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ABSTRACT 

 

Recently a novel family of geometrically invariant features, called 

summation invariant, has been developed and applied to object 

recognition. The range of this family of features is expanded here 

beyond the Euclidean and affine transformation groups to planar 

projective transformations. Whereas other methods require small 

changes in view, or collinear points, this method removes those 

limitations and allows recognition of general planar objects over 

wide ranges of viewpoint. The derivation of these new features 

requires the innovation of deriving the invariants in the 

homogeneous coordinate space, yet yields results formulated in 

terms of Cartesian coordinates. Simulations demonstrate the 

effectiveness of this new approach to object recognition under 

projective transformations like those encountered in camera 

networks.* 

 

Index Terms— summation invariant; moving frame; 

geometrically invariant feature; camera network; projective 

invariant 

 

1. INTRODUCTION 

 

Invariant features are important tools in the pattern recognition 

toolbox. Objects to be recognized in images usually are not 

guaranteed to be in the same location, to have the same orientation, 

the same size, nor even to have the same shape. Thus, having a 

descriptive feature that is invariant to geometric transformations - 

like translation, rotation, scale or shear - is highly desirable. The 

number of transformation types included in the feature will 

determine how general its application is. This generality, however, 

has a price. As generality increases, so does the difficulty in 

finding invariant features. 

In today’s world, computer vision applications like 

surveillance and security have become more important. These 

types of applications often involve multiple cameras observing the 

environment from widely different perspectives. Object recognition 

within this context is made more difficult by the need to use 

projective transformations.  

                                                 
*
  This research is partially supported by the United States National 

Science Foundation under grant number CCF-0434355, and 

partially supported by the National Science Council, Tiawan 

(Grant No. 96-2221-E-194-055). 

Many previous works have made the simplifying 

approximation of substituting affine transformations for projective. 

This approximation is reasonable if the object is located far from 

the camera. This assumption was made in [1], where invariant 

features were derived for curves under affine transformations after 

first transforming the curve at each point to a canonical coordinate 

system. These invariants required sixth order derivatives in 

general, or as low as second order if some feature correspondences 

were known. The use of higher order derivatives makes this 

approach sensitive to noise. 

The same assumption was made in [2], where a different 

approach was taken to the recognition problem. Instead of deriving 

geometrically invariant features, each curve was normalized to a 

standard position that is invariant to any affine transformations of 

the curve. This process utilized global features, moments and 

Fourier descriptors, to perform the normalization. 

The classic projective invariant is the cross-ratio. This 

invariant feature is constructed from four collinear points. This 

feature has been applied to planar polygons [3], to general planar 

curves using the curve’s convex hull to find corresponding points 

[4], and to the retrieval of images of buildings using a cross-ratio 
histogram feature [5]. Another related feature is a set of five points 

on a plane. This invariant requires the construction of additional 

points, and yields two sets of four collinear points and their 

associated cross-ratios. These features are limited by their co 

linearity requirement. Another limiting factor in their usefulness is 

that they produce one value, which is good for invariance, but not 

as good for discrimination. 

 Integral invariants have been applied to the projective 

transformation group, but no analytical formula could be found for 

them and numerical solutions had to be used to compute them [6]. 

Recently, a new family of geometrically invariant features, 

called summation invariant, has been developed [7-10]. This 

family of features utilizes potentials consisting of summations as 

coordinates in a prolonged jet space. They are not sensitive to 

noise, can be generated systematically and can be implemented 

semi-locally, providing multiple values for better discrimination. 

These invariants are derived over a specific transformation group 

(e.g., Euclidean, affine, projective) and a specific dimension (e.g., 

2D, 3D), and are invariant to transformations within that group. 

Previous works have shown summation invariants for Euclidean 

and affine transformations in both 2D and 3D with applications to 

shape recognition and face recognition.   



This paper initiates the extension of summation invariants to 

the projective transformation group, providing a more general 

invariant than the cross-ratio. The previous application to face 

recognition was a situation where the object itself is transformed. 

Here, the object is fixed, but the observers (cameras) see it from 

different perspectives, resulting in projective transformations. The 

transformations investigated here will be limited to the simpler 

subset of planar projective transformation, i.e., projective 

transformations of planar objects, which are described in section 2. 

Section 3 shows the derivation of the planar projective summation 

invariant. In section 4, this new feature is applied to a simulated 

camera network to show its usefulness for recognizing objects from 

different perspectives. Finally, section 5 contains a discussion of 

the results and future directions. 

 

2. PLANAR PROJECTIVE TRANSFORMATIONS 

 

The most general projective transformation is that from a 3D object 

to a 2D image, and is given by a 3 x 4 projection matrix, P. Thus, 

given a point on an object (in homogeneous coordinates), x, the 

corresponding point in the image, w, will be given by w = Px. If 

the object points are restricted to lie in the same plane, then the 

transformation is simplified to a 3 x 3 matrix. Thus, for planar 

projective transformations, the transformation is w = Pp x, or 
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where [ ]Twyx ~~~  is the transformed point in homogeneous 

coordinates, and Pp is the 3 x 3 planar projection matrix. If there 

are two separate planar projective transformations (corresponding 

to images from two cameras in different locations), Pp and Qp, and 

both transformations have non-zero determinants, the two image 

points corresponding to a point on the object are also related by a 

planar projective transformation Rp, where Rp=Pp(Qp)-1.  

Each planar projective transformation only has eight degrees 

of freedom, so without loss of generality, i can be set to 1 to 

simplify the computations. Equation (1) can be re-written as three 

equations as follows: 

cbyaxx ++=~      (2) 

feydxy ++=~      (3) 

1~ ++= hygxw      (4) 

To recover the Cartesian coordinates of this transformed point, 

each homogeneous coordinate is divided by w~ , e.g.,  

1

~/~

++

++
==

hygx

cbyax
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The nonlinearity caused by the presence of the variables x and y in 

the denominator of (5) will greatly complicate efforts to work with 

this transformation group to derive invariant features. 

 

3. DERIVATION OF SUMMATION INVARIANTS 

 

The derivation of summation invariants utilizes the method of 

moving frames developed by Cartan [11] and refined by Olver [12-

13]. A detailed description of the method and its application to 

summation invariants is given in [14]. A brief description of the 

method is given here, with a focus on the parts that are especially 

relevant to the projective case.  

Given a parameterized curve with points (x[n], y[n]), and a 

geometric transformation group G acting on the curve, the group 

action is defined as: 

     [ ] [ ]( ) [ ] [ ]( ) Ggnynxnynxg ∈= ,,,o    (6) 

where [ ] [ ]( )nynx ,  represents a transformed point in Cartesian 

coordinates. The moving frame method involves prolonging the 

transformation group action into the jet space, Jm (consisting of the 

original coordinates and new coordinates formed by potentials up 

through order m), solving a normalization equation and plugging 

that solution into a higher order potential to obtain an invariant. 

Potentials are defined as: 
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where i + j = k, with k being the order of the potential. The 

formulation of potential is similar to the traditional definition of 

image moment. The moment for a discrete function, f(x), is:  
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Substituting y = f(x), and parameterizing x and y by sample 

number n, 1 ≤n  ≤N,  a parameterized definition of moment is: 
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From this definition, it is easy to verify that mi = Pi,1. Similarly, mi,j 

= Pi,j,1.  Hence, the definition of potential is more general than the 

classical definition of image moment. 

Then, the jet space is given by the coordinates: 

     [ ] [ ] [ ] [ ]( ))(,,,1,1 mPNyNxyx     (10) 

where P(m) is all potentials up through order m. A transformed 

potential is defined as: 

    [ ] [ ]∑
=

⋅=
N

n

ji
ji nynxP

1

,     (11)         

For the case of the planar projective transformation group, an 

example of a transformed potential is: 
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where 0,1P  represents the transformed potential in Cartesian 

coordinates. However, at this point in the standard procedure, the 

derivation attempt reaches an impasse. The technique of separating 

out the summation terms used for all the previous transformation 

groups (Euclidean and affine) cannot be applied because of the 

presence of the x and y terms in the denominator.  

The key innovation that will allow the derivation of the new 

invariants to proceed is that of using homogenous coordinates for 

the transformed potentials instead of Cartesian. A transformed 

potential in homogenous coordinates is given by: 
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Fig. 1 - Original contour images. 

An example potential for the planar projective transformation 

group is: 

  [ ] [ ] [ ]( )∑∑
==

++==
N

n

N

n

cnbynaxnxP
11

0,0,1
~~  

     cNbPaP ++= 1,00,1       (14) 

In this form of representation, the summation terms can now 

be separated out and a tractable formula derived. Although the 

transformed potential is in homogeneous coordinates, it can be 

expanded into a representation that is in terms of Cartesian 

coordinates, as seen in (14). 

Similarly,  
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The normalization equation used here is: 
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i.e.,  [ ] [ ] 1
~

,...,01~,01~
1,0,0 === Pyx . 

Since there are eight degrees of freedom for this 

transformation group, the normalization equation requires eight 

equations. Using equation (17), solve equation (1) for 

{a,b,c,d,e,f,g,h}. Generating the invariant features is accomplished 

by applying these solutions to higher order transformed potentials 

(i.e., substituting the values for a, b, c, etc. into the equation for the 

transformed potentials). Thus, applying this procedure to 

0,2,0

~
P yields the invariant:  
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Fig. 2 – Twenty projective transformations of one original contour 

image. 

 

where x1 = x[1], xN = x[N], etc. The same procedure was done 

for 0,0,2

~
P  and 0,1,1

~
P  to find 

Pp
0,0,2η  and

Pp
0,1,1η . 

The straight application of the summation invariant to an 

object will result in a single value. This is fine from the invariance 

perspective, but not good from the discrimination perspective. To 

improve the discrimination ability of these features, they can be 

applied in a semi-local manner. At each point of the object, the 

summation invariant is calculated over a subset of the surrounding 

points of the object. This yields an N-dimensional feature instead 

of a one-dimensional feature. The size of this window will 

determine the degree of localization of the feature. 

 

4. APPLICATION TO CAMERA NETWORKS 

 

In a typical camera network, it is desired to recognize an object 

that appears in multiple cameras. Each camera’s image will 

represent a different projective transformation, with a typical 

network having a wide range of viewpoints. For effective 

recognition, a feature invariant to projective transformations is 

desired. This section provides simulation data demonstrating the 

application of the planar projective summation invariants derived 

here to object recognition in a camera network. 

A database of ten images was created, consisting of the 

outlines of silhouettes of ten people. Each image was re-sampled to 

a size of 255 points. These images are shown in Fig. 1. To simulate 

a camera network, twenty random projective transformations were 

generated each representing a camera. The transformations were 

applied to each image, the resulting values were rounded to 

simulate camera quantization noise and post-processed to remove 

redundant points and re-sampled to 255 points, resulting in 200 

images in the data set. The twenty transformed images from one 

original image are shown in Fig. 2.  

The semi-local summation invariant values (numerator) were 

calculated for each image. The window size used was 51 points. 

Thus each contour had a 255 value feature vector, where each 

value was the 51 point summation invariant around that particular 

point in the image. The analysis of these results consisted of 

comparing each image with all the others and creating a 200 x 200 

similarity matrix. The metric used was the normalized cross-

correlation between the feature vectors,  
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Fig. 3 – ROC performance for all three planar projective 

summation invariants on silhouette data. 
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normalized to the range [0, 1.0]. The results are shown in Fig. 3 as 

an ROC graph comparing the three invariants to each other. Note 

that even though all three are invariant, their discrimination 

abilities are not equal. 

The performance of these new features on this dataset was 

excellent, showing their effectiveness at discrimination across a 

wide range of projective transformations. Although the results are 

very good, the dataset was not extremely large, and the final 

judgment of the effectiveness of new features will require more 

extensive testing with larger and more challenging datasets.  

A comparison was also done with the previous summation 

invariants derived under less general transformation groups (e.g., 

Euclidean, affine) using the standard comparison test defined in 

[14]. This test utilizes face recognition with the FRGC2.0 dataset. 

Although this application does not specifically require the 

projective transformation, it does show that these new features 

have similar discrimination capability as the previous ones. The 

comparison is shown in Table 1, where the numbers indicate the 

True Acceptance Rate at a False Acceptance Rate of 0.001. 

 

Table 1 – Results of standard comparison test. 

 η200  η110 η020 

2D, Eucl., yN=0 0.581 0.719 0.681 

2D, Affine 0.684 --- --- 

Planar proj. 0.667 0.615 0.681 

 

5. CONCLUSION 

 

A new set of features was derived that are invariant to planar 

projective transformations. These features are an extension to the 

summation invariant family of features. The derivation of this new 

set of features overcame the challenges of projective 

transformations by performing the derivation in the homogeneous 

coordinate space. Application was made to the planar object 

recognition problem across a camera network, showing their 

effectiveness for this task.  

Future directions for this work include comparison with other 

methods and simulations with larger datasets. Another area of 

interest is the extension to the projective transformation group, 

removing the planar object constraint and allowing for a broader 

application of the features. 
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