Chapter 5

Cumulative distribution functions and their applications

Wei-Yang Lin

Department of Computer Science

& Information Engineering

mailto:wylin@cs.ccu.edu.tw

• 5.1 Continuous random variables

• If X is a continuous random variable with density f, then cumulative distribution function (cdf) is defined by

$$F_X(x) := \mathsf{P}(X \le x) = \int_{-\infty}^x f(t)dt. \tag{1}$$

- Pictorially, F(x) is the area under the density f(t) from $-\infty < t \le x$.
- This is the area of the shaded region in Figure 1.
- Since the total area under a density is one, the area of the unshaded region must be 1 F(x).

• For a < b, we can use the cdf to compute probabilities of the form

$$P(a \le X \le b) = \int_a^b f(t)dt$$

$$= \int_{-\infty}^b f(t)dt - \int_{-\infty}^a f(t)dt$$

$$= F(b) - F(a).$$

Figure 1: The relationship between pdf f(x) and cdf F(x).

• Find the cdf of a uniform [a, b] random variable X.

- Since f(t) = 0 for t < a, we can see that $F(x) = \int_{-\infty}^{x} f(t)dt$ is equal to 0 for x < a.
- For $a \leq x \leq b$, we have

$$F_X(x) = \int_a^x \frac{1}{b-a} dt = \frac{x-a}{b-a}.$$

• For x > b, we have $F_X(x) = 1$.

- We now consider the cdf of a Gaussian random variable.
- If $X \sim N(m, \sigma^2)$, then

$$F_X(x) = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2}\left(\frac{t-m}{\sigma}\right)^2\right] dt.$$
 (2)

- Unfortunately, there is no closed-form expression for this integral.
- However, it can be computed numerically.
- In Matlab, the above integral can be computed with normcdf(x,m,sigma).

• We next show that the $N(m, \sigma^2)$ cdf can always be expressed using the **standard normal cdf**

$$\Phi(y) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{y} e^{-\theta^{2}/2} d\theta,$$
 (3)

• In (2), make change of variable $\theta = (t - m)/\sigma$ to get

$$F_X(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{(x-m)/\sigma} e^{-\theta^2/2} d\theta$$
$$= \Phi(\frac{x-m}{\sigma}).$$

- At the receiver of a digital communication system, thermal noise in the amplifier sometimes causes an incorrect decision to be made.
- For example, if antipodal signals of energy \mathcal{E} are used, then the bit-error probability can be shown to be $P(X > \sqrt{\mathcal{E}})$, where $X \sim N(0, \sigma^2)$ represents the noise, and σ^2 is the noise power.
- Express the bit-error probability in terms of the standard normal $\operatorname{cdf} \Phi$.

• The calculation shows that the bit-error probability is completely determined by \mathcal{E}/σ^2 , which is called the **signal-to-noise ratio** (SNR).

$$P(X > \sqrt{\mathcal{E}}) = 1 - F_X(\sqrt{\mathcal{E}}) = 1 - \Phi\left(\frac{\sqrt{\mathcal{E}}}{\sigma}\right)$$

- As the SNR increases, so does Φ , while the error probability decreases.
- In other words, increasing the SNR decreases the error probability.

- For continuous random variables, the density can be recovered from the cdf by differentiation.
- Since

$$F(x) = \int_{-\infty}^{x} f(t)dt,$$

differentiation yields

$$\frac{d}{dx}F(x) = f(x). (4)$$

• Differentiation under the integral sign is described in Wikipedia.

• Let the random variable X have cdf

$$F_X(x) := \begin{cases} \sqrt{x}, & 0 < x < 1, \\ 1, & x \ge 1, \\ 0, & x \le 0. \end{cases}$$

• Find the density (pdf).

- For 0 < x < 1, $f_X(x) = F'_X(x) = \frac{1}{2\sqrt{x}}$.
- For other values of x, $f_X(x) = F'_X(x) = 0$.
- Hence,

$$f_X(x) = \begin{cases} \frac{1}{2\sqrt{x}}, & 0 < x < 1, \\ 0, & \text{otherwise.} \end{cases}$$

- Consider an electrical circuit whose random input voltage X is first amplified by $\mu > 0$ and then added a constant offset voltage β .
- If the input is a continuous random variable, find the density of the output.

- Although the question asks for the density, it is more advantageous to find the cdf first and then obtain the density.
- Let Y denote the output voltage.

$$F_Y(y) = P(Y \le y)$$

$$= P(\mu X + \beta \le y)$$

$$= P(X \le \frac{y - \beta}{\mu}), \text{ since } \mu > 0$$

$$= F_X(\frac{y - \beta}{\mu}).$$

• If X has density f_X , then

$$f_Y(y) = \frac{d}{dy} F_Y(y)$$

$$= \frac{d}{dy} F_X(\frac{y - \beta}{\mu})$$

$$= F'_X(\frac{y - \beta}{\mu}) \frac{1}{\mu}$$

$$= \frac{1}{\mu} f_X(\frac{y - \beta}{\mu}).$$

• Recall the chain rule

$$\frac{d}{dy}F(G(y)) = F'(G(y))G'(y).$$

Homework

• Problems 6, 7, 8, 9, 11, 14, 16.