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• We say X is a discrete random variable if there exist distinct

real numbers xi such that
∑

i

P(X = xi) = 1
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Probability mass function

• When X is a discrete random variable taking distinct values xi,

we define its probability mass function (pmf) by

pX(xi) := P(X = xi). (1)

• Since pX(xi) is a probability, it is a number satisfying

0 ≤ pX(xi) ≤ 1, (2)

and ∑
i

pX(xi) = 1. (3)
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Uniform random variable

• We say X is uniformly distributed on 1, . . . , n if

P(X = k) =
1

n
, k = 1, . . . , n.

• In other words, its pmf takes only two values:

pX(k) =





1/n, k = 1, . . . , n,

0, otherwise.
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The Poisson random variable

• The Poisson random variable is used to model many different

physical phenomena.

• A random variable X is said to have a Poisson pmf with

parameter λ > 0,denoted by X ∼ Poisson(λ), if

pX(k) =
λke−λ

k!
, k = 0, 1, 2, . . .

• To see that these probabilities sum to one, recall that the power

series for ez is

ez =
∞∑

k=0

zk

k!
.
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Example 2.7

• The number of hits to a popular website during a 1-minute

interval is given by a Poisson(λ) random variable.

• Find the probability that there is at least one hit between 3:00

am and 3:01 am if λ = 2.

• Then find the probability that there are at least 2 hits during

this time interval.
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Solution

Let X denote the number of hits. Then

P(X ≥ 1) = 1− P(X = 0) = 1− e−λ = 1− e−2 ≈ 0.865.

Similarly,

P(X ≥ 2) = 1− P(X = 0)− P(X = 1)

= 1− e−λ − λe−λ

= 1− e−2 − 2e−2 ≈ 0.594
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Homework

• Problems 10, 11.
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Independence

• We say that X and Y are independent random variables if

and only if

P(X ∈ B, Y ∈ C) = P(X ∈ B)P(Y ∈ C)

for all sets B and C.
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Example 2.8

• On a certain aircraft, the main control circuit on an autopilot

fails with probability p.

• A redundant backup circuit fails independently with probability

q.

• The aircraft can fly if at least one of the circuits is functioning.

• Find the probability that the aircraft cannot fly.
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Solution

• We introduce two random variables, X and Y .

• We set X = 1 if the main circuit fails, and X = 0 otherwise.

• We set Y = 1 if the backup circuit fails, and Y = 0 otherwise.

• Then P(X = 1) = p and P(Y = 1) = q.

• We assume X and Y are independent random variables.

• Using the independence of X and Y ,

P(X = 1, Y = 1) = P(X = 1)P(Y = 1) = pq.
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Bernoulli random variable

• The random variables X and Y of the preceding example are

said to be Bernoulli.

• To indicate the relevant parameters, we write X ∼ Bernoulli(p)

and Y ∼ Bernoulli(q).

• Bernoulli random variables are good for modelling the result of

an event having two possible outcomes.
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Independence

• Given any finite number of random variables, say X1, . . . , Xn, we

say they are independent if

P
( n⋂

j=1

{Xj ∈ Bj}
)

=
n∏

j=1

P(Xj ∈ Bj),

for all choices of the sets B1, . . . , Bn.
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Example 2.9

• Let X, Y , and Z be the number of hits at a website on three

consecutive days.

• Assume they are independent Poisson(λ) random variables.

• Find the probability that on each day the number of hits is at

most n.
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Solution

• The probability that on each day the number of hits is at most n

is

P(X ≤ n, Y ≤ n, Z ≤ n).

• By independence, this is equal to

P(X ≤ n)P(Y ≤ n)P(Z ≤ n).
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• Since the random variables are Poisson(λ), each factor is equal to

P(X ≤ n) =
n∑

k=0

P(X = k) =
n∑

k=0

λk

k!
e−λ,

and so

P(X ≤ n, Y ≤ n, Z ≤ n) =
( n∑

k=0

λk

k!
e−λ

)3

.
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Max and min problems

• Calculations similar to those in the preceding example can be

used to find probabilities involving the maximum or minimum of

several independent random variables.
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Example 2.11

• For i = 1, . . . , n, let Xi model the yield on the ith production

run of an IC manufacturer.

• Assume yields on different runs are independent.

• Find the probability that the highest yield obtained is less than

or equal to z, and find the probability that the lowest yield

obtained is less than or equal to z.
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Solution

• Observer that max(X1, . . . , Xn) ≤ z if and only if all of the Xk

are less than or equal to z; i.e.,

{max(X1, . . . , Xn) ≤ z} =
n⋂

k=1

{Xk ≤ z}.

• It then follows that

P(max(X1, . . . , Xn) ≤ z) = P
( n⋂

k=1

{Xk ≤ z}
)

=
n∏

k=1

P(Xk ≤ z),

where the second equation follows by independence.
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• For the min problem, observer that min(X1, . . . , Xn) ≤ z if and

only if at least one of the Xi is less than or equal to z; i.e.,

{min(X1, . . . , Xn) ≤ z} =
n⋃

k=1

{Xk ≤ z}.

Hence,

P(min(Xi, . . . , Xn) ≤ z) = P
( n⋃

k=1

{Xk ≤ z}
)

= 1− P
( n⋂

k=1

{Xk > z}
)

= 1−
n∏

k=1

P(Xk > z)
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Joint probability mass functions

• The joint probability mass function of X and Y is defined by

pXY (xi, yj) := P(X = xi, Y = yj). (4)

• An example is sketched in Figure 2.8.
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• When X and Y take finitely many values, say x1, . . . , xm and

y1, . . . , yn, respectively, we can arrange the probabilities

pXY (xi, yj) in the m× n matrix




pXY (x1, y1) pXY (x1, y2) · · · pXY (x1, yn)

pXY (x2, y1) pXY (x2, y2) · · · pXY (x2, yn)
...

...
. . .

...

pXY (xm, y1) pXY (xm, y2) · · · pXY (xm, yn)




.

• Notice that the sum of the entries in the top row is

n∑
j=1

pXY (x1, yj) = pX(x1).
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• In general, the sum of the entries in the ith row is pX(xi), and

sum of the entries in the jth column is pY (yj).

• It turns out that we can extract the marginal probability

mass function pX(xi) and pY (yj) from the joint pmf pXY (xi, yj)

using the formulas

pX(xi) =
∑

j

pXY (xi, yj) (5)

and

pY (yj) =
∑

i

pXY (xi, yj). (6)
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Homework

• Problems 14, 15, 17, 18, 19, 20, 23, 25, 26.
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• If X is a discrete random variable taking distinct values xi with

probabilities P(X = xi), we define the expectation or mean of

X by

E[X] :=
∑

i

xiP(X = xi), (7)

or, using the pmf notation,

E[X] :=
∑

i

xipX(xi). (8)
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Example 2.21

Find the mean of a Bernoulli(p) random variable X.
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Solution

Since X takes only the values x0 = 0 and x1 = 1 ,we can write

E[X] =
1∑

i=0

iP(X = i) = 0 · (1− p) + 1 · p = p.
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Expectation of a function of a random variable

• Given a random variable X, we will often have to define a new

random variable by Z := g(X).

• If we want to compute E[Z], it might seem that we first have to

find pmf of Z.

• However, we can compute E[Z] = E[g(X)] without actually

finding the pmf of Z.

• The formula is

E[g(X)] =
∑

i

g(xi)pX(xi). (9)
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• As an example of its use, we can write, for a constant a,

E[aX] =
∑

i

axipX(xi) = a
∑

i

xipX(xi) = aE[X].

• In other words, the constant factors can be pulled out of the

expectation.

• Also, it is a simple exercise to show that E[X + Y ] = E[X] + E[Y ].

• Thus, expectation is a linear operator; i.e., for constants a and

b,

E[aX + bY ] = E[aX] + E[bY ] = aE[X] + bE[Y ]. (10)
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Moments

• The nth moment, n ≥ 1, of a random variable X is defined to

be E[Xn].

• The first moment of X is its mean, E[X].

• Letting m = E[X], we define the variance of X by

var(X) := E[(X −m)2]. (11)
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Variance formula

• It is often convenient to use the variance formula

var(X) = E[X2]− (E[X])2. (12)

• To derive the variance formula, write

var(X) := E[(X −m)2]

= E[X2 − 2mX + m2]

= E[X2]− 2mE[X] + m2, by linearity,

= E[X2]−m2

= E[X2]− (E[X])2.
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Example 2.28

Find the second moment and the variance of X if X ∼ Bernoulli(p).
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Solution

• Since X takes only the values 0 and 1, it has the unusual

property that X2 = X.

• Hence, E[X2] = E[X] = p.

• It follows that

var(X) = E[X2]− (E[X])2 = p− p2 = p(1− p).
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Correlation and covariance

• The correlation between two random variables X and Y is

defined to be E[XY ].

• The correlation is important because it determines when two

random variables are linearly related; namely, when one is a

linear function of the other.
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Example 2.36

• Let X have zero mean and unit variance, and put Y := 3X.

• Find the correlation between X and Y .
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Solution

• First note that since X has zero mean, E[X2] = var(X) = 1.

• Then write E[XY ] = E[X · 3X] = 3E[X2] = 3.
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Cauchy-Schwarz inequality

• An important property of correlation is the Cauchy-Schwarz

inequality, which says that

|E[XY ]| ≤
√

E[X2]E[Y 2], (13)

where the equality holds if and only if X and Y linearly related.
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Cauchy-Schwarz inequality

• To derive (13), let λ be a constant and write

0 ≤ E[(X − λY )2]

= E[X2 − 2λXY + λ2Y 2]

= E[X2]− 2λE[XY ] + λ2E[Y 2].

• Take

λ =
E[XY ]

E[Y 2]
,

then

0 ≤ E[X2]− 2
E[XY ]2

E[Y 2]
+

E[XY ]2

E[Y 2]
= E[X2]− E[XY ]2

E[Y 2]
.
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Cauchy-Schwarz inequality

• The previous result can be rearranged to get

E[(XY ]2 ≤ E[X2]E[Y 2]. (14)

• Taking square roots yields (13).

• We can also show that if (13) holds with equality, then X and Y

are linearly related.

• If (13) holds with equality, then so does (14).

• It follows that

E[(X − λY )2] = 0 ⇒ X = λY.
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Correlation coefficient

• The correlation coefficient of random variables X and Y is

defined to be the correlation of their normalized versions,

ρXY := E
[(X −mX

σX

)(Y −mY

σY

)]
. (15)

• Furthermore, |ρXY | ≤ 1, with equality if and only if X and Y are

related by a linear function plus a constant.

• A pair of random variables is said to be uncorrelated if their

correlation coefficient is zero.
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Covariance

• The covariance between X and Y is defined by

cov(X, Y ) := E[(X −mX)(Y −mY )]. (16)

• With this definition, we can write

ρXY =
cov(X, Y )√
var(X)var(Y )

.

• Hence, X and Y are uncorrelated if and only if their covariance

is zero.

45



Exercise

• Let X1, X2, . . . , Xn be a sequence of uncorrelated random

variables.

• More precisely, for i 6= j, Xi and Xj are uncorrelated.

• Please show that

var
( n∑

i=1

Xi

)
=

n∑
i=1

var(Xi).
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Homework

• Problems 32, 34, 35, 36, 37, 45.
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