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e The main focus of this chapter is the study of pairs of continuous

random variables that are not independent.

e Consider the following tunctions of two random variables X and
Y, X+Y XY max(X,Y) min(X,Y).

e Show that the cdfs of these four functions of X and Y can be
expressed in the form P((X,Y) € A) for various sets A C R?.




Example 7.1

e A random signal X is transmitted over a channel subject to

additive noise Y.
e The received signal is Z = X + Y.
e Express the cdf of Z in the form P((X,Y) € A,) for some set A,.




Solution

o Write
Fz(2)=P(Z<2)=P(X4+Y <2)=P((X,Y) € A,),

where
A, ={(z,y): (x+y) < 2}

e Since r +y < z it and only if y < —x + 2, it is easy to see that
A, is the shaded region in Figure 1.
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Figure 1: The shaded region is A z,y):x+uy <zt




Example 7.3

e Express the cdf of U := max(X,Y) in the form P((X,Y) € A,)

for some set A,.




Solution

e To find the cdf of U, begin with
Fy(u) =P(U <u) =P(max(X,Y) < u)

e Since the large of X and Y is less than or equal to u if and only
if X <wandY <u,

Pmax(X,Y) <u)=P(X <u,Y <u) =P((X,Y) € A,),

where A, = {(z,y) : © < u and y < u} is the shaded “southwest”

region shown in Figure 2.
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Example 7.4

e Express the cdf of V := min(X,Y) in the form P((X,Y) € A,)

for some set A,.
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Solution

e To find the cdf of V', begin with
Fy(v) =PV <v)=P(min(X,Y) < ).

e Since the smaller of X and Y is less than or equal to v if and
only if either X <vorY <w,

Pmin(X,Y) <v)=P(X <vorY <v)=P((X,Y) € A,),

where A, = {(x,y) : x <wv or y <wv} is the shaded region shown

in Figure 3.
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Product sets and marginal probabilities

e The Cartesian product of two univariate sets B and C' is

defined by
BxC:={(x,y):x € Bandy e C}.
e In other words,

(x,y) e Bx(C < x € Bandy e C.

e For example, if B =[1,3| and C = [0.5,3.5], then B x C'is the

rectangle in Figure 4.
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Figure 4: The Cartesian product |1, 3] x [0.5, 3.5].
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Joint cumulative distribution functions

e The joint cumulative distribution function of X and Y is

defined by
Fxy(z,y) =P(X <z,Y <y). (1)

e We can also write this using a Cartesian product set as
FXY(xay) — P((X7 Y) < (—OO,[E] X (—OO,y])

e In other words, Fxy(x,y) is the probability that (X,Y) lies in

the southwest region shown in Figure 5.
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Rectangle formula

e The joint cdf is important because it can be used to compute

P(X,Y) e A).

e For example, P(a < X < b,c <Y < d), which is the probability
that (X,Y) belongs to the rectangle (a,b] X (¢, d] as shown in

Figure 0, is given by the rectangle formula

FXy(b, d) — FXy(CL, d) — ny(b, C) —+ FXy(CL, C).
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Example 7.5

e If X and Y have joint cdf F'xy, find the joint cdf of
U:=max(X,Y) and V := min(X,Y).
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Solution (1/2)
e Begin with
Fyv(u,v) =PU < u,V < ).

e From Example 7.3, we know that U := max(X,Y) < u if and

only if (X,Y) lies in the southwest region shown in Figure 2.

e From Example 7.4, we know that V := min(X,Y) < v if and
only if (X,Y) lies in the region shown in Figure 3.

e Hence, U < wu and V < w if and only if (X,Y) lies in the

intersection of these two regions.

e The form of this intersection depends on whether u > v or u < v.
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Solution (2/2)
o If u < v, then the southwest region region in Figure 2 is a subset
of the region in Figure 3.

e Their intersection is the smaller set, and so

PU<u,V<v)=PU<u)=Fy(u) = Fxy(u,u), u<wv.

e If u > v, the intersection is shown in Figure 7.
P(U <u,V <w)
= Fxy(u,u) —Plv < X <u,v <Y <u)

= Fxy(u,u) — (Fxy(u,u) — Fxy(v,u) — Fxy(u,v) + Fxy(v,v))
= Fxy(v,u)+ Fxy(u,v) — Fxy(v,v), u>wv.
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Marginal cumulative distribution functions

e It is possible to obtain the marginal cumulative

distributions F'x and Fy directly from F'xy .

e More precisely, it can be shown that

Fx(z) = lim Fxy(z,y) =: Fxy(x,00),

y—00
and

Fy(y) = lim Fxy(x,y) =: Fxy(00,y).

r—00
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Example 7.7

o If

g ¢ ny> 0,

FXY (I, y) —
0, otherwise.

e F'ind both of the marginal cumulative distribution functions,
Fx(x) and Fy(y).
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Solution

e The marginal cdf of X is
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Independence

e We record here that jointly continuous random variable X and Y
are independent if and only if their joint cdf factors into the

product of their marginal cdfs.

Fxy(z,y) = Fx(x)Fy(y)
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Homework

e Problems 1, 2, 6.
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e In analogy with the univariate case, we say that two random

variables X and Y are jointly continuous with joint density
fXY (.T, y) if

P(X,Y)e A) = /A/fxy(:z:,y)dxdy

for some nonnegative function fxy that integrates to one; i.e.,

/ / Fry (2, y)dady = 1.
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Example 7.10

e Suppose that a random, continuous-valued signal X is
transmitted over a channel subject to additive, continuous-valued

noise Y .
e The received signal is Z =X 4+ Y.

e Find the cdf and density of Z if X and Y are jointly continuous

random variables with joint density fxy.
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Solution (1/2)
e Write
Fz(2)=P(Z<2)=P(X4+Y <2)=P((X,Y) € A,),

where A, :={(x,y) : v + y < 2z} was sketched in Figure 1.

e With the figure in mind, the double integral P(X + Y < z) can

be computed using

- [ [ /- fxy<x,y>dy] Ir
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Solution (2/2)

e Now carefully differentiate with respect to z.

fz(2) = 2/OO _/;foY(il?»?J)

— / 82 _ fXY(ZC y)dy_

:/ fxv(z, 2 — x)dx

e Recall that

— 00

dy| dx

dx
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e The marginal densities fx(x) and fy(y) can be obtained from

the joint density fxy.

h@z/ﬂEwmww (4)

h@zfﬂhw@mm. (5)

e Thus, to obtain the marginal densities, integrate out the

unwanted variable.
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Independence

e We record here that jointly continuous random variable X and Y
are independent if and only if their joint density factors into

the product of their marginal densities.

fxy(z,y) = fx()fy(y)
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Expectation

e If X and Y are jointly continuous with joint density fxy, then

the expectation of g(X,Y) is given by

Elg(X,Y)] = /OO /OO g(z,y) fxy(z,y)dxdy. (6)
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Homework

e Problems 9.
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We define the conditional density of Y given X by

_ fxv(z,y)
fx(z)

The conditional cdf is

frix(ylr) :

for x with fx(x) > 0.

Fyix(ylz) =PY <yl X =2) = /y fyx (t|x)dt.

Note also that if X and Y are independent, the joint density

_ fxv(zy) _ fx(@)fy ()

factors, and so fy|x(y|z)

fx () fx ()
It then follows that Fy x(y|z) = Fy (y).

In other words, we can “drop the conditioning”.

= fr(y).

(7)

(8)
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e Our definition of conditional probability satisfies the following
law of total probability.

P(X,Y) e A) = /OO P(X,Y) e AlX =a)fx(x)dx. (9)

— 0

e We also have the substitution law,

P(X,Y)e AlX =2)=P((z,Y) € A|X = x) (10)
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Example 7.14

e Suppose that a random, continuous-valued signal X is
transmitted over a channel subject to additive, continuous-valued

noise Y .
e The received signal is Z =X 4+ Y.

e Find the cdf and density of Z if X and Y are jointly have joint
density ny.
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Solution(1/2)
e We use the laws of total probability and substitution.

Fi(z) =P(Z < 2) = / TP(Z <Y = ) fy(y)dy

\\\\

PX—I—Y<2\Y—y)fy( )dy
PX+y<dY—wﬁ()
PX<Z—?J\Y—?J)fY( )dy

FXlY z—yly) fy(y)dy

— 00
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Solution(2/2)

e By differentiating with respect z,
fz(2) = / fxy(z —yly) fr(y)dy = / fxv(z —y,y)dy.

e If X and Y are independent, we can drop the conditioning and

obtain

1) = [ rxe = vy
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Conditional expectation

e Law of total probability

Elg(x.v)) = | T E(X,Y)|X = o] fx(2)da

— 00

e Substitution law

Elg(X,Y)|X = 2] = Elg(z,Y)|X = ]

(11)

(12)

43



Example 7.18

o Let X ~ exp(1), and suppose that given X =z, Y is
conditionally normal with fy|x(y|z) ~ N(0,z?).

e Evaluate E[Y?] and E[Y?X?].
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Solution (1/2)

e We use the law of total probability:.

E[Y?] = /OO E[Y?|X = 2] fx(x)dx

— 00

— /OO v? fx (x)dx

— 00

= E[X?] =2.
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Solution (2/2)
e We use the laws of total probability and substitution.

E[Y?X?]

/OO E[Y*X?|X = 2] fx(x)dx

— 00

_ / TEYZAIX = ol fx(2)da

— 00

_ /OO PEYX = o] f (2)da

— /OO ZIZ5fX(33)dSU
= E[X°] =5
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Homework

e Problems 26, 30, 31, 32, 34, 36, 37, 39(c).
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e The bivariate Gaussian or bivariate normal density is a

generalization of the univariate N(m,c?) density.
e Recall that the standard N (0, 1) density is given by

1 x?

\/%GXP(—E)-

e The general N(m,o?) density can be written in terms of ¢ as

Y(x) =

1 1 /2 —m\" 1 " r—m
exp | —— = — .
V2mo P 2 o o o




In order to define the general bivariate GGaussian density, it is

convenient to define a standard bivariate density first.

So, for [p| < 1, put

eXp (2(1__1p2) [u? — 2puv + 712])
2w/ 1 — p?

For fixed p, this function of two variables u and v defines a

hp(u,v) = (13)

surface.

The surface corresponding to p = 0 is shown in Figure 8.
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e From the figure and from the formula (13), we see that g is
circularly symmetric.

e—’r2/2

e For u® 4+ v° = r?, o(u,v) =

does not depend on the
271

particular values of v and v, but only on the radius of the circle

on which they lie.

e Some of these circles are shown in Figure 9.
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Figure 8: The Gaussian surface ¢,(u,v) with p = 0.
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v—axis
o

-3 -2 -1 0 1 2 3
u—axis

Figure 9: The level curves of ¢,(u,v) with p = 0.
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We also point out that for p = 0, the formula (13) factors into

the product of two univariate N (0, 1) densities, i.e.,

tho(u, v) = Y(u)ip(v).

For p # 0, v, does not factor.

In other words, U and V' are independent if and only if p = 0.
A plot of 9, for p = —0.85 is shown in Figure 10.

It turns out that now v, is constant on ellipse instead of circles.

The axes of the ellipses are not parallel to the coordinate axes, as

shown in Figure 11.
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u—axis

The Gaussian surface 1,(u, v) with p = —0.85.

Figure 10
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Figure 11: The level curves of v,(u,v) with p = —0.85.
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e We can now define the general bivariate Gaussian density by
exp (2(1—_1p2) [(x;?;x )2 L 210(33;7;)( )(y;?;%Y) + (y;:'jY )2})
2noxoy+/1 — p?

e It can be shown that the marginals are fx ~ N(mx,o0%),

fy ~ N(my,c?) and that E [(X _mX> (Y—my>] = p.

Ox Oy

(14)

e Hence, p is the correlation coefficient between X and Y.

e A plot of fxy withmx =my =0,0x =1.5,0y =0.6, and p =0

is shown in Figure 12.

e The corresponding elliptical level curves are shown in Figure 13.
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Figure 12: The bivariate Gaussian density fxy (z,y) with mx = my =
0,0x =1.5,0y = 0.6, and p = 0.
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Figure 13:
12.

y—axis

X—axis

The level curves of the bivariate Gaussian density in Figure
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Homework

e Problems 47, 48, 49.
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For expectations, we have

9(X,Y, 7))

= / / / (2, Y, 2) fxyz(2,y, z)dzdydz

= / / 9(X. Y, 2)|Y =y, Z = 2] fyz(y, 2)dydz (15)
(by the law of total probability)

= / / 9(X,y,2)|Y =y, Z = 2| fyz(y, z)dydz. (16)

(by the substitution law)
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Homework

e Problems 57, 58.
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