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Abstract—We present how to extract rhythm information in 

dance videos and music, and accordingly correlate them based on 
rhythmic representation. From dancer’s movement, we construct 
motion trajectories, detect turnings and stops of trajectories, and 
then estimate rhythm of motion (ROM). For music, beats are 
detected to describe rhythm of music. Two modalities are 
therefore represented as sequences of rhythm information to 
facilitate finding cross-media correspondence. Two applications, 
i.e. background music replacement and music video generation, 
are developed to demonstrate the practicality of cross-media 
correspondence. We evaluate performance of ROM extraction, 
and conduct subjective/objective evaluation to show that rich 
browsing experience can be provided by the proposed 
applications.  
 

Index Terms—Rhythm of motion, motion trajectory, music beat, 
background music replacement, music video generation. 
 

I. INTRODUCTION 

HEN listening to music, people spontaneously tap their 
fingers or feet according to the music’s periodic structure. 

Dancing with music is a human nature to express meaning of 
music or to show people’s emotion. In recent years, hip-hop 
culture drives the development of street dance, and learning to 
dance has deeply attracted young people. Due to popularity of 
street dance and ease of video capturing, many dancers record 
their dances and share them on the web. However, quality of 
these videos, especially the audio tracks accompanying with the 
videos, is generally low. Moreover, to promote dance 
competitions or TV shows, music videos are elaborately 
produced by experts who have ample knowledge on 
choreography, music rhythm, and video editing. It is never an 
easy task for amateur dancers who want to share or preserve 
their performances for entertainment or education purposes.  

In this paper, we investigate how rhythm information can be 
found and utilized in street dance videos. From the visual track, 
periodic motion changes of dancer’s movement are extracted, 
which constitute “rhythm of motion” (ROM). From music, 
rhythm is constructed based on periodic properties of music 
beats. After extracting rhythm information from two modalities, 
cross-media correspondence is determined to facilitate 
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replacing background music of a dance video by a high-quality 
music piece. In addition, music videos can be generated by 
concatenating multiple dance video clips with similar ROMs.  

The concept “rhythm” describes patterns of changes in 
various disciplines. In music, beat refers to a perceived pulse 
marking off equal durational units [7], and is the basis with 
which we compare or measure rhythmic durations [9]. Tempo 
refers to the rate at which beats strike, and meter describes 
accent structure on beats. These parameters jointly determine 
how we perceive music rhythm. In contrast to the long history of 
music cognition study, analyzing rhythm of motion in videos is 
just at its infant stage. We focus on extracting motion beats from 
videos, which play an essential role in constituting ROM. To 
simplify description, we interchangeably use “rhythm” and 
“beats” in this paper.   

Contributions of this work are summarized in Figure 1 and 
are described as follows. 
� ROM extraction: By tracking distinctive feature points on 

human body, motion trajectories are constructed and 
transformed into time-varied signals, which are then 
analyzed to extract ROM. ROM represents periodic motion 
changes, such as “turning” and “stop” of trajectories.  

� Music beat detection and segmentation: By integrating 
energy dynamics in different frequency bands, music beats 
are detected. Periodically evolved beats are then used to 
describe rhythm of music.  

� Rhythm-based cross-media alignment: Two rhythm 
sequences are compared, and an appropriate 
correspondence between them is determined.  

� Applications: Based on rhythm-based cross-media alignment, 
background music replacement and music video generation 
are developed, which demonstrate practicality of 
rhythm-based multimodal analysis. 

The rest of this paper is organized as follows. Section II 
provides a survey on rhythm analysis in music and video, and 
introduces a related area derived from musicology. ROM 
extraction is described in Section III. Section IV first shows 
how we find rhythm of music, and then rhythm-based 
correspondence is determined to conduct background music 
replacement. Automatic music video generation is described in 
Section V. Section VI reports evaluation results and discussions, 
followed by concluding remarks in Section VII.   
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Figure 1. Framework of the proposed system. 

II. RELATED WORKS 

A. Motion Analysis in Videos 

Research about motion analysis mainly focuses on three 
factors: motion magnitude (or moving speed, motion activity), 
motion direction, and motion trajectory. Shiratori et al. [28] 
detect changes of moving speed in traditional Japanese dances, 
and then segment dance videos into a series of basic patterns. 
Deman et al. [5] detect temporal discontinuities by extracting 
local minimums of motion magnitudes. Motion analysis is 
conducted for the same object part in neighboring frames. 
Based on motion trajectories, Su et al. [29] develop a 
framework for motion flow (i.e. motion trajectory in our work) 
construction, which is then adopted to conduct video retrieval. 
This work only extracts a single motion flow to represent video 
content. With feature point detection and motion prediction, the 
work proposed in [21] constructs multiple trajectories in dance 
videos based on a “color-optical flow” method, which jointly 
considers motion and color information to facilitate motion 
tracking. Based on the extracted dance patterns, this system 
segments dance videos automatically.  

Despite rich studies on motion analysis, information to 
constitute ROM is not only motion magnitude or 
absolution/relative moving direction, but also the periodicity of 
substantial motion changes. To extract implicit rhythm derived 
from human body movement, we need finer motion analysis for 
body parts with complex dancing steps. For example, for a 
specific music rhythm, a dancer may move his left hand up and 
right hand down, followed by jumping at the instant of a music 
beat strikes. For the same music rhythm, a different dancer may 
squat, followed by twisting his body at the instant of the music 
beat strikes. They have different moving patterns, but we can 
easily sense that they move according to the same music rhythm.  

We have to emphasize that ROM is not only derived from 
“periodic motion,” but also “periodic changes of motion.” 
According to [4], motion of a point is periodic if it repeats itself 
with a constant period, e.g. an object like a pendulum goes back 
and forward periodically or an object cyclically moves around a 
circle. However, ROM in dance mainly comes from “periodic 

changes of motion”, such as periodic characteristics of turning, 
twisting, jumping, or stopping. Dancer’s movement does not 
necessarily repeat, but we still perceive he/she follows an 
implicit periodicity to make movement changes.  

Relatively fewer works have been done for periodic motion 
analysis. Deman et al. [5] explore the use of object-based 
motion to detect specific events in observational Psychology. 
Specific moving patterns are detected, but rhythm information 
from motion is not specially studied. Based on videos captured 
in light-controlled environments, Guedes calculates luminance 
changes of pixels in consecutive frames [15], which indicate 
motion magnitude between frames. Evolution of motion 
magnitude is then transformed into the frequency domain, and 
the dominant frequency component is detected by a pitch 
tracking technique. Our system detects periodic changes of 
motion by a method similar to Guedes’s. However, in our case, 
dance videos were captured in uncontrolled environments and 
varied luminance changes hurt Guedes’s approach. Cutler and 
Davis [4] compute object’s self-similarity as it evolves in time, 
and then apply time-frequency analysis to detect periodic 
motion. Laptev et al. [18] view periodic motion subsequences as 
the same sequence captured by multiple cameras. Periodic 
motion is thus detected and segmented by approximate 
sequence matching algorithms. Both [4] and [18] assume that 
orientation and size of objects do not change significantly, and 
they analyze how objects repeat themselves. However, in dance 
videos, ROM is not necessarily from motion repetition, and 
different body parts are not guaranteed to have consistent 
moving orientation and object size.  

Kim et al. [17] provide us a hint to extract ROM from motion 
data. They detect rapid directional change on joints, and then 
transform this information as motion signals. Power spectrum 
density of signals is then analyzed to estimate the dominant 
period. This systematic approach is suitable for our case. 
However, motion data in [17] were explicitly captured from 
sensors. We focus on ROM from real dance videos. Estimating 
periodicity from noisy motion data is more challenging.  

B. Audio to Video Matching 

Associating videos with music has been viewed as a good 
way to enrich presentation. Foote et al. [8] propose one of the 
earliest works on automatically generating music videos. Audio 
clips are segmented based on significant audio changes, and 
videos are segmented based on camera motion and exposure. 
Video clips are then adjusted to align with audio to generate a 
music video. Also for home videos, Hua et al. [16] discover 
repetitive patterns of music and estimate attention values from 
video shots, and then combine two media to generate music 
videos. Wang et al. [31] extend this idea to generate music video 
for sports videos. Events in sports videos are first detected, and 
two schemes (video-centric and music-centric) can be used to 
integrate two media. Yoon et al. [33] transform video and music 
into feature curves, and then apply the dynamic programming 
strategy to match these two modalities. To tackle with length 
difference between music and video, they adopt a music graph 
to elaborately scale music such that video-music 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

3

synchronization can be guaranteed. Recently, Yoon et al. [32] 
align music with arbitrary videos by using features in a 
multi-level way.  

Generally, these works first segment videos and music into 
segments, extract features from segments, and then match two 
sequences of segments to generate final results. Videos are first 
segmented based on color [16], events [31], camera motion and 
brightness [8], or shape [32]. These features characterize global 
information in video frames, and object-based information, e.g. 
object motion, may be overlooked. Works in [33] consider 
object motion and construct feature curves for videos. However, 
few discussions were made about integrating local motion from 
multiple parts, and the idea of periodic motion or periodic 
changes of motion was not mentioned.  

Finding association between video and audio (music) is a 
crucial step for audiovisual applications. Recently, Feng et al. 
[35] propose a probabilistic framework to model correlation 
between video and audio, and automatically generate 
background music for home videos. Lee’s group investigates 
association between music and animation [36] , or between 
music and video [37]. A directed graph is constructed and 
traversed to generate background music fit to the targeted 
animation. In fact, exploiting multimodal association to 
generate background music has been studied for a long time. An 
earlier idea can be found in [38].  

C. Embodied Music Cognition 

Most computer scientists separately detect rhythm 
information from music and video, and then synchronize them 
to generate audiovisual presentation. In fact, a branch of 
musicology, embodied music cognition [19], that investigates 
the role of human body in relation to music activities has been 
studied for years. Human body can be seen as a mediator that 
transfers physical energy to represent musical intentions, 
meanings, or signification. People move when listening to 
music, and through movement, people give meaning to music. 
This is exactly what dancers do in their performance. We 
provide a brief survey on this field in the following.  

Leman’s book [19] provides a great introduction to embodied 
music cognition, and provides a framework for engineers, 
psychologists, brain scientists, and musicologists to contribute 
to this field. More specifically, the EyesWeb project focuses on 
understanding affective and expressive content of human’s 
gesture [3]. The developed system analyzes body movement 
and gesture to facilitate controling sound, music, and visual 
media. Similarly, Godøy [10] investigates relationships 
between musical imagery and gesture imagery. As it is an 
ongoing research field, Godøy describes ideas, needs, and 
research challenges to link music cognition with body 
movement. Currently, researchers in this field start to use signal 
processing techniques to demonstrate that different parts of the 
body often synchronize music at different metrical levels [30]. 
The latest results suggest that metric structure of music is 
encoded in body movements. For computer scientists, the 
studies mentioned above open another window to discover 
rhythmic relationship between music and motion.  

III.  RHYTHM OF MOTION 

A. Overview of ROM 

Objects may move forward and backward periodically, move 
in the same trajectory periodically, or stop/turn according to 
some implicit tempo. In dance videos, ROM is a clue about how 
a dancer interprets a music piece. Figure 2 shows an example of 
rhythm of motion. The dancer stands up with hand moving 
down from frames 0 to 10, squats down with hand moving up 
from frames 10 to 20, and repeats the same action (almost) 
periodically. Note that the human body gives rise to non-rigid 
motion, with different parts moving toward different directions 
of different magnitudes. However, we can still realize that the 
dancer has periodic changes of motion. The implicit period thus 
forms rhythm of motion.  

Different dancers may have different interpretations for the 
same music, and they may not completely move with rhythm of 
music. Fortunately, most dancers have common consensus 
about how and when to move their bodies. Therefore, dance 
videos with same background music may consist of similar but 
not completely the same ROM. Dancers usually divide the 
music into segments of “eight beats”, and then design dancing 
steps for each segment [39]. Although different dancers have 
varied styles on poses or body movement, they make 
emphasized stop or turning at boundaries of eight-beat segments. 
This characteristic makes us capable to estimate the dominant 
period of emphasized motion stop/turning.  

frame 0 frame 5 frame 10 frame 15 frame 20 frame 25

frame 30 frame 35 Frame 40 frame 45 frame 50 Frame 55  
Figure 2. An example of rhythm of motion. 

B. Motion Trajectory 

To extract motion trajectories, we only consider motion on 
feature points rather than all pixels in video frames. Motion 
predicted from feature points effectively represents video 
content and decreases interference from background noise. 
Although our work is not limited to any specific feature 
detection method, we adopt the Shi-Tomasi (ST) corner 
detector [27], because it is shown to be robust under affine 
transformation and can be implemented easily. We apply the 
Pyramid Lucas-Kanade (PLK) optical flow detection method [2] 
to predict motion in various scales.  

The moving direction of a feature point  from frame  to 
frame  is estimated by:  

,  (1) 
where  denotes position of the feature point  at frame , 

 denotes the estimated position of the feature point  
at frame , and  denotes the estimation function.  

To construct trajectories, we need to appropriately connect 
feature points in temporally adjacent frames. Motion and color 
information of feature points in neighboring frames are checked. 
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For the feature point  at frame , we find the most appropriate 
feature point  at frame  by  

, (2) 

where  denotes neighborhood of the estimated location 
 The neighborhood region is defined as the set of 

pixels in the circle centered by , with radius .  
The distance  is defined as  

,  (3) 
where  and  are HSV color histograms of the  image 
patches centered by  and , respectively. The values of hue, 
saturation and volume are quantized into 8 bins, respectively.  

By this process, we construct feature-based trajectories. If a 
feature point  at frame  is able to be connected by 
multiple feature points  at frame , only the feature point  
having the minimum distance to  is selected, i.e. 

. In addition, to filter out short trajectory 
segments caused by noisy feature points, we eliminate motion 
trajectories shorter than a predefined threshold.  

Figure 3 shows examples of motion trajectories in the same 
video sequence but constructed based on different feature points. 
Figures 3(a), 3(b), and 3(c) are correctly extracted motion 
trajectories, and Figure 3(d) is a falsely extracted motion 
trajectory. We roughly can see periodic properties of 
trajectories in Figures 3(a), 3(b), and 3(c).  

(a) (d)(c)(b)  
Figure 3. Examples of constructed motion trajectories based on different 
feature points. 

C. Motion Beat Candidate Detection 

Based on the extracted trajectories, we detect candidates of 
motion beats for ROM extraction. A motion trajectory is 
denoted by , where  
denotes the frame number at which  starts, and  is the 
xy-coordinate of the feature point at the frame . We detect 
stops and turns of motion trajectories as motion beat candidates, 
which can be described by substantial changes of motion 
magnitude and moving direction.  

To alleviate the influence of trajectory extraction noise, 
motion estimation errors are assumed to be Gaussian distributed 
[1], and we conduct low-pass filtering by convolving motion 
trajectories with a Gaussian kernel function:  

,  (4) 

where  is the standard deviation controlling smoothness, and  
denotes the difference (in terms of frame number) from an 
arbitrary frame to the frame centered by the Gaussian.  

The horizontal movement data  is 
filtered as  

,  (5) 

where  denotes the filtered horizontal displacement at 
frame . The vertical displacement  is 

filtered in the same way. After filtering, the motion trajectory 

 is smoother, and then we are able to detect 
stops and turns more precisely.  

A stop action is often a joint of movements. A dancer may 
move his hand toward some direction, stops when a music beat 
strikes, and later moves reversely. The stop action in dance 
videos represents that the movement has completely ended, or 
just a temporary stop which serves a start of another movement. 
To detect stops of a motion trajectory, we examine evolution of 
the motion magnitude, , where  
denotes the magnitude of the motion from frame  to frame 

, i.e. . We use  
to represent  in the following description. Magnitude 
decreases when movement decelerates, and a local minimum 
occurs at the moment of a stop. In this work, we detect local 
minimums of the magnitude history based on a modified hill 
climbing algorithm [11].  

There may be many stop points in a motion trajectory. To 
detect every local minimum, we modify the hill climbing 
algorithm as in Algorithm 1. If the magnitude of the -th 
frame in the neighborhood of the current frame (indexed by 

) is smaller than , we replace  by . 
This procedure repeats until  is the smallest within the 
neighborhood. Neighborhood of the index  is defined as 

. The value 
 is set as 7 in our work, i.e. only the seven temporally adjacent 

frames following the -th frame are checked. After the local 
minimum is found, we again adopt hill climbing to find the local 
maximum, which serves the start for finding the next local 
minimum. This process repeats until the whole magnitude 
history is checked. Finally, the set of local minimums are 
viewed as motion beat candidates.  

To find trajectory turning, we analyze evolution of motion 
orientation. The orientation history is denoted as 

, where  is the motion vector from 
frame  to frame , and is represented in a united vector 

form, i.e. . Based on this 

information, we design a method shown in Algorithm 2 to find 
turnings in a trajectory. When the trajectory keeps moving at the 
same direction at frames  and , the inner product of  and 

 (denoted as ) would be close to 1. On the 
other hand, when the trajectory turns, the value of inner product 
decreases or even reverses. Therefore, we accumulate inner 
products between motion vectors in a sequence of frames, and 
then find the turning points by checking the average value of 
accumulated inner products (line 7 to line 11 in Algorithm 2). If 
the average value is less than a threshold , we find the instant at 
which the average value of the accumulated inner product 
changes the most (line 12). This instant is stored, and is then 
updated as the next  point. This process repeats until the 
whole orientation history is checked. The set of turning points is 
also viewed as motion beat candidates.  
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D. Rhythm Estimation and Filtering 

In this section, we use the scheme proposed in [17] for motion 
beat refinement and dominant period estimation. Note that not 
every detected turning point or stop point is truly a motion beat. 
Therefore, the scheme first finds the dominant period from 
motion beat candidates, and accordingly estimates the reference 
beats. Guided by reference beats, we estimate actual motion 
beats by finding the candidate beats that have small temporal 
differences to reference beats.  

 
Single trajectory:  

To predict the dominant period from motion beat candidates, 
we estimate pulse repetition interval (PRI) from a signal 
generated based on the time instants of beats striking [24]. This 
method is computationally tractable and is robust to trajectory 
extraction errors. From a motion trajectory, a motion beat 
sequence is denoted as , where  is the 
timestamp (in terms of frame number) of the th motion beat 
candidate. We can model generation of these motion beats as 

, (6) 
where  is the unknown period,  is a shift ranging in the 

interval ,  is noise caused by the dancer or the beat 
detection module and is set as in the interval , and 

 is a positive number indicating the index of beat. The 
reference motion beats can be modeled as , which 
represents periodic appearance of actual motion beats. With this 
model, we would find  and  for reference beat estimation. 

Figure 4 shows how we estimate reference beats based on 
motion beat candidates. First, we transform the sequence of 
motion beat candidates into a continuous-time signal as  

 (7) 

where . This signal is maximized when a motion 
beat candidate appears, i.e.  when . When  is 
located between two motion beat candidates, the value of  
is determined by a cosine function. For each beat candidate , a 
cosine centered at  is applied, and all sinusoids generated from 
beat candidates are accumulated to generate a signal , as 
shown in the second row of Figure 4. 

Based on , we estimate the dominant period by 
calculating maximum of power spectrum density (PSD) [23]. 
This process calculates energy of the accumulated sinusoid in 
different frequency bands. According to the Nyquist sampling 
theorem, the maximum frequency able to be detected is half of 
sampling rate. Fortunately, we can reasonably assume that the 
frequency of motion beats is lower than half of frame rate (30 
fps), because the human body hardly moves so fast. We 
calculate PSD by  

,  (8) 

where  is the length of the accumulated sinusoid, and  is the 
index of a frequency band. The dominant frequency is the 
frequency that gives the maximal :  

. (9) 
The dominant period  implies that most motion 

beats periodically appear at multiples of .  
We then estimate  by finding the shift that causes the 

maximal sum of periodic positive peaks:  

, (10) 

where  is in the interval .  
 

Motion beat 
candidates

Accumulated 
sinusoid

Reference beat 
estimation

t

 
Figure 4. Reference beat estimation based on motion beat candidates.  
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Figure 5. Estimation of reference beats with multiple motion trajectories.  

 
Multiple trajectories:   

The aforementioned process is applied to a motion beat 
sequence derived from a single motion trajectory. To jointly 
consider multiple beat sequences derived from multiple motion 
trajectories, we extend the process as illustrated in Figure 5. The 
idea of this process is similar to extracting fundamental 
frequency or pitch detection from a signal that is a superposition 
of sinusoids. This process is often adopted in pitch detection for 
speech [20] or music. In our case, because different parts of the 
dancer’s body acts according to the same rhythm of music, 
sinusoids generated from different body parts are nearly 
harmonically related. Although motion trajectories may have 
different durations, this process is able to resist variations of 
different sequences and robustly finds the dominant period.  

Based on this idea, we construct an accumulated sinusoid 
 for each trajectory separately, and then superpose  

sinusoidal signals , , …,  as a superposed signal, 
assuming  different motion trajectories. The PSD of the 
signal  is computed as  

,  (11) 

where  is the length of the superposed signal, and  is the 
index of a frequency band. The dominant period and the phase 
can be estimated by the way same as in single trajectory.  

After estimating reference motion beats, we detect actual 
motion beats and filter out outliers. The actual motion beats may 
appear close to reference beats. A beat candidate  is claimed 
as in the neighborhood (as an inlier) of a reference beat  if  

.  (12) 
The value  is a parameter controlling the range of 

neighborhood. If  is too large, outliers may be included in the 
final process. If  is too small, we may filter out actual motion 
beats. We will test this parameter in the evaluation section.  

After removing outliers, we detect actual motion beats by  

,  (13) 

where  is the detected actual motion beat corresponding to 

reference beat , and  is the neighborhood of  defined 
in eqn. (12). The candidate beat that is in the neighborhood of  
and is closest to  is detected as an actual motion beat. If a 
reference beat has no neighboring candidate beat, no 
corresponding actual motion beat exists at this moment.  

IV. BACKGROUND MUSIC REPLACEMENT 

We would like to replace the original audio track of a dance 
video, which is captured in an uncontrolled environment and is 
deteriorated by noises, by a higher-quality music piece, which 
conveys similar pulse as the original audio track but is from a 
CD recording or a high-quality mp3 file. We conduct 
background music replacement based on ROM in dance videos 
and music beats in the selected music piece.  

A. Music Beat Detection 

Music beat detection and tracking has been studied in the last 
decade. Scheirer [25] divides spectrum into several frequency 
bands, analyzes energy dynamics in each, and then fuses 
information from different bands to detect beats. Dixon [6] 
develops another classical work to automatically extract tempo 
and beat from music performance. More recently, Oliveira et al. 
[22] improve Dixon’s approach to achieve real-time 
performance. Beat tracking becomes more challenging for 
non-percussive music with soft onsets and time-varying tempo. 
Grosche and Muller [13] propose a mid-level representation to 
derive musically meaningful tempo and beat information. They 
also propose a framework to evaluate consistencies of beat 
tracking results over multiple performances of the same music 
piece [14]. Covering a wide range of music, Eyben et al. [34] 
propose one of the state-of-the-art onset detection approaches 
based on neural networks. Readers who are interested in 
relationship between rhythm and mathematical models are 
referred to [26]. A complete review for rhythm description 
systems can be found in [12].  

Although a more recent approach such as [34] can be applied 
to analyze music beats, music accompanied with street dance 
often has strong beats, and the typical Scheirer’s method [25] is 
used to detect music beats in our work. Energy evolution in each 
frequency band is extracted, followed by envelope smoothing 
with a half-Hanning window. We again conduct hill climbing 
for peaks finding in each envelope, and then integrate results in 
different frequency bands to estimate music beats. Because 
there are many detection noises, we refine the result by the 
process described in Section III.D. A sinusoidal function is 
constructed based on the detected music beats, and the dominant 
period and time shift of the sinusoid are estimated to determine 
reference music beats. The actual music beats are detected by 
finding the ones that are closest to reference beats.  

B. Rhythm-Based Cross-Media Alignment 

Based on rhythm information, we would like to determine 
appropriate alignment between two modalities. Motion beats 
and music beats are respectively represented by a binary vector, 
denoted by  and 

, where  and  
indicates a beat at the th millisecond of the video (music).  

Basically, this is an approximate sequence matching problem, 
which can be solved by widely-known algorithms such as 
dynamic time warping (DTW). However, given two binary 
sequences, e.g.    and , 
the DTW algorithm equally treats characters  and  and finds 
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the longest common subsequence between  and . In 
dance videos, dancers only interpret parts of music beats, and 
the priorities of 0 and 1 should be different. Although we can 
design a variant of DTW to handle this problem, we found that 
the following simply alternative already achieves satisfactory 
performance.  

To simplify description, we assume duration of the 
higher-quality music is longer than that of video without loss of 
generality. We also note that motion beats only correspond to 
parts of music beats. With these characteristics, we would like 
to find a music segment that is appropriately to be aligned with 
the video. The original background music of the video is then 
replaced by the newly-aligned music segment.  

We try different time shifts for the music beat sequence to 
find the best match between two sequences. To measure degree 
of matching, we define the temporal distance between the th 
motion beat  and its closest music beat in the sequence 
with the shift  by  

,  (14) 
where  is the length of the music beat sequence, and 

 denotes the value of the th sample in the sequence 
with the shift .  

Degree of match between two sequences with the shift  is 
defined as the ratio of coherence to distance. The coherence 
value  is defined as  

,  (15) 

which is larger if temporal distances between motion beats and 
their closest music beats are smaller.  

The difference value  is calculated as  

.  (16) 
These two factors are integrated as the final degree of 

matching:  

.  (17) 

Finally, we determine the most appropriate shift  by  
.  (18) 

After finding the best shift , the music segment 
 from  is used to replace the 

original background music. For example, if the best shift  is 
3.8 seconds, and the video clip’s length is 28.1 seconds, then the 
music segment from 3.8 to 31.9 seconds of the selected music 
piece is used to replace the original background music.  

According to eqn. (18), we have at most  
possible shifts. Given a shift , the complexity for calculating 
degree of matching (eqn. (17)) is 

 because  instructions are 
respectively needed to calculate  and , and  
comparisons are needed to calculate  in the worst case. 
Because both sequences  and  are temporally sorted, 
to find the closest music beat to the th motion beat , we 
just need to search neighborhood of the -th point in the 
sequence . Therefore, the number of comparison for 
determining  is much less than .  

V. MUSIC VIDEO GENERATION 

A. Music Segmentation 

To generate music videos, we first segment music and then 
select suitable video clips for each music segment. By 
comparing audio frames, a self-similarity matrix is constructed 
to describe autocorrelation, and the entries in the main diagonal 
with local maximum novelty values indicate boundaries 
between music segments. To calculate novelty values, we 
convolute the self-similarity matrix with a radially-symmetric 
Gaussian taper [8]. Theoretically, if the size of a music segment 
is , the most appropriate size of the checkerboard kernel is 

. Although we do not know the size of music segments, 
we know that a reasonable music segment often ends at the end 
of eight beats. With the dominant period  determined by the 
method in Section III.C, we set the size of the checkerboard 
kernel as . The novelty values of the th audio frame is 
then calculated as  

,  (19) 

where  and  denotes the checkerboard kernel.  
We adopt the hill climbing algorithm again for detecting 

peaks from the sequence of novelty values. These peaks are 
denoted as , which is sorted in descending 
order according to the corresponding novelty value, and  
denotes the timestamp of the th peak. To keep representative 
peaks in  and avoid too short music segments, we design 
Algorithm 3. To define the threshold , we observe music 
videos produced by professional editors, and set it as twice of 
eight beats. The length of an eight beats can be calculated as 
eight times of the dominant period.  

B. Video Clip Selection 

For every music segment, we select a video clip from the 
database that has the best degree of matching to it. Assume that 
a music segment of length  is shorter than the video clip. 
Therefore, from the video clip we would like to find a video 
segment that best matches with the music segment. The method 
of finding the best shift  in Section IV.B is again adopted to 
find a video segment ranging from  to .   

To generate a music video that includes video segments of 
similar rhythm but from different dancers’ performances, we 
avoid that the same video segment is selected by more than one 
music segment. Algorithm 4 is designed to accomplish music 
video generation. Assume that there are  music segments 
and there are  videos in the database. For every music 
segment, we calculate s (eqn. (17)) between it and every 
videos. The value  denotes the  between the 
th music segment and its most appropriate video segment 

deriving from the th video. We use a boolean vector  to 
record whether the videos have been selected by a music 
segment, and a boolean vector  to record whether the music 
segments have selected videos. Algorithm 4 is designed based 
on the greedy strategy that maximizes the sum of s for all 
music segments.  
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VI. EXPERIMENTS 

A. Evaluation Dataset 

Table 1 lists information of the three datasets used in 
evaluation. The first dataset is captured from two people’s 
dances according to six different music pieces, with a relatively 
simple background (c.f. Figure 6(a)). They just perform simple 
periodic movement to be the reference dataset for evaluating 
ROM extraction. Videos in the first two datasets were captured 
from dancers in the street dance club of our university. Each of 
them has taken at least two years of dancing training. The 
second dataset includes eleven different dancers’ performances, 
and was captured in a much cluttered environment, as shown in 
Figure 6(b). According to five music pieces, these dancers 
perform in their preferable ways (hip-hop, popping, locking, or 
freestyle) and dance for 30 to 40 seconds. Numbers of different 
types of dances are listed in Table 2. Different from the first two 
datasets, the third dataset includes clips downloaded from the 
web and is much more challenging (Figure 6(c)). Multiple 
professional dancers dance in cluttered environments, and some 
of them dance for more than one minute. All videos in the 
evaluation datasets are coded as MPEG-4 videos, with 

 resolution. These datasets and experimental results 
described in the following are available on our website: 

http://www.cs.ccu.edu.tw/~wtchu/projects/ROM/index.html. 
Extracting rhythm information from these videos is very 

challenging. We see apparent and time-varied shadows in 
Figure 6(a). In Figure 6(b), dancers may have different scales of 
motions, and motion may appear in anywhere on the screen. In 
the third dataset, not all dancers move accurately as music beats, 
and different dancers may have different dancing steps. Quality 
of videos in the third dataset is not as good as that in others. 
Moreover, sort of global motion caused by camera moving can 
be seen in both the second and the third datasets.  

To verify the motivation of background music replacement, 
we exploit the package developed in [40] to assess quality of 
background music in the second dataset, in terms of the average 
perceptual similarity measure (PSM) [40]. The PSM value 
ranges from 0 to 1, and a higher value indicates larger 
correlation between the original one and the degraded version. 
From the experiments in [40], six audio signals used for 
evaluating low bit-rate audio codecs by ITU and MPEG have 
PSM values ranging from 0.88 to 1. In our case, the average 
PSM value of the background music is 0.68. By comparing 
these two cases, we see that quality of background music is 
significantly downgraded, and thus replacing it with 
higher-quality music would be valuable.  

Table 1. Information of evaluation datasets.  
 1st dataset 2nd dataset 3rd dataset 

# video clips 30 50 13 
Average 
length 

11 sec 35 sec 1 min 23 sec 

Multiple 
dancers 

No No Yes 

Cluttered 
background 

No Yes Yes 

Dancing 
types 

Simple periodic 
movement 

Hip-Hop, Popping, 
Locking, and 

Freestyle 

Hip-Hop, Popping, 
Locking, and 

Freestyle 
Dancers Dancers from street 

dance club 
Dancers from street 

dance club 
Professional dancers 

Source Capturing Capturing Downloaded from the 
web 

(a)

(b)

(c)

 
Figure 6. Snapshots of (a) the first, (b) the second, and (c) the third evaluation 
datasets. 

B. Performance of ROM Extraction 

A detected motion beat is claimed as correctly detected if the 
temporal distance between it and a truth beat is less than two 
video frames, i.e.  seconds in 30-fps videos. Ground truths 
of motion beats were manually defined frame by frame, by the 
second author who had taken dancing training for years. We 
calculate average accuracy of motion beat detection for the 30 
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video clips in the first dataset, with various settings of the 
following parameters: 1) the definition of neighborhood  
in eqn. (2); 2) the degree of smoothness controlled by  in eqn. 
(4); 3) the threshold  in Algorithm 2 for detecting turning 
points in trajectories; and 4) the parameter  in eqn. (12) for 
filtering out outliers in motion beat candidates.  

Figure 7 shows performance in terms of precision, recall, and 
F-measure. From Figure 7(a), we see that the detection 
performance varies slightly when the radius of neighborhood is 
larger than three pixels. Similar effects can be observed from 
other sub-plots of Figure 7. This means the proposed method 
has stable performance once parameters in an appropriate range 
are set. In the following experiments, these four parameters are 
chosen as , , , and .  

Generally, the proposed method has higher recall than 
precision. We estimate the fundamental period from the 
constructed sinusoid, and thus describe repeated characteristics 
of the signal. More truth beats can be detected if the reference 
beats are better estimated, and therefore the recall rate increases. 
In the developed applications, we prefer to detect motion beats 
as many as possible for providing finer ROM. If the music well 
matches strong motion beats, humans may be highly satisfied 
with the manipulated videos. That is why the average value 0.5 
in F-measure is enough for the following applications.  

Based on the second dataset, we compare motion beats 
detected by three different methods: (1) detection based on 
motion magnitude difference (baseline), (2) detection based on 
luminance difference [15], and (3) our approach – motion 
trajectory analysis. Figure 8 shows the best F-measure values 
achieved by the three methods are 0.13, 0.18, and 0.58, 
respectively. Guedes estimated motion magnitude by luminance 
changes between frames [15], and then estimated the dominant 
frequency from motion magnitude evolution. However, in the 
second dataset, dance videos were captured in uncontrolled 
environments and varied luminance changes hurt Guedes’s 
approach. The proposed method analyzes motion trajectories 
and thus can more reliably capture motion beats.  

Figures 9(c), (e), and (g) show frames right at the detected 
motion beats, and Figures 9(b), (d), (f), and (h) show frames 
in-between motion beats. We see that movements at detected 
motion beats are really stops of movements or ends of postures.  

We further evaluate the proposed method for videos 
consisting of multiple dancers and lasting for more than one 
minute. Similar to the demand of stationary properties in digital 
signal processing, the proposed method only works well for 
video clips with stationary motion beats. Therefore, videos 
longer than one minute are appropriately segmented in advance, 
and in each segment motion beats are stationary. Figure 10 
shows the average precision, recall, and F-measure for the third 
dataset, respectively. Our method has slightly higher precision, 
but performs significantly better in recall. For the videos in the 
third dataset, Guedes’s approach does not have clear advantage 
over the baseline approach. By comparing Figure 8 with Figure 
10, we confirm that extracting motion beats in videos with 
multiple dancers is much harder than that with single dancer. 
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Figure 7. Performance of motion beat detection in terms of precision, recall, 
and F-measure, under different parameter settings.  
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Figure 8. Performance comparison of ROM extraction for the second dataset.  

(a) (c) (e) (g)

(b) (d) (f) (h)

Detected 
motion 
beats

 
Figure 9. A sequence of video frames and the corresponding motion beats.  
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Figure 10. Performance comparison of ROM extraction for the third dataset. 
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C. Performance of Background Music Replacement 

Performance of background music replacement is hard to be 
measured, because the judgement is subjective and the ground 
truth is hard to be formulated. Moreover, not every music beat is 
interpreted by dancers and different dancers may interpret 
differently, which make quantitative measurement infeasible. 
Therefore, we conduct subjective tests on the basis of 
replacement results for the second dataset.  

Two sets of subjects were invited in the subjective evaluation: 
twenty ordinary users who had varied musical knowledge and 
were not familiar with street dance, and eleven dancers from the 
street dance club of our university who had taken dancing 
training for years. The former set of subjects was invited to 
verify whether the proposed method generally achieves 
satisfactory performance for ordinary users. Basic musical and 
choreographic knowledge was introduced to them before the 
test. The latter set of subjects was invited to examine finer 
rhythmic relationship between video and music. We separately 
describe two experiments as follows.  
Ordinary users’ evaluation:  

The questionnaire for ordinary users is designed as:  
Q1: Do you think the videos with background music 

replacement provide better viewing experience than the original 
videos? (Yes/No) 

Q2: According to how the dancer moves with the rhythm of 
music (caused by drum, cymbal, etc.), evaluate how close the 
video with background music replacement is to the original 
video. The score ranges from one to five, and a higher score 
means “rhythmic properties between music and motion” is 
closer to the original video.  

Q3: According to how the dancer moves with the emotion of 
music content (derived from melody, vocal, lyric, etc.), evaluate 
the degree of satisfaction of the video with background music 
replacement. The score ranges from one to five, and a higher 
score means higher satisfaction.  

Q4: Rank videos generated by the three methods in Section 
VI.B. The value of rank ranges from one to three in integral, and 
a smaller value means higher preference.  

We conduct background music replacement based on ROM 
extracted by motion magnitude difference (baseline), Guede’s 
approach, and our approach, respectively. In subjective tests, 
we follow the DSIS (Double Stimulus Impairment Scale) 
scheme defined in ITU-R Recommendation BT.500-11. The 
original video was played first, followed by the result generated 
based on one of the three approaches.  

For the first question, 87.5% of videos with background 
music replacement are thought to provide better viewing 
experience. This result confirms that it is worth to conduct 
background music replacement.  

Table 2 shows the results of Q2 and Q3 for different dance 
styles. The standard deviations of scores are reported in 
parentheses. Videos in the second dataset can be divided into 
four sub-categories: hip-hop, popping, locking, and freestyle. 
Hip-hop is a dance style focusing on grooving and interpreting 
drums in music. Popping consists of pop, wave, and stopping 

poses, which is able to describe music beats well. Locking is 
about arm twisting, kick, point, and elastic movements. Locking 
is funky, and dancers often pay attention to moments of music 
beats appearance. Freestyle does not have major movements, 
but focuses on how to precisely interpret music emotion 
represented by melody, vocal, etc. Overall, our method jointly 
considers evolutions of motion magnitude and orientation, and 
more accurately extracts rhythm of motion to facilitate better 
background music replacement.  

For hip-hop, our approach does not have clear superiority 
over other methods. In general, hip-hop movements not only 
interpret music beats, but also interpret progress between music 
beats. Our current method focuses on time instants of motion 
beats and music beats, and a further study about progress 
between beats is needed in the future. We achieve good 
performance for popping and locking. Dancers with such styles 
strike strong motion beats according to music beats caused by 
percussion instruments. We have much better performance for 
freestyle dances, which focus on artistic conception conveyed in 
music content. Generally, different dance styles affect ROM 
extraction and background music replacement.  

Figure 11 shows results of Q4. We clearly see that our 
approach is the most preferable expect for hip-hop dances, 
which confirms the trend shown in Table 2.  
Table 2. Subjective performance of BGM replacement evaluated by ordinary 

users. 
 Hip-Hop 

(12) 
Popping 
(13) 

Locking 
(13) 

Freestyle 
(12) 

Overall 
(50) 

Q2 (base) 3.29 
(0.43) 

3.13 
(0.58) 

3.08 
(0.63) 

3.00 
(0.84) 

3.12 

Q2 ([15]) 3.37 
(0.44) 

3.05 
(0.55) 

3.05 
(0.65) 

2.89 
(0.53) 

3.08 

Q2 (Our) 3.37 
(0.35) 

3.26 
(0.46) 

3.42 
(0.52) 

3.63 
(0.48) 

3.42 

Q3 (base) 3.24 
(0.54) 

3.30 
(0.53) 

3.08 
(0.57) 

3.10 
(0.74) 

3.17 

Q3 ([15]) 3.32 
(0.53) 

3.19 
(0.60) 

2.98 
(0.63) 

3.01 
(0.53) 

3.11 

Q3 (Our) 3.33 
(0.45) 

3.41 
(0.59) 

3.40 
(0.57) 

3.61 
(0.52) 

3.44 

Average rank

0

0.5

1

1.5

2

2.5

Hip-Hop Popping Locking Freestyle Overall

Baseline

Guedes

Our

 
Figure 11. Ordinary users’ preference on BGM replacement results for different 
dance styles. 

Dancers’ evaluation:  
Because dancers have richer musical and choreographic 

knowledge, more detailed evaluation can be conducted. To 
observe detailed rhythm relationship between video and music, 
the second question Q2 was divided into two finer questions:  

Q2-1: According to how the dancer moves with the dominant 
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rhythm of music1 , evaluate how close the video with 
background music replacement is to the original video.  

Q2-2: According to how the dancer moves with the 
characteristic rhythm of music2, evaluate how close the video 
with background music replacement is to the original video.  

The question Q1 does not need to be measured again, because 
this application is intuitive to dancers. Table 3 provides the 
evaluation results from dancers for Q2-1, Q2-2, and Q3. Our 
method also has promising performance based on dancer’s 
evaluation. The performance for Q2-1 is better than that for 
Q2-2, which confirms that dominant rhythm is easier to be 
detected than characteristic rhythm. The results for Q3 are 
worse than Q2-1 and Q2-2. It is reasonable because Q3 is 
related to music emotion, which has not been considered 
currently.  

Figure 12 shows dancer’s preference on replacement results 
for different dance styles. These results are similar to that in 
ordinary user’s evaluation. However, for popping our ranking 
result is worse than the baseline. Popping contains lots of static 
poses, which facilitate motion beat detection by the baseline 
approach. In Table 3, for Q2-1 the baseline method achieves 
better performance in popping, which corresponds to the 
ranking result in Figure 12. Overall, our method has better 
performance for all dance styles except for popping. The 
performance variation between ordinary users and dancers 
reveals their knowledge gaps on music and choreography.  

D. Performance of Music Video Generation 

Evaluating music segmentation is subjective, and the 
performance may differ from different music types and 
applications. In our work, we provide an evaluation guide as in 
Table 4 to reduce variations of subjective evaluation. If the 
difference between the best boundary and a detected boundary 
is smaller than twice of the dominant period, the detected 
boundary is claimed to be close to the best boundary. For the 
second dataset, the average score is 3.104, i.e. most boundaries 
are given scores over three and are located at music beats.  

To verify that the proposed rhythm-based music video 
generation is attractive, we compare music videos generated by 
Algorithm 4 with that generated by randomly selecting a video 
segment to a music segment. Ten music videos are generated by 
two approaches, respectively. The observers were asked to 
evaluate whether the selected video segments are suitable for 
the background music, and give a score ranging from one to five 
(a higher score means higher satisfaction). Overall, our music 
videos obtain 3.42 on average, while the music videos generated 
by random selection obtain 2.46 on average. The score is 
especially high if ROM in the selected video segment is a 
multiple of that of the background music.  
 
1 The music beats produced by drum form the dominant rhythm of music. They 
are strong and repeat with a fixed period. If the speeds of two music pieces are 
the same, their dominant rhythms are identical.  
2 The music beats produced by cymbal and snare-drum form the characteristic 
rhythm of music. They are relatively weaker than the dominant rhythm. Two 
music pieces that have the same dominant rhythm may have different 
characteristic rhythm, depending on arrangement of music. 

Table 3. Subjective performance of BGM replacement evaluated by dancers. 
 Hip-Hop Popping Locking Freestyle Overall 

Q2-1 
(base) 

3.48 
(0.06) 

3.30 
(0.10) 

3.18 
(0.40) 

2.70 
(0.26) 

3.16 

Q2-1 
([15]) 

3.33 
(0.40) 

2.93 
(0.23) 

3.09 
(0.10) 

2.80 
(0.10) 

3.03 

Q2-1 
(Our) 

3.63 
(0.17) 

3.23 
(0.12) 

3.36 
(0.16) 

3.60 
(0.26) 

3.45 

Q2-2 
(base) 

3.67 
(0.29) 

3.50 
(0.10) 

3.39 
(0.28) 

2.83 
(0.29) 

3.34 

Q2-2 
([15]) 

3.41 
(0.45) 

3.33 
(0.31) 

3.09 
(0.24) 

2.97 
(0.06) 

3.19 

Q2-2 
(Our) 

3.85 
(0.28) 

3.23 
(0.61) 

3.61 
(0.10) 

3.73 
(0.31) 

3.60 

Q3 
(base) 

3.41 
(0.17) 

3.40 
(0.26) 

3.09 
(0.24) 

2.57 
(0.31) 

3.11 

Q3 
([15]) 

3.26 
(0.55) 

3.17 
(0.38) 

3.09 
(0.24) 

2.63 
(0.06) 

3.03 

Q3 
(Our) 

3.44 
(0.19) 

3.47 
(0.31) 

3.48 
(0.14) 

3.50 
(0.35) 

3.48 
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Figure 12. Dancer’s preference on BGM replacement results for different dance 
styles.  

Table 4. The guideline for evaluating music segmentation.  
Score Description 

5 
The boundary is accurately located at the best boundary 
(music beat) between music segments.  

4 
The boundary is located at a music beat, which is not the best 
but is close to the best boundary. 

3 
The boundary is not located at a music beat but is close to the 
best boundary. 

2 
Although the boundary is located at a music beat, it is far from 
the best boundary.  

1 
The boundary is not located at a music beat, and it is far from 
the best boundary.  

E. Discussion 

We describe limitation of our current work in the following:  
� In videos with substantial lighting changes, to our best 

knowledge there is no robust method to extract motion 
trajectories. Much more advancement should be made, and 
this issue cannot be addressed by our current paper.  

� Noisy trajectories influence performance, and that is why we 
do not achieve perfect ROM extraction (Figure 8). Dancers 
often have violent and non-rigid movements, which makes 
significant challenges in trajectory extraction.  

� In contrast to music rhythm that has been studied for a 
century, currently the extracted ROM is poorer. For example, 
different body parts may synchronize to different levels of 
music rhythm [30]. A dancer may move the main trunk with 
the base pulse, but arms or legs move more drastically at a 
finer metrical level. In this work we just extract one 
dominant period from various motion. Extracting motion at 
different metrical levels may be achieved if motion sensors 
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are attached to human body.  
 
While the current work is limited by the aspects mentioned 

above, we also point out a few extensions:  
� The proposed rhythm-based analysis can be extended to more 

applications. For example, as we have developed a way to 
transform videos and music into rhythm sequences, and have 
designed a metric to evaluate cross-media similarity, we are 
able to retrieve videos by giving a musical query or retrieve 
music by giving a video query. Rhythm-based cross-media 
retrieval would be a new way to retrieve media that have 
clear periodic or rhythmic content.  

� Another plausible extension is surveillance video analysis. 
By analyzing periodic changes of motion from specific 
objects or humans, events such as person walking/running or 
car entering through a gate can be detected.  

Rhythmic patterns can be found in various media, such as 
motion in videos, beats in music, and emphasized tones in 
speech. For a specific domain, rhythm information may be clear 
and can be explicitly extracted. However, for media that are 
disordered, the proposed techniques may make no sense. The 
former perspective shows the feasibility of the proposed idea, 
while the later perspective gives the limitation.  

VII.  CONCLUSION 

We have presented associating rhythm of motion with rhythm 
of music to facilitate rhythm-based multimodal analysis. We 
devise a method to reliably extract rhythm of motion from 
motion trajectories. This approach well captures finer human 
motion, especially periodic motion changes in dance videos. 
Dance videos and music are respectively transformed into 
motion beat and music beat sequences, and are accordingly 
compared and aligned. We demonstrate effects of rhythm-based 
cross-media alignment with the applications of background 
music replacement and music video generation. The objective 
evaluation shows promising performance of rhythm of motion 
extraction. We also show that video with background music 
replacement really provides better viewing experience, while 
the impacts of different dance styles may be varied. Another 
subjective evaluation verifies that rhythm information provides 
useful clues to generate rhythmic musical videos.   
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