Chapter 7

Bivariate random variables

Wei-Yang Lin

Department of Computer Science

& Information Engineering

mailto:wylin@cs.ccu.edu.tw

- 7.1 Joint and marginal probabilities
- 7.2 Jointly continuous random variables
- 7.3 Conditional probability and expectation
- 7.4 The bivariate normal
- 7.5 Extension to three or more random variables

- The main focus of this chapter is the study of pairs of continuous random variables that are not independent.
- Consider the following functions of two random variables X and $Y, X + Y, XY, \max(X, Y), \min(X, Y)$.
- Show that the cdfs of these four functions of X and Y can be expressed in the form $\mathsf{P}((X,Y)\in A)$ for various sets $A\subset\Re^2$.

- A random signal X is transmitted over a channel subject to additive noise Y.
- The received signal is Z = X + Y.
- Express the cdf of Z in the form $P((X,Y) \in A_z)$ for some set A_z .

Solution

• Write

$$F_Z(z) = P(Z \le z) = P(X + Y \le z) = P((X, Y) \in A_z),$$

where

$$A_z = \{(x, y) : (x + y) \le z\}$$

• Since $x + y \le z$ if and only if $y \le -x + z$, it is easy to see that A_z is the shaded region in Figure 1.

Figure 1: The shaded region is $A_z = \{(x, y) : x + y \le z\}.$

• Express the cdf of $U := \max(X, Y)$ in the form $\mathsf{P}((X, Y) \in A_u)$ for some set A_u .

Solution

• To find the cdf of U, begin with

$$F_U(u) = \mathsf{P}(U \le u) = \mathsf{P}(\max(X, Y) \le u)$$

• Since the large of X and Y is less than or equal to u if and only if $X \le u$ and $Y \le u$,

$$\mathbf{P}(\max(X,Y) \le u) = \mathsf{P}(X \le u, Y \le u) = \mathsf{P}((X,Y) \in A_u),$$

where $A_u = \{(x, y) : x \leq u \text{ and } y \leq u\}$ is the shaded "southwest" region shown in Figure 2.

Figure 2: The shaded region is $\{(x,y): x \leq u \text{ and } y \leq u\}$.

• Express the cdf of $V := \min(X, Y)$ in the form $\mathsf{P}((X, Y) \in A_v)$ for some set A_v .

Solution

 \bullet To find the cdf of V, begin with

$$F_V(v) = \mathsf{P}(V \le v) = \mathsf{P}(\min(X, Y) \le v).$$

• Since the smaller of X and Y is less than or equal to v if and only if either $X \leq v$ or $Y \leq v$,

$$P(\min(X,Y) \le v) = P(X \le v \text{ or } Y \le v) = P((X,Y) \in A_v),$$

where $A_v = \{(x, y) : x \leq v \text{ or } y \leq v\}$ is the shaded region shown in Figure 3.

Figure 3: The shaded region is $\{(x,y): x \leq v \text{ or } y \leq v\}$.

Product sets and marginal probabilities

• The Cartesian product of two univariate sets B and C is defined by

$$B \times C := \{(x, y) : x \in B \text{ and } y \in C\}.$$

• In other words,

$$(x,y) \in B \times C \Leftrightarrow x \in B \text{ and } y \in C.$$

• For example, if B = [1, 3] and C = [0.5, 3.5], then $B \times C$ is the rectangle in Figure 4.

Figure 4: The Cartesian product $[1,3] \times [0.5,3.5]$.

Joint cumulative distribution functions

• The joint cumulative distribution function of X and Y is defined by

$$F_{XY}(x,y) = \mathsf{P}(X \le x, Y \le y). \tag{1}$$

• We can also write this using a Cartesian product set as

$$F_{XY}(x,y) = \mathsf{P}((X,Y) \in (-\infty,x] \times (-\infty,y]).$$

• In other words, $F_{XY}(x, y)$ is the probability that (X, Y) lies in the southwest region shown in Figure 5.

Figure 5: The Cartesian product $(-\infty, x] \times (-\infty, y]$.

Rectangle formula

- The joint cdf is important because it can be used to compute $P((X,Y) \in A)$.
- For example, $P(a < X \le b, c < Y \le d)$, which is the probability that (X, Y) belongs to the rectangle $(a, b] \times (c, d]$ as shown in Figure 6, is given by the **rectangle formula**

$$F_{XY}(b,d) - F_{XY}(a,d) - F_{XY}(b,c) + F_{XY}(a,c).$$

Figure 6: The rectangle $(a, b] \times (c, d]$.

• If X and Y have joint cdf F_{XY} , find the joint cdf of $U := \max(X, Y)$ and $V := \min(X, Y)$.

Solution (1/2)

• Begin with

$$F_{UV}(u,v) = \mathsf{P}(U \le u, V \le v).$$

- From Example 7.3, we know that $U := \max(X, Y) \le u$ if and only if (X, Y) lies in the southwest region shown in Figure 2.
- From Example 7.4, we know that $V := \min(X, Y) \le v$ if and only if (X, Y) lies in the region shown in Figure 3.
- Hence, $U \leq u$ and $V \leq v$ if and only if (X, Y) lies in the intersection of these two regions.
- The form of this intersection depends on whether u > v or $u \leq v$.

Solution (2/2)

- If $u \le v$, then the southwest region region in Figure 2 is a subset of the region in Figure 3.
- Their intersection is the smaller set, and so

$$P(U \le u, V \le v) = P(U \le u) = F_U(u) = F_{XY}(u, u), \quad u \le v.$$

• If u > v, the intersection is shown in Figure 7.

$$\begin{aligned} &\mathsf{P}(U \le u, V \le v) \\ &= F_{XY}(u, u) - \mathsf{P}(v < X \le u, v < Y \le u) \\ &= F_{XY}(u, u) - (F_{XY}(u, u) - F_{XY}(v, u) - F_{XY}(u, v) + F_{XY}(v, v)) \\ &= F_{XY}(v, u) + F_{XY}(u, v) - F_{XY}(v, v), \quad u > v. \end{aligned}$$

Figure 7: The intersection of the shaded regions in Figures 2 and 3.

Marginal cumulative distribution functions

- It is possible to obtain the marginal cumulative distributions F_X and F_Y directly from F_{XY} .
- More precisely, it can be shown that

$$F_X(x) = \lim_{y \to \infty} F_{XY}(x, y) =: F_{XY}(x, \infty), \tag{2}$$

and

$$F_Y(y) = \lim_{x \to \infty} F_{XY}(x, y) =: F_{XY}(\infty, y). \tag{3}$$

• If

$$F_{XY}(x,y) = \begin{cases} \frac{y + e^{-x(y+1)}}{y+1} - e^{-x}, & x,y > 0, \\ 0, & \text{otherwise.} \end{cases}$$

• Find both of the marginal cumulative distribution functions, $F_X(x)$ and $F_Y(y)$.

Solution

• The marginal cdf of X is

$$F_X(x) = \begin{cases} 1 - e^{-x}, & x > 0, \\ 0, & x \le 0. \end{cases}$$

 \bullet The marginal cdf of Y is

$$F_Y(y) = \begin{cases} \frac{y}{y+1}, & y > 0, \\ 0, & y \le 0. \end{cases}$$

Independence

• We record here that jointly continuous random variable X and Y are **independent** if and only if their joint cdf factors into the product of their marginal cdfs.

$$F_{XY}(x,y) = F_X(x)F_Y(y)$$

Homework

• Problems 1, 2, 6.

- 7.1 Joint and marginal probabilities
- 7.2 Jointly continuous random variables
- 7.3 Conditional probability and expectation
- 7.4 The bivariate normal
- 7.5 Extension to three or more random variables

• In analogy with the univariate case, we say that two random variables X and Y are **jointly continuous** with **joint density** $f_{XY}(x,y)$ if

$$P((X,Y) \in A) = \int_{A} \int f_{XY}(x,y) dx dy$$

for some nonnegative function f_{XY} that integrates to one; i.e.,

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{XY}(x,y) dx dy = 1.$$

- Suppose that a random, continuous-valued signal X is transmitted over a channel subject to additive, continuous-valued noise Y.
- The received signal is Z = X + Y.
- Find the cdf and density of Z if X and Y are jointly continuous random variables with joint density f_{XY} .

Solution (1/2)

• Write

$$F_Z(z) = P(Z \le z) = P(X + Y \le z) = P((X, Y) \in A_z),$$

where $A_z := \{(x, y) : x + y \le z\}$ was sketched in Figure 1.

• With the figure in mind, the double integral $P(X + Y \leq z)$ can be computed using

$$F_Z(z) = \int_{-\infty}^{\infty} \left[\int_{-\infty}^{z-x} f_{XY}(x,y) dy \right] dx.$$

Solution (2/2)

• Now carefully differentiate with respect to z.

$$f_{Z}(z) = \frac{\partial}{\partial z} \int_{-\infty}^{\infty} \left[\int_{-\infty}^{z-x} f_{XY}(x,y) dy \right] dx$$

$$= \int_{-\infty}^{\infty} \frac{\partial}{\partial z} \left[\int_{-\infty}^{z-x} f_{XY}(x,y) dy \right] dx$$

$$= \int_{-\infty}^{\infty} f_{XY}(x,z-x) dx.$$

• Recall that

$$\frac{\partial}{\partial z} \int_{-\infty}^{g(z)} h(y) dy = h(g(z))g'(z).$$

• The marginal densities $f_X(x)$ and $f_Y(y)$ can be obtained from the joint density f_{XY} .

$$f_X(x) = \int_{-\infty}^{-\infty} f_{XY}(x, y) dy. \tag{4}$$

$$f_Y(y) = \int_{-\infty}^{-\infty} f_{XY}(x, y) dx.$$
 (5)

• Thus, to obtain the marginal densities, integrate out the unwanted variable.

Independence

• We record here that jointly continuous random variable X and Y are **independent** if and only if their joint density factors into the product of their marginal densities.

$$f_{XY}(x,y) = f_X(x)f_Y(y)$$

Expectation

• If X and Y are jointly continuous with joint density f_{XY} , then the expectation of g(X,Y) is given by

$$\mathsf{E}[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{XY}(x,y) dx dy. \tag{6}$$

Homework

• Problems 9.

- 7.1 Joint and marginal probabilities
- 7.2 Jointly continuous random variables
- 7.3 Conditional probability and expectation
- 7.4 The bivariate normal
- 7.5 Extension to three or more random variables

• We define the **conditional density** of Y given X by

$$f_{Y|X}(y|x) := \frac{f_{XY}(x,y)}{f_X(x)}, \text{ for } x \text{ with } f_X(x) > 0.$$
 (7)

• The conditional cdf is

$$F_{Y|X}(y|x) := \mathsf{P}(Y \le y|X = x) = \int_{-\infty}^{g} f_{Y|X}(t|x)dt.$$
 (8)

- Note also that if X and Y are independent, the joint density factors, and so $f_{Y|X}(y|x) = \frac{f_{XY}(x,y)}{f_X(x)} = \frac{f_X(x)f_Y(y)}{f_X(x)} = f_Y(y)$.
- It then follows that $F_{Y|X}(y|x) = F_Y(y)$.
- In other words, we can "drop the conditioning".

• Our definition of conditional probability satisfies the following law of total probability.

$$P((X,Y) \in A) = \int_{-\infty}^{\infty} P((X,Y) \in A | X = x) f_X(x) dx. \tag{9}$$

• We also have the **substitution law**,

$$P((X,Y) \in A|X=x) = P((x,Y) \in A|X=x)$$
 (10)

Example 7.14

- Suppose that a random, continuous-valued signal X is transmitted over a channel subject to additive, continuous-valued noise Y.
- The received signal is Z = X + Y.
- Find the cdf and density of Z if X and Y are jointly have joint density f_{XY} .

Solution(1/2)

• We use the laws of total probability and substitution.

$$F_{Z}(z) = P(Z \le z) = \int_{-\infty}^{\infty} P(Z \le z | Y = y) f_{Y}(y) dy$$

$$= \int_{-\infty}^{\infty} P(X + Y \le z | Y = y) f_{Y}(y) dy$$

$$= \int_{-\infty}^{\infty} P(X + y \le z | Y = y) f_{Y}(y) dy$$

$$= \int_{-\infty}^{\infty} P(X \le z - y | Y = y) f_{Y}(y) dy$$

$$= \int_{-\infty}^{\infty} F_{X|Y}(z - y | y) f_{Y}(y) dy.$$

Solution(2/2)

 \bullet By differentiating with respect z,

$$f_Z(z) = \int_{-\infty}^{\infty} f_{X|Y}(z - y|y) f_Y(y) dy = \int_{-\infty}^{\infty} f_{XY}(z - y, y) dy.$$

• If X and Y are independent, we can drop the conditioning and obtain

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(z - y) f_Y(y) dy.$$

Conditional expectation

• Law of total probability

$$\mathsf{E}[g(X,Y)] = \int_{-\infty}^{\infty} \mathsf{E}[g(X,Y)|X = x] f_X(x) dx \tag{11}$$

• Substitution law

$$\mathsf{E}[g(X,Y)|X=x] = \mathsf{E}[g(x,Y)|X=x] \tag{12}$$

Example 7.18

- Let $X \sim \exp(1)$, and suppose that given X = x, Y is conditionally normal with $f_{Y|X}(y|x) \sim N(0, x^2)$.
- Evaluate $E[Y^2]$ and $E[Y^2X^3]$.

Solution (1/2)

• We use the law of total probability.

$$\begin{split} \mathsf{E}[Y^2] &= \int_{-\infty}^{\infty} \mathsf{E}[Y^2|X=x] f_X(x) dx \\ &= \int_{-\infty}^{\infty} x^2 f_X(x) dx \\ &= \mathsf{E}[X^2] = 2. \end{split}$$

Solution (2/2)

• We use the laws of total probability and substitution.

$$\begin{aligned} \mathsf{E}[Y^2X^3] &= \int_{-\infty}^{\infty} \mathsf{E}[Y^2X^3|X = x] f_X(x) dx \\ &= \int_{-\infty}^{\infty} \mathsf{E}[Y^2x^3|X = x] f_X(x) dx \\ &= \int_{-\infty}^{\infty} x^3 \mathsf{E}[Y^2|X = x] f_X(x) dx \\ &= \int_{-\infty}^{\infty} x^5 f_X(x) dx \\ &= \mathsf{E}[X^5] = 5!. \end{aligned}$$

Homework

• Problems 26, 30, 31, 32, 34, 36, 37, 39(c).

- 7.1 Joint and marginal probabilities
- 7.2 Jointly continuous random variables
- 7.3 Conditional probability and expectation
- 7.4 The bivariate normal
- 7.5 Extension to three or more random variables

- The bivariate Gaussian or bivariate normal density is a generalization of the univariate $N(m, \sigma^2)$ density.
- Recall that the standard N(0,1) density is given by

$$\psi(x) := \frac{1}{\sqrt{2\pi}} \exp(-\frac{x^2}{2}).$$

• The general $N(m, \sigma^2)$ density can be written in terms of ψ as

$$\frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2}\left(\frac{x-m}{\sigma}\right)^2\right] = \frac{1}{\sigma} \cdot \psi\left(\frac{x-m}{\sigma}\right)$$

- In order to define the general bivariate Gaussian density, it is convenient to define a standard bivariate density first.
- So, for $|\rho| < 1$, put

$$\psi_{\rho}(u,v) := \frac{\exp\left(\frac{-1}{2(1-\rho^2)}[u^2 - 2\rho uv + v^2]\right)}{2\pi\sqrt{1-\rho^2}}.$$
 (13)

- For fixed ρ , this function of two variables u and v defines a surface.
- The surface corresponding to $\rho = 0$ is shown in Figure 8.

- From the figure and from the formula (13), we see that ψ_0 is circularly symmetric.
- For $u^2 + v^2 = r^2$, $\psi_0(u, v) = \frac{e^{-r^2/2}}{2\pi}$ does not depend on the particular values of u and v, but only on the radius of the circle on which they lie.
- Some of these circles are shown in Figure 9.

Figure 8: The Gaussian surface $\psi_{\rho}(u, v)$ with $\rho = 0$.

Figure 9: The level curves of $\psi_{\rho}(u, v)$ with $\rho = 0$.

- We also point out that for $\rho = 0$, the formula (13) factors into the product of two univariate N(0,1) densities, i.e., $\psi_0(u,v) = \psi(u)\psi(v)$.
- For $\rho \neq 0$, ψ_{ρ} does not factor.
- In other words, U and V are independent if and only if $\rho = 0$.
- A plot of ψ_{ρ} for $\rho = -0.85$ is shown in Figure 10.
- It turns out that now ψ_{ρ} is constant on ellipse instead of circles.
- The axes of the ellipses are not parallel to the coordinate axes, as shown in Figure 11.

Figure 10: The Gaussian surface $\psi_{\rho}(u, v)$ with $\rho = -0.85$.

Figure 11: The level curves of $\psi_{\rho}(u, v)$ with $\rho = -0.85$.

• We can now define the general bivariate Gaussian density by

$$\frac{\exp\left(\frac{-1}{2(1-\rho^2)}\left[\left(\frac{x-m_X}{\sigma_X}\right)^2 - 2\rho\left(\frac{x-m_X}{\sigma_X}\right)\left(\frac{y-m_Y}{\sigma_Y}\right) + \left(\frac{y-m_Y}{\sigma_Y}\right)^2\right]\right)}{2\pi\sigma_X\sigma_Y\sqrt{1-\rho^2}}.$$
 (14)

- It can be shown that the marginals are $f_X \sim N(m_X, \sigma_X^2)$, $f_Y \sim N(m_Y, \sigma_Y^2)$ and that $\mathsf{E}\left[\left(\frac{X m_X}{\sigma_X}\right) \left(\frac{Y m_Y}{\sigma_Y}\right)\right] = \rho$.
- Hence, ρ is the correlation coefficient between X and Y.
- A plot of f_{XY} with $m_X = m_Y = 0, \sigma_X = 1.5, \sigma_Y = 0.6$, and $\rho = 0$ is shown in Figure 12.
- The corresponding elliptical level curves are shown in Figure 13.

Figure 12: The bivariate Gaussian density $f_{XY}(x, y)$ with $m_X = m_Y = 0$, $\sigma_X = 1.5$, $\sigma_Y = 0.6$, and $\rho = 0$.

Figure 13: The level curves of the bivariate Gaussian density in Figure 12.

Homework

• Problems 47, 48, 49.

- 7.1 Joint and marginal probabilities
- 7.2 Jointly continuous random variables
- 7.3 Conditional probability and expectation
- 7.4 The bivariate normal
- 7.5 Extension to three or more random variables

• For expectations, we have

$$E[g(X,Y,Z)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y,z) f_{XYZ}(x,y,z) dx dy dz
= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} E[g(X,Y,Z)|Y=y,Z=z] f_{YZ}(y,z) dy dz$$
(15)
(by the **law of total probability**)

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} E[g(X,y,z)|Y=y,Z=z] f_{YZ}(y,z) dy dz.$$
(16)
(by the **substitution law**)

Homework

• Problems 57, 58.