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Abstract

A novel family of 2D and 3D geometrically invariant
features, called summation invariants is proposed for the
recognition of the 3D surface of human faces. Focusing
on a rectangular region surrounding the nose of a 3D fa-
cial depth map, a subset of the so called semi-local sum-
mation invariant features is extracted. Then the similarity
between a pair of 3D facial depth maps is computed to de-
termine whether they belong to the same person. Out of
many possible combinations of these set of features, we se-
lect, through careful experimentation, a subset of features
that yields best combined performance. Tested with the
3D facial data from the on-going Face Recognition Grand
Challenge v1.0 dataset, the proposed new features exhibit
significant performance improvement over the baseline al-
gorithm distributed with the dataset.

1. Introduction
Human face recognition has received unprecedented in-

terest in recent years [1, 24]. However, rigorous tests with
real-world data such as FERET, FRVT have revealed many
shortcomings of existing approaches [19, 18]. In short, for
large scale, real world situations, current systems still can-
not deliver the performance needed for practical applica-
tions.

A majority of current face recognition approaches make
use of 2D frontal facial texture features. Nonetheless, fa-
cial texture features are sensitive to lighting, pose, distance,
age (temporal) variations, and can easily be altered through
simple make-up efforts. On the other hand, from 3D facial
surfaces, one may exploit features that are invariant to ap-
pearance variations. For example, the facial surface around
cheek bones or the nose would remain unchanged under
varying lighting conditions, are less likely to change due to
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aging, and are seldom covered with hairs. Hence, in this re-
search, we focus on exploiting invariant features extracted
from 3D facial surfaces.

Invariants for transformation groups play an important
role in computer vision. Classical differential invariants
such as curvature depend on derivatives that may be very
sensitive to noise [5, 6]. Several approaches such as the
semi-differential invariant introduced in [23, 15], integral
invariant [8], and affine quasi-invariant arc-length [21] have
been proposed. These invariants are defined on continuous
functions. When applied to digitized object descriptions
of contours or surfaces, numerical approximation will be
needed and the results can be affected significantly by step
size and other detailed settings.

Lin et al. [13] introduced a general method to generate
invariants that are weighted summations of discrete data, as
analogues to integral ones. Since these invariants are de-
fined explicitly on discrete data, they do not require com-
putationally intensive numerical integration to compute and
will not be affected by the choice of step size. On the other
hand, using weighted summation to compute the summation
invariant will greatly reduce the impact of noise and hence
promises a higher signal to noise ratio for the computed in-
variant features. Specifically, in [13], a semi-local summa-
tion invariant feature is proposed for two-dimensional (2D)
closed contours. It delivers superior performance compared
to those produced using integral invariants or wavelet in-
variant features.

In this paper, we exploit the feasibility of applying a
summation invariant feature for 3D facial range images
classification. Several key design issues are addressed: (a)
To identify, among many possible variations of summation
invariant features in the family, those features that yield the
best performance. (b) To investigate the impacts of vari-
ous preprocessing methods, including scaling and normal-
ization on the proposed invariant features. (c) To explore
proper feature reduction methods that will enhance the com-
putation efficiency. (d) To explore fusion methods that will
further enhance the performance of using a single summa-
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tion invariant. In addition to analytical derivations, we have
conducted extensive experiments using the Face Recogni-
tion Grand Challenge v1.0 dataset and the BEE (Biometric
Experimentation Environment) package. To the best of our
knowledge, the 3D face recognition algorithm developed by
Kakadiaris et al. [11] report the best results on the FRGC
v1.0 dataset. The proposed features yield a similar recogni-
tion rate to the one reported in [11].

The rest of this paper is organized as follows. Section 2
provides a brief review of previous work on 3D face recog-
nition. Section 3 describes the summation invariant for the
Euclidean transformation group. Both 2D and 3D cases are
discussed. Section 4 illustrates our algorithm in detail. In
Section 5, we present the experimental results and compare
them with those of the FRGC 3D baseline algorithm. Fi-
nally, Section 6 summarizes our contributions and provides
an overview of future directions.

2. Previous work in 3D face recognition
The majority of face recognition research focuses on us-

ing intensity images of the face. However, 3D images of
the face have several advantages over the intensity-based
features. In particular, 3D data provide a better representa-
tion for describing properties of the face in areas such as the
cheeks, forehead, and chin, and are illumination invariant.

The early work of applying invariant functions on 3D
face recognition was done over a decade ago. At that time,
people began with the geometrical properties introduced in
differential geometry, such as curvature. Cartoux et al. [3]
proposed a face recognition algorithm based on Gaussian
curvature of the face surface. Their approach yields a 100%
verification rate on a small dataset (5 subjects and 18 range
images). Lee and Milios [12] presented an algorithm for es-
tablishing a correspondence between features of two faces.
Facial features are obtained by a segmentation of the range
image based on the sign of the mean and Gaussian curva-
ture at each point. Gordon [7] identifies the nose region,
ridge and valley lines by using mean and Gaussian curva-
ture. Tanaka et al. [22] also perform curvature-based seg-
mentation and represent the face surface using an Extended
Gaussian Image (EGI). Basically, these approaches use the
invariant functions, e.g. Gaussian curvature is invariant un-
der Euclidean transformations, to extract information from
the face surface and then perform classification based on
extracted information. The invariant functions they use all
belong to the category called differential invariants which
rely on derivative operations. The computation of differ-
ential invariants is not reliable because of the quantization
error in discretized data. This fundamental issue limits their
potential to achieve high recognition performance in a large
dataset.

More recently, Medioni et al. [14] perform 3D face
recognition using iterative closest point (ICP) matching.

Hesher et al. [10] perform principal component analysis
(PCA) of range images. Similarly, Chang et al. [4] use a
PCA-based method separately on 2D pictures and 3D range
images. Matching scores from 2D and 3D are then com-
bined for multimodal recognition. Further investigation into
the 3D-PCA approach has been reported by Heseltine et al.
[9]. Kakadiaris et al. [11] present a 3D face recognition
approach that fits a deformable model to the probe face sur-
faces. They perform experiments on the FRGC v1.0 dataset
and report a 97% verification rate measured at a 0.1% false
accept rate (FAR). Note that none of these recent results uti-
lizes any invariant feature from the face surface.

A 3D face recognition approach based on geometric in-
variants was introduced by Bronstein et al. [2]. The key
idea of their algorithm is to approximate facial expressions
as isometric transformations, i.e. length preserving trans-
formations. The evaluation of their approach is limited and
recognition performance is not reported.

3. Summation invariants
The method of moving frames [5, 6], originally intro-

duced by Élie Cartan, is a powerful tool for constructing
invariants under group actions. For expression-neutral face
images, pose variations may be well modeled with Eu-
clidean transformations (also known as rigid transforma-
tions). In this paper, we will use both profile curves and
surface patches from 3D facial surfaces. In the following
sections, we will develop novel invariants for the Euclidean
groups acting on R2 and R3 respectively. This is similar to
the work of Lin et al. [13], where summation invariants are
derived for the affine transformation group acting on R2.

3.1. Euclidean summation invariants of curves

Given a curve (x[n], y[n]) of length N, we use
(x̄[n], ȳ[n]) to denote that it is transformed by a Euclidean
transformation.

[
x̄[n]
ȳ[n]

]
=

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

] [
x[n]
y[n]

]
+

[
a
b

]

(1)
where a, b, θ ∈ R. We define the potentials of the curve as
below.

Definition 3.1 The potential Pi,j of order k is given by

Pi,j =
N−1∑
n=0

xi[n] · yj [n] (2)

, where i, j are nonnegative integers, i + j = k and k 6= 0.

One can construct a family of invariant functions ηi,j by
applying a moving frame to potentials Pi,j . For example, we
can find a moving frame by solving the following equations,

(x̄[0], ȳ[0], ȳ[N − 1]) = (0, 0, 0) (3)



where x̄ and ȳ denote the x and y coordinate of a curve
transformed by a moving frame. The equations above are
called normalization equations. Note that we are free to
specify normalization equations as long as they can be
solved, i.e. a moving frame can be found. Let P̄i,j be the
potentials transformed by a moving frame,

P̄i,j =
N−1∑
n=0

x̄i[n]ȳj [n] (4)

where x̄ and ȳ denote the x and y coordinates transformed
by a moving frame. The P̄i,j are invariant functions under
Euclidean transformation acting onR2, i.e. ηi,j = P̄i,j . The
first and second order invariant functions, i + j = 1 or 2,
have been explicitly derived as shown below:

η1,0 = P1,0(x1 − x0) + P0,1(y1 − y0)
+Nx0(x0 − x1) + Ny0(y0 − y1) (5)

η0,1 = P1,0(y1 − y0) + P0,1(x0 − x1)
+N(x1y0 − x0y1) (6)

η2,0 = −2P1,0(x0 − x1)(x2
0 − x0x1 + y2

0 − y0y1)
−2P0,1(y0 − y1)(y2

0 − y0y1 + x2
0 − x0x1)

+P2,0(x0 − x1)2 + P0,2(y0 − y1)2

+2P1,1(x0 − x1)(y0 − y1)
+N(x0(x0 − x1) + y0(y0 − y1))2 (7)

η1,1 = P1,1((x0 − x1)2 − (y0 − y1)2)
+P1,0(y3

0 + 2x0x1y1 − 2y1x
2
0

+x2
0y0 − 2y2

0y1 + y0y
2
1 − x2

1y0)
−P0,1(x3

0 + 2y0y1x1 − 2x1y
2
0

+y2
0x0 − 2x2

0x1 + x0x
2
1 − y2

1x0)
+(P0,2 − P2,0)(x0 − x1)(y0 − y1)
+N(x1y0 − x0y1)
(x0(x1 − x0) + y0(y1 − y0)) (8)

η0,2 = 2(x1y0 − x0y1)(P1,0(y1 − y0)− P0,1(x1 − x0))
+P2,0(y0 − y1)2 + P0,2(x0 − x1)2

−2P1,1(x0 − x1)(y0 − y1)
+N(x0y1 − x1y0)2 (9)

where x0 = x[0], x1 = x[N−1], y0 = y[0], y1 = y[N−1].

3.2. Euclidean summation invariants of surfaces

In this section, we consider a Euclidean transfor-
mation acting on R3. Given a parameterized surface
(x[m,n], y[m,n], z[m,n]) with m = 0, . . . ,M − 1 and
n = 0, . . . , N − 1, we first give the definition of the cor-
responding potentials.

Definition 3.2 The potential Qi,j,k of order ` is given by

Qi,j,k =
M−1∑
m=0

N−1∑
n=0

xi[m,n] · yj [m,n] · zk[m,n] (10)

, where i, j, k are nonnegative integers, i + j + k = ` and
` 6= 0.

Then, the summation invariants κi,j,k of surfaces under Eu-
clidean transformation can be expressed in a compact form

κi,j,k = Q̄i,j,k =
M−1∑
m=0

N−1∑
n=0

x̄i · ȳj · z̄k (11)

where x̄, ȳ and z̄ denote the x, y and z coordinates trans-
formed by a moving frame. The remaining task is simply
to find a moving frame. In the previous section, we find
a moving frame by solving normalization equations. Here,
solving normalization equations is not trivial since the Eu-
clidean transformation group acting onR3 has more degrees
of freedom than the one acting on R2. Instead of solving
normalization equations, a moving frame can be expressed
in terms of rotation matrices R1, R2, R3 and translation
vector T.




x̄
ȳ
z̄


 = R3R2R1(




x
y
z


−T) (12)

We choose a moving frame such that

(x̄[0, 0], ȳ[0, 0], z̄[0, 0], ȳ[M − 1, 0], z̄[M − 1, 0],
z̄[0, N − 1]) = (0, 0, 0, 0, 0, 0) (13)

Hence, we have

T =




x(u0, v0)
y(u0, v0)
z(u0, v0)


 (14)

so that (x̄[0, 0], ȳ[0, 0], z̄[0, 0]) = (0, 0, 0). Then, we need
to fix the other coordinates in the Eq. (13). Let

A =




x[M − 1, 0]
y[M − 1, 0]
z[M − 1, 0]


 (15)

and express A in in spherical coordinates (Ra, θa, φa),
where θ and φ are angular displacements measured from
the positive z-axis and positive x-axis respectively and R is
the distance from the origin to the point. By setting

R1 =




cos φa sin φa 0
− sin φa cos φa 0

0 0 1


 (16)

R2 =




sin θa 0 cos θa

0 1 0
− cos θa 0 sin θa


 (17)



, the rotation matrices R1 and R2 will rotate A so that it is
lying on the x-axis, i.e. (ȳ[M −1, 0], z̄[M −1, 0]) = (0, 0).
Now, there is one degree of freedom left to be fixed. Let

B =




Bx

By

Bz


 = R2R1(




x[0, N − 1]
y[0, N − 1]
z[0, N − 1]


−T) (18)

and

C =




By

Bz

Bx


 (19)

Again, the vector C can be expressed in spherical coordi-
nates (Rc, θc, φc). By setting

R3 =




1 0 0
0 cos φc sin φc

0 − sin φc cosφc


 (20)

, the rotation matrices R1, R2, R3 and translation T form
a moving frame. We can construct summation invariants
κi,j,k under Euclidean transformation by applying the mov-
ing frame to the potential Qi,j,k.

3.3. Semi-local summation invariants

The summation invariant can be defined over a local re-
gion of any 2D curve or 3D surface. In order to enhance
the discriminating power of this feature, Lin et al. [13]
have proposed a semi-local summation invariant feature that
evaluates an invariant function for each point of the curve
over a local window surrounding that pixel. As such, a
curve consisting of N pixels will generate a feature vector
of the same length. Similarly, a surface consisting of M×N
points will also generate a feature vector of the same size.

4. Application to face recognition
4.1. 3D face dataset and BEE

We use the 3D facial images distributed with the Face
Recognition Grand Challenge (FRGC) dataset [17] to con-
duct face recognition experiments. FRGC is sponsored
by the US National Institute of Standard and Technology
(NIST) and other government agencies. Its testing data con-
tains comprehensive 3D range images of human faces. It
also provides an XML-based framework, called the Biomet-
ric Experimentation Environment (BEE) to document and
describe computation experiments. All experiments in this
paper are conducted using BEE.

The 3D data provided by FRGC v1.0 contains 275 sub-
jects (1 to 8 range scans per subject) and a total of 943 range
scans. Each range scan has a resolution of 640×480 pixels.
In addition to the 3D range map, it also comes with a 2D
texture image of the same subject. However, in this paper,
we use only the 3D range data in all experiments.
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Figure 1. (a) Normalized range image and the selected 81 × 81
region; (b) The computed result of η0,1 using a horizontal window;
and (c) The computed result of η0,1 using a vertical window.

4.2. Procedures

In the official FRGC contest, four sets of experiments
are defined. Among them, experiment 3 concerns the 3D
face recognition task and hence is the focus of this paper.
Our experiment procedures closely follow those defined for
the baseline algorithm provided by FRGC, except for the
following modifications:

1. 3D only experiment: In order to focus only on 3D face
recognition performance, we do not use 2D texture im-
ages in our experiments.

2. Arc-length resampling : For 2D curve invariants ηi,j ,
range data are resampled uniformly with respect to arc-
length. Specifically, for each row on the range data,
we first compute its arc-length and resample it uni-
formly with respect to arc-length. Then, we perform
the same resampling on each column. For surface in-
variants κi,j , we do not perform resampling on the nor-
malized range data.

3. Semi-local summation invariants: While the baseline
algorithm uses 3D range data directly, we extract semi-
local summation invariants from a normalized range
image and use the results as invariant features. At each
pixel, a semi-local summation invariant is computed
from a local window. We compute curve invariants ηi,j

from both a horizontal window and a vertical window.
The results are shown in Figure 1. The length of the
local window is chosen to be L = 21. Similarly, we
also compute the κi,j,k from a local window surround-
ing each pixel. The window size for surface invariants
is 17× 17.

4. Specify a region of interest: Instead of using the entire
3D range image as the baseline algorithm does in BEE,
we crop invariant features from an 81× 81 rectangular
region centered at the nose tip (see Figure 1).

5. Alignment refinement: The location of the selected
81× 81 region is refined by minimizing the SSD (sum



of squared differences) with the averaged invariant fea-
tures. We compute the averaged invariant features dur-
ing the training stage.

6. Dimension reduction : In order to reduce the size of
the feature vectors, we use principal component analy-
sis (PCA) to compute their subspace projections. The
PCA basis is computed using the training set contain-
ing 183 range images. During the classification, the
similarity metric is Mahalanobis cosine. Note that
in our experiments, the training set and the similar-
ity metric are the same as those in baseline algorithm.
Please refer to [4] for more details.

7. Decision fusion: There are many ways of combining
different features to achieve a better recognition per-
formance. We use sum rule to combine the similarity
metrics produced by different invariant features.

The code is implemented in non-optimized C language.
The experiments are conducted under a Linux operating
system with 3.40GHz XEON processor and 2GB memory.
Given the normalized range images, it takes about 5 min-
utes to compute ηi,j and accomplish the following analy-
sis (e.g. computing similarity metrics and performing ROC
analysis). For computing κi,j,k and the following analysis,
it takes 8 minutes. For the currently available datasets (e.g.
FRGC v2.0 dataset has 50, 000 images), computation cost
will be one of the major concerns in designing a face recog-
nition algorithm. We think summation invariant is an effi-
cient and feasible solution to operate on the huge datasets
like FRGC v2.0.

5. Experimental results
We have conducted a series of experiments to assess the

performance of the proposed algorithm. The first part is to
examine how the recognition performance is affected by the
undesirable scaling in 3D data. The second part is to eval-
uate the discriminative capability of an individual summa-
tion invariant. Decision fusion is consider the third part. We
use a simple fusion strategy to combine results at the met-
ric level. Finally, we compare with the 3D face recognition
algorithms which also operate on the FRGC v1.0 dataset.

5.1. Effects of difference scaling of x and y coordi-
nates

In this experiment, we explore the issue of scaling on
range data by using the summation invariant η0,1 without
decision fusion. Recall that the summation invariants de-
veloped in section 3 are for the Euclidean groups acting on
R2 or R3. While this feature is invariant to Euclidean trans-
formations, it will be affected by improper scaling of coor-
dinates. In the FRGC 3D baseline algorithm, (x, y) coordi-
nates in the range data are discarded and the z coordinate
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Figure 2. ROC performance for using different unit difference on
the x and y coordinates. The results indicate that geometrical dis-
tortion will cause performance degradation of summation invari-
ants. (a) ROC curves of η0,1 and (b) ROC curves of κ0,0,1.

is multiplied by a scaling factor. In our method, however,
we need to retain these pieces of information. We exper-
imented with different values of increments, dx = dy ∈
{0.4, 0.6, 0.8, 1.0}, and a fixed scaling factor 12.5 on z val-
ues. In Figure 2, we observe a significant impact of these
changes on both η0,1 and κ0,0,1. In both cases, the verifi-
cation rates decrease when dx and dy are smaller than 0.4.
Hence, we assume that dx = dy = 0.4 and a fixed scaling
factor 12.5 on z values can reasonably restore the original
geometry of the face surface and use these parameters in
the following experiments. In general, better recognition
performance is expected if the original x, y, z information is
preserved.
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Figure 3. ROC performance obtained using different summation
invariants. (a) ηi,j and (b) κi,j,k

5.2. Effects of different summation invariants

Summation invariants are functions which are unaffected
under the actions of a particular transformation group.
In other words, they do not guarantee any discriminative
power for object recognition purpose. Hence, it is important
to know how they perform individually in a face recognition
application. In this experiment, we do not use decision fu-
sion so that the contribution of each summation invariant
can be identified. From the ROC curves in Fig 3, it is appar-
ent that not all semi-local summation invariants are created
equal in terms of discriminating power. Also, summation
invariant η1,1 achieves the same level of recognition perfor-
mance as those of summation invariants κi,j,k while their
computation costs are quite different. The ηi,j and the κi,j,k

are O(L) and O(L2) operations respectively, where L is the
size of the local window.
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Figure 4. ROC performance obtained by combining two summa-
tion invariants. (a) Fusion of η1,1 and others. (b) fusion of κ0,0,1

and others.

5.3. Effects of combining summation invariants

This experiment is to investigate the value of using more
than one summation invariant. The hypothesis for this ex-
periment is that the combined decision of these summation
invariants will further improve the face recognition accu-
racy. We only choose summation invariants which have
higher recognition rate to perform fusion because there are
too many possible combinations to be shown. Figure 4
shows the ROC curves of combining two summation in-
variants. The fusion strategy is simply adding the similarity
scores from two different summation invariants. We ob-
serve that fusion does not always yield a higher verification
rate than a single summation invariant. If we only focus
on lower false accept rate, e.g. 0.1%, the improvement pro-
vided by fusion is significant and stable.
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Figure 5. Comparison with FRGC 3D baseline algorithm. We ap-
ply the FRGC 3D baseline algorithm on the normalized depth map
and the cropped region shown in Fig 1. Their corresponding ROC
curves are shown by the solid line and the dash line respectively.

5.4. Comparison with other 3D face recognition al-
gorithms

In this section, we conduct three experiments to evalu-
ate the performance of our algorithm and the FRGC base-
line algorithm. In the first, we simply run the FRGC base-
line algorithm on 3D data alone. In the second, we still
run the FRGC baseline algorithm on 3D data but using only
the cropped region rather than the whole normalized range
data. In Fig 5, the second experiment shows a lower recog-
nition rate than the first one. This is reasonable because
the second experiment uses less data to perform recogni-
tion. In the third experiment, we compute η1,1 and κ0,0,1

from the cropped region. Our algorithm yields the high-
est verification rate as one can see in Fig 5. The pro-
posed algorithm achieves the verification rate of 97.2% at
the false accept rate of 0.1% and the EER (Equal Error
Rate) of 1.43%. The results clearly indicate that summa-
tion invariants offer statistically significant better recogni-
tion performance than the range data itself. Except for the
FRGC 3D baseline, some recent results on the FRGC v1.0
dataset are briefly discussed below. Kakadiaris et al. [11]
present an approach based on the Annotated Face Model
(AFM) and report about 97% verification rate at 0.1% false
accept rate. Pan et al. [16] propose a novel mapping of the
range image, called mapped relative depth image, and use
it as feature vector to perform classification. Their method
achieves the EER of 2.83% on the FRGC v1.0 dataset. Russ
et al. [20] develop a 3D face recognition approach based on
Hausdorff distance metric. Their experimental validation
are conducted on part of FRGC v1.0 dataset, using only
a single probe per person rather than all available probes.
Performance is reported as the verification rate of 93.5% at

Proposed algorithm FRGC baseline
ROC I 83.18% 56.22%
ROC II 82.08% 49.55%
ROC III 80.82% 42.78%

Table 1. Verification rates on FRGC v2.0 dataset (FAR = 0.1%).

(a) (b)

Figure 6. Failure example of the FRGC 3D normalization process:
(a) Original range image and (b) Normalized range image.

the false accept rate of 0.1%. So, the proposed method has
comparable performance with the state-of-the-art algorithm
for 3D face recognition.

5.5. Preliminary results on FRGC v2.0 dataset

We also verify the performance of our algorithm using
the FRGC v2.0 dataset. Here, the selected region is shifted
upward about 20 pixels to avoid using the mouth region.
This will reduce the effect of facial expressions which are
introduced in the FRGC v2.0 dataset. By comparing the
verification rate at 0.1% FAR, we observe that our method
also yields significant improvement over the baseline (see
Table 1). Please refer to [17] for the specifications of ROC
I, II and III.

6. Discussion and conclusion
The value of summation invariants in the context of 3D

face recognition is evaluated in this paper. We extract ge-
ometric features of facial surfaces using summation invari-
ants and apply PCA on the resulting representation. To the
best of our knowledge, Kakadiaris et al. [11] report the best
previous results in FRGC v1.0 dataset. Our algorithm can
yield the same level of recognition performance. Further-
more, such good performance can be achieved using only
the nose portion of the whole face. In general, the results
support the following conclusions:

1. Geometric features extracted by using summation in-
variants provide useful information for recognition
purposes.

2. The combination of two or more summation invariants
generally improves performance over using a single



summation invariant.

Also, we should note that the results reported in this paper
are obtained using the normalized range images provided
by the FRGC 3D baseline. In theory, we can compute sum-
mation invariants from unnormalized range images and ob-
tain the same results. Note that summation invariants are
designed to be unaffected by rotations and translations at
the very beginning. Currently, the normalization is the most
time-consuming part in the FRGC 3D baseline. The nor-
malization alone takes about 20 minutes and the rest take
about 5 minutes. Thus, an important part of future research
along this direction is the development of a more efficient
3D face recognition technology in which normalization ef-
forts are reduced by using summation invariants.

Some recognition errors reported by our algorithm are
due to the failure of the normalization step (Figure 6). The
baseline normalization algorithm works for most of the
range images but not in some special cases. Note that the
general quality of 3D range images is not as good as 2D
pictures. In some regions like eyes, cheeks and eyebrows,
current 3D sensing devices, such as the Minolta vivid 900,
tend to either produce wrong depth values or have missing
data. These issues would limit the 3D verification rate in
general. Algorithms for reliably recovering data in such ar-
eas is an area where more research is needed.
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