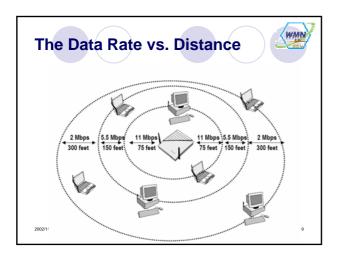
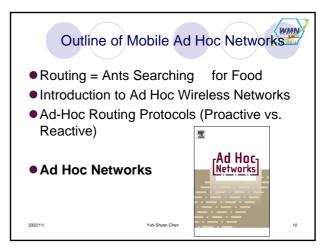
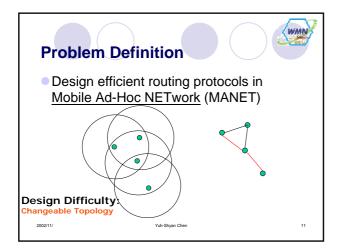
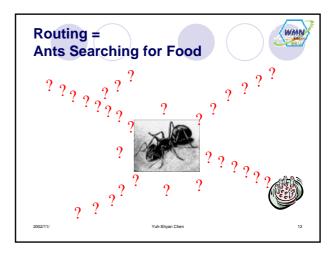


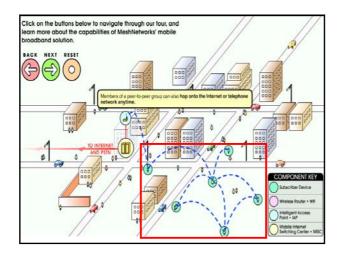
		\smile			
	Home network- ing	outside the office To connect dif- ferent PCs in the house to share files and devices such as printers	Anywhere in the house	quality of service Limited to a home	Netgear Phone- line 10X, Intel AnyPoint Phoneline Home Network, 3Com Home Connect Home Network Phoneline
	Ad hoc networks	Group of people come together for a short time to share data	Equal to that of local area net- work, but with- out fixed infras- tructure	Limited range	Defense applica- tions
	Sensor networks	A large number of tiny sensors with wireless ca- pabilities	Relatively small terrain	Very limited range	Defense and civilian applica- tions
002/11/	Bluetooth	All digital devices can be connected without any cable	Private ad- hoc groupings away from fixed network infrastructures	Range is limited due to the short- range radio link used	Home devices

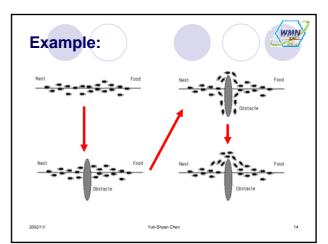


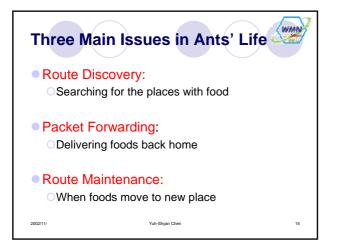


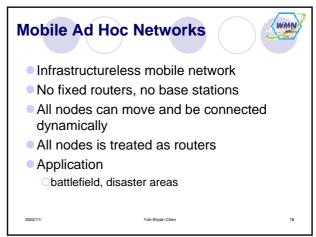


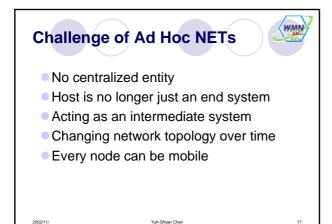

Wiro		N and PAN Tech	
			inques
		y Wireless LAN and PAN Techn	iques
Type of Network	Range of Node	Primary Function	Deployed Locations
IEEE 802.11	30 meters	A standard for wireless nodes	Any peer-to-peer con- nection
HiperLAN	30 meters	High-speed indoor connectivity	Airports, warehouses
Ad Hoc Networks	≥500 meters	Mobile, Wireless, similar to wired Connectivity	Battlefields, disaster locations
Sensor Networks	2 meters	Monitor inhospitable or inaccessi- ble terrain cheaply	Nuclear & chemical plants, ocean, etc.
HomeRF	30 meters	Share resources, connect devices	Homes
Ricochet	30 meters	High-speed wireless Internet access (128 Kbps)	Airports, offices
Bluetooth Networks	10 meters	Avoid wire clutter, provide low mobility	Offices
2002/11/		Yuh-Shvan Chen	7

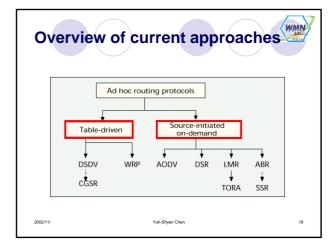

and	Bluetooth		
TABLE 1.2	Comparison between Ke	ey 802.11 Protocols and Blueto	oth
WLAN	802.11a	802.11b	Bluetooth
Transport	5-GHz UNII DSS	2.4-GHz ISM FHSS/DSS	2.4 GHz ISM FHSS
Data rate	6-54 Mbit/s	1–11 Mbit/s	1 Mbit/s
Range		50 m	1–10 m
Power	0.05/0.25/1 W	+20 dBm	0 dBm
environmen Note: DSS	t.,	the WLAN can be extended beyo peetrum, FHSS = frequency-hop 1 milliwatt.	

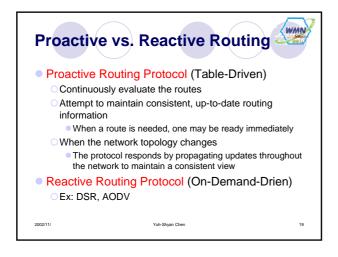


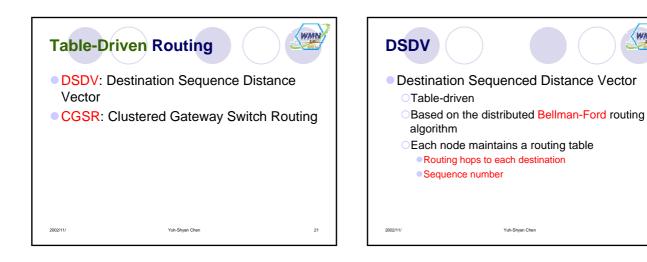


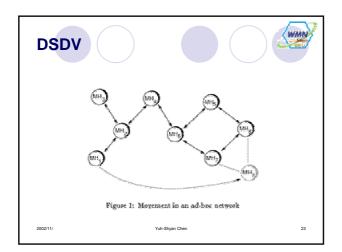


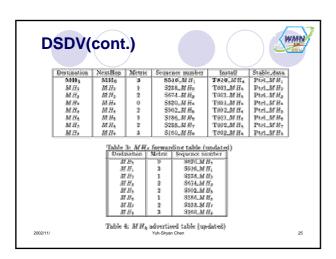


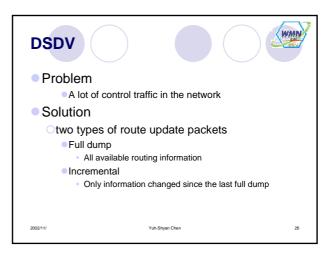


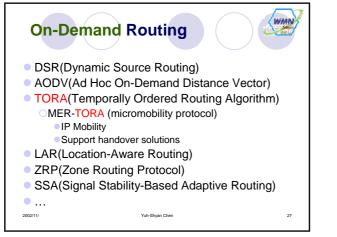


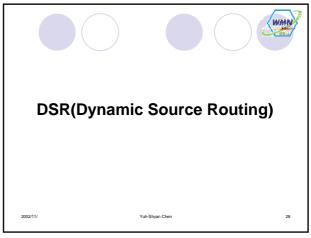


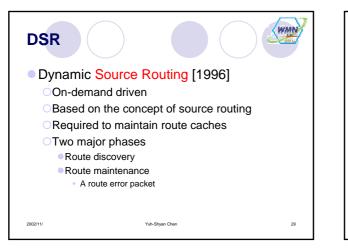


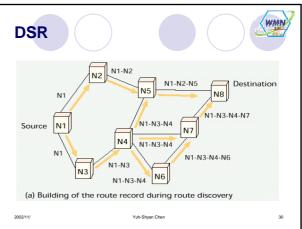

Parameters	On-demand	Table-driven
Availability of routing information	Available when needed	Always available regardless o
Routing philosophy	Flat	Mostly flat, except for CGSR
Periodic route updates	Not required	Required
Coping with mobility	Use localized route discovery as in ABR and SSR	Inform other nodes to achiev a consistent routing table
Signaling traffic generated	Grows with increasing mobility of active routes (as in ABR)	Greater than that of on- demand routing
Quality of service support	Few can support QoS, although most support shortest path	Mainly shortest path as the QoS metric

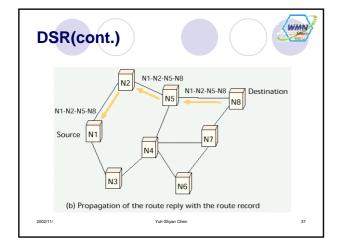


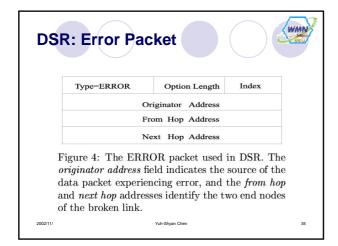


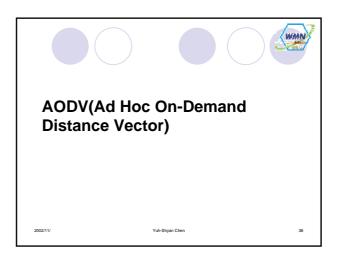

DSDV	con	L)				
Destination	NextBop	Matric	Seque	ьсе вызбег	Install	Stable_data
MR.	MH2	2	\$43	36.MH2	T001_M H4	Pizt_MW1
MH_2	MB_{2}	1	\$41	28_M H ₂	T801_M.H.	Pte3_MH2
MH _p	$M H_2$	2	\$5	14_M H2	T801_MH.	Pus_MH2
MH_{4}	$M H_{3}$	0	87	$10_M H_4$	T803_MH4	Strl_MH4
MHa	MR ₈	2	\$3	$R_M H_1$	T802_MH4	Ptel_MH2
MEc	$M H_{2}$	1		16.MHe	T901_MH4	
$M H_T$	MH_{*}	2	54	$18_M H_T$	T902_MH ₄	Ptr?_MH ₇
MH ₂	MR ₈	3	80	50_M H ₀	T902_MH ₄	Part_M H ₂
	Denta Mi Mi Mi Mi Mi Mi Mi Mi Mi Mi Mi	Structus R ₁ R ₂ R ₃ R ₄ R ₅ R ₆ R ₇ R ₇ R ₈	re of the Metric 2 1 2 0 2 1 2 3	M H4 form Sequence in S105_M S128_M S564_M S564_M S576_M S076_M S528_M S050_M	12: 17: 17: 17: 17: 17: 17: 17: 17: 17: 17	
	Table	2: Adve	rtised re	este table ba	MH4	

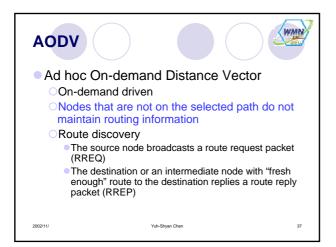

WMN

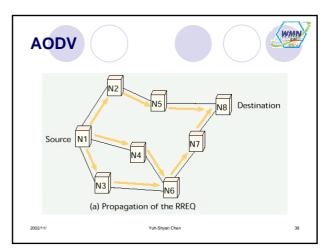


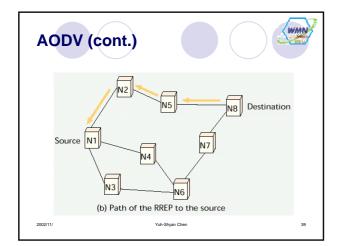


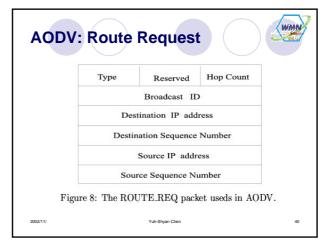


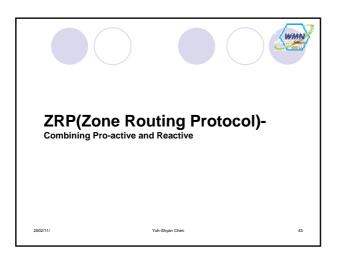


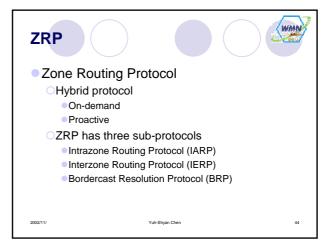


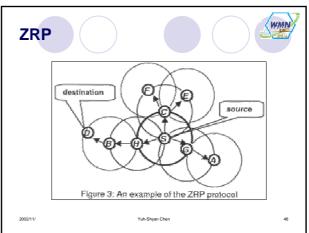

Type=REQ	Optio	n Length	Idetification
	Target	Address	
index1	index2	index3	index4
	Add	iress1	
	Add	lress2	
	Add	lress3	
	Add	lress4	

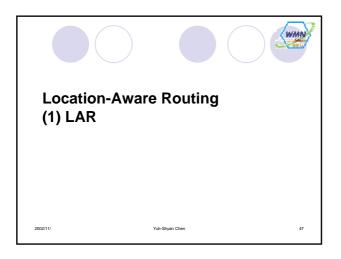

ype=REP	CY Option Length	R	F	Reserved				-	
	Target	Addre	ess		R		Option Length	14	detification
ex1	Index2	Ind	ex3	Index4	i	ndex1	index2	index3	index
	Addr	ess1					Add	ress1	
Address2							Add	ress2	
	Addr	ess3					Add	ress3	
		ess4					Add	ress4	

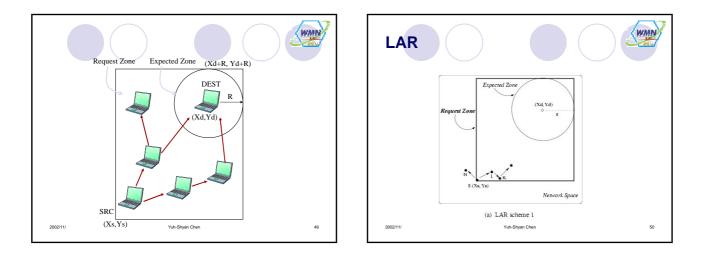


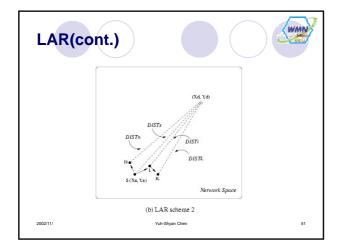


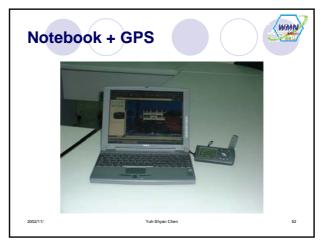


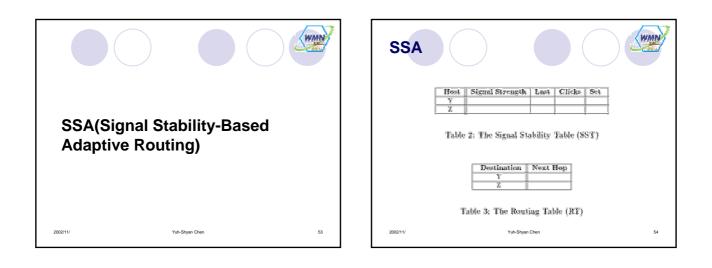


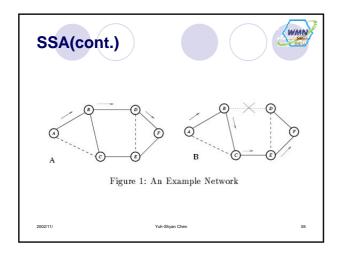

AOD	: Rou	Ite	Reply			AODV Problem		WMU		
6	Туре	L	Reserved	Hop Count			e along the route moves			
	Destination IP address Destination Sequence Number					 Solution Upstream neighbor notices the move Propagates a link failure notification message 				
			Lifetime			each c ⊙The so	of its active upstream neighbors ource node receives the message ar	0		
Figu	re 9: The I	ROUT	E_REPLY pa	acket used in AOD	V.	Initiate	e route discovery			
2002/11/			Yuh-Shyan Chen		41	2002/11/	Yuh-Shyan Chen	42		

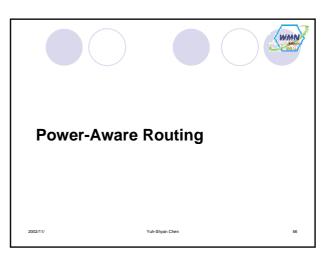


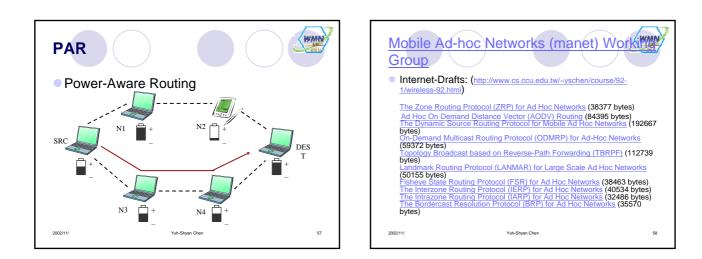


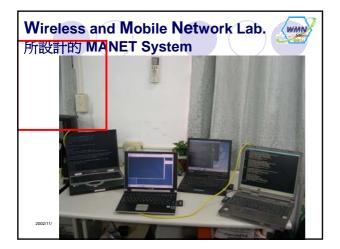


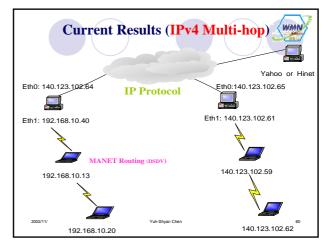


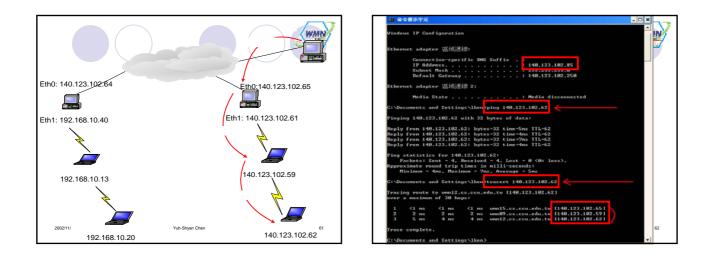


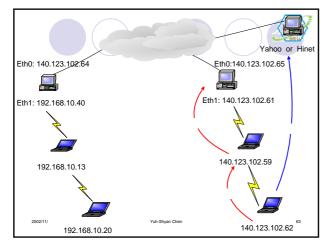


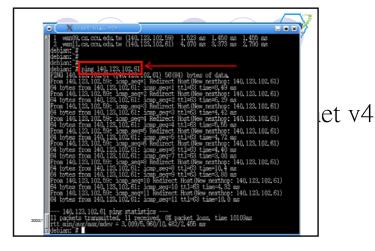


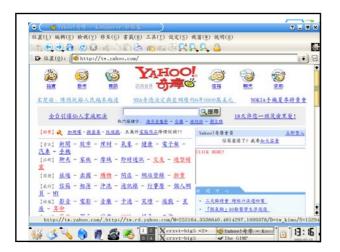












Ping

