2 distinct single edges
connecting to n − 2 copies of An−k+1,1 and use two
edge to connect with remaining one An−k+1,1. Intu-
itively, all edges connecting from R1, R2, . . ., and Rn−k

to template node Rn−k+1 are distinct since all of these
nodes located in a (n− k + 1)-node complete graph (or
An−k+1,1). Recall previous notation, edges in all pos-
sible An−k+1,1 are denoted as IE(Ri) and all edges in
all possible A′

n−k+1,1 are denoted as EE(Ri). For con-
dition 1, all edges of R1, R2, . . ., and Rn−k connecting
to the same An−k+1,1 are disjoint because every edge
belongs to different A′

n−k+1,1. Remember, these edges
are belong to EE(Ri). For condition 2, all nodes in
the same An−k+1,1 connecting to R1, R2, . . ., and Rn−k

differ from each other due to the fact that each of these
nodes belongs to distinct A′

n−k+1,1. ✷

Theorem 5: There exist n − k base edge-disjoint
spanning trees STn−k+2,2(Ri) in an An−k+2,2, where
1 ≤ i ≤ n − k. Each spanning tree’s height is 3.

144
IEICE TRANS. FUNDAMENTALS, VOL.E83–A, NO.1 JANUARY 2000

(a)

(b)

Fig. 5 Example of two spanning trees in an A5,3; (a) from root node 215, (b) from root
node 315.

3.2 Phase 2: Construction of n − k Edge-Disjoint
Spanning Trees in an An,k

The above section constructed n−k base spanning trees
in An−k+2,2, and each base spanning tree’s height is
3. In this section, we describe how to construct n − k
spanning trees STn,k(Ri), for 1 ≤ i ≤ n− k in an An,k,
where the height of each spanning tree is 2k − 1.

For induction, we construct n − k spanning trees
in an An,k by using n(n − k) spanning tress in n
copies of An−1,k−1. Our major task is to connect
n(n − k) spanning subtrees into n − k spanning trees
STn,k(Ri), 1 ≤ i ≤ n − k.

Consider an An,k which is partitioned into n copies
of An−1,k−1. Assume that n − k spanning trees
STn−1,k−1(Ri), i = 1..n−k, can be constructed in each
An−1,k−1 if their root nodes satisfied the root-location
property. A randomly selected An−1,k−1 servers as be-
ginning spanning tree. From this An−1,k−1, there exist
n − k spanning trees STn−1,k−1(Ri), 1 ≤ i ≤ n − k,

where Ri are root nodes. Let root node Ri connect
to root node R′

i, where R′
i located in one of other

An−1,k−1. If R′
i satisfy the root-location property,

then we can correctly construct n − k spanning trees
STn,k(Ri), 1 ≤ i ≤ n − k, in an An,k.

As similar work mentioned in phase 1. A n-
dimensional arrangement graph contains n subarrange-
ments that we use to derive the desired spanning trees.
Given n−k root nodes Ri, 1 ≤ i ≤ n−k, let R are one
of these; we must connect R to other n− 1 subarrange-
ments. For each R, we use a single edge to connect the
R to n−k of subarrangements. We also use an interme-
diate node in same subarrangement as the bridge node
to connect R to the remaining k − 1 subarrangements
by two edges.

Rules A1’ and A2’ formalize our recursively span-
ning tree construction.

A1’: (Single edge, the part is same as A1.) Let node
Ṙ denote connected node in every n − k subar-
rangements.

Ṙ = ADJ 2,α(R), where α ∈ EXT (R).

CHEN et al: BROADCASTING IN ARRANGEMENT GRAPH
145

A2’: (Two edges, this part is same as A2.) Let node R̈
denote connected node in one of remaining k − 1
subarrangements which connected by two edges.
Nodes Rn−k+1 is the intermediate node for node
R.

R̈ = ADJ 2,β(Rn−k+1), where β is the first bit
value in R.

Figure 5 illustrates that two spanning trees in an
A5,3, where root nodes are 215 and 315. Assume that
R′

i, 1 ≤ i ≤ n − k, are new connecting root nodes in
each of other (n − 1)-subarrangement. Ensuring that
root nodes R′

i satisfied the root-location property would
allow us to establish our spanning trees STn,k(Ri), for
i = 1..n − k. In lemma 5, we show the correctness
that root nodes R′

i satisfied root-location property, for
i = 1..n − k.

Lemma 6: There are n − k root nodes R′
i, 1 ≤ i ≤

n − k, in same subarrangement graph are satisfied the
root-location property.

Proof. There are n subarrangements <*k−1β>n,k,
where β ∈ <n>. One of the subarrangements
<*k−1β′>n,k is selected as base spanning trees. In
addition, let root nodes R1, R2, . . ., and Rn−k belong
to a An−k+1,1 denoted as <α*k−2β′>n,k, where α ∈
<n> − {∗k−2β′}−{t} and let <t*k−2β′>n,k be a tem-
plate node. Our results demonstrate that root nodes
R′

1, R
′
2, . . ., and R′

n−k in each An−1,k−1 also belong to
a distinct An−k+1,1. Three cases are discussed as fol-
lows.

1: There is a subarrangement <*k−1β
′′
>n,k which

can directly connect with <*k−1β
′
>n,k by one di-

rect edge. This is owing to that if root nodes
Ri are <α*k−2β′>n,k, R′

i can be obtained by
<α*k−2β

′′
>n,k, where β

′′
= t and 1 ≤ i ≤ n − k.

Intuitively, R′
i are <α*k−2t>n,k, which differ in

one bit, so satisfy the root-location property. Fig-
ure 6 (a) provides an example, root node 215 ↔
214 and root node 315 ↔ 314, where 214 and 314
∈ <∗14>5,3.

2: If root nodes Ri are <α*k−2β′>n,k, there are
n − k subarrangement <*k−1β

′′
>n,k connect-

ing to <*k−1β
′
>n,k by one edge or two edges,

where β′′ = α′ ∈ α. If root nodes Ri

are <α*k−2β′>n,k, α
= α′, one direct edge
is <α*k−2β′>n,k ↔ <α*k−2α′>n,k. If other
root nodes Rj are <α*k−2β′>n,k and α = α′,
two edges are <α*k−2β′>n,k ↔ <t*k−2β′>n,k

↔ <t*k−2α′>n,k. Clearly, <α*k−2α′>n,k and
<t*k−2α′>n,k, which differ in one bit, satisfy the
root-location property. Figure 6 (b) provides an
example, root node 215 ↔ 213 and root node
315 ↔ 415 ↔ 413, where 213 and 413 ∈ <∗13>5,3.

3: There are k − 2 subarrangement <*k−1β
′′
>n,k

which can directly connected to <*k−1β
′
>n,k

by two edges. This is owing to that if root
nodes Ri are <α*k−2β′>n,k, root nodes R′

i are
obtained by <α ∗ · · · ∗ x︸︷︷︸

j

∗ · · · ∗
︸ ︷︷ ︸

k−2

β′>n,k ↔

<α ∗ · · · ∗ t︸︷︷︸
j

∗ · · · ∗
︸ ︷︷ ︸

k−2

β′>n,k ↔

<α ∗ · · · ∗ t︸︷︷︸
j

∗ · · · ∗
︸ ︷︷ ︸

k−2

x>n,k, where 1 ≤ i ≤

n − k, 1 ≤ j ≤ k − 2. Intuitively, R′
i are

<α∗ · · · ∗ t︸︷︷︸
j

∗ · · · ∗
︸ ︷︷ ︸

k−2

x>n,k, which differ in one bit,

so satisfy the root-location property. Figure 6 (c)
provides an example, root node 215 ↔ 245 ↔ 241
and root node 315 ↔ 345 ↔ 341, where 241 and
341 ∈ <∗41>5,3. ✷

Lemma 7: The height of n−k edge-disjoint spanning
trees STn,k(Ri) in an An,k is 2k − 1.

Proof. There are k steps to construct STn,k(Ri), 1 ≤
i ≤ n − k. Each step needs at most two edges except
that the final step in An−k+1,1 needs one single edge
since An−k+1,1 is a complete graph. The height is 2(k−
1) + 1 = 2k − 1. ✷

Theorem 8: There exist n−k edge-disjoint spanning
trees STn,k(Ri) with height 2k − 1 in an An,k, where
i = 1..n − k.

Proof. See proof in lemmas 6 and 7. ✷

The fact that there existing n − k edge-
disjoint spanning trees STn,k(R1), STn,k(R2), . . ., and
STn,k(Rn−k) in an An,k with height 2k − 1. The fact
that each pair of root nodes R1, R2, . . ., and Rn−k are
adjacent allows us to logical construct a broadcast tree
with height 2k. Note that we use the template node
Rn−k+1 as the new root node of the logical broad-
cast tree. Consequently, a broadcasting algorithm using
n−k edge-disjoint spanning trees can be obtained. The
detailed algorithm is given in the next section.

4. Broadcast Algorithm and Performance
Analysis

One-to-all broadcast refers to the problem of sending a
message from a source node to all other nodes in the
network. All-to-all broadcast refers to the problem of
sending a message from all source nodes to all other
nodes in the network. Two communication models are
considered as follows.

146
IEICE TRANS. FUNDAMENTALS, VOL.E83–A, NO.1 JANUARY 2000

(a)

(b)

(c)

Fig. 6 Example of proof in Lemma 6.

4.1 Under All-Port Model

In the proposed algorithm, time is slotted by a fixed
length and all nodes in the network are assumed to
broadcast synchronously. In each time slot, each node

transmits a packet of a fixed size m
p(n−k) , where m de-

notes the size of message M and p represents an inte-
ger be determined later. Therefore, each time slot is of
length Ts + m

p(n−k)Tc.
Algorithm 1: /* One-to-all-broadcast, all-port */

CHEN et al: BROADCASTING IN ARRANGEMENT GRAPH
147

1) Divide the message M evenly into p(n − k) parts,
each called a “message segment” and of size

m
p(n−k) .

2) In each time slot, node r issues n− k message seg-
ments to the network, each along one of the trees
STn,k(Ri), i = 1..n − k. A message segment is
then propagated along the tree it is issued. Each
time slot helps propagate all message segments it
received in the previous time slot to the subsequent
nodes in the corresponding trees.

Next, we analyze the communication latency of the
algorithm. Notably, our analysis neglects the computa-
tional time (such as making routing decision or pack-
ing/unpacking packets). Let h be the maximal height
of STn,k(Ri), i = 1..n − k. The broadcast algorithm
run in time

T = h

(
Ts +

m

p(n − k)
Tc

)

+ (p − 1)
(

Ts +
m

p(n − k)
Tc

)
,

where h = 2k (1)

The former term is the time for the first packet to
arrive at the bottom of the tallest tree and the latter
term is due to the pipeline effect. To minimize Eq. (1),
let the derivative of T with respect to p equal 0,

∂T

∂p
= Ts − (h − 1)

m

p2(n − k)
Tc = 0.

Therefore, we obtain

p =

√
m(h − 1)Tc

(n − k)Ts
,

and we have knowledge that h = 2k. Therefore,

p =

√
m(2k − 1)Tc

(n − k)Ts
= O

(√
m(2k − 1)Tc

(n − k)Ts

)
.

Theorem 9: Under the all-port model, one-to-all
broadcast can be executed in An,k within time O((2k−
1)Ts + m

n−kTc).

According to Theorem 9, we obtain an order of
(
√

2(k − 1)Ts +
√

mTc

n−k)2 = O((2k − 1)Ts + (4k −
2)
√

m
(2k−1)(n−k)TsTc+ m

n−kTc) ≈ O((2k−1)Ts+ m
n−kTc),

where h = 2k and message size m is sufficiently large.
Day and Tripathi’s spanning tree [7] obtained an order
of O((

⌈
3
2k
⌉ − 1)Ts + mTc). Our broadcast algorithm

is faster than Day and Tripathi’s method [7], when
m > k

2 × Ts

Tc
. However, our algorithm is an order of

O(k) higher than optimum as shown in Table 1.
More Specially, label change (LC) and element

change (EC) schemes proposed by Tseng et al. [13] are
used to design our all-to-all broadcasting such that each

node in An,k can use n−k spanning trees. Furthermore,
the network can be equally loaded at every time step
using Tseng’s broadcasting scheme [13]. Therefore, we
can have the following result.

Theorem 10: Under to all-port model, all-to-all
broadcast can be implemented in An,k with time

O

(
2k × Ts +

mn!
(n − k)(n− k)!

Tc

)
.

Proof. Assume that in each iteration of time slot, all
message segments can be combined into one packet and
send at one time. Therefore, the start-up overhead is
2k × Ts. To calculate the transmission time, let m be
the size of broadcast messages. To propagate a mes-
sage segment (of size m

n−k) along a spanning tree (of
n!

(n−k)! links), network bandwidth of m
n−k × n!

(n−k)! × Tc

required. Cumulatively, (n−k) n!
(n−k)! message segments

are being transmitted. Therefore, the total network
bandwidth required is m(n!

(n−k)!)
2Tc. Since the net-

work is equally loaded at every time step, the band-
width is evenly distributed to all (n − k) n!

(n−k)! links
in the network. Therefore, the transmission time is
m(n!

(n−k)!)
2Tc

(n−k)(n!
(n−k)!)

= mn!
(n−k)(n−k)!Tc. ✷

4.2 Under One-Port Model

A node with one-port communication capability can
simulate the communication activity of an all-port node
in one time slot using number of STn,k(Ri) degree time
slots. The activity can be simulated as follows: in the
first time slot, the one-port node simulates the all-port
node’s activity along 1-edge; in the second time slot,
the one-port node simulates the all-port node’s activity
along 2-edge; etc. Clearly, the communication follows
the one-port model.

Algorithm 2: /* One-to-all-broadcast, one-port */

1) Divide the message M evenly into p(n − k) parts,
each called a “message segment” and of size

m
p(n−k) .

2) In each time slot, node r issues k(n − k) message
segments to the network, each along one of the
trees STn,k(Ri), i = 1..n − k. A message segment
is then propagated along the tree it is issued. Each
time slot helps propagate one message segments it
receives in the previous time slot to the subsequent
nodes in the corresponding trees.

3) Repeatedly perform step 2 until all message seg-
ments have be completed.

In fact, each root of our spanning trees does not
have full degree to connection leaf node accounting for
why some nodes do not process a message in each time
slot. In the one-port model, out analysis neglects the
computational time (such as making routing decision

148
IEICE TRANS. FUNDAMENTALS, VOL.E83–A, NO.1 JANUARY 2000

Table 1 Comparison of one-to-all broadcast algorithms on start-up cost, transmission
cost, and overall time complexity.

Model Algorithm Start-up cost Trans. cost Overall complexity

Day [7] O((
⌈

3
2
k
⌉
− 1)Ts) O(mTc) O((

⌈
3
2
k
⌉
− 1)Ts +mTc)

All-port Our O((2k − 1)Ts) O(m
n−k

Tc) O((2k − 1)Ts +
m

n−k
Tc)

Optimal � 3
2
k�Ts

m
k(n−k)

Tc max(�3
2
k�Ts, m

k(n−k)
Tc)

Day [7] O(k(n − k)× (
⌈

3
2
k
⌉
− 1)Ts) O(k(n − k)mTc) O(k(n − k)× ((

⌈
3
2
k
⌉
− 1)Ts +mTc))

One-port Our O(k(n − k)× (2k − 1)Ts) O(kmTc) O(k(n − k)× ((2k − 1)Ts +
m

n−k
Tc))

Optimal max(�3
2
k�Ts, �log n!

(n−k)!
�Ts) mTc max(�3

2
k�Ts, �log n!

(n−k)!
�Ts, mTc)

or packing/unpacking packets). Let Dn,k = k(n − k)
denote the degree of An,k. The broadcast algorithm
takes time in

T = Dn,k

(
h +

√
m(h − 1)Tc

(n − k)Ts
− 1

)

×
(

Ts +

√
mTsTc

(h − 1)(n − k)

)
,

where h = 2k.

The former term is the time for the first packet to
arrive at the bottom of the tallest tree and the latter
term is due to the pipelined effect.

Theorem 11: Under the one-port model, one-to-all
broadcast can be implemented in An,k within time
O(k(n − k)(2k − 1)Ts + kmTc).

By Theorem 11, we obtain an order of k(n −
k)(
√

(2k − 1)Ts +
√

mTc

n−k)2 = O(k(n−k)×((2k−1)Ts+

(4k−2)
√

m
(2k−1)(n−k)TsTc+ m

n−kTc)) ≈ O(k(n−k)(2k−
1)Ts + kmTc), where h = 2k. Day and Tripathi’s re-
sult [7] obtained an order of O(k(n − k)(

⌈
3
2k
⌉− 1)Ts +

k(n−k)mTc), where message size m is sufficiently large.
Our broadcast algorithm is faster than Day and Tri-
pathi’s algorithm [7], when m > k

2 × Ts

Tc
. However, our

algorithm is an order of O(k) higher than optimum as
summarized in Table 1.

In addition, a node with one-port communication
capability can simulate an all-port node by delay factor
of n − k. Therefore, we have following all-to-all broad-
casting result.

Theorem 12: Under to one-port model, all-to-all
broadcast can be implemented in An,k with time

O

(
2k2(n − k)Ts +

kmn!
(n − k)!

Tc

)
.

5. Conclusions

This paper addresses the broadcast problem in one-
port/multi-port arrangement graphs using packet-
switching (or store-and-forward) technique. A broad-
cast algorithm is also proposed by constructing n − k

spanning trees. Under the all-port model, the one-to-all
broadcast algorithm proposed herein can be executed in
An,k in time O((2k−1)Ts+ m

n−kTc). Under the one-port
model, the one-to-all broadcast algorithm can be per-
formed in time O(k(n−k)(2k−1)Ts+kmTc). Under the
all-port model, the all-to-all broadcast algorithm can be
executed in time O(2k×Ts + mn!

(n−k)(n−k)!Tc). Under the
one-port model, our one-to-all broadcast algorithm can
be implemented in time O(2k2(n − k)Ts + kmn!

(n−k)!Tc).
Comparing our results with those of Day and Tri-
pathi [7] reveals that although the broadcast algorithm
proposed herein is an order of O(n− k) faster than the
algorithm of Day and Tripathi [7] when message size
m > k

2× Ts

Tc
, it is an order of O(k) higher than optimum.

Work is currently underway to develop an optimal or
near-optimal broadcast algorithm in An,k by exploiting
O(k(n − k)) edge-disjoint spanning trees.

References

[1] S.B. Akers, D. Harel, and B. Krishnameurthy, “The star
graph: An attractive alternative to the n-cube,” Proc.
ICPP ’87, pp.393–400, Aug. 1987.

[2] L.Q. Bai, H. Ebara, H. Nakano, and H. Maeda, “Fault-
tolerant broadcasting on the arrangement graph,” The
Computer Journal, vol.41, no.3, pp.171–184, 1998.

[3] Y.-S. Chen and J.-P. Sheu, “A fault-tolerant reconfiguration
scheme in the faulty star graph,” Journal of Information
Science and Engineering, vol.16, no.1, Jan. 2000.

[4] K. Day and A. Tripathi, “Characterization of node disjoint
path in arrangement graphs,” Technical Report TR91-43,
Computer Science Department, University of Minnesota,
1991.

[5] K. Day and A. Tripathi, “Arrangement grapha: A class
of generalized star graphs,” Information Processing Letter,
vol.42, no.5, pp.235–241, 1992.

[6] K. Day and A. Tripathi, “Embedding of cycles in arange-
ment graphs,” IEEE Trans. Comput., vol.12, no.8, pp.1002–
1006, 1992.

[7] K. Day and A. Tripathi, “Embedding grids, hypercube, and
trees in arrangement graphs,” Proc. International Confer-
ence on Parallel Processing, vol.III, pp.65–72, 1993.

[8] S.-Y. Hsieh, G.-H. Chen, and C.-W. Ho, “Fault-free
Hamiltonian cycles in faulty arrangement graph,” IEEE
Trans. Parallel and Distributed Systems, vol.10, no.3,
pp.223–237, March 1999.

[9] J.-P. Sheu, C.-T. Wu, and T.-S. Chen, “An optimal broad-
casting algorithm without message redundancy in star
graphs,” IEEE Trans. Parallel and Distributed Systems,

CHEN et al: BROADCASTING IN ARRANGEMENT GRAPH
149

vol.6, no.6, pp.653–658, 1995.
[10] S.-S. Tsai and S.-J. Horng, “Efficient embedding hypercube

on arrangement graphs,” Journal of Information Science
and Engineering, vol.12, no.3, pp.585–592, Dec. 1996.

[11] Y.-C. Tseng, S.-H. Chang, and J.-P. Sheu, “Fault-tolerant
ring embedding in star graphs,” IEEE Trans. Parallel and
Distributed Systems, vol.8, no.12, pp.1185–1195, Dec. 1999.

[12] Y.-C. Tseng, Y.-S. Chen, T.-Y. Juang, and C.-J. Chang,
“Congestion-free, dilation-2 embedding of complete binary
tree in star graphs,” Networks, vol.33, no.3, pp.221–231,
May 1999.

[13] Y.-C. Tseng and J.-P. Sheu, “Toward optimal broadcast in
a star graph using multiple spanning trees,” IEEE Trans.
Comput., vol.46, no.5, pp.593–599, 1997.

Yuh-Shyan Chen received the B.S.
degree in computer science from Tamkang
University, Taiwan, Republic of China, in
June 1988 and the M.S. and Ph.D. degrees
in Computer Science and Information En-
gineering from the National Central Uni-
versity, Taiwan, Republic of China, in
June 1991 and January 1996, respectively.
He joined the faculty of Department of
Computer Science and Information En-
gineering at Chung-Hua University, Tai-

wan, Republic of China, as an associate professor in February
1996. His current research include parallel algorithm, collec-
tive communication, interconnection network, fault-tolerant al-
gorithm, and mobile communication. Dr. Chen is a member of
the IEEE Computer Society and Phi Tau Phi Society.

Tong-Ying Juang is an associate
professor in the Department of Statis-
tics at National Chung Hsing University.
His research interests include distributed
and parallel algorithms, fault-tolerant dis-
tributed computing, mobile computing,
and interconnection networks. He re-
ceived a B.S. in Naval architecture from
National Taiwan University, and his M.S.
and Ph.D. in computer science from the
University of Texas at Dallas 1989 and

1992, respectively. Juang is a member of the IEEE. Contact
him at the Dept. of Statistics, National Chung Hsing University,
Taipei, 10433, Taiwan.

En-Huai Tseng received the B.S. and
M.S. degrees in Computer Science and In-
formation Engineering from Chung-Hua
University, Taiwan, Republic of China, in
June 1996 and June 1998, respectively.
His current research interests include par-
allel and distributed processing and col-
lective communication.

