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Abstract 
 
Conducting content analysis approaching semantics level is an emerging trend in 
multimedia researches. Such kind of analysis matches users’ needs and facilitates 
content management and utilization in a more effective and reasonable way. Unlike 
conventional content-based retrieval or indexing, works on semantics analysis 
integrate techniques of statistical pattern recognition and machine learning with 
specific production rules or domain knowledge to bridge the semantic gap between 
low-level features and high-level semantics.  

On the basis of machine learning and pattern recognition technologies, systems 
that combine analytical results from different classifiers, different features, or 
different modalities are developed. In this dissertation, we propose a general 
framework that introduces the idea of mid-level representation between audiovisual 
features and semantic concepts. Two types of techniques, i.e. statistical pattern 
recognition and rule-based decision, are combined to facilitate narrowing the semantic 
gap.  

We develop three systems that respectively conduct semantic concept detection in 
action movies, in broadcasting baseball games, and in sports videos. In action movies, 
we detect semantic concepts, such as gunplay and car-chasing scenes, through 
analyzing aural information. Statistical approaches are exploited to characterize 
concept modeling and to facilitate mapping between different semantic granularities. 
In baseball games, visual and speech information are combined, and a hybrid method 
that includes rule-based and statistical techniques is designed for semantic concept 
detection. Thirteen semantic concepts, such as single, double, homerun, and strikeout, 
are explicitly detected, and several realistic applications can therefore be built. In 
general sports videos, we extract the ball trajectory to be a new type of metadata for 
describing content characteristics. Some novel semantic concepts, such as pitch types 
in baseball games, can therefore be modeled and detected. These studies are the 
instances of the proposed general framework and demonstrate the realization of 
automatic semantic concept detection.  
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中文摘要 
 

將內容分析技術推向語意層級是近年來在多媒體領域中急速發展的研究課

題。此類技術的分析結果較能符合使用者的需求，也讓內容管理與應用變得更加

有效率。有別於傳統以內容為基礎的檢索技術，數位內容語意分析結合圖型識

別、機器學習的技術與特定製作原則、領域知識來彌合低階特徵值與高階語意之

間的鴻溝。 
基於機器學習與圖型識別的技術，已有許多系統結合不同分類器、不同特徵

值、或不同媒體型態的結果來進行語意分析。在本論文中，我們提出一個通用的

架構來進行此類研究。其中，我們引入介於視聽特徵值與語意概念之間的中介資

訊來輔助分析。 
我們發展了三個不同的系統，在電影、棒球影片、以及一般的運動影片中進

行語意概念偵測。在動作電影中，我們透過聲音的資訊來偵測槍戰與飛車追逐等

語意概念。我們採用統計方法來描述概念以及對應不同層次的語意。在棒球比賽

中，我們基於畫面與語音的資訊，結合了以規則為基礎與以模型為基礎的方法來

做語意概念偵測。總計有十三種不同的概念，如一壘安打、二壘安打、全壘打、

三振等，可被偵測出來，也藉此我們可發展許多實際的應用。在一般的運動影片

中，我們提出可用球的軌跡來輔助內容分析。一些新型態的語意概念，如棒球比

賽中投手的球種，可因此被描述與偵測出來。這三大類研究都是基於我們所提的

通用架構，也因此證實了此架構對於語意概念偵測的實用性。 
 



 

v 

Contents 
致謝.................................................................................................................................i 

Abstract ........................................................................................................................ iii 

中文摘要.......................................................................................................................iv 

List of Figures ................................................................................................................x 

List of Tables.............................................................................................................. xiii 

Chapter 1 Introduction ...................................................................................................1 
1.1 Motivation.......................................................................................................1 
1.2 Related Works .................................................................................................2 

1.2.1 Categorize by Modality.......................................................................2 
1.2.2 Categorize by Level of Analysis .........................................................3 
1.2.3 Categorize by Processing Methods.....................................................4 
1.2.4 Concerns from International Standards ..............................................4 

1.3 Semantic Concept Detection...........................................................................6 
1.3.1 From Feature to Knowledge ...............................................................6 
1.3.2 Pattern Recognition vs. Semantic Concept Detection ........................8 

1.4 Problem Statement ........................................................................................10 
1.5 Summary of Contributions............................................................................10 

1.5.1 Audio Semantic Concept Detection in Movies...................................10 
1.5.2 Explicit Baseball Concept Detection ..................................................11 
1.5.3 Trajectory-Based Analysis in Baseball Videos ...................................11 

1.6 Dissertation Organization .............................................................................12 

Chapter 2 A Unified Framework for Multimedia Semantic Analysis..........................13 
2.1 Content Analysis and Concept Language .....................................................13 
2.2 Content Chain Framework............................................................................14 

2.2.1 Framework Overview .......................................................................14 
2.2.2 Deterministic Mapping Function ......................................................16 
2.2.3 Nondeterministic Mapping Function ................................................16 
2.2.4 Generality of the Content Chain Framework....................................16 

2.3 Framework Correspondence .........................................................................18 
2.3.1 Semantic Concept Detection in Movies............................................18 
2.3.2 Semantic Concept Detection in Baseball Videos..............................19 
2.3.3 Trajectory-based Analysis in Sports Videos .....................................20 

2.4 Summary .......................................................................................................21 

Chapter 3 Semantic Analysis in Movies through Audio Information..........................23 



 

vi 

3.1 Introduction...................................................................................................23 
3.2 Hierarchical Audio Models ...........................................................................24 

3.2.1 Audio Event and Semantic Concept .................................................25 
3.2.2 Hierarchical Framework ...................................................................26 

3.3 Audio Feature Extraction..............................................................................27 
3.3.1 Short-Time Energy............................................................................27 
3.3.2 Band Energy Ratio ............................................................................28 
3.3.3 Zero-Crossing Rate ...........................................................................28 
3.3.4 Frequency Centroid...........................................................................29 
3.3.5 Bandwidth .........................................................................................29 
3.3.6 Mel-Frequency Cepstral Coefficients ...............................................29 

3.4 Audio Event Modeling..................................................................................30 
3.4.1 Model Size Estimation......................................................................30 
3.4.2 Model Training .................................................................................31 
3.4.3 Specific and World Distribution .......................................................32 
3.4.4 Pseudo-Semantic Features ................................................................33 

3.5 Generative Modeling for Semantic Concept.................................................35 
3.5.1 Model Training .................................................................................36 
3.5.2 Semantic Concept Detection.............................................................36 

3.6 Discriminative Modeling for Semantic Concept ..........................................36 
3.6.1 Model Training .................................................................................37 
3.6.2 Semantic Concept Detection.............................................................38 

3.7 Performance Evaluation................................................................................38 
3.7.1 Evaluation of Audio Event Detection ...............................................39 

3.7.1.1 Overall Performance ............................................................40 
3.7.1.2 Performance Comparison.....................................................41 

3.7.2 Evaluation of Semantic Concept Detection ......................................42 
3.7.3 Comparison with Baseline System ...................................................44 
3.7.4 Discussion.........................................................................................46 
3.7.5 Semantic Indexing Based on the Proposed Framework ...................46 

3.8 Summary .......................................................................................................47 

Chapter 4 Semantic Analysis and Game Abstraction in Baseball Videos....................49 
4.1 Introduction...................................................................................................49 
4.2 System Framework .......................................................................................51 

4.2.1 Characteristics of Baseball Games....................................................51 
4.2.2 Overview of System Framework ......................................................52 

4.3 Shot Classification ........................................................................................53 
4.3.1 Procedure of Shot Classification.......................................................53 



 

vii 

4.3.2 Adaptive Field Color Determination ................................................54 
4.3.3 Infield/Outfield Classification ..........................................................55 
4.3.4 Pitch Shot Detection .........................................................................55 

4.4 Concept Detection.........................................................................................56 
4.4.1 Rule-based Concept Detection..........................................................56 

4.4.1.1 Caption Feature Extraction ..................................................57 
4.4.1.2 Feature Filtering...................................................................58 
4.4.1.3 Concept Identification..........................................................59 

4.4.2 Model-based Concept Detection.......................................................61 
4.4.2.1 Shot Context Features ..........................................................62 
4.4.2.2 Modeling..............................................................................63 

4.4.3 Combine Visual Cues with Speech Information...............................63 
4.4.3.1 Overview..............................................................................63 
4.4.3.2 Information Fusion...............................................................65 

4.4.4 Results of Concept Detection............................................................67 
4.5 Extended Applications ..................................................................................71 

4.5.1 Automatic Game Summarization......................................................71 
4.5.1.1 Significance Degree of Concepts.........................................72 
4.5.1.2 Selection of Summarization.................................................72 
4.5.1.3 Evaluation of Summarization ..............................................74 

4.5.2 Automatic Highlight Generation.......................................................75 
4.5.2.1 Significance Degree of Concepts.........................................75 
4.5.2.2 Highlight Selection Algorithm.............................................77 
4.5.2.3 Evaluation of Highlight........................................................78 

4.5.3 An Integrated Baseball System.........................................................80 
4.6 Discussion and Summary..............................................................................82 

Chapter 5 Semantic Analysis in Sports Videos through Ball Trajectory .....................85 
5.1 Introduction...................................................................................................85 
5.2 System Overview..........................................................................................86 
5.3 Ball Candidate Detection ..............................................................................87 
5.4 Trajectory Forming Process ..........................................................................89 

5.4.1 Trajectory Segments Generation.......................................................90 
5.4.2 Trajectory Candidates Generation ....................................................92 
5.4.3 Physical Model-Based Trajectory Validation....................................93 

5.4.3.1 Physical Model of Ball Trajectory .......................................93 
5.4.3.2 Trajectory Validation via Physical Limitation .....................96 

5.5 Trajectory-based Analysis in Different Sports..............................................97 
5.5.1 Pitch Type Recognition in Baseball Videos ......................................97 



 

viii 

5.5.1.1 Pitch Type Recognition........................................................98 
5.5.1.2 Evaluation of Trajectory Extraction...................................101 
5.5.1.3 Evaluation of Pitch Type Recognition ...............................102 

5.5.2 Penalty Kick Analysis in Soccer Videos .........................................103 
5.5.2.1 Soccer Trajectory Extraction..............................................103 
5.5.2.2 Evaluation of Soccer Trajectory Extraction.......................105 

5.5.3 Tactics Analysis in Tennis Videos...................................................105 
5.5.3.1 Tennis Trajectory Extraction..............................................105 
5.5.3.2 Evaluation of Tennis Trajectory Extraction .......................107 

5.6 Discussion and Summary............................................................................107 

Chapter 6 Future Research and Conclusions .............................................................109 
6.1 Discussions .................................................................................................109 

6.1.1 Content Adaptation Architecture.....................................................109 
6.1.2 Content Adaptation Modeling.........................................................110 

6.2 Future Research ..........................................................................................112 
6.3 Conclusions.................................................................................................113 

Appendix A Hidden Markov Model ..........................................................................115 
A.1 Specification ...............................................................................................115 
A.2 Inside HMM................................................................................................116 

A.2.1 Solution to the Evaluate Problem — The Forward Algorithm .......117 
A.2.2 Solution to the Decoding Problem — The Vertibi Algorithm ........118 
A.2.3 Solution to the Learning Problem — Baum-Welch Algorithm.......119 

Appendix B Support Vector Machine ........................................................................120 
B.1 Introduction.................................................................................................120 
B.2 Training and Testing ...................................................................................121 
B.3 Multiclass SVM ..........................................................................................122 

Appendix C Computational Media Aesthetics...........................................................124 
C.1 Film Grammar.............................................................................................124 
C.2 Computational Media Aesthetics (CMA) ...................................................124 
C.3 Examples of CMA Applications .................................................................126 

C.3.1 Formulating Film Tempo [Dora02].................................................126 
C.3.2 Horror Film Genre Typing and Scene Labeling via Audio Analysis 
[Monc03]....................................................................................................126 
C.3.3 Pivot Vector Space Approach for Audio-Video Mixing [Mulh03] .126 

C.4 Semantic Indexing vs. CMA.......................................................................127 

References..................................................................................................................129 



 

ix 

Curriculum Vitae........................................................................................................141 

 



 

x 

List of Figures 
 
Figure 1-1. Content analysis or adaptation techniques facilitate efficient access and 

management in heterogeneous content creation and utilization environments. ......2 
Figure 1-2. (a) Content description and management description tools in MPEG-7, 
and (b) digital item adaptation in MPEG-21 (Part7) .....................................................5 
Figure 1-3. From features to knowledge........................................................................7 
Figure 1-4. A conventional pattern recognition framework...........................................8 
Figure 1-5. The concluded semantic concept detection framework. .............................9 
Figure 2-1. Analogies between language, speech recognition, and semantic concept 
detection. .....................................................................................................................14 
Figure 2-2. Illustrations of different levels of content chains. .....................................15 
Figure 2-3. Implementations of generative functions. .................................................17 
Figure 2-4. Correspondence between audio semantic concept detection and the 
content chain framework. ............................................................................................19 
Figure 2-5. Correspondence between baseball concept detection and the content chain 
framework. ..................................................................................................................20 
Figure 2-6. Correspondence between ball trajectory extraction and the content chain 
framework. ..................................................................................................................21 
Figure 3-1. Examples of audio semantic concepts.......................................................26 
Figure 3-2. The proposed hierarchical framework contains (a) audio event and (b) 
semantic concept modeling. ........................................................................................27 
Figure 3-3. Construction of (a) specific distribution p(x|θ1) and (b) world distribution 
p(x|θ0)  for engine events...........................................................................................33 
Figure 3-4. Pseudo-semantic features calculation for semantic concepts modeling. (a) 
Analysis windows and (b) texture windows................................................................34 
Figure 3-5. The testing procedure of DAGSVM. ........................................................38 
Figure 3-6. Three examples of detection performance with different thresholds (δ1 > δ2 
> δ3 > δ4)......................................................................................................................41 
Figure 3-7. Relationship between lengths of texture windows and system performance.
.....................................................................................................................................44 
Figure 3-8. Comparison of the baseline and the proposed HMM-based approaches. .45 
Figure 3-9. A snapshot of a semantic concept browsing system..................................45 
Figure 3-10. Audio semantic context detection in terms of the semantic concept 
detection framework described in Chapter 2...............................................................47 
Figure 4-1. Examples of the game progress.................................................................52 
Figure 4-2. System framework of explicit concept detection and its applications. .....53 



 

xi 

Figure 4-3. Diagram of shot classification...................................................................54 
Figure 4-4. Pitch shot detection by field pixel profiles and pitcher detection .............56 
Figure 4-5. Taxonomy of baseball concepts. ...............................................................60 
Figure 4-6. Concept detection process on decision tree. .............................................61 
Figure 4-7. An example of shot context feature extraction..........................................63 
Figure 4-8. The scenario that fuses visual and speech information. ............................64 
Figure 4-9. Examples of visual and speech concept detection. ...................................64 
Figure 4-10. Discrimination performance of single vs. walk. .....................................70 
Figure 4-11. Discrimination performance of strikeout vs. field out. ...........................70 
Figure 4-12. A chain of concepts that result in scoring................................................73 
Figure 4-13. Snapshot of the baseball concept-on-demand system.............................81 
Figure 4-14. Snapshot of the baseball question answering system..............................81 
Figure 4-15. Integrated user interface and the presentation of mining results.............82 
Figure 4-16. Explicit baseball concept detection in terms of the framework described 
in Chapter 2. ................................................................................................................83 
Figure 5-1. The framework of ball trajectory extraction. ............................................87 
Figure 5-2. Two sample results of ball trajectory detection. (a) Chinese Professional 
Baseball League, right-hander; (b) Major League Baseball, left-hander. ...................87 
Figure 5-3. The Flowchart for ball candidate detection...............................................89 
Figure 5-4. Ball candidates in different video frames..................................................89 
Figure 5-5. The iterative process of a Kalman filter [Welc04]. ...................................90 
Figure 5-6. Kalman filter-based tracking in ball trajectory extraction. .......................91 
Figure 5-7. Examples of the detected trajectory segments. .........................................92 
Figure 5-8. An example of trajectory candidate generation.........................................93 
Figure 5-9. Velocity components of the releasing ball.................................................94 
Figure 5-10. The angle histogram of trajectory vectors...............................................96 
Figure 5-11. An illustration of the relation between the vertical movement and the 
depth. ...........................................................................................................................96 
Figure 5-12. The detected ball trajectory .....................................................................97 
Figure 5-13. Some illustrated examples of different pitch types. (This figure is quoted 
from [Bahi05]).............................................................................................................98 
Figure 5-14. Ball trajectories of different pitch types..................................................99 
Figure 5-15. Vertical variations in fastball, curveball, and slider. .............................100 
Figure 5-16. Examples of AAR for curveball and slider. ..........................................101 
Figure 5-17. The progressive process for pitch type recognition ..............................101 
Figure 5-18. Comparison of (a) the truth ball trajectory and (b) the extracted trajectory
...................................................................................................................................102 
Figure 5-19. Probability distributions of DVV and AAR. .........................................103 



 

xii 

Figure 5-20. Examples of trajectory extraction for penalty kick in soccer videos. ...104 
Figure 5-21. Examples of trajectory extraction for tennis videos..............................106 
Figure 5-22. Trajectory extraction in terms of the framework described in Chapter 2.
...................................................................................................................................108 
Figure 6-1. Overall architecture of the content adaptation process. ..........................110 
Figure 6-2. An example process of content adaptation..............................................112 
Figure A-1. An example of a 3-state ergodic HMM. .................................................116 
Figure B-1. A 2-dimensional illustration of the SVM classifier. ...............................121 
Figure C-1. Computational media aesthetics framework [Dora02]...........................125 
 
 



 

xiii 

List of Tables 
 
Table 3-1. Overall performance of audio event detection............................................40 
Table 3-2. Detection accuracy of different approaches................................................42 
Table 3-3. Average performance of semantic concept detection by (a) HMM and (b) 
SVM............................................................................................................................42 

Table 3-4. Some detailed results in semantic concept detection by (a) the HMM-based 
approach and (b) the SVM-based approach................................................................43 
Table 4-1. Physical meanings of different base-occupation situations. .......................58 
Table 4-2. Confused concept in baseball games ..........................................................61 
Table 4-3. Mapping between concepts and conventional key-phrases (in Mandarin 
Chinese). .....................................................................................................................65 
Table 4-4. Detection results of hit/bb, double, and home run......................................68 
Table 4-5. Detection results of out, sacrifice, and double play. ...................................69 
Table 4-6. Classification results of confused concepts. ...............................................69 
Table 4-7. Overall performance of concept discrimination. ........................................71 
Table 4-8. Lengths of summaries at different levels. ...................................................74 
Table 4-9. Performances of different levels of summaries. .........................................75 
Table 4-10. The selected concepts in “Lions vs. Bears.”.............................................79 
Table 4-11. The selected concepts in “Bulls vs. Lions.”..............................................79 
Table 4-12. The evaluation results of highlights from two games...............................80 
Table 5-1. Ranges of simulation parameters................................................................95 
Table 5-2. Extraction performance in terms of estimation error. ...............................102 
Table 5-3. Statistics of DVV and AAR. .....................................................................103 
Table 5-4. Performance of pitch type recognition. ....................................................103 
Table 5-5. Parameters in soccer trajectory extraction. ...............................................104 
Table 5-6. Parameters in tennis trajectory extraction.................................................106 
Table C-1. Comparison between semantic indexing and CMA.................................127 
 



 

xiv 

 



 

1 

Chapter 1 
Introduction 
 

1.1 Motivation 
Large amounts of digital content have been created, stored, and disseminated as a 
result of the rapid advances in media creation, storage, and compression technologies. 
Massive data present challenges to users in content browsing and retrieval, thereby 
diminishing the benefits brought by digital media. Although various content creation 
and utilization devices/methods are available for many splendid applications, 
tremendous and disordered multimedia content impede information access and usage.  

The information access problem has arisen for many years since large volume of 
digital data can be stored in disks. In the last decade, the emergence of internet even 
aggravates this problem because more data can be easily shared and different 
variations of media, such as image, audio, and video, are easily created to convey 
much complex information. Recently, text-based information indexing and retrieval 
have been well solved, and many search engines like Google or Yahoo! are popularly 
used around the world. However, multimedia information indexing is still an open 
issue that poses urgent needs in either industry or research communities.  

In this dissertation, we investigate how to develop systematic approaches on 
multimedia content analysis and adaptation to solve this thorny problem, as shown in 
Figure 1-1. Based on elaborate analysis techniques, we can provide better tools for 
media management, access, and utilization, with the functionalities that better match 
users’ needs.  
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Figure 1-1. Content analysis or adaptation techniques facilitate efficient access and 

management in heterogeneous content creation and utilization environments. 
 

1.2 Related Works 
The existing content analysis techniques can be categorized in several ways, including 
categorizing by modality, by level of analysis, and by processing methods. Extensive 
survey on the categorization can be seen in [Naph01]. We generally review related 
techniques in this section, and more specific surveys will be described in the 
corresponding chapters.  
 
1.2.1 Categorize by Modality 
We can categorize existing techniques by modality, including image, audio, and video 
analyses.  
 

 Image analysis 
Since the prominent QBIC (Query by Image Content) system [Flic95] was 

developed, content-based image retrieval attracts much attention and brings about lots 
of research issues. Most systems provide query by example/sketch functionality, and 
some variations, such as relevance feedback and object-based query, were also 
proposed to enhance the performance of image retrieval. Examples of image retrieval 
systems include QBIC [Flic95], Virage image search engine [Bach96], VisualSeek 
[Smit96], and MARS [Rui98]. Extensive survey can be found in [Smeu00] and 
[Rui99].  
 

 Audio analysis 
Although speech processing/recognition technologies have been studied for a long 



 

3 

time, little progress has been made for nonspeech audio data. Recently, classification 
and segmentation techniques [Lu02][Zhan98] were proposed to discriminate different 
types of audio, such as speech, music, noise, and silence. They either perform audio 
analysis based on trainable models [Lu02] or based on heuristics [Zhan98]. As the 
increasing needs of music classification and sharing, additional works have been 
conducted on music genre classification [Tzan02], music snippets [Lu03], audio 
thumbnailing [Bart05], and structure detection [Madd06].  
 

 Video analysis 
Based on the studies of still image analysis, video data analysis that additionally 

exploits temporal characteristics have also actively advanced in recent years, 
especially high-quality videos are largely created and disseminated on the internet. 
The Informedia project [Wact96] presents video analysis systems that pioneer several 
topics on visual stream segmentation and audio content classification. From the 
viewpoint of video hierarchy, shot boundary detection algorithms [Yeo95][Hanj02] 
were developed to segment video clips into shots, each of which presents visual 
continuity. The keyframes of each shot are then selected to summarize a video clip 
and are applied to video abstraction [Li01][Pfei96] and content-based retrieval 
[Dimi02]. On the other hand, techniques for genre classification are also widely 
studied. Genres of films [Monc03] and TV programs [Liu98] are automatically 
classified. Various features from audio, video, and text [Wang00] are exploited, and 
multimodal approaches are proposed to cope with the access and retrieval issues of 
multimedia content.  
 
1.2.2 Categorize by Level of Analysis 
Existing content analysis techniques can be categorized by the level of analysis: 
analyzing the syntactic structure of media or analyzing the hidden semantics in media. 
One of the typical examples in former techniques is to parse a video into hierarchical 
structures, such as scene, shot, and frames [Zhan95]. Another example on image 
retrieval is to use color, texture, or edges to be the bases of image matching [Smeu00].  

The aforementioned studies investigate the syntactic structure of targeted media 
and facilitate efficient browsing. However, similarity in the low-level feature space is 
yet far from that in the conceptual space, in which users think. Processing at higher 
level, i.e. semantics, is therefore the ultimate goal of content analysis techniques. 
Some examples of recent attempts to semantic content analysis include semantic 
video indexing [Naph98][Naph02][Chu04][Chu05-3], semantic visual templates 
generation [Chan98], and many works on sports videos analyses, such as [Chu05-4], 
[Ekin03], and [Xie04].  
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Although bridging the semantic gap is yet a very challenging problem, integrating 
techniques from other disciplines like pattern recognition, machine learning, and 
computer vision realizes the goal. Developing and advancing semantic content 
analysis techniques are accordingly the targets of this dissertation.  
 
1.2.3 Categorize by Processing Methods 
As mentioned in the previous subsection, techniques from different fields are 
cooperated to achieve better content analysis. In addition, domain knowledge or 
production rules often significantly help in specific domain media analysis. 
Rule-based methods or analyzing with heuristics have been proposed for different 
kinds of media. For example, Zhang and Kuo [Zhan98] proposed a content-based 
audio classification and retrieval system based on heuristics. For broadcasting 
baseball videos, Liang et al. [Lian05] exploit official baseball rules to explicitly detect 
semantic baseball events, such as strikeout, homerun, and double play.  

On the other hand, many other types of media don’t possess fixed rules or clear 
domain knowledge, such as movies and home videos. In these cases, researchers 
appeal to machine learning or statistical pattern recognition techniques to model the 
hidden characteristics of media. Naphade and Huang [Naph98] [Naph02] propose a 
probabilistic framework to detect events in generic videos. Haering et al. [Haer00] 
develop a neural network architecture to detect events in wildlife videos. Extensive 
survey on statistical pattern recognition used in content analysis can be seen in 
[Jain00].  

Because different media have significantly different characteristics, we usually 
have to make a choice between rule-based methods or learning-based methods. 
Moreover, we may have better results by fusing them [Chu05-4]. Collaboration of 
different methods is also the targeted issue of this dissertation.  
 
1.2.4 Concerns from International Standards 
The importance of multimedia content analysis is also reflected in the context of 
international standards. In MPEG-7, content description and management description 
tools are defined to describe metadata of multimedia content [Chan01][Mart02-1] 
[Mart02-2], as shown in Figure 1-2(a). Content description tools present perceptible 
information, including spatio-temporal structure (e.g. video hierarchy), audio and 
video features, and semantic description (e.g. objects, events, and relationships). 
Content management tools let us specify information about media features (e.g. 
coding format), creation, and usage of multimedia content (e.g. rights and availability) 
[Mart02-1].  
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(a) (b)(a) (b)  
Figure 1-2. (a) Content description and management description tools in MPEG-7, 

and (b) digital item adaptation in MPEG-21 (Part7) 
 
In MPEG-21 [Burn03], extended framework has been proposed to perform digital 

item adaptation [Vetr05]. For universal multimedia access, a digital item that consists 
of content itself and corresponding description is adapted to different variations, in 
order to match the requirements or limitations of different usage environments. Figure 
1-2(b) shows the idea. Universal and transparent media usage is pursued in this 
ambitious multimedia framework.  

Although some realistic works have been proposed based on the ideas of MPEG-7 
and MPEG-21 [Tsen04], how to implement or extract metadata of multimedia content 
is out of the scope of these standards. They give us the vision of multimedia content 
analysis and leave the research issues for pursuing. In this dissertation, we would 
propose several approaches to make the ultimate goal come true. 

 
The aforementioned studies have been conducted on content analysis for efficient 

indexing, browsing, retrieval, access, and management, but problems do exist in 
today’s applications. The first is the apparent gap between low-level audiovisual 
features and high-level semantics. Similarities in low-level features do not always 
match users’ perception. The second problem is that, from the viewpoint of end users, 
scenes/shots are associated due to semantic meaning rather than color layouts or other 
computational features. Therefore, an approach that bridges the semantic gap in a 
systematic way is urgent to be developed. 

In our work, we try to develop systematic approaches to tackle with automatic 
video indexing, in the sense of semantics rather than low-level features. By exploiting 
statistical pattern recognition or specific domain knowledge, we narrow the gap 
between computational audiovisual features and high-level semantic concepts. This 
work would be the foundation of advanced multimedia information retrieval and 
digital content/asset management.  
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1.3 Semantic Concept Detection 
To clarify and position the proposed work, we first describe the definitions of feature, 
event/objects, concept, and knowledge and introduce the idea of semantic concept 
detection. Then, conventional pattern recognition techniques are briefly reviewed and 
are compared with the techniques in semantic concept detection.  
 
1.3.1 From Feature to Knowledge 
The fundamental processes of video indexing are data classification, clustering, or 
recognition. According to the domain of processing, we distinguish video indexing 
into several levels, which ranges from audiovisual features that represent data 
characteristics to knowledge that is conveyed by the implicit relationships between 
concepts.  
 

 Audiovisual Features 
Features are the measurable properties of the phenomena being observed. They 

can be directly computed from the perspectives of time or frequency domain, aural or 
visual modality, and statistical or singular characteristics. In the last few decades, 
most researches proceed content analysis in the domain of features. Some commonly 
used features include color, edge, and motion features in video sequences, and energy, 
zero-crossing rate, and mel-frequency cepstral coefficients (MFCC’s) in audio streams 
[Wang00]. Many applications have been developed on the basis of feature matching, 
clustering, and modeling. One of the typical examples is content-based image 
retrieval [Smeu00][Flic95].  
 

 Events and Objects 
Events and objects are entities that take place or exist in time and space in the 

world [Beni05]. Events often come up with a specific evolution of features and last 
for a duration. For example, in the radio broadcasting situation where speech and 
music would occur alternately, the trend of low zero-crossing rate and low mean of 
spectrum flux emerges when music starts [Chu05-6]. Objects are often discussed in 
the domains of still images or video sequences without shot change. They can be 
living entities such as people, animals, and plants; man-made objects such as vehicles, 
buildings, and furniture; and natural objects such as mountains, rivers, and stars.  
 

 Semantic Concepts 
Concepts are the notion or meaning of world entities. Semantic concepts refer to 

entities named with words in a language [Beni05]. A concrete semantic concept may 
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be involved with specific evolutionary patterns or interrelationships between various 
events and objects. For example, a gunplay scene (semantic concept level) is often 
constituted by frequent gunshots and explosion audio effects (event level) and poses a 
compact representation of a meaning. To identify the existence of a concept, context 
of events and objects should often be examined.  
 

 Knowledge 
Knowledge is usually defined as facts about the world and represented as concepts 

and relationships among the concepts [Beni05]. It would not be a visible or 
perceptible entity in multimedia content, but an implicit relation among concepts or 
the convention in a specific domain. One example of knowledge in movie making is 
how to arrange the layout, lighting, and scene editing so that the movie segment can 
arouse a specific perception.  
 

Figure 1-3 shows these four levels of content representation. Conventionally, we 
view the representation of features as the lowest level. Features can be processed 
efficiently and automatically, but the results based on them are still far from human’s 
cognition. Concepts and knowledge are viewed as higher levels of processing because 
they match more appropriately with human’s cognition or perception. Events or 
objects are viewed as the intermediate information between features and concepts. In 
our work, we try to go beyond the scope of conventional content-based (feature-based) 
content analysis and propose a systematic framework to tackle the issues at event and 
concept levels. With the aid of reliable event and concept detection, it’s possible to 
automatically discover knowledge implicitly hidden in content.  
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Figure 1-3. From features to knowledge. 
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1.3.2 Pattern Recognition vs. Semantic Concept Detection 
The goal of our work is to perform semantic concept detection in a systematic and 
effective way. This kind of problem can be formulated as: given digital content that 
may be in the form of audio or video, identify what events/objects are present or what 
concepts can be inferred. This task is conceptually similar to pattern recognition 
problems. Figure 1-4 shows a conventional pattern recognition framework. After 
feature extraction, techniques such as template matching, statistical classification, 
syntactic/structural matching, and neural network can be applied based on the 
statistical characteristics of features [Jain00]. On the other hand, if the targeted events 
or objects possess explicit patterns and clear production rules, we can achieve 
effective results through rule-based decision/detection methods. This paradigm has 
been widely adopted for a few decades, and various approaches focusing on feature 
extraction, feature selection, statistical modeling, and event/object detection have 
been devised. However, such kind of event/object detection is not sufficient to achieve 
efficient and effective multimedia content management and retrieval. Higher level of 
processing like semantic concept detection should be involved in developing a content 
management system that really matches human’s needs.  
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Figure 1-4. A conventional pattern recognition framework.  

 
Recently, the idea of combining the results of event detection to achieve higher 

level analysis has attracted more and more attention. Duan et al. [Duan03] proposed a 
mid-level framework that integrates the results of event/object detection to detect 
semantic concepts in soccer games. Naphade and Huang [Naph02] proposed a 
dynamic Bayesian network to characterize various detected objects and infer semantic 
concepts from a probabilistic view.  

From these works, we conclude these approaches from the viewpoints of pattern 
recognition and illustrate the essential framework in Figure 1-5. The philosophy of 
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this kind of work is to combine the results of individual classifiers and take their 
outputs to train a meta-classifier or make an integrated decision. Information from 
different modalities or different classification methods can be integrated to boost the 
performance of detection or provide extension for other unknown concepts. Actually, 
this idea has been studied for years in the community of pattern recognition and is 
justified to be beneficial to efficiency and accuracy in some cases [Kitt98]. This 
multi-level classification/detection can be applied to model the relationships that are 
not explicit in the low-level feature space and is viewed as an effective approach to 
narrow the semantic gap.  

The semantic gap, as shown in Figure 1-5, is derived from the mismatch between 
feature similarity and human cognition. However, in well produced and edited videos 
such as movies, news, and sports videos, production rules or domain knowledge are 
often used to present concepts [Dora02][Zett99][Chen04]. The layout of objects or the 
relationship of events affect human’s perception or present specific concepts. On the 
other hand, object and event detection have been widely studied and various 
classification and recognition methods have been proposed. Through connecting these 
two relationships, automating detection of semantic concept will be possible. The 
construction details of the semantic concept detection framework will be discussed in 
Chapter 2.  
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Figure 1-5. The concluded semantic concept detection framework.  
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1.4 Problem Statement 
In this dissertation, we perform semantic concept modeling/detection/indexing for 
multimedia content. This task can be described as:  

Given multimedia content, develop techniques that bridge the gap between 
features and semantic concepts such that content management and utilization can 
be proceeded as human does.  
 
To facilitate efficient and effective semantic concept processing, techniques for 

this goal should be provided with the following characteristics:  
1) Classification or detection results from different classifiers (with different 

features, different classifier parameters, or different datasets) should be 
seamlessly combined to achieve more reliable and/or accurate performance 
[Kitt98].  

2) Specific production rules [Dora02][Zett99], domain knowledge, and 
probabilistic models for semantic inference should be cooperated to deal with 
different types of media and facilitate various applications.  

3) Both the concepts in temporal (evolution along with time) and spatial 
(coexistence in the same space) aspects should be considered and modeled.  

 
 

1.5 Summary of Contributions 
In this dissertation, we investigate multimedia semantic analysis with respect to 
semantic concept detection and content adaptation. These works are summarized as 
follows:  
 
1.5.1 Audio Semantic Concept Detection in Movies 
On the basis of audio information, we try to detect specific semantic concepts in 
action movies [Chu05-2, Chu05-3, Chu05-5, Chu04, Chen03]. We propose a 
two-level framework to narrow the semantic gap: audio event modeling and semantic 
concept modeling. Four audio events, including gunshot, explosion, engine, and 
car-braking sounds, are modeled by probabilistic models (say, the hidden Markov 
model) in the first level. Then, the outputs of event models are concatenated as 
vectors to describe the interrelationship between different events and characterize two 
semantic concepts, i.e. gunplay and car-chasing scenes. Context of audio events are 
taken into account. Therefore, this work is specially called as semantic context 
detection because the context of semantic concepts is modeled. 
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1.5.2 Explicit Baseball Concept Detection 
In this work, we propose a hybrid method that exploits rule-based decision and 
model-based decision to explicitly detect what happened in baseball games [Chu05-1, 
Chu06-1, Chu05-4, Lian05, Lian04]. Thirteen concepts, including single, double, 
homerun, strikeout, etc. are detected according to the audiovisual information in 
various broadcasting games. With the help of key-phrase spotting [Chen98] from 
speech information, we further develop a fusion scheme to elaborate event detection. 
The results of detection are applied to automatic box score generation, game 
summarization, and highlight extraction. With the explicitness of concept detection, 
realistic applications that match users’ needs can be built.  
 
1.5.3 Trajectory-Based Analysis in Baseball Videos 
To enrich the viewing experience of baseball games and provide some clues for 
enhancing pitcher’s performance, we propose a Kalman filter-based approach to track 
ball trajectory from single-view pitching sequences [Chu06-2]. Without setting 
extraordinary equipments in stadiums or other sensing instruments, this approach 
robustly extracts ball trajectory for pitching sequences captured from TV channels or 
downloaded from the Internet. To validate the detected ball trajectories, we investigate 
the characteristics of ball trajectories on the basis of a baseball physical model. The 
effectiveness of ball trajectory extraction and ball position detection has been shown. 
Moreover, based on the extracted trajectory, the pitching type can be automatically 
recognized, and therefore, a new type of metadata that is never provided in previous 
researches can be generated.  
 

Rapid advance of content analysis techniques stimulates the development of 
attractive applications that are across the boundaries of different academic disciplines. 
The results of content analysis not only facilitate information management but also 
provide new thoughts for multimedia communications, such as intelligent content 
adaptation and semantic-based QoS applications. We discuss how content analysis 
aids in content repurposing for various clients, which have different device 
capabilities and content requirements. In the discussion section, we bring up some 
ideas to inject the impacts of content analysis into multimedia communication 
applications.  
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1.6 Dissertation Organization 
This dissertation contains lots of multimedia content analysis studies from different 
perspectives. We propose a generic framework that analogizes semantic analysis to 
language learning in Chapter 2. All other contexts in this dissertation are centralized 
by this general idea. Firstly, semantic concept detection from audio information is 
described in Chapter 3. Based on probabilistic modeling, audio events are modeled 
and detected. The relationships between audio events are further modeled to 
characterize audio semantic concepts. In Chapter 4, we describe the details of explicit 
concept detection in broadcasting videos. Collaboration of visual and speech 
information is comprehensively described, and several realistic applications 
demonstrate the effectiveness of the proposed methods. On the other hand, we present 
trajectory extraction and pitching type recognition for baseball videos in Chapter 5. 
The new type of metadata emerges with a cheap and efficient solution. We describe 
some discussions on cooperating content analysis and content adaptation with other 
fields in Chapter 6. Moreover, the original contributions of this dissertation and 
directions for future researches are also addressed.  

In Appendix A, we briefly review the theoretical foundations of hidden Markov 
model (HMM), which is used in Chapter 3 for modeling audio events and semantic 
concepts. The probabilistic modeling and training techniques are described. In 
Appendix B, we describe the idea and training techniques of support vector machine 
(SVM), which is a discriminative approach to modeling semantic concepts. Appendix 
C states the computational media aesthetics, which describes and relationship between 
audiovisual elements and filmmaking.  
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Chapter 2 
A Unified Framework for 
Multimedia Semantic Analysis 
 

2.1 Content Analysis and Concept Language 
To approach multimedia semantic analysis, we first sketch how human beings learn a 
concept from language. In linguistics, a “grammatical sentence” that presents a 
complete statement is a string of symbols that conforms to the syntactic rules (or the 
so-called language grammar) [From97]. We know the meaning of a sentence because 
of the constituted words and their syntactic relationship. Similarly, but at different 
levels, a word is pronounced by the constituted phonemes according to phonological 
rules. Figure 2-1(a) illustrates the multi-granularity relationship in languages. In the 
last few decades, the linguistic domain knowledge and statistical modeling techniques 
have facilitated the development of speech recognition systems. The syntactic rules of 
constituting a sentence are conveyed in statistical language models, and the 
phonological rules of each isolated word are learnt as acoustic models [Huan01], as 
shown in Figure 2-1(b). The works on speech recognition demonstrate the feasibility 
of mapping different granularities of information in systematic ways, with the helps of 
statistical learning techniques or specific syntactic rules.  

Multimedia semantic analysis, apparently, covers large amount of research topics. 
To simplify the descriptions in the following sections, we use semantic concept 
detection as the example to portray the ideas. We analogize a semantic concept to a 
sentence, which is constructed by some mid-level representations, such as specific 
audio/video elements. Like syntactic rules or language models, audio and video 
elements can be elaborately arranged to construct specific semantics. Film grammar 
[Arij91] or the media aesthetics [Zett99] are, therefore, widely applied in making 
movies and TV programs. Likewise, the audio/video elements are modeled based on 
the characteristics of low-level features, which are analogous to phonemes in 
language, as shown in Figure 2-1(c). The idea of mapping semantic concept detection 
to linguistic structure or speech recognition process demonstrates that we tackle with 
multimedia semantic analysis in a multi-granularity way.  

The common characteristics of these examples are that different semantic 
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granularities are defined. Some rules or statistical methods are applied to map one 
semantic level to another, whereas the mapping functions vary in different tasks. As 
different levels of presentations are linked as a chain, we propose a “content chain 
framework” to deal with multimedia semantic analysis.  
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Figure 2-1. Analogies between language, speech recognition, and semantic concept 

detection.  
 

2.2 Content Chain Framework 
2.2.1 Framework Overview 
Multimedia semantic analysis can be proceeded from different perspectives, at 
different levels, or by different methods according to the targeted applications. 
Conceptually, we often face this problem in many fields: given some types of 
observations, find the symbol that most likely presents according to the characteristics 
of observations. As illustrated in the 2-level chain in Figure 2-2, the nodes denote set 
of entities in each level, such as phonemes at the lower level and words at the higher 
level. The edge between two levels denotes a generative function f, which maps 
lower-level entities to higher-level ones. We take the isolated word recognition as an 
example and formulize the generative function as follows:  

Given a word domain W={w1,w2,…,wN}, where N is the number of words in a 
specific application. Denote P={p1,p2,…,pn} as the set of observed phonemes and 
R={r1,r2,…,rm} as the relations between the elements in P. A word wi can be 
presented as wi=f(Pi,Ri), where Pi (Ri) is a set of elements in P (R), and f is the 
generative function that generates the word wi by giving the phonemes Pi and 
corresponding relationship Ri. For example, the function f can be a phonetic 
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dictionary that maps the phoneme sequence “B UH K” to the word “book” [CMU06]. 
On the other hand, in the automatic isolated word recognition paradigm, the function f 
is elaborately implemented by the hidden Markov model [Rabi89], which maps audio 
features to words on the basis of statistical characteristics.  
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Figure 2-2. Illustrations of different levels of content chains.  

 
The aforementioned paradigm is only involved in two levels. However, not every 

problem can be simplified as two levels. The semantic concept detection, for example, 
is one of the complex problems that should be further divided. In semantic concept 
detection, we can hardly develop a generative function that directly maps audio/video 
features, such as motion and color, to semantic concepts, such as homerun in baseball 
games and gunplay scenes in action movies. That’s the notorious “semantic gap 
problem.” For this problem, some literature has mentioned that mid-level 
representations [Duan03] could be introduced to bridge the gap. As shown in the 
3-level chain of Figure 2-2, the process of semantic concept detection steps from 
audio/video features to objects, and then steps to concepts. This paradigm shows that 
the process of semantic content analysis behaves like the extension of conventional 
pattern recognition problems.  

For a complex problem, it may be a feasible manner to divide it into finer 
sub-problems and conquer them sequentially, like the N-level chain in Figure 2-2. The 
generative function(s) between two levels should be carried out in accordance with 
the characteristics of two ends. For semantic concept detection formulized as a 3-level 
chain, the generative functions can be described as follows [Lay06]:  

Given a concept domain C={c1,c2,…,cN}, where N is the number of concepts in 
the targeted domain. A concept ci is represented as ci=f2(Oi,Oi

R), where O={o1,o2,…,on} 
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are the mid-level representations, with the corresponding relationship Oi
R. Similarly, 

but at a different level, a mid-level element oj=f1(Vj,Vi
R), where V={v1,v2,…,vm} are 

the audio/video features, with the corresponding relationship Vi
R.  

From the aforementioned examples, we figure out that the generative function can 
be determinately built like a dictionary or a set of rules, or can be nondeterminately 
built by using statistical learning techniques. To combat the targeted problem, we 
should take different types of generative functions. According to the determination 
characteristics, we discuss the choices of using generative functions in two phases: 
deterministic mapping function and nondeterministic mapping function.  
 
2.2.2 Deterministic Mapping Function 
For those problems which present clear and definite relationships between essential 
elements, we are able to construct the mapping function by exhaustively listing the 
generative rules or heuristically defining some thresholds for decision making. One 
example of deterministic mapping functions is rule-based baseball concept detection 
module [Chu05-4]. A “double” concept, for example, can be characterized as the 
batter reaching the second base while nobody is out. Because baseball rules are well 
defined and have tight relationships with baseball concepts, we can get promising 
results in applying them as the mapping function. Other examples like audio 
classification [Zhan98] can also be heuristically performed by using deterministic 
methods.  
 
2.2.3 Nondeterministic Mapping Function 
For those problems which cannot be resolved by definitely exploiting rules or no clear 
definition on elements, we can appeal to statistical pattern recognition techniques. 
Because we don’t exactly know the generative rules of a specific entity, supervised or 
unsupervised learning approaches are adopted to statistically characterize the 
relationship between observed features and the targeted entity. For example, in speech 
recognition, given a sequence of observed feature vectors, O=o1,o2,…,oT, the 
probability of a word w is P(w|O), which is a posteriori probability calculated from 
the hidden Markov modeling. Analogous to this formulation, Bach et al. [Bach05] 
propose a statistical modeling method for baseball concept detection.  
 
2.2.4 Generality of the Content Chain Framework 
Works on multimedia semantic analysis are engaged in developing a specific 
detection or classification technique to bridge two semantic granularities. 
Deterministic methods, such as rule-based detection, or nondeterministic methods, 
such as statistical learning techniques, are widely studied. However, it’s often the case 
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that different levels of sub-problems possess significantly different characteristics. 
Simply using one type of method cannot succeed.  
 

Rules Rules

Statistical learning Statistical learning

features objects concepts

Rules Rules

Statistical learning Statistical learning

features objects concepts

 
Figure 2-3. Implementations of generative functions.  

 
In the proposed chain framework, we suggest that any mapping function between 

two semantic granularities can be implemented by deterministic methods, 
nondeterministic methods, or hybrids of them. Therefore, in the semantic concept 
detection example shown in Figure 2-3, there are at least four combinations of 
mapping methods. Different combinations are selected according to targeted 
granularity and the characteristics of content. For example, in baseball concept 
detection paradigm, concepts like “strikeout” and “double play” are detected by 
checking the caption information changes according to baseball rules. We can develop 
a rule-based method to bridge the object domain and the concept domain. From 
features to objects, template matching based on statistical information is used to 
automatically map visual features to caption information.  

Overall, we describe the generality of the proposed framework from the following 
perspectives:  

(1) Extensibility: The content chain is extensible according to how we divide the 
targeted problem into smaller ones. The guidelines for dividing a problem into 
smaller ones often derive from domain knowledge or empiricism. Moreover, 
different branches may be extended on the basis of the same information. For 
example, we can extend the baseball analysis chain with a concept selection 
module to generate game abstraction, or extend it with a sequential mining 
module to mine the offense tactics or conventions for a specific team.  

(2) Flexibility: The mapping function between two levels should be determined 
according to content characteristics. In the case that production rules are clear 
and can be explicitly exploited, deterministic mapping function can be built. 
Otherwise, statistical learning (either in supervised or unsupervised manners) 
techniques can be applied to find the nondeterministic mapping functions.  

 
Unfortunately, the gaps between different semantic granularities are not always 

able to be bridged via computational methods. In these cases, user intervention may 
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play an important role for bridging the gap. Content-based image retrieval with 
relevance feedback is, therefore, invented to improve the retrieval performance. The 
proposed content chain framework describes a general process of semantic content 
analysis, including the computational and artificial manners.  
 

2.3 Framework Correspondence 
In this section, we show the correspondence between the proposed framework and the 
works we have done in this dissertation. We address this issue in terms of the 
representation of nodes and edges.  
 
2.3.1 Semantic Concept Detection in Movies 
Given a movie clip, we try to detect semantic concepts via audio information such 
that the highlighted parts can be automatically indexed. The targeted semantic 
concepts include gunplay and car-chasing scenes in action movies.  

The semantic granularities of this task are illustrated as the Figure 2-4. Nodes 
representing different semantic granularities are audio features, audio events, and 
semantic concepts. The following items are corresponding to that in Figure 2-4.  

(1) The audio features we extracted include timbre and perceptual features, 
which can be directly computed from audio signals.  

(2) The audio events we modeled include gunshot, explosion, engine, and 
car-chasing sound effects. They are indicative elements for the highlighted 
parts of an action movie.  

(3) Since aural information plays an important role for presenting highlighted 
scenes in action movies, we focus on the semantic concepts that demonstrate 
apparent aural effects. The semantic concepts we detected are gunplay 
scenes and car-chasing scenes.  

 
The edges representing mapping functions between two semantic granularities are 

stated as follows:  
(1) From features to events, hidden Markov models (HMM) are used to 

characterize the temporal variations/transition of audio features. Unlike clear 
and definite phonological rules in word construction, no artificial rules or 
conventions exist between audio features and audio events. Therefore, 
probabilistic techniques are used in this mapping.  

(2) Likewise, although we know that there would be many gunshot and/or 
explosion sounds in gunplay scenes, there is no definite rule between these 
two semantic granularities. We again appeal to probabilistic techniques from 
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two perspectives: generative modeling (HMM) and discriminative modeling 
(support vector machine).  
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Figure 2-4. Correspondence between audio semantic concept detection and the 

content chain framework. 
 
2.3.2 Semantic Concept Detection in Baseball Videos 
The goal of this task is to automatically detect all semantic concepts, such as double 
play and homerun, in broadcasting baseball videos. On the basis of detected concepts, 
more elaborate applications can be built, or hidden knowledge between concepts can 
be obtained by cooperating with a mining module.  

Figure 2-5 shows the semantic granularities of this task. Nodes representing 
different semantic granularities are visual features, caption information, baseball 
concepts, and game abstraction/knowledge.  

(1) To detect where the caption information is, we extract color and edge 
information in video frames.  

(2) At the level of caption information, we recognize the number of out, number 
of score, and base-occupation situation.  

(3) Thirteen baseball concepts, which are commonly used to index baseball 
games, are automatically detected.  

(4) Baseball concepts occurred in a game can be elaborately selected to 
construct a game abstraction, in the types of highlights or summary. 
Moreover, hidden knowledge, such as game tactics or offense conventions, 
can be found through applying a mining process to a pool of concepts.  

 
The mapping functions between semantic granularities are stated as following:  
(1) Mapping between visual features and caption information is actually the 

problem of character recognition. We accomplish this task by using a 
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template matching technique.  
(2) From caption information to semantic concepts, official baseball rules 

significantly help in detecting most concepts. For those concepts that cannot 
be discriminated by simply using rules, classifiers constructed based on 
visual information and speech are combined to make an explicit decision.  

(3) From semantic concepts to game abstraction, some production rules or 
broadcasting conventions can be applied. On the other hand, a statistical 
mining method can be utilized to discover some hidden patterns or subtle 
knowledge based on large volume of game results.  

 
The whole process goes through the feature space, the object space, the concept 

space, and the knowledge space.  
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Figure 2-5. Correspondence between baseball concept detection and the content chain 

framework. 
 
2.3.3 Trajectory-based Analysis in Sports Videos 
Ball trajectory is unique and important information in sports videos. Given a video 
clip, we want to extract the ball trajectory to facilitate semantic analysis.  

Figure 2-6 shows the semantic granularities of this task. Nodes representing 
different semantic granularities are visual features, ball candidates in each frame, and 
the extracted ball trajectory.  

(1) The primary clues for detecting the ball are color and shape.  
(2) Ball-like objects are detected in each frame. Note that the real ball object 

may be occluded by other objects or is merged into the background.  
(3) After tracking, we extract a reasonable ball trajectory that is concatenated by 

ball objects in each frame.  
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Figure 2-6. Correspondence between ball trajectory extraction and the content chain 

framework. 
 

The mapping functions between semantic granularities are stated as following:  
(1) We can apply several heuristics, such as color, shape, and size, to detect ball 

candidates from each frame.  
(2) From ball candidates to trajectory, Kalman filter-based tracking techniques 

are used to find a reasonable trajectory. Moreover, like the syntactic rules 
that constitute a grammatical sentence from words, a reasonable trajectory 
should conform to aerodynamics. We devise a physics-based method to 
validate the extracted ball trajectory.  

 

2.4 Summary 
In this chapter, we describe a content chain framework based on the idea of learning 
semantics from language. We analogize multimedia semantic analysis as a process for 
bridging different semantic granularities. In the proposed content chain framework, 
nodes represent semantic representation and edges represent the generative functions 
that generate higher-level entities based on lower-level entities. The extensibility and 
flexibility of this framework are discussed. On the basis of the developments of 
deterministic or nondeterministic functions, this framework describes the process of 
semantic analysis and can be the foundation of the following chapters. Accordingly, 
we give the correspondence between the content chain framework and the works we 
will describe in this dissertation. Variety and generality of the proposed framework 
are shown in the context.  
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Chapter 3 
Semantic Analysis in Movies through 
Audio Information 
 

3.1 Introduction 
As the rapid advance in media creation, storage, and compression technologies, large 
amounts of multimedia content have been created and disseminated by various ways. 
Massive multimedia data challenge users in content browsing and retrieving, thereby 
motivating the urging needs of information mining technologies.  

To facilitate effective or efficient multimedia document indexing, many research 
issues have been investigated. However, they pose many problems in today’s 
applications. The semantic gap between low-level features and high-level concepts 
degrades the performance of multimedia content management systems. Similarities in 
low-level features don’t certainly match with user’s perception. Scenes or shots are 
associated due to semantics rather than physical features like color layouts and motion 
trajectories. Therefore, it would be more reasonable to discover information from 
meaningful events or objects rather than physical features.  

To diminish the differences between analysis results and user’s expectation, two 
research directions are emerged. The first is to detect attractive parts of movies or TV 
programs by exploiting the domain knowledge and production rules. According to 
media aesthetics [Zett99], which includes the study and analysis of media elements 
commonly applied, the related studies attempt to uncover the semantic and semiotic 
information by computational frameworks. Preliminary results have been reported on 
film tempo analysis [Dora02] and scare scene detection in horror movies [Monc03].  

Semantic indexing is another emerging study that identifies objects and events in 
audiovisual streams and facilitates semantic retrieval or information mining. The 
major challenge of this work is to bridge the gaps between physical features and 
semantic concepts. Studies on semantic indexing can be separated into two levels: 
isolated audio/video event detection and semantics identification. Former studies 
[Cai03][Naph98] took advantage of HMM-based approaches to tackle event detection. 
Audio events such as applause, laughter, and cheer are modeled. However, in today’s 
applications, detecting isolated audio/video events is not quite intuitive to users. For 
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example, rather than identifying individual gunshots in an action movie, we are more 
likely to recognize a scene of gunplay, which may consist of a series of gunshots, 
explosions, sounds of jeeps and screams from soldiers. Such a scene conveys a solid 
semantic meaning and is at a reasonable granularity for semantic retrieval. For 
modeling visual semantics, some approaches based on Bayesian network [Naph02] 
and support vector machine [Smit03] have been proposed to fuse the information of 
visual events and to infer some semantic concepts, such as “outdoor” or “beach” 
concepts. However, few studies are reported to perform audio-based semantic concept 
detection. In some types of videos, such as action movies, audio information plays 
more important role than visual ones. For example, a gunplay scene may occur in a 
rainforest or a downtown street, at day or night, which have significant variations in 
vision. On the contrary, aural information remains similar in different gunplay scenes, 
and some typical audio events (e.g. gunshot and explosion sounds in gunplay scenes) 
significantly provide the clues for detecting semantic concepts.  

Due to rapid shot changes and dazzling visual variations in action movies, our 
studies focus on analyzing audio tracks and accomplish semantic indexing via aural 
clues. In this chapter, an integrated hierarchical framework is proposed to detect two 
semantic concepts, i.e. “gunplay” and “car-chasing,” in action movies. To characterize 
these two semantic concepts by event fusion, “gunshot” and “explosion” sound effects 
are detected for “gunplay” scenes, and “car-braking” and “engine” sounds are 
detected for “car-chasing” scenes. For audio event modeling, HMM-based approaches 
that have been applied in visual event modeling [Naph98] are used. Then gunplay 
scenes and car-chasing scenes are modeled based on the statistical information from 
audio event detection. For semantic concept modeling, generative (hidden Markov 
model) and discriminative (support vector machine) approaches are investigated. We 
view semantic concept detection as a problem of pattern recognition, and similar 
feature values (detection results of audio events) would be fused to represent a 
semantic concept. For example, gunplay scenes may have similar gunshot and 
explosion occurrence patterns and are distinguished from other scenes by pattern 
recognition techniques. We discuss how the fusion approaches work and show the 
effectiveness of this event fusion framework. The results of semantic concept 
detection can be applied to multimedia indexing and facilitate efficient media access.  
 

3.2 Hierarchical Audio Models 
The semantic indexing process is performed in a hierarchical manner. At the audio 
event level, the characteristics of each audio event are modeled by an HMM in terms 
of the extracted audio features. At the semantic concept level, the results of audio 
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event detection are fused by using generative (HMM) or discriminative (SVM) 
schemes.  
 
3.2.1 Audio Event and Semantic Concept 
Audio events are defined as short audio clips which represent the sound of an object 
or an event. On the basis of elaborately selected audio features, fully connected 
(ergodic) HMMs are used to characterize audio events, with Gaussian mixtures 
modeling for each state. Four audio events, including gunshot, explosion, engine, and 
car-braking, are considered in this work.  

In this study, we aim at indexing multimedia documents by detecting semantic 
concepts. A semantic concept may be derived from the association of various events. 
Therefore, we introduce the idea of modeling a semantic concept via the context of 
relevant events. To characterize a semantic concept, the information of specific audio 
events, which are highly relevant to some semantic concepts, are collected and 
modeled. In action movies, the occurrences of gunshot and explosion events are used 
to characterize gunplay scenes. The occurrences of engine and car-braking events are 
used to characterize car-chasing scenes.  

For a semantic concept, there may be no specific evolution pattern along the time 
axis. For example, in a gunplay scene, we cannot expect that explosions always occur 
after gunshots. Moreover, there may be some silence segments which contain no 
relevant audio events, but they are viewed as parts of the same gunplay scene in 
human’s sense. Figure 3-1 illustrates examples of “gunplay” semantic concepts. The 
audio clip from t1 to t2 is a typical gunplay scene which contains mixed relevant 
audio events. In contrast to this case, no relevant event exists from t4 to t5 and from t6 
to t7. However, the whole audio clip from t3 to t8 is viewed as the same scene in 
user’s sense, as long as the duration of the “irrelevant clip” doesn’t exceed users’ 
tolerance. Therefore, to model the characteristics of semantic concepts, we develop an 
approach that takes a series of events along the time axis into account rather than just 
the information at a time instant.  

Note that multiple audio events may occur simultaneously, as shown in the 
duration from t1 to t2 in Figure 3-1. Some studies have been conducted to separate 
mixed audio signals in speech and music domains, by using independent component 
analysis [Hyva01]. The reported works are mainly performed on synthetically mixed 
audio signals or sounds recorded at simple acoustic conditions. However, separating 
mixed audio effects recorded in complicated real-world situations is not widely 
studied. In this work, when multiple audio events are mixed, we simply select two 
representative events to describe the characteristics of the corresponding audio clip. 
Although separating mixed audio effects is possible, elaborate studies on this issue are 
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beyond the scope of this dissertation.  
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Figure 3-1. Examples of audio semantic concepts. 
 
3.2.2 Hierarchical Framework 
The proposed framework consists of audio event and semantic concept modeling. 
Some essential audio features from training corpus are first extracted and modeled by 
HMMs, as shown in Figure 3-2(a). After constructing each audio event model, the 
likelihood of a test audio segment with respect to each audio event can be computed 
through the Forward algorithm [Rabi89]. To determine how a segment is close to an 
audio event, a confidence metric based on the likelihood ratio test [Duda01] is defined. 
We say that the segments with higher confidence scores from the gunshot model, for 
example, imply higher probability of the occurrence of gunshot sounds  

In the stage of semantic concept modeling/detection, the confidence values from 
event detection constitute the cues for characterizing high-level semantic concepts. 
The pseudo-semantic features that indicate the occurrences of events are constructed 
to represent the association of audio clips. We call them pseudo-semantic features 
because they represent the interrelationship of several audio events, which are 
grounds for users to realize what the clip presents. With these features, two 
approaches based on generative and discriminative strategies are investigated to 
model semantic concepts, as shown in Figure 3-2(b). As the usage in pattern 
recognition and data classification, HMM and SVM shed lights on clustering these 
pseudo-semantic features and facilitate detection processes.  
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Figure 3-2. The proposed hierarchical framework contains (a) audio event and (b) 
semantic concept modeling. 

 

3.3 Audio Feature Extraction 
One important factor for pattern recognition is the selection of suitable features that 
characterize original data adequately. To analyze audio sequences, several audio 
features from time-domain amplitude and frequency-domain spectrogram are 
extracted and utilized. In our experiments, all audio streams are down-sampled to the 
16 KHz, 16 bits and mono-channel format. Each audio frame is of 25 ms, with 50% 
overlaps. Two types of features, i.e. perceptual features and Mel-frequency Cepstral 
Coefficients (MFCC), are extracted from each audio frame. The perceptual features 
include short-time energy, band energy ratio, zero-crossing rate, frequency centroid, 
and bandwidth [Wang00]. These features are shown to be beneficial for audio analysis 
and are widely adopted [Lu02, Zhan98, Tzan02, Lu03, Cai03].  

 
3.3.1 Short-Time Energy 
Short-time energy (STE) is the total spectrum power of an audio signal at a given time 
and is also referred to loudness or volume in the literature. It provides a convenient 
representation of the amplitude variations over time. This feature is useful for 
detecting silence or distinguishing speech from non-speech signals. The STE of frame 
n is calculated by  
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where sn(i) is the ith sample in the nth frame audio signal and N is the frame 
length. Note that the STE of an audio clip is device-dependent. Audio clips may be 
produced from or recorded on different devices under different circumstances, so the 
basis or mean volume of each audio clip may not be identical. To reduce the clip level 
fluctuation of volume mean, we normalize the volume of a frame based on the 
maximum volume of the corresponding audio clip.  

 
3.3.2 Band Energy Ratio 
The distributions of energy in various kinds of audio signals, such as music and 
speech, are important spectral characteristics and can be used to model the spectrum 
power more accurately. The band energy (BE) is defined as the energy content of a 
signal, for a given frame, in a band of frequencies:  
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where SF(ω) denotes the short-time Fourier transform coefficients, and ωU and ωL 
are the upper and the lower bound frequencies of the sub-band i, respectively.  

In order to model the characteristics of spectral distribution more accurately, the 
band energy ratio is considered in this work. The frequency spectrum is divided into 
four sub-bands with equal frequency intervals, then the band energy ratios are 
computed as:  
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3.3.3 Zero-Crossing Rate 
Zero-crossing rate (ZCR) is defined as the average number of signal sign changes in 
an audio frame. It gives a rough estimate of frequency content and has been 
extensively used in many audio processing applications, such as voiced and unvoiced 
components discrimination, endpoint detection, and audio classification. Moreover, 
by combining ZCR with volume, we avoid misclassifying low volume unvoiced 
speech components as silence.  

Average ZCR in discrete case is calculated as:  
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3.3.4 Frequency Centroid 
Frequency centroid (FC) is the first-order statistics of the spectrogram, which 
represents the power-weighted median frequency of the spectrum in a frame. It has 
been shown that the frequency centroid is related to human’s aural perceptions, so it is 
also referred to brightness in some literatures. FC is formulated as:  
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3.3.5 Bandwidth 
Bandwidth (BW) is the second-order statistics of the spectrogram, which represents 
the power-weighted standard deviation of the spectrum in a frame. The definition of 
BW is:  
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Frequency centroid and bandwidth are usually combined to describe statistical 
characteristics of the spectrum in a frame. They respectively represent the ‘center of 
gravity’ and variances of the spectrogram, and their reliability and effectiveness have 
been demonstrated in previous research [Wang00].  
 
3.3.6 Mel-Frequency Cepstral Coefficients 
Mel-frequency cepstral coefficients (MFCCs) are the most widely used features in 
speech recognition and other audio applications. They are computed as the inverse 
Fourier transform of the logarithmic spectrum in a frame. MFCCs effectively 
represent human perception because the non-linear scale property of frequencies in 
human hearing system is considered. Based on the temporal variation of MFCC, an 
audio sequence can be effectively discriminated as speech or music. In this work, 
based on the suggestion in [Li00], 8-order MFCCs are computed from each frame. 

 
The extracted features from each audio frame are concatenated as a 

16-dimensional (1(STE)+4(BER)+1(ZCR)+1(FC)+1(BW)+8(MFCC)) feature vector. 
Details of the audio feature extraction processes can be found in [Wang00]. Note that 
the temporal variations of the adopted features are also considered. That is, the 
differences of the features between two adjacent frames are calculated. Therefore, by 
concatenating the feature vector of the i-th frame and the differences between the i-th 
and the (i+1)-th frames, a 32-dimensional (32-D) vector is finally generated for each 
audio frame.  
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3.4 Audio Event Modeling 
Detecting specific events in audio streams is crucial, which will benefit the 
higher-level analysis of multimedia documents and facilitate the modeling of human 
attention and perception more accurately. This section addresses some issues of audio 
event modeling, including the determination of model size, model training process, 
and the construction of pseudo-semantic features for semantics modeling.  
 
3.4.1 Model Size Estimation 
We use HMMs to describe the characteristics of audio events. The 32-D feature 
vectors from a type of audio event are grouped into several sets. Each set denotes one 
kind of timbre, and is modeled later by one state of an HMM. Determining a proper 
model size is crucial in applying HMMs. The state number should be large enough to 
describe the variations of features, while it should also be compact when we consider 
computational cost of model training process. In this work, adaptive sample set 
construction technique [Bow02] is adopted to estimate a reasonable model size of 
each audio event. The algorithm is described in the box of the next page.  

The thresholds t1, t2, and ρ are heuristically designated such that different clusters 
(states) have distinct differences. In this work, ρ is set as 0.1 to guarantee more than 
ninety percent of data are clustered. The initial values of t1 and t2 could be empirically 
set, as their initial values just affect the number of iterations for convergency, but not 
the final results that indicate the number of major clusters. The distance measure di(v, 
zi) we used is Euclidean distance. As Gaussian mixtures are able to handle the slight 
differences within each state, we tend to keep the number of states less than ten by 
considering the effectiveness and efficiency of the training process.  

A professional sound effects library is used to be the training corpus [Soun06]. 
Through the above process, the estimated state numbers for car-braking and engine 
are two and four, and both the state numbers for gunshot and explosion are six. These 
results make sense because, for each audio event, various kinds of sounds are 
collected in this sound library, and these numbers represent the degree of variations of 
each audio event. For example, the sounds of rifle and hand/machine gun are all 
collected as the gunshots. They vary significantly and should be represented by more 
state numbers than simple sounds, such as the sharp but simple car-braking sounds.  
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1. Define two thresholds: t1 and t2, with t1 > t2. 

2. Take the first sample v1 as the representative of the first cluster: z1 = v1, where 

z1 is the center of the first cluster.  

3. Take the next sample v and compute its distance di(v, zi) to all the existing 

clusters, and choose the minimum of di: min{di}.  

(a) If min{di}  ≦ t2, assign v to cluster i and update the center of this cluster: 

zi.  

(b) If min{di} > t1, a new cluster with center v is created.  

(c) If t2 < min{di} ≦ t1, no decision will be made as the sample v is in the 

intermediate region.  

4. Repeat step 3 until all samples have been checked once. Calculate the 

variances of all clusters.  

5. If the current variance is the same as that of the last iteration, the clustering 

process has converged, go to step 6. Otherwise, return to step 3 for further 

iteration.  

6. If the number of unassigned samples is larger than a certain percentage ρ (0 ≦ 

ρ ≦ 1), increase t1 or decrease t2 while remaining t2 > 2t1 and start with step 2 

again. Otherwise, assign the unassigned samples to the nearest clusters and end 

the process.  

 
 
3.4.2 Model Training 
For modeling gunplay and car-chasing scenes in action movies, the audio events we 
modeled are gunshot, explosion, engine, and car-braking. For each audio event, 100 
short audio clips each with length 3-10 seconds are selected from the SoundIdeas 
sound effects library as the training data. In the training stage, the training audio 
streams are segmented into overlapped frames, and the features described in Section 3 
are extracted. Based on these features, a complete specification of HMM, which 
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includes two model parameters (model size and number of mixtures in each state) and 
three sets of probabilities (initial probability, observation probability, and transition 
probability), are determined. The model size and initial probability could be decided 
by the clustering algorithm described in the previous subsection, and the number of 
mixtures in each state is empirically set as four because it’s insensitive to the system 
performance according to our experiments. The Baum-Welch algorithm is then 
applied to estimate the transition probabilities between states and the observation 
probabilities within each state. Finally, four HMMs are constructed for the audio 
events we concern. Details of the HMM training process can be found in Appendix A 
and the eminent tutorial [Rabi89].  
 
3.4.3 Specific and World Distribution 
After audio event modeling, for a given audio clip, the log-likelihood values with 
respect to each event model are calculated by the Forward algorithm. Because a sound 
effect often lasts more than one second, the basic units we analyze for event detection 
are 1-sec audio segments (called analysis window in this work), with 50% 
overlapping with adjacency segments. In event detection, the most important issue is 
how to decide whether an event occurs. According to the definition of HMM’s 
evolution problem, the solution of Forward algorithm scores how well a given model 
matches a given observation sequence. However, unlike audio classification or speech 
recognition, we cannot simply classify an audio segment as a specific event even if it 
has the largest log-likelihood value. It may just present general environmental sound 
and doesn’t belong to any predefined audio event. Therefore, to evaluate how likely 
an audio segment belongs to a specific audio event, a log-likelihood based decision 
method motivated from the speaker and world models in speaker verification [Zilc01] 
is proposed.  

For each type of audio event, two distributions are constructed from the 
log-likelihood values. The first distribution represents the distribution of the 
log-likelihood values obtained from a specific event model i with respect to the 
corresponding audio sounds. For example, from the “engine” model with the set of 
engine sounds as inputs, the resulting log-likelihood values are gathered to form the 
distribution. Figure 3-3(a) illustrates this construction process, and we call this 
distribution the specific distribution, p(x|θ1), of the engine model. In contrast, the 
second distribution represents the distribution of the log-likelihood values obtained 
from a specific audio event model with respect to other audio sounds. As shown in 
Figure 3-3(b), the world distribution, p(x|θ0), of the engine model is constructed from 
the log-likelihood values gathered from the engine model with the sets of gun, 
explosion, and car-braking sounds as inputs. Overall, engine model’s specific 
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distribution describes how the engine HMM evaluates engine sounds, while its world 
distribution describes how the engine HMM evaluates other kinds of sounds. These 
two distributions show how log-likelihood values vary with respect to a specific audio 
event and help us discriminate a specific audio event from others.  
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Figure 3-3. Construction of (a) specific distribution p(x|θ1) and (b) world distribution 

p(x|θ0)  for engine events. 
 
3.4.4 Pseudo-Semantic Features 
Based on specific distributions and world distributions, we can evaluate how likely an 
audio segment (as the unit of analysis window) belongs to a specific audio event and 
compute a confidence score. The audio segments with low average short-time energy 
and zero-crossing rate are first marked as silence, and the corresponding confidence 
scores with respect to all audio events are set as zero. For non-silence segments, the 
extracted feature vectors are input to the four HMMs. For a given audio segment, 
assume that the log-likelihood value from an event model is x, the confidence score 
with respect to audio event i is defined as:  

1

0

( | )
( | )

i
i

i

p xc
p x

θ
θ

= ,                                                   (3-7) 

where pi(x|θ1) and pi(x|θ0) respectively denote the magnitudes of log-likelihood 
value x with respect to the specific and world distributions of event i. The value ci 
represents the confidence score of the audio segment belonging to event i. Note that if 
the testing audio segment is out of the pre-defined set, both log-likelihood values with 
respect to the specific and world distributions are very likely to be zeros. We 
heuristically set the value ci as zero for rejection in this case.  

By the definition in Section 5.2.1, a semantic concept often lasts for at least a 
period of time, and not all the relevant audio events exist at every time instant. 
Therefore, the confidence scores of several consecutive audio segments are 
considered integrally to capture the temporal characteristics in a time series [Tzan02]. 
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We define a texture window (c.f. Figure 3-4(b)) of 5-sec long, with 2.5-sec overlaps, 
to go through the confidence scores of analysis windows.  
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Figure 3-4. Pseudo-semantic features calculation for semantic concepts modeling. (a) 
Analysis windows and (b) texture windows. 

 
For describing the semantic concepts of audio streams, pseudo-semantic features 

that are constructed from the results of event detection are proposed. Based on the 
idea of event fusion, the pseudo-semantic features for each texture window are 
constructed as follows.  

 
1. For each texture window, the mean values of confidence scores are calculated:  

mi = mean(ci,1, ci,2, …,ci,N), i = 1, 2, 3, 4,  
where ci,j denotes the confidence score of the j-th analysis window with respect 
to event i, and N denotes the total number of analysis windows in a texture 
window.  
By the settings described above, nine analysis windows (N = 9), with 50% 
overlapping, construct a texture window. The corresponding sound effects to 
events 1 to 4 are “gunshot,” “explosion,” “engine,” and “car-braking.”  

2. Let bi be a binary variable describing the occurrence situation of event i. The 
pseudo-semantic feature vector vt for the t-th texture window is defined as:  
vt = [b1, b2, b3, b4], 
bi=1 and bj=1 if the corresponding mi and mj are the first and the second 
maximums of (m1, m2, m3, m4). Otherwise, bk = 0.  
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3. The total pseudo-semantic features V is represented as:  

1

2

T

v
v

V

v

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

#
,  

where T is the total number of texture windows in the audio clip. 
 

Calculating running mean values of confidence scores is to describe the 
characteristics over a number of analysis windows. We did also consider running 
variances in pseudo-semantic features construction, but the final detection 
performance doesn’t change significantly. The process of binarization is to emphasize 
the differences between confidence values with respect to different events. If a sound 
effect is more apparent than others, larger confidence score will be obtained. 
Therefore, we prompt the events with the first and the second largest confidence 
values and suppress those with smaller confidence values.  

We call the features pseudo-semantic features because they represent the 
intermediate characteristics between low-level physical features and high-level 
semantic concepts. The audio segments with higher confidence scores in the audio 
events relevant to a concept are more likely to convey this concept. For example, the 
audio segments with higher confidence scores in gunshot and explosion events 
somehow drop hints on the occurrence of gunplay scenes. To accomplish fusing 
information from different events, we investigate generative and discriminative 
approaches to model the pseudo-semantic features. HMM is selected to be the 
instance of generative approach, and SVM is treated as the instance of discriminative 
approach.  

 

3.5 Generative Modeling for Semantic Concept 
For describing a sophisticated semantic concept, a general model, e.g. Gaussian 
mixture model, that only covers the event data distributions may not be enough. It is 
preferable to explicitly model the time duration density by including the concept of 
state transition. The appearance of relevant events doesn’t remain the same at every 
time instant. There would be some segments with low confidence scores because the 
sound effect is unapparent or is influenced by other environmental sounds. On the 
other hand, some segments may pose higher confidence because the audio events 
raise or explosively emerge. A model with more descriptive capability should take the 
temporal variations into consideration.  
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HMM is widely applied in speech recognition to model the spectral variations of 
acoustic features. It captures the time variation and state transition duration from 
training data. In speech-related applications, the left-right HMMs, which only allow 
state index increasing (or staying the same) as time goes by, are considered to be 
suitable. But in the case of semantic concept modeling, there is no specific 
consequence formally representing the time evolution. Therefore, ergodic HMMs, or 
the so-called fully connected HMMs, are used in this work.  
 
3.5.1 Model Training 
To perform model training, ten gunplay and car-chasing scenes, each with length 3-5 
minutes, are manually selected from several Hollywood action movies as the training 
corpus. Based on user’s sense, the movie clips that completely present gunplay or 
car-chasing scenes are selected, no matter how many gunshots, engine, or other 
relevant audio events occur. In model training, audio events are first detected and the 
pseudo-semantic features are constructed based on the results of event detection. The 
pseudo-semantic features from each semantic concept are then modeled by an HMM 
again. For each HMM, the state number is estimated as two and the characteristics of 
each state are described by one Gaussian mixture. The obtained HMMs elaborately 
characterize the densities of time-variant features and present the structures of 
sophisticated semantic concepts.  
 
3.5.2 Semantic Concept Detection 
The semantic concept detection process is conducted following the same idea as that 
of the audio event detection. For every 5-sec audio segment (a texture window), the 
log-likelihood calculated by the Forward algorithm represents how the semantic 
concept models match the given pseudo-semantic features. The binary indicator αs,t is 
defined to show the appearance of semantic concept s at the t-th texture window, s = 1 
and 2 respectively for gunplay and car-chasing scenes. That is,  

If σs > ε, αs,t = 1. Otherwise, αs,t = 0,                                 (3-8) 

where σs is the log-likelihood value under semantic concept model s, and ε is a 
pre-defined threshold for filtering out those texture windows with too small values. 
The threshold can be adjusted by the user to tradeoff the precision and recall of 
semantic concept detection. 
 

3.6 Discriminative Modeling for Semantic Concept 
Support vector machine (SVM) has been shown to be a powerful discriminative 
technique [Vapn98]. It focuses on structural risk minimization by maximizing the 
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decision margin. The goal of SVM is to produce a model which predicts target value 
of data instances in the testing set. In our work, we view the detection process as 
classifying testing feature vectors (pseudo-semantic features) into one of the 
predefined classes (semantic concept). Thus we exploit SVM classifiers to distinguish 
the textures of “gunplay,” “car-chasing,” and “others” scenes. Although the features 
obtained from the same semantic concept may disperse variably in the feature space 
(which is caused by the various patterns of the same semantic concept), the SVM 
classifier which maps features into a higher dimensional space and finds a linear 
hyperplane with the maximal margin can effectively distinguish one semantic concept 
from others.  

Note that SVMs were originally designed for binary classification. In this work, 
we should classify a segment into three scenes, thus the SVM classifiers should be 
extended to handle multiclass classification both in training and testing processes. 
 
3.6.1 Model Training 
Recently, a few researches are conducted to reduce a multiclass SVM into several 
binary SVM classifiers [Plat00]. According to the performance analysis of multiclass 
SVM classifiers [Hsu02], we adopt the ‘one-against-one’ strategy to model these three 
scenes. Three SVM models are constructed, i.e. “gunplay vs. car-chasing,” “gunplay 
vs. others,” and “car-chasing vs. others.” For training each classifier, feature vectors 
are collected and their labels are manually determined to construct instance-label pairs 

(xi,yi), where n
ix R∈  and { }1, 1iy ∈ − . An SVM finds an optimal solution of data 

separation by mapping the training data xi to a higher dimensional space by a kernel 
function φ  up to a penalty parameter C of the error term. In model training, the 
kernel function we used is the radial basis function (RBF), which has been suggested 
in many SVM-based researches. That is, our kernel function is  

2
( , ) exp( )i jK x y x xγ= − − , 0γ > .                                   (3-9) 

It is crucial to find the right parameters C and γ in RBF. Therefore, we apply 
five-fold cross validation with a grid search of varying (C, γ) on the training set to 
find the best parameters achieving the highest classification accuracy.  

For training SVM classifiers, the pseudo-semantic features obtained from four 
audio events are labeled manually based on the unit of a texture window. Then all 
labeled texture windows are collected together to produce the training vectors. Three 
binary SVM classifiers will be combined later to identify which semantic concept a 
texture window belongs to. Details of the idea of SVM and training process are 
addressed in Appendix B.  
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3.6.2 Semantic Concept Detection 
In semantic concept detection, the Decision Directed Acyclic Graph SVM algorithm 
(DAGSVM) [Plat00] is applied to combine the results of one-against-one SVMs. The 
DAGSVM algorithm has been shown to be superior to existing multiclass SVM 
algorithms in both training and evaluation speeds. Figure 3-5 illustrates one example 
of the detection procedure. Initially, the test vectors are viewed as the candidates for 
all three concepts. In the first step of detection, the test vectors are input to the root 
SVM classifier, i.e. “car-chasing vs. others” classifier. After this evaluation, the 
process branches to left if more vectors are predicted as the “others” category, and the 
“car-chasing” concept is removed from the candidate list. The “gunplay vs. others” 
classifier is then used to re-evaluate the test vectors. After these two steps, the vectors 
representing the characteristics of texture windows are labeled as “gunplay” or 
“others.”  
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Figure 3-5. The testing procedure of DAGSVM. 
 
The DAGSVM separates the individual classes with large margins. It is safe to 

discard the losing class at each one-against-one decision because, for the hard margin 
case, all of the examples of the losing class are far away from the decision surface. 
Hence, the choice of the class order in detection procedure is arbitrary.  
 

3.7 Performance Evaluation 
We may first describe the characteristics of sound effects in movies before preparing 
the evaluation data. According to our observations, although the acoustic conditions 
may vary differently in different movies, the sound effects indicating a specific 
semantic concept fall into several fixed types. The reasons for this phenomenon 



 

39 

include: 1) there have been some conventions to construct a concept in movie making, 
and 2) the sound effects are often added or embellished after shooting according to 
commonly used techniques. For example, in a gunplay scene, the sounds of gunshots 
can be often categories as several canonical types: hand gun, rifle, machine gun, and 
ricochet. Therefore, very huge amount of training data are not necessarily required.  

For each audio event, 100 short audio clips each with length 3-10 sec are selected. 
For semantic concept modeling, because there is no standard corpus for audio 
semantic concepts, the evaluation data are manually selected from Hollywood movies. 
Thirty movie clips each with length 3-5 minutes are selected and labeled for each 
semantic concept. Twenty-four clips of them are used as the dataset for model training, 
while the rest are used for model testing. Note that the criteria of selecting training 
data for audio events and semantic concepts are different. For semantic concept 
modeling, we collected the “gunplay” and “car-chasing” scenes based on the 
experienced user’s subjective judgments, no matter how many relevant audio events 
exist in the scene. On the contrary, the training data for audio event modeling are 
short audio segments that are exactly the audio events.  

We evaluate the performance for both audio event detection and semantic concept 
detection. Moreover, the effectiveness of this later fusion approach is compared with 
that in the baseline approach, which only exploits low-level audio features and works 
in an early fusion manner.  
 
3.7.1 Evaluation of Audio Event Detection 
In audio event detection, audio streams are segmented into audio clips through 
analysis windows, as illustrated in Figure 3-4(a), and the log-likelihood values of 
audio clips in each analysis window with respect to four audio events are evaluated. 
The audio clip in an analysis window is correctly detected as the event i if its 
corresponding confidence score is larger than a predefined threshold and is the 
maximum value with respect to all events. That is,  

C = max(c1, c2, c3, c4) and C > δ,                                   (3-10) 
where ci (i = 1, …, 4), calculated from eq. (3-7), is the confidence score with 

respect to event i, and δ is determined by the Bayesian optimal decision rule [Duda01] 
on the basis of specific and world distributions. We decide that the analysis window 
with confidence score x belongs to a specific event (category θ1) if 

01 1 10 0( | ) ( | )P x P xλ θ λ θ> ,                                        (3-11) 
where λij is the cost incurred for deciding θi when the true state of nature is θj.  
By employing Bayes formula, we can replace the posterior probabilities by the 

prior probabilities and conditional densities. Then we decide θ1 if  
01 1 1 10 0 0( | ) ( ) ( | ) ( )p x P p x Pλ θ θ λ θ θ> ,                                (3-12) 
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and otherwise decide θ0.  
Then we alternatively rewrite eq. (3-12) and decide θ1 if  

10 01

0 01 1

( )( | )
( | ) ( )

Pp xC
p x P

λ θθ δ
θ λ θ

= > = .                                    (3-13) 

The prior probabilities are estimated based on our training data. The costs λ10 and 
λ01 could be adjusted to vary the value of threshold such that higher precision or recall 
could be achieved in the detection stage.  
 
3.7.1.1 Overall Performance 
The overall detection performance is listed in Table 3-1. The average recall is over 
70% and the average precision is about 85%. Although the detection accuracy is often 
sequence-dependent and is affected by confused audio effects, the reported 
performances support the applicability and superiority of the event modeling. In 
addition, different audio events have different evaluation results. Because the 
car-braking sounds are often very short in time (less than one second, which is the 
length of one basic analysis unit defined in our work) and are mixed with other 
environment sounds, the detection accuracy is particularly worse than others. This 
situation is different from gunshot sounds because there is often a continuity of 
gunshots (the sounds of a machine gun or successive handgun/rifle shoots) in a 
gunplay scene.  
 

Table 3-1. Overall performance of audio event detection. 
Audio Event Recall Precision 
Gun 0.938 0.95 
Explosion 0.786 0.917 
Car-Braking 0.327 0.571 
Engine 0.890 0.951 
Average 0.735 0.847 

 
The detection performance is more encouraging if we neglect the particular case 

in car-braking detection. For other audio events, the average recall is 87% and the 
average precision is 94%. On the other hand, because the car-braking sound is a 
representative audio cue of car-chasing scenes, we still take the detection results of 
car-braking sounds into account in car-chasing concept modeling.  



 

41 

0.4

0.5

0.6

0.7

0.8

0.9

0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

P
re

ci
si

on

1δ
2δ

3δ

4δ
1δ

1δ

2δ

2δ

3δ

3δ

4δ

4δ

0.4

0.5

0.6

0.7

0.8

0.9

0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

P
re

ci
si

on

1δ
2δ

3δ

4δ
1δ

1δ

2δ

2δ

3δ

3δ

4δ

4δ

 

Figure 3-6. Three examples of detection performance with different thresholds (δ1 > δ2 
> δ3 > δ4). 

 
We also briefly investigate how different thresholds in eq. (3-10) affect the 

detection performance. When we penalize misclassifying θ0 as θ1 (false alarm) more 
than the converse (i.e. λ10 > λ01), we get larger threshold δ, and hence higher precision 
but lower recall are expected. Figure 3-6 shows detection performance with four 
different thresholds (δ1 > δ2 > δ3 > δ4) from three different test sequences. Note that 
the trend of detection performance conforms to the general principle of pattern 
classification, while detection results are sequence-dependent.  
 
3.7.1.2 Performance Comparison 
To compare the performance of video retrieval/indexing between various approaches, 
some institutes such as TREC Video Retrieval Evaluation [TREC06] developed 
corpus for video event evaluation. However, few standard datasets are designed for 
audio event detection. Most works of audio event detection (including our work) use 
privately collected datasets. Direct comparison between different approaches, which 
use different datasets and model different events, is not plausible. However, in order 
to show that the proposed approach achieves promising performances in detecting 
various audio events, we refer to other works that focused on audio events in sports 
games [Wang04-3], TV shows [Cai03], and movies [Naph01].  

Because not all referred works report precision and recall values, we only list the 
detection accuracy (precision) in Table 3-2 for fair comparison. In [Wang04-3], four 
audio events including “acclaim,” “whistle,” “commentator speech,” and “silence” are 
detected in soccer videos, while speech and silence generally are not viewed as 
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special sound effects. More than 90% of detection accuracy is achieved. In [Cai03], 
the events of “laughter,” “applause,” and “cheer” are detected in TV shows. For each 
event, average precision values from three test sequences are listed. The most similar 
work to ours is [Naph01]. It also introduces a variation of HMM to model audiovisual 
features of explosion events. More than 86% of explosion events are correctly 
detected, while we achieve 91.7% of precision. From these results, we can see that the 
proposed audio event detection module works at least as well as other reported 
approaches and is capable of being a robust basis for higher level modeling.  
 

Table 3-2. Detection accuracy of different approaches.  
 [Wang04-3] [Cai03] [Naph01] Our approach 

acclaim 98% laughter 82.3% explosion 86.8% explosion 91.7% 

whistle 97.3% applause 87.4%   gun 95% 

commentator 

speech 

92.6% cheer 92.6%   brake 57.1% 

Audio 

events 

silence 91.1%     engine 95.1% 

 
3.7.2 Evaluation of Semantic Concept Detection 
In semantic concept detection, the models based on HMM and SVM are evaluated 
respectively. As the basic analysis unit is one texture window, the metrics of recall and 
precision are calculated to show the detection performance, as shown in Table 3-3. We 
tested movie clips from “We Were Soldiers,” “Windtalker,” “The Recruit,” “Band of 
Brother,” etc., for gunplay and movie clips from “Terminator 3,” “Ballistic:  Ecks vs. 
Sever,” “The Rock,” “2 Fast 2 Furious,” etc., for car-chasing. The detection 
performance is somewhat sequence-dependent because different movies posses 
different acoustic conditions. However, both the HMM-based and SVM-based 
approaches averagely achieve over 90% recall and near 70% precision in detecting 
gunplay and car-chasing scenes. These results show the promising achievement of the 
proposed fusion schemes.  
 

Table 3-3. Average performance of semantic concept detection by (a) HMM and (b) 
SVM.  

Semantic Concept Recall (a) Precision (a) Recall (b) Precision (b) 
Gunplay 0.612 0.727 0.531 0.741 

Car-chasing 0.697 0.731 0.661 0.702 
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Table 3-4. Some detailed results in semantic concept detection by (a) the HMM-based 
approach and (b) the SVM-based approach.  

Semantic Concept Recall (a) Precision (a) Recall (b) Precision 
(b) 

‘We Were Soldiers’ 0.88 0.75 0.859 0.832 
’44 Minutes’ 0.98 0.95 0.98 0.813 

Gunplay 

‘Imposter’ 0.982 0.659 0.965 0.567 
‘Ballistic:  Ecks vs. 

Sever’ 
0.99 0.83 0.98 0.839 

‘2 Fast 2 Furious’ 0.985 0.917 0.977 0.914 

Car-chas
ing 

‘The Rock’ 0.99 0.629 0.99 0.619 
 

Due to various acoustic conditions, the detection performances vary in different 
sequences. The accuracy of semantic concept detection would degrade when bad 
audio event detection is involved. For example, in Table 3-4, the detection 
performance from two fusion schemes remains similar in the first two gunplay test 
sequences. However, the precision of “Imposter” degrades significantly while the 
corresponding recall is similar to “44 Minutes.” The reason is that many people 
yelling, strong alarm sounds, and violent background music occur in the test audio 
clip. These sound effects are often mis-detected as explosion sounds and degrade the 
detection performance. Similar situations occur in the case of “The Rock” in 
car-chasing detection.  

We further investigate how system performance varies with respect to different 
lengths of texture windows. The F1-metric, which jointly considers precision and 
recall, is used to indicate the system performance:  

2 Precision RecallF1=
Precision + Recall
× × .                                        (3-8) 

Figure 3-7 shows the relationship between average performance of the 
HMM-based approach and lengths of texture windows. It’s clear that the proposed 
system works particularly well when the length of texture window is set as five or six 
seconds. In this work, we simply take five-second segments as the basic units for 
semantic concept detection. 



 

44 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

2 3 4 5 6 7 8

length of texture window (seconds)

F
1-

m
et

ri
c

 
Figure 3-7. Relationship between lengths of texture windows and system 

performance. 
 
3.7.3 Comparison with Baseline System 
To show the superiority of the proposed framework, we compare the detection 
performance with that of the baseline case. The baseline system models semantic 
concepts directly by low-level features. For the semantic concept training data, the 
audio features described in Section 5-3 are first extracted. Then these features are 
modeled by HMMs rather than constructing pseudo-semantic features. The 
comparison demonstrates the difference between early fusion (baseline system) and 
late fusion (the proposed system) schemes [Snoe05]. In the experiment, the same 
training and testing data are used for the baseline system and the proposed framework.  

Figure 3-8 illustrates the recall-precision curves of average detection performance. 
The proposed hierarchical framework shows its superiority over the baseline system. 
Because the baseline system doesn’t take account of the information at event level, 
the precision rate degrades significantly as we increase recall. Linking the low-level 
features and high-level semantics by event fusion, i.e. the construction of 
pseudo-semantic features, provides a more robust performance in semantic concept 
detection.  



 

45 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Recall

P
re

ci
si

on

Proposed Baseline

 

Figure 3-8. Comparison of the baseline and the proposed HMM-based approaches. 
 

The results of semantic concept detection facilitate efficient semantic indexing for 
videos. With this help, we can develop a more efficient browsing interface for media 
accessing. Figure 3-9 shows a snapshot of a gunplay concept browsing interface, in 
which the curve displays the semantic confidence of each video segment. Although 
some false alarms exist, this visualized presentation helps users efficiently find what 
they want and facilitates browsing.  

 

Semantic confidence

Viewing window

Semantic confidence

Viewing window

 
Figure 3-9. A snapshot of a semantic concept browsing system.  
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3.7.4 Discussion 
Both the HMM-based fusion scheme and the SVM-based fusion scheme show their 
promising performance achievements. The most important advantage of event fusion 
approach is that event models can be trained separately, and new impacts from other 
events can be easily added to the framework. For example, more gunplay-related 
events such as helicopter-flying or people yelling can be modeled to augment the 
pseudo-semantic features.  

Although the effectiveness of this work has been shown, some issues should be 
discussed more. The main reason of performance degradation is a) mixed audio 
signals and b) confused acoustic characteristics between different sounds. One 
example of the former case is the simultaneous occurrence of gunshot and explosion, 
while the bass environmental sound may be misclassified as an engine event because 
of their acoustic similarity. For the problem a), one of the solutions may be separating 
multi-source audio signals and analyzing them individually. The studies of 
independent component analysis [Hyva01] would provide new idea for this work. For 
the problem b), more acoustic features should be explored specifically for event 
modeling and discrimination.  
 
3.7.5 Semantic Indexing Based on the Proposed Framework 
This work presents a preliminary try to identify the concept of a semantic concept to 
facilitate multimedia retrieval. The results of semantic concept detection index videos 
with distributions of semantic concepts rather than occurrences of isolated events or 
objects. It provides the idea that concept-based indexing could be achieved by fusing 
the information of relevant events/objects. Although the proposed framework is only 
applied to action movies, it’s believed to be generalized to other types of videos. 
Meanwhile, another encouraging idea of this work is the introduction of the late 
fusion of individual classifiers. Individual classifiers can be trained separately and 
added adaptively to the final meta-classifier. On the basis of this framework, different 
semantic concepts could be modeled and detected by taking account of various visual 
and aural events. For example, replacing audio event models by visual object models, 
visual semantic concept such as multi-speaker conversation could be modeled by the 
same framework. Results from different modalities can also be fused (by careful 
design of pseudo-semantic features) to construct a multi-modal meta-classifier. Hence 
the proposed framework can qualify general semantic indexing tasks.  

This work realizes the idea of the semantic concept framework described in 
Chapter 2 and is a systematic approach to deal with concept detection in movies. 
Figure 3-10 shows the correspondence between the implementation and the general 
semantic concept detection framework. We select statistical pattern recognition 
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techniques to build detectors of audio events. After evaluating the confidences from 
different audio events, the mid-level representation which embeds the idea of 
combining classifiers is constructed. In other words, the detection results that are from 
simple and dedicated classifiers are combined to characterize complex and generic 
concepts. Two types of statistical techniques, i.e. discriminative and generative 
approaches, are applied to model this mid-level representation. Finally, after 
characterizing features, objects, and semantics, high-level concepts such as gunplay 
and car-chasing scenes can be detected automatically.  

Although only aural information is used in this work, detectors based on visual 
information can also be built and their results can be combined to the semantic 
context models. Moreover, specific to a semantic concept, the production rules is 
implicitly embedded in the process, such as gunshot and explosion sounds are related 
to gunplay scenes. More domain knowledge may be applied to facilitate reasonable 
and accurate semantic concept detection in different types of videos. In this work, 
filmmaking rules and some ideas from media aesthetics are exploited to relate 
semantic concepts with audio events. The ideas of computational media aesthetics are 
survey in Appendix C.  
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Figure 3-10. Audio semantic context detection in terms of the semantic concept 

detection framework described in Chapter 2. 
 

3.8 Summary 
We present a hierarchical approach that bridges the gaps between low-level features 
and high-level semantics to facilitate semantic indexing in action movies. The 
proposed framework hierarchically conducts modeling and detection at two levels: 
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audio event level and semantic concept level. After careful selection of audio features, 
HMMs are applied to model the characteristics of audio events. At the semantic 
concept level, generative (HMM) and discriminative (SVM) approaches are used to 
fuse pseudo-semantic features obtained from the results of event detection. 
Experimental results demonstrate a remarkable performance of the fusion schemes 
and signify that the proposed framework draws a sketch for constructing an efficient 
semantic indexing system.  

The proposed framework can be extended to model different semantic concepts. It 
may be necessary to consider different combinations of events or include visual 
information according to the production rules of targeted films. Another possible 
improvement may include the elaborate feature selection by developing an automatic 
feature induction mechanism or applying the techniques of blind signal processing to 
deal with the problem of mixed audio effects.  
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Chapter 4 
Semantic Analysis and Game 
Abstraction in Baseball Videos 
 

4.1 Introduction 
Sports video analysis has attracted much attention due to its potential commercial 
benefits. Various sports games that follow different rules and broadcasting 
characteristics draw different issues in video analysis. Recently, researchers have 
developed technologies and applications from different aspects [Yu05]. The most 
popular sports such as soccer [Ekin03, Leon04, Wang04-1, Wang04-2, Xie04, Xu04, 
Yu03], American football [Baba04], basketball [Nepa01], and baseball [Arik03, 
Han02, Hua02, Rui00, Shih03, Xion03, Zhan02, Zhon04], are widely studied. To the 
end of providing efficient media access and entertainment functionalities, scene 
classification [Hua02, Zhon04], concept detection [Han02, Nepa01, Shih03, 
Wang04-1, Xion03, Xu04, Xu03, Zhan02, Zhon04], highlight extraction [Arik03, 
Baba04, Bert05, Rui00], replay generation [Wang04-2], or game summarization 
[Ekin03, Li04, Tjon04] have been developed.  

Although many studies were proposed to analyze sports video, most of previous 
works thoughtlessly ignore the real needs of sports audiences, who are the receivers 
and should be the judgers of analytical results. Generally, a sports fan wishes to know 
“what really happened in this game?” or “how about my favorite player’s 
performance?” For those who don’t have time to see the whole game, a game 
summary or highlight that consists of the most informative plays or exciting parts are 
attractive. As the famous remark “record is the life of a player” says, the requirement 
of practical sports video analysis is to accurately detect “what kind of concept 
occurs,” “when and how a concept occurs,” and “who did it.” Explicitly knowing 
game details is the key factor to make summaries and highlights valuable and 
reasonable.  

Starting from the demands of sports fans, we survey sports analysis techniques in 
terms of “explicitness” and “comprehensiveness.” Explicitness means whether sports 
concepts can be exactly detected, such as a “double” in a baseball game or a 
“three-pointer shot” in a basketball game. Comprehensiveness means whether (almost) 
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all types of concepts can be detected. For example, thirteen baseball concepts are 
defined in Japanese and Taiwanese baseball leagues, and eight common concepts 
(goal, shot, foul, corner kick, offside, yellow card, red card, and save) are used in 
soccer games. To clarify the novelty and contribution of our work, we remark these 
issues as follows:  

 Although baseball concept detection has been pursued for years, most of 
them are either not explicit or comprehensive enough. Zhang and Chang 
[Zhan02] proposed a concept detection method based on caption information, 
but they only focused on detection of the last pitch and scoring. Han et al. 
[Han02] developed a baseball digest system based on maximum entropy 
method and detected seven baseball concepts. Nonetheless, the detection 
performance is not very promising in the reported results. Other works such 
as [Shih03] also tackles baseball concept detection, but most of them didn’t 
think over how to explicitly detect and recognize (almost) all concepts in 
baseball games. In our work, we deliberate upon detecting all concepts from 
the viewpoint of offensive side and therefore have full understanding of the 
game content.  

 As compared to other popular sports, such as soccer, tennis, and basketball, 
more types of concepts take place in baseball games. That makes achieving 
comprehensiveness even harder. Moreover, currently explicitness is not easy 
to be accomplished in other sports video analysis. For example, whether a 
“fade-away shot” or “dunk” causes a score is hard to be discriminated, but a 
basketball fan often likes to see Michael Jordan’s fade-away shot or Vince 
Carter’s dunk. We concentrate our work on baseball games and elaborately 
exploit rules and visual information in concept detection.  

 The ultimate goal of sports video analysis is to provide users practical 
applications or well-organized information. Therefore, we should turn 
academic works into realistic applications and evaluate performance by 
comparing with man-made results or conducting subjective tests.  

 
In this chapter, we accentuate our works by carefully tackling with explicitness 

and comprehensiveness. A systematic framework that comprises reliable shot 
classification, explicit concept detection, and extended applications is proposed. We 
summarize these processes as follows:  

 Reliable shot classification: Color and geometric information are exploited to 
classify shots into several canonical views. To reliably perform shot 
classification in different situations (different stadiums, time, or broadcasting 
channels), several methods to dynamically detect field color and pitcher 
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position are proposed.  
 Rule-based concept detection and model-based concept detection: Official 

baseball rules are transformed into an efficient rule-based detection module. 
For the concepts that cannot be discriminated by simply using baseball rules, 
model-based detection module is further developed based on elaborately 
designed game-specific features.  

 Extended applications: On the basis of explicit concept detection, attractive 
applications like the ones provides by MLB.com [MLB06] can be 
automatically developed. Accompanying with audio cues and inherent 
importance of concepts, more enjoyable game highlight or summarization 
could be made.  

 

4.2 System Framework 
4.2.1 Characteristics of Baseball Games 
An important observation in baseball videos is that all concepts occur between two 
consecutive pitch shots. Thus the status changes within this duration give us important 
clues to indicate what happened in games. The progress of a typical concept is: 1) the 
pitcher releases the ball; 2) the batter hits out the ball; 3) the ball is caught by a fielder 
(field out) or falls on the ground (hit); 4) a fielder returns the ball to the infield; 5) the 
camera switches to the pitch view and the pitcher prepares the next pitch. Figure 4-1 
illustrates two examples of the game progress. There may be no (duration (a)) or one 
(duration (b)) concept between two consecutive pitch shots. In broadcasting baseball 
videos, the status changes between two consecutive pitch shots can be detected by 
checking the caption information, including number of score, number of out, and 
base-occupation situation.  
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Figure 4-1. Examples of the game progress.  
 

4.2.2 Overview of System Framework 
Figure 4-2 shows the system framework, which includes three stages of processes: 
shot classification, concept detection, and extended applications. The target of shot 
classification stage is to classify video shots into pitch, infield, outfield, or other views. 
To accommodate to different broadcasting situations, an adaptive field color detection 
module and pitcher detection module are developed to dynamically extract color and 
geometric information and to facilitate shot classification.   

In the concept detection stage, we specially extract caption information in pitch 
shots. According to baseball rules, the rule-based decision module infers what 
happened based on the information changes on the caption. However, some concept 
pairs such as “strikeout vs. field out” cannot be discriminated by simply using rules. 
For these “confused concepts,” we further develop classifiers based on visual and 
speech information. The visual classifiers characterize shot transition information and 
return an opinion with some confidence score by giving a testing video clip. On the 
basis of speech information, we exploit a key-phrase spotting module to evaluate the 
confidence of a specific concept. The opinions from visual and speech information are 
finally fused to facilitate confused concepts discrimination. After these processes, 
thirteen different concepts in baseball games are explicitly uncovered.  

With the aid of explicit concept detection, practical and accurate applications can 
be automatically developed. To generate more elaborate game abstraction, we 
consider both the “informativeness” (content coverage) and “enjoyability” (perceptual 
quality) [Ngo05] in the summarization and highlight selection process. We design 
summarization and highlight selection algorithms to produce game abstraction that 
better matches fans’ need and expectation.  
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Figure 4-2. System framework of explicit concept detection and its applications. 

 

4.3 Shot Classification 
4.3.1 Procedure of Shot Classification 
Figure 4-3 shows the process of a color-based shot classification module. Color 
ranges of the field, including grass and soil, are adaptively determined by a field color 
determination method. With the field color definition, we compute the ratio of field 
area to the keyframe of each video shot. To avoid some noises derived from gradual 
shot transition, the tenth frame from the starting of a shot is selected as its keyframe. 
Two thresholds, t1 and t2 (t1 < t2), are defined for shot classification. The steps of 
classification are:  

(a) If the field ratio (FR) is less than the threshold t1, the corresponding shot 
significantly differs from the field and is classified as “other” view. Typical 
examples include audience shots or commercial shots.  

(b) If the field ratio is larger than the threshold t2, the corresponding shot is like 
the field. Based on edge information, an infield/outfield classification 
module is further developed to distinguish between infield and outfield 
views.  

(c) If the field ratio is between t1 and t2, the corresponding shot is first verified 
by a pitch shot detection module. If the frame still doesn’t conform to the 
definition of a pitch view, it is further verified by the infield/outfield 
classification module. Finally, each shot is classified as a pitch, infield, 
outfield, or other view.  
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To derive the thresholds t1 and t2, we gather the statistics of field color ratios from 
three games and construct their distributions for each canonical view. We model these 
distributions as Gaussians and find the classification boundaries according to the 
Bayesian theory [Duda01]. They are finally set as 0.1 and 0.48. Note that although 
different stadiums or different TV channels bring about significant changes in field 
color, the presentation of these canonical views is very similar. Therefore, we can feel 
free to set these thresholds after observing several games. 
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Figure 4-3. Diagram of shot classification.  

 
4.3.2 Adaptive Field Color Determination 
In baseball games, field region dominantly occupies the bottom part of video frames. 
To reliably classify shots, we develop a module to examine the bottom part of video 
frames and dynamically determine dominant colors. As the game proceeds, this 
module is triggered periodically to analyze a video clip and determines the latest color 
range of the field. In our implementation, it acts on every twenty minutes and 
analyzes three-minute (3-min) video clips.  

All procedures of shot classification are performed in the HLS color space. Three 
color channels are respectively quantized into thirty equal-interval bins. For each 
color channel, an integrated histogram is constructed based on the color of pixels in a 
3-min video clip (about 5400 frames). We check the integrated histogram and 
compute the percentage of each bin. If the histogram value is larger than ten percent 
of total value, the corresponding color range is viewed as the field color. Dominant 
colors often fall into two ranges, because the baseball field consists of grass and soil.  

Note that the assumption of this process is to determine field color via dominant 
color detection. However, in real broadcasting videos, cameras often switch to the 
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audience or players, or commercials are inserted at inning changes. To remove the 
influence of these irrelevant shots, we define a default color range of field at the 
beginning of each game. For the bottom part of each frame, we check whether more 
than forty percent of pixels are “suspected” field pixels (by the default color 
definition). Only the frames with enough suspected field pixels are processed in the 
color determination module. The newly determined color range then updates the 
default field color definition. With the definition of field color, the processes in the 
following subsections can then proceed.  

 
4.3.3 Infield/Outfield Classification 
For the keyframe that is largely occupied by field (Figure 4-3(b)), it is further 
classified as infield or outfield. The outfield view often contains audience or stadium 
artifacts and displays high-texture content. Therefore, we use color adjacency 
histogram [Lee03] to represent edge information and distinguish between infield and 
outfield views. In our work, the difference between infield and outfield views doesn’t 
affect the performance of concept detection, but it may help in game highlight 
extraction.  
 
4.3.4 Pitch Shot Detection 
For the keyframe whose field ratio is between two thresholds (Figure 4-3(c)), the 
spatial layout of field pixels is checked through its horizontal and vertical profiles, as 
shown in Figure 4-4. If this keyframe is a pitch view, the field pixels should 
concentrate only on the bottom part of horizontal profile. On the other hand, because 
the pitcher is always in the left part of a pitch shot, we can find a valley in the vertical 
profile. To alleviate the slight differences between pitch shots in different TV channels, 
we define a sliding window of 50 pixels with 25 pixels overlapped to go through the 
left part of the vertical profile. Note that the video resolution in this work is 352 ╳ 240. 
If there exists a range whose profile value is less than a threshold (a valley exists), the 
keyframe is declared to be a pitch view.  

Although the field ratio of the case in Figure 4-3(c) is not as high as that in Figure 
4-3(b), it is also possible to be a field view. The camera may track the ball on the air 
and doesn’t capture large part of the field region. Therefore, if no pitcher is detected 
in the keyframe, it is further confirmed by the infield/outfield classification module.  
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Figure 4-4. Pitch shot detection by field pixel profiles and pitcher detection 
 

4.4 Concept Detection 
Conventional baseball video analysis focuses on adopting visual or aural features to 
speculatively identify the highlighted parts. In this work, we emphasize that we can 
elaborately perform fine-granularity concept analysis. For example, if no base is 
occupied in the i-th shot, and the score increases by one but still no base is occupied 
in the (i+1)-th shot, we can infer that a home run (actually a “solo home run”) occurs 
between these two shots. However, some concept pairs such as “single vs. walk” and 
“strikeout vs. field out” cannot be discriminated by simply using the rule-based 
decision method. We further take the contextual shot information into account and 
propose a model-based decision method to strive for explicit concept detection. The 
most important contribution of this work is that we propose a systematic method to 
seamlessly integrate baseball rules (domain knowledge) with audiovisual features 
(computational characteristics) and thoroughly explore semantic concepts in baseball 
games. 
 
4.4.1 Rule-based Concept Detection 
In broadcasting videos, informative caption data include “number of out,” “number of 
score,” and “base-occupation situation.” Each effective baseball concept leads to 
changes of this information, such as “homerun” increases the score, “strikeout” 
increases out, and “hit” or “walk” change the base-occupation situation. Therefore, we 
can simply check the information changes on the caption and accomplish efficient 
implementation for concept detection.  
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4.4.1.1 Caption Feature Extraction 
Caption information is often displayed as two types: text (such as number of score) or 
symbol (such as number of out and base occupation). For text information extraction, 
three steps are included:  

 Character pixel determination: Characters often have higher intensity value as 
compare to the background. The pixel that has high intensity is viewed as a 
character pixel.  

 Construct character template vectors: Given a region, the character pixels are 
first determined, and a 13-dimensional Zernike moment [Khot90] is extracted 
to represent their characteristics. For each number, e.g. two, we collect a 
30-second video clip (about 900 frames) as training data. The Zernike 
moments extracted from a specific region in video frames are then averaged to 
construct the character template (a template vector).  

 Character recognition: Given a test vector, it is compared with all trained 
character templates in terms of vector angle. The test vector is recognized as i 
if it has the smallest included angle to the ith template vector.  

 
For symbol information, we just employ the intensity-based approach similar to 

character pixels segmentation. In the pre-indicated region, the base-occupation 
situation is displayed according to whether the corresponding base is highlighted or 
not.  

In the duration between two consecutive pitch shots, the changes of number of out, 
number of score, and base-occupation situation are jointly considered in concept 
detection. They are:  

 oi,i+1, the difference of outs between the ith and the (i+1)th pitch shots, where 

{ }, 1 0, 1, 2i io + ∈   . We don’t deal with the situation of oi,i+1 = 3 because, in 

almost all TV channels, commercials are instantaneously inserted when three 
batters are out and the status resets to zero at the next inning.  

 si,i+1, the difference of scores between the ith and the (i+1)th pitch shots, 

where { }, 1 0, 1, 2, 3, 4i is + ∈     . The case of si,i+1 = 4 denotes the occurrence of a 

home run with four scores (the so-called “grand slam”).  
 bi and bi+1, the base-occupation situations in the ith and the (i+1)th pitch shots, 

where bi and bi+1 { }0, 1, ..., 7∈    . The number of occupied bases at these two 

shots (ni and ni+1) are calculated. To catch the difference of base-occupation 
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situation between two pitch shots, the value of bi,i+1 (= bi+1 - bi) is also 
considered. The meanings of feature values of bi and ni are listed in Table 4-1.  

 
Table 4-1. Physical meanings of different base-occupation situations. 

bi ni Physical meaning 
0 0 No base is occupied. 
1 1 Only the first base is occupied. 
2 1 Only the second base is occupied. 
3 2 Both the first and the second bases are occupied. 
4 1 Only the third base is occupied. 
5 2 Both the first and the third bases are occupied. 
6 2 Both the second and the third bases are occupied. 
7 3 All bases are occupied. 

 
4.4.1.2 Feature Filtering 
The features described above are concatenated as a vector fi,i+1 to represent the game 
progress. However, many cases are illegal in baseball games. We should filter out the 
illegal features and identify the concepts implied by legal features.  

When a concept occurs, there may be one or no batter reaching a base, and the 
runners (the players who occupy bases) would be still at bases or out or reach the 
home plate to get scores. Therefore, when a legal concept is invoked by a batter, one 
of the three situations might take place:  

1) The batter is out, whether he suffers strikeout, field out, or touch out. This case 
contributes one to oi,i+1.  

2) The batter reaches a base, but no other runners are capable of reaching the 
home plate to get scores. This case contributes one to the number of occupied 
bases (ni,i+1 = ni+1 − ni = 1).  

3) The batter reaches a base, and some runners reach the home plate to get scores. 
No matter how many runners getting scores, ni,i+1 + si,i+1 = 1. For example, 
assume that the second and the third bases are occupied in the ith pitch shot. 
The batter hits a double and reaches the second base, and both two runners 
reach the home plate to get two scores. The information change is (ni+1 − ni ) + 
si,i+1 = (1-2) + 2 = 1.  

 
According to these observations, a general decision rule for legal features can be 

mathematically expressed as:  
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The value of (ni,i+1 + si,i+1 + oi,i+1), denoted as αi,i+1, indicates whether the batter 
changes or not. If the value is 0 (no batter changes), nothing happened between the ith 
and the (i+1)th pitch shots. If the value is 1 (one batter changes), the batter is out or 
reaches some base, and a new batter comes at the (i+1)th pitch shot.  

Furthermore, according to the baseball rules, no runner can go back to the 
previous base. We check the base-occupation situations in two consecutive pitch shots 
and filter out this kind of illegal features. For example, it would not happen if bi = 2 
and bi+1 = 1 in case of si,i+1 = 0 and oi,i+1 = 0. (It’s impossible that the occupied base is 
back in case of no score and no out.)  

 
4.4.1.3 Concept Identification 
Given a legal feature vector, we can view the process of concept identification as 
classifying it into a subset, which represents one baseball concept. The given feature 
vector is first classified as one of the four types of concepts by checking whether the 
batter changes (αi,i+1 = 0 or 1) and whether the number of out (oi,i+1) increases. The 
baseball concept taxonomy is illustrated in Figure 4-5. Thirteen concepts are 
considered in this work: single (1B), double (2B), triple (3B), homerun (HR), stolen 
base (SB), caught stealing (CS), field out (AO), strikeout (SO), base on ball (Walk, 
BB), sacrifice (SAC), sacrifice fly (SF), double play (DP), and triple play (TP). 
Although they still don’t cover all concepts in baseball games, they explicitly state 
what happens in a game and greatly expand the visibility of baseball videos.  
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Figure 4-5. Taxonomy of baseball concepts. 

 
The concept identification process can be conceptually modeled as a decision tree, 

as shown in Figure 4-6, and concepts are determined at leaves after tracing the tree. 
The general idea of tracing this tree can be described as follows:  

(1) First, we check oi,i+1 to detect whether the unknown concept causes an out 
or not.  

(2) Second, according to ni,i+1+si,i+1, we detect whether a new runner occupying 
a base or someone scores.  

(3) Then we check base-occupation situation (bi+1 and bi,i+1) to determine what 
really happened.  

 
Note that the concept of triple play (TP) is a special case and is not included in 

Figure 4-5. It’s a very unusual concept and is detected by a heuristic rule that is 
beyond the constraint of feature filtering in equation (4-1):  

If more than two bases are occupied and nobody out in the ith pitch shot, and 
nobody out, no score changes, and no base is occupied in the (i+1)th pitch shot 
(oi,i+1=0, ni,i+1=-2 or -3, si,i+1=0), a triple play would occur.  
 
The rule-based process effectively detects most concepts by employing 

information changes on caption. However, some concept pairs such as “single vs. 
walk” and “strikeout vs. field out” lead to the same information changes on caption 
and cannot be explicitly discriminated by simply using rules. In baseball games, these 
kinds of “confused” concepts can be categorized as four types, as shown in Table 4-2. 
To make the concept detection process more explicitly, we develop a model-based 
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approach that adopts contextual shot information and elaborate the detection results. 
We primarily deal with the cases of “single vs. walk” and “strikeout vs. field out” 
because other confused situations rarely happen.  
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Figure 4-6. Concept detection process on decision tree.  

 
Table 4-2. Confused concept in baseball games 

Confused concepts Information changes between two consecutive 
pitch shots 

Single and walk (base on ball, hit 
by pitch, or intentional walk) 

The first base is occupied and no out increases.  

Strikeout and field out The number of out increases one and the number 
of occupied bases and score don’t change.  

Stealing, wild pitch, passed ball, 
and balk 

No out increases and the runner advances to the 
next base.  

Caught stealing and pickoff The number of out increases one and the number 
of occupied bases decreases.  

 
4.4.2 Model-based Concept Detection 
The contextual information of shot transition and its temporal duration often provide 
clues for concept identification. For example, as a single occurs, the camera switches 
to the field to show the action of fielder. On the other hand, as a base on ball occurs, 
close-up on the pitcher or the batter is often displayed to show their facial expression. 
In the model-based concept detection, we jointly consider information of shot 
transition, temporal duration, and motion magnitude for discriminating concepts that 
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are implicitly hidden after rule-based concept detection. 
 
4.4.2.1 Shot Context Features 
According to the observation of broadcasting style and baseball rules, we propose the 
following features to describe concept characteristics. Note that these features are 
extracted within the duration from the end of previous effective concept to current 
pitch shot, as shown in Figure 4-7.  

 ConsecutivePF: indicating whether a field view displayed immediately after 
the last pitch view. If the batter hits out the ball, this kind of shot pair occurs 
and indicates higher probability of the occurrence of “single” or “field out.” In 
Figure 4-7, the last pitch view is at the third shot, and the shot pair occurs at 
the third-fourth shots to indicate ConsecutivePF = 1.  
The first field shot right after the last pitch shot plays an important role in 
extracting shot context features and is particularly defined as the pivot shot. If 
there is no field shot within this duration, the last shot of this duration is 
defined as the pivot shot.  

 PitchBeforeFieldView: indicating how many pitch views before the pivot shot. 
In general, more pitch shots occur before the pivot shot in the concepts of 
“walk” and “strikeout,” because the pitcher has to pitch at least four or three 
balls before they take place. In this example, the batter hits the ball at the 
second pitch (Figure 4-7(3)), and therefore, PitchBeforeFieldView = 2.  

 DiffPitchField: indicating the time difference between the last pitch shot and 
the pivot shot. If the batter doesn’t hit out the ball, i.e. ConsecutivePF = 0, 
DiffPitchField is often larger in “walk” and “strikeout” cases than that in 
“single” and “field out” ones.  

 FieldDuration: indicating the time duration of the pivot shot. When the ball is 
hit out, the duration of field shot is often short because the fielder should deal 
with the ball as soon as possible to prevent extra base hit. In Figure 4-7, 
FieldDuration = 1237-1151 = 86 frames.  

 Motion: indicating the motion magnitude of the pivot shot. When the ball is hit 
out, the camera tracks the ball or the fielder and demonstrates higher motion. 
Therefore, higher motion is often derived from “single” or “field out” concepts, 
and lower motion is derived from “walk” or “strikeout” cases.  
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Figure 4-7. An example of shot context feature extraction. 
 

4.4.2.2 Modeling 
All the shot context features are normalized to the range [0,1] before training or 
testing. We manually selected twenty training sequences, ten of them are “single” and 
another ten sequences are “walk,” from the same TV channel to construct a 
“single-walk” classifier. K-nearest neighbor modeling is implemented for each 
classifier due to its simplicity. Through the rule-based decision described in previous 
sub-section, the sequences decided as “single or walk” are further discriminated by 
the classifier. The shot context features obtained from the suspected sequence are then 
classified as a “single” or “walk” concept by the k-nearest neighbor algorithm. The 
same process is applied to detect “field out” or “strikeout.” In this work, k is set as 8 
for classification accuracy and efficiency.  
 
4.4.3 Combine Visual Cues with Speech Information 
4.4.3.1 Overview 
In the aforementioned work, we employ caption data and shot transition information 
to infer what happened in baseball games. Although this system works well in most 
situations, its performance in discriminating confused concepts is still not good 
enough.  

Commentator’s speech, which completely states the game progress, plays an 
important role for audiences to realize the game status. Therefore, it’s attractive to 
exploit a speech recognition module and facilitate concept detection through speech 
information. We apply a key-phrase spotting module that maps speech signal to 
limited number of key-phrases, which provide some clues to the occurrence of some 
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effective concepts or actions, such as hit, out, and catch.  
Figure 4-8 shows the fusion scenario that combines visual and speech information 

for concept detection. It consists of concept detection and confidence calculation from 
visual and speech perspectives and the integrated decision module. From visual data, 
rule-based methods and model-based methods [Chu05-4] identify what concepts 
occurring and where their boundaries are. Based on these concept boundaries, a 
key-phrase spotting module is applied to spot what key-phrases the commentator has 
spoken, which may provide clues for identifying what really happened in specific 
intervals. The concepts detected from visual and speech data are described as visual 
concepts and speech concepts for convenience. The confidences of visual and speech 
concepts are estimated respectively to be the bases of integrated decision. Based on 
the strategy of combining classifier decisions [Kitt98], we find the consensus from 
two modalities and make an integrated decision.  
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Figure 4-8. The scenario that fuses visual and speech information.  
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Figure 4-9. Examples of visual and speech concept detection.  
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Because the commentator not only speaks the concepts just occurred but also 
review the player’s past performance or chat with others, recognizing all his speech 
derives too many noises in concept detection. In this work, we mainly appeal to 
key-phrase spotting module to facilitate confused concept discrimination. Only the 
durations of the occurrence of confused concepts, such as ranges t1 to t2 and t3 to t4 in 
Figure 4-9, are applied with key-phrase spotting.  

We exploit the key-phrase spotting system developed in [Chen98], which is 
capable of extracting salient key-phrase fragments from an input utterance in 
real-time. High degree vocabulary flexibility and recognition accuracy can be 
achieved for any designate task. In this work, we define the mapping between 
baseball concepts and commonly used key-phrase in advance, as shown in Table 4-3. 
A specific speech concept is identified if one or more of its corresponding key-phrases 
are recognized in the designated duration. For example, if the phrase “touch out” is 
recognized in the case of “strikeout vs. field out” confusion, the occurred concept 
claimed by speech information is “field out” rather than “strikeout.”  

 
Table 4-3. Mapping between concepts and conventional key-phrases (in Mandarin 

Chinese). 

R4={刺殺(‘touch out’ or ‘out before reaching bases’), 接殺
(catch out)}

Field out

R3={三振(strikeout), 三振出局(strikeout)}Strikeout

R2={觸身球(hit by pitch), 保送(walk), 四壞球(four balls)} Walk

R1={安打(hit), 一壘安打(single)}Single

Corresponding Key-phrasesConcepts

R4={刺殺(‘touch out’ or ‘out before reaching bases’), 接殺
(catch out)}

Field out

R3={三振(strikeout), 三振出局(strikeout)}Strikeout

R2={觸身球(hit by pitch), 保送(walk), 四壞球(four balls)} Walk

R1={安打(hit), 一壘安打(single)}Single

Corresponding Key-phrasesConcepts

 
 

Although the key-phrase spotting module is now only applied to recognize 
Chinese, it is capable to be extended to other languages. The same framework, 
including visual and speech concepts detection, is general for any baseball game.  
 
4.4.3.2 Information Fusion 
After detecting concepts from visual and speech data, the problem narrows to making 
the final decision according to the detected results. It’s a trivial task if both the 
opinions from video and speech are identical. For example, “strikeout” is surely the 
final answer if both visual and speech concepts are claimed as “strikeout.” However, 
because both visual and speech concept detection modules are not perfect, it’s often 
that the opinions from different modalities conflict. Therefore, we define and evaluate 
the confidence of two opinions and make the final decision.  
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(1) Confidence of visual-based detection 

In constructing two classifiers that discriminate single from walk and strikeout 
from field out, visual information including pitch-field pattern, field shot duration, 
motion, and etc., are used as the feature vectors [Chu05-4]. K-nearest neighbor 
modeling is used to construct these classifiers. We derive the posterior probabilities to 
be the confidence of visual concepts.  

Let the feature vector from visual data be x1, and K1 (K2) be the number of 
patterns among x1’s K nearest neighbors that belong to class C1 (C2). The estimated 
posterior probabilities [Cove67] are given by 

1
1 1( ) KP C

K
=x  and 2

2 1( ) ,KP C
K

=x                                (4-2) 

where K1+K2=K, and thus P(C1|x1)=1－P(C2|x1).  
With the K-nearest neighbor classifier that classifies classes C1 and C2, a test 

vector x1 is assigned to class C1 if K1>K2, with the confidence value P(C1| x1).  
 

(2) Confidence of speech-based detection 
The confidence of speech concept is represented by “the posterior probability of 

the concept Ci occurs given the recognized key-phrases.” Similar to visual-based 
detection, the recognized key-phrases are viewed as feature vectors. In the case of 
“single vs. walk” confusion, the feature vector from speech data x2 may be 
constructed only by the key-phrases relevant to single (x2=R1), only by the 
key-phrases relevant to walk (x2=R2), or both (x2=R1,R2). Definitions of the 
key-phrases R1~R4 are in Table 4-3. Considering these three cases, the posterior 
probabilities are estimated as:  

 
Case 1:  
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Case 3:  

1
1 2 1 2

1 2
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= =x , 

2
2 2 1 2

1 2
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CP C R R
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= =x . 

 
The notation #(.) denotes the number of a specific situation. Based on this 

estimation method, we evaluate the posterior probability of a speech concept given 
the recognized key-phrases. Note that if no key-phrase in R1 or R2 is recognized, it 
means that no contribution can be derived from speech concept detection, and the 
discrimination work is done by visual-based detection only.  

The case of discriminating strikeout and field out is done by considering 
key-phrases in R3 and R4. In the experiments, these probabilities were estimated based 
on the results of speech concept detection from five games. 
 
(3) Combining Visual and Speech Opinions 

In the duration where concepts C1 and C2 (single and walk, for example) cannot 
be explicitly discriminated, assume that the concept C1 is detected from visual 
information, with confidence P(C1|x1). However, the concept detected from speech 
information is C2, with confidence P(C2|x2). These two opinions compete and we 
have to make the final decision by checking their confidence values. To combine the 
opinions from different classifiers, Kittler et al. [Kitt98] describe the theoretical 
framework of different combining strategies. On the basis of the features from visual 
and speech data Z=(x1,x2), we apply the sum rule to combine visual and speech 
opinions as follows:  

2 22

11 1
assign    if  ( ) max ( )j j ki iki i

Z C P C P C
=

= =

→ =∑ ∑x x .                 (4-3) 

Although Kittler et al. proposed five rules (sum, product, max, min, and majority 
vote) for combining classifiers, we have similar performances by applying different 
rules. The experimental results shown in the next section are all based on the sum 
rule.  
 
4.4.4 Results of Concept Detection 
Most of the evaluation data in this paper are taken from the games of Chinese 
Professional Baseball Leagues (CPBL) [CPBL06], which are broadcasted by 
Videoland Sport Channel [Vide06]. To evaluate concept detection in various 
broadcasting situations, four broadcasting games with total length about ten hours are 
used. Three of them are CPBL games in year 2004 (CPBL1 and CPBL2 in Table 4-4) 
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and year 2005 (CPBL3), and one of them are from MLB (Tigers vs. Yankees at 
2005/5/26). They are recorded directly from TV, and the commercials are not 
intentionally filtered out. Because the proposed framework only considers the caption 
information in pitch shots and shot transitions (pitch-field pairs), the commercials that 
are often classified as “other” shots would not degrade the detection performance. 
This flexibility makes the proposed approach more practical in developing a system 
that real-time analyzes broadcasting videos and immediately provides analytical 
results right after the game.  

For shot classification, we briefly evaluate its performance by checking three half 
innings in three different games (210 shots), where averagely 92% accuracy can be 
achieved. Table 4-4 and Table 4-5 show the detection results of six frequently 
occurred concepts in terms of precision and recall rates. The term Hit/BB denotes the 
concepts of “single” or “walk,” and “Out” denotes “strikeout” or “field out.” The 
numbers in parentheses (n1/n2) in each row denote the count of concepts to calculate 
precision and recall. Overall, we obtain very promising results in detecting most 
concepts. At least 0.85 of precision rate and 0.9 of recall rate can be achieved. The 
detection performance in MLB is slightly worse because of worse shot classification 
and character recognition accuracy deriving from poorer video quality. Note that 
although only common concepts are shown in Tables 3-4 and 3-5, other rare concepts 
could also be correctly detected by the proposed method. For example, the only 
“triple” concept in CPBL2 and the only “catch steal” concept in CPBL3 are both 
correctly detected.   

 
Table 4-4. Detection results of hit/bb, double, and home run. 

Game Hit/BB Double Home Run 
Prc. 1 (15/15) 1 (6/6) 1 (2/2) CPBL1 
Rec. 1 (15/15) 1 (6/6) 1 (2/2) 
Prc. 1 (15/15) 1 (3/3) 1 (2/2) CPBL2 
Rec. 0.83 (15/18) 1 (3/3) 1 (2/2) 
Prc. 1 (17/17) 1 (3/3)  CPBL3 
Rec. 0.89 (17/19) 1 (3/3)  
Prc. 1 (18/18) 1 (3/3)  MLB 
Rec. 0.95 (18/19) 1 (3/3)  
Prc. 1 (65/65) 1(15/15) 1 (4/4) Total 
Rec. 0.92(65/71) 1(15/15) 1 (4/4) 
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Table 4-5. Detection results of out, sacrifice, and double play. 
Game Out Sacrifice Double Play 

Prc. 1 (35/35) 1 (5/5) 1 (3/3) CPBL1 
Rec. 0.95 (35/37) 1 (5/5) 1 (3/3) 
Prc. 1 (34/34) 1 (4/4) 0.75 (3/4) CPBL2 
Rec. 0.89 (34/38) 1 (4/4) 1 (3/3) 
Prc. 0.98 (43/44) 1 (2/2) 1 (2/2) CPBL3 
Rec. 0.91 (43/47) 1 (2/2) 1 (2/2) 

MLB Prc. 1 (25/25) 0.67 (4/6) 0.75 (3/4) 
 Rec. 0.81 (25/31) 1 (4/4) 0.75 (3/4) 
Total Prc. 0.99(137/138) 0.88(15/17) 0.85(11/13) 
 Rec. 0.90(137/153) 1(15/15) 0.92(11/12) 
 
Table 4-6 shows the results of discriminating confused concepts only based on 

visual information, i.e. ‘Hit/BB’ and ‘Out’ concepts in Tables 3-4 and 3-5. The 
discrimination performances of single, walk, and filed out are satisfactory, while that 
in strikeout is still needed to be improved. Considering the statistical characteristics of 
the pitcher and the batter would be our future direction to develop more reliable 
classifiers. Overall, the proposed framework achieves satisfactory performance 
without being drastically affected by game variations. An on-line system demo is in 
the “explicit concept detection” part at 
http://www.cmlab.csie.ntu.edu.tw/~wtchu/baseball/index.html. We present sample 
results of concept detection and provide concept-on-demand services on the web.  

 
Table 4-6. Classification results of confused concepts. 

Game Single Walk Strikeout Field out 
Prc. 0.83 (10/12) 0.67 (2/3) 0.55 (6/11) 0.96 (23/24)CPBL1 
Rec. 0.91 (10/11) 0.5 (2/4) 1 (6/6) 0.74 (23/31)
Prc. 1 (12/12) 1 (3/3) 0.8 (4/5) 0.93 (27/29)CPBL2 
Rec. 0.8 (12/15) 1 (3/3) 0.44 (4/9) 0.93 (27/29)
Prc. 0.8 (8/10) 0.57 (4/7) 0.55 (11/20) 0.92 (22/24)CPBL3 
Rec. 0.57 (8/14) 0.8 (4/5) 0.73 (11/15) 0.69 (22/32)
Prc. 0.86 (6/7) 0.73 (8/11) 0.3 (3/10) 1 (15/15)MLB 
Rec. 0.55 (6/11) 1 (8/8) 0.33 (3/9) 0.68 (15/22)
Prc. 0.88(36/41) 0.71(17/24) 0.52(24/46) 0.95(87/92)Total 
Rec. 0.71(36/51) 0.85(17/20) 0.62(24/39) 0.76(87/114)
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To show the effectiveness of fusing multiple modalities, we evaluate 
discrimination results from three different games, which are totally nine hours in 
length and consist of 228 plays. The performance of three phases including visual 
concept only, speech concept only, and integrated decisions are demonstrated in 
Figure 4-10 (single vs. walk) and Figure 4-11 (strikeout vs. field out). F1 metrics, 
which jointly consider precision and recall, are illustrated:  

2 Precision RecallF1
Precision Recall
× ×

=
+

.                                        (4-4) 
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Figure 4-10. Discrimination performance of single vs. walk.  
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Figure 4-11. Discrimination performance of strikeout vs. field out.  
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In Figure 4-10, we see that combining two classifiers using the proposed fusion 
scheme outperforms single classifiers, except for the case of “2005/4/8 Bulls vs. 
Lions.” The cause of this exception lies on some extremely abnormal broadcasting 
situations or shot classification errors, which make the evaluation of visual concept 
detection unreliable. Figure 4-11 shows the performance of discriminating strikeout 
from field out, where the enhancement of modality fusion is significant in two of the 
three games. The game of “2005/4/8 Bulls vs. Lions” relatively has worse 
performance because of lower character recognition accuracy caused by poorer video 
quality.  

The overall performance of concept detection (totally thirteen different types of 
concepts) is listed in Table 4-7. With the help of speech information, the detection 
performance increases (in terms of F1) by 8% ~ 20% relative to the visual only 
method [Chu05-4].  

 
Table 4-7. Overall performance of concept discrimination.  

Games Decision  Precision / Recall F1 
Visual 0.88 / 0.82 0.85 Lions vs. Bears 
Visual + speech 0.96 / 0.89 0.92 
Visual 0.76 / 0.68 0.70 Bulls vs. Lions 
Visual + speech 0.85 / 0.74 0.79 
Visual 0.77 / 0.73 0.75 Lions vs. Whales 
Visual + speech 0.93 / 0.88 0.90 

 
Note that some byproducts can be obtained after concept detection. “Runs battered 

in (RBI),” which denotes number of scores as a direct result of a concept, can be 
calculated from the changes of scores. “Left on base (LOB),” which denotes the total 
number of runners who did not score when the batter made an out, can be calculated 
by checking how many bases were occupied before the batter was out. This 
information represents the effectiveness of concepts and can be good indicators for 
game abstraction. 
 

4.5 Extended Applications 
4.5.1 Automatic Game Summarization 
A reasonable game summary should include the clips with scoring and the progress of 
effective offenses, like the sequence of “a single, a sacrifice bunt, and a double” that 
causes a score. We argue that approaches based on low-level features and probabilistic 
methods cannot accurately achieve the requirements without “explicit concept 
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detection.” With the aid of explicitness, we can develop superior summarization and 
highlight extract modules to appropriately represent the content of games.  
 
4.5.1.1 Significance Degree of Concepts 
An attractive summary is a “condensed game [MLB06]”, which consists of effective 
concepts that direct game progress and affect the final result of the game. To maintain 
informativeness of a condensed game, we give different significance degrees to 
different types of concepts according to their contributions. Babaguchi et al. [Baba04] 
propose an idea to define the significance degrees of concepts for American football, 
while they perform game summarization from existing text-based game logs rather 
than the results of automatic concept detection. We follow similar ideas and modify 
the definition of significance especially for baseball videos. Five levels of significance 
degrees are defined in the following:  

 Rank 1: state change concepts. Only three states exist in team sports: “the two 
teams tie”, “team A leads”, and “team B leads”. The concepts that cause one 
team to score and change the current state into a different state are called as 
state change concepts. They directly change the states of a game and are the 
indicators of winning pitcher, losing pitcher, and winning RBI. It is evident 
that these kinds of concepts pose the greatest significance.  

 Rank 2: hits with RBIs. Hits with RBIs, not matter they are single, double, or 
home run, change score of a team and indirectly affect the result of the game. 
They also indicate the effectiveness of hits.  

 Rank 3: hits without RBI and walk. Although no score is obtained, the number 
of hits is concerned with a player’s batting average.  

 Rank 4: outs with LOBs. These kinds of outs show that the batter fails to help 
teammates score. Larger LOB indicates more negative influence when a play 
makes an out.  

 Rank 5: outs without LOB. Normal outs generally cover more than half of 
cases and give the least significance.  

 
4.5.1.2 Selection of Summarization 
According to different requirements of users, we provide various summaries that have 
different lengths and information coverage. We generate the most compact condensed 
game by concatenating rank-1 concepts, while a richer condensed game can be 
formed by collecting rank-1, rank-2, and rank-3 concepts. In addition to concept rank 
that is defined for each isolated concept, context of concepts in a half inning should 
also be considered in concept selection. In baseball games, there may be a chain of 
concepts to result in scoring. Although some of these concepts may be in lower rank, 
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the chain of concepts should be collected together to maintain the completeness of 
summary. For example, in Figure 4-12, a chain of double, strikeout, and single 
concepts occur and finally cause scoring. The single leads to a score because the 
second base is occupied. Hence it’s no doubt that both the double and single concepts 
should be collected in the summary. Moreover, the audience usually expects the 
player to have a good play when some bases are occupied. The result of his play 
impresses the audience, no matter it’s a good play causing RBI or a bad play causing 
LOB. Therefore, we also take account of the context of concepts and collect the 
strikeout concept in summary. On the other hand, if only one rank-3 concept occurs 
alone (no other concepts with ranks ≦ 3), it should be ignored because fragmentary 
hits don’t cause effective results.   
 

double strikeout single

0
0

Team1
S B O
0 1 0

Team2

(rank=3) (with one LOB)
(rank=4)

0
0

Team1
S B O
0 1 1

Team2
1
0

Team1
S B O
0 1 1

Team2

(with one RBI)
(rank=1)

double strikeout single

0
0

Team1
S B O
0 1 0

Team2

(rank=3) (with one LOB)
(rank=4)

0
0

Team1
S B O
0 1 1

Team2
1
0

Team1
S B O
0 1 1

Team2

(with one RBI)
(rank=1)  

Figure 4-12. A chain of concepts that result in scoring. 
 

On the basis of the ideas described above, three levels of game summaries are 
automatically generated by the following methods.  

 Level 1: Only the concepts with rank 1 and rank 2 are collected. This level of 
summary contains the most compact results.  

 Level 2: Basically, only concepts with ranks 1~3 are collected. Rank-3 
concepts and rank-4 concepts are considered to be discarded or added through 
checking concept context:  

 Rank-1 and rank-2 concepts are definitely picked as the summary.  

 Check each rank-3 concept i.  

If both the ranks of the (i+1)-th and (i+2)-th (ri+1 and ri+2) 

concepts are less than 4, pick them all as the summary.  

If ri+1 < 3 and ri+2 = 5, just pick the i-th and (i+1)-th concepts 

as the summary.  

If ri+1 = 4 and ri+2 = 5, ignore all the i-th, (i+1)-th, and (i+2)-th 

concepts.  

 
Note that rank-3 and rank-5 concepts would not occur successively because of the 
inherent baseball rules.  
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This level of summary meets audience’s expectation the most and is close to the 
condensed game made by professional sports reporters.  

 Level 3: All concepts with ranks 1~5 are collected. This level of summary 
contains the most complete content of a game, while eliminating commercials 
or other irrelevant clips.  

 
Note that the temporal relationships between concepts should be maintained, 

because a condensed game formed by disordered concepts is meaningless. Therefore, 
different ranks of concepts may be interlaced in the final summary. Moreover, the 
final length of summary depends on the content of a game. If two teams have a keen 
competition, the length of summary will be larger due to more rank-1 and rank-2 
concepts. Table 4-8 shows the lengths of summaries from two different competitions.  

 
Table 4-8. Lengths of summaries at different levels. 

Games Length 
Original game of ‘Lions vs. Whale’ (2005/6/14) 3 hours 33 minutes 
Level-1 summary 4 minutes 10 seconds 
Level-2 summary 23 minutes 15 seconds 
Level-3 summary 51 minutes 32 seconds 
Original game of ‘Bulls vs. Lions’ (2005/4/8) 3 hours 14 minutes 
Level-1 summary 2 minutes 
Level-2 summary 20 minutes 12 seconds 
Level-3 summary 49 minutes 43 seconds 

 
4.5.1.3 Evaluation of Summarization 
To evaluate the effectiveness of the proposed summarization method, we compare 
automatic game summarization with man-made condensed games, which are taken 
from a sport TV station [Vide06]. Concepts in the man-made condensed games are 
selected by professional sports reporters. Although the selected concepts may not be 
exactly the same from different reporters or different TV channels, they can be viewed 
as good references for evaluation. After checking the concepts in automatic 
summarization and man-made condensed game, two indicators are calculated:  

Precision= ,       Recall= ,c c

s m

N N
N N

 

where NS is the number of concepts in automatic summary, Nm is the number of 
concepts in man-made summary, and Nc is the number of concepts in both summaries.  

Table 4-9 shows the summarization performance of two games. The values n2/n1 
in each inning denote that n1 concepts are collected by the proposed process, and 
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among them, n2 concepts are in man-made summary. From Table 4-9, the precisions 
of two level-2 summaries are 31/35=0.886 and 25/31=0.806, respectively. The 
corresponding recalls are 31/33= 0.939 and 25/30=0.833. Details of summary 
comparison can be seen in the “game abstraction” part at 
http://www.cmlab.csie.ntu.edu.tw/~wtchu/baseball/index.html. 
 

Table 4-9. Performances of different levels of summaries. 
Lions vs. Whales (2005/6/14) 

Inning 1 2 3 4 5 
Man-made summary 5 12 0 3 1 
Automatic summary 4/4 12/12 0 3/3 1/1 
Inning 6 7 8 9 Total 
Man-made summary 0 4 3 5 33 
Automatic summary 0 4/4 3/6 4/5 31/35 

Bulls vs. Lions (2005/4/8) 
Inning 1 2 3 4 5 
Man-made summary 0 4 4 6 0 
Automatic summary 0 4/4 3/3 6/8 0/4 
Inning 6 7 8 9 Total 
Man-made summary 7 0 5 4 30 
Automatic summary 4/4 0 5/5 3/3 25/31 

 
4.5.2 Automatic Highlight Generation 
Another attractive application is game highlight extraction. To maintain entertaining 
functionalities within short time duration, highlight extraction poses different 
concerns from summarization. It is evident that effective concepts such as state 
change concepts or hits with RBIs should be highlighted. In addition, beautiful 
defense play such as diving catch or catch steal should also be highlighted, although 
they just cause a normal field out. In highlight extraction, we integrate the impacts of 
concept ranks, audio energy dynamics, and occurrence time to generate game 
highlight that well retains ‘enjoyability’ of a game.  
 
4.5.2.1 Significance Degree of Concepts 

 Rank-based Significance 
For the requirement of highlight, we slightly modify the definition of concept rank. 
Double play, triple play, and catch steal concepts are categorized as rank-2 concepts 
to cover important defense. The rank-based significance degree Sr (0 ≤ Sr ≤ 1) of the 
ith concept Ei is quantitatively defined as 
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1( ) 1 ,
5

i
r i

rS E α−
= − ⋅                                               (4-5) 

where ri (1 ≤ ri ≤ 5) denotes the rank of the ith concept, and α (0 ≤ α ≤ 1) is the 
parameter controlling the weight of concept rank.  

 
 Time-based Significance 

The concepts occurring at the latter stage of games are usually more attractive to users, 
especially when the two teams tie or have slight score difference. The time-based 
significance St (0 ≤ St ≤ 1) is defined as 

( )( ) 1 ,i
t i

N I ES E
N

β−
= − ⋅                                          (4-6) 

where I(Ei) denotes the inning in which the concept Ei occurs, N is the number of 
total innings in a game (usually nine innings in a game), and β (0 ≤ β ≤ 1) is the 
parameter controlling the weight of occurrence time.  

 
 Audio-based Significance 

The anchorperson often comments excitedly and the audience cheers loudly when a 
beautiful play or an important hit occurs. We extract audio energy and analyze its 
dynamics over time to show how the anchorperson or the audience reacts to each 
concept. Audio energy dynamics can be broadly classified into regions of attack, 
sustain, decay, and silence [Dora02]. We particularly focus on detecting attack 
because it indicates the occurrence of an exciting concept. A beautiful defense play, 
which may be viewed as a normal field out at the concept detection stage, can be 
figured out by employing audio cues.  

We evaluate the envelope of power spectrum and only concentrate on how audio 
energy increases:  

1

1

 mean( ,..., ) 0
    mean( ,..., ),      1, 2,..., ,

   0,

k k w k

k k k w k

k

if e e e
d e e e k M

else d

− −

− −

− >
= − =

=
 

where ek denotes the average energy of the k-th audio segments, and M denotes 
the number of audio segments within the duration of an concept. Energy difference dk 
is calculated by subtracting average energy of previous w segments from ek. Each 
audio segment is of length one second, and w is set as four in this work. The 
maximum energy difference within the concept duration is chosen and is quantized 
into one to five to be the clues of audio-based significance:  

Quantize(max( )).i kD d=                                          (4-7) 
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Accordingly, the audio-based significance Sa (0 ≤ Sa ≤ 1) is defined as  
5( ) 1 ,

5
i

a i
DS E γ−

= − ⋅                                             (4-8) 

where γ (0 ≤ γ ≤ 1) is the parameter controlling the weight of audio cues.  
By combining the impacts of concept rank, occurrence time, and audio energy 
dynamics, the integrated significance degree S(Ei) (0 ≤ S ≤ 1) is given by  

( ) ( ) ( ) ( ).i r i t i a iS E S E S E S E= ⋅ ⋅                                      (4-9) 

Different highlights could be obtained by changing the weighting parameters of α, 
β, and γ. In our experiments, we set α, β, and γ as 0.5, 0.2, and 0.3, respectively.  

 
4.5.2.2 Highlight Selection Algorithm 
In general, highlight selection can be formulated as a knapsack problem. That is, 
given segments of different significance and lengths, find the most significant set of 
segments that fit in a knapsack of fixed length. The significance of each concept is 
estimated by the process described above. As regards the concept length, we just 
extract a concept from the last pitch to the first pitch of the next concept. This method 
reserves the most significant parts and provides efficient concept presentation. 
However, the last concept in each half inning would be very long because 
commercials would be inserted. Therefore, we limit the length no more than forty 
seconds to prevent a very long concept.  

In our work, we implement a greedy approach to select highlighted concepts. By 
considering the time limitation given by the user and concept context, the highlight 
selection algorithm is as follows:  
 
Input: the user-defined highlight length T and the set of concepts E in the game.  
Output: the set of highlighted concepts A.  
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Similar to the context idea in automatic summarization, adjacent relationships 
between highlighted concepts are considered in the SMOOTH process. For three 
adjacent concepts A-B-C, if both A and C concepts are selected as highlight, B is also 
selected to maintain the complete progress of game highlight. Finally, the selected 
concepts are sorted by the occurrence time to maintain temporal coherence.  

 
4.5.2.3 Evaluation of Highlight 
Due to lack of ground truth for evaluating game highlight, we invited 24 persons, 
including 21 males and 3 females, to perform subjective experiments based on 
highlights extracted from two games. We impose two assumptions on the subjects: 1) 
none of the subjects saw these games before. This assumption is reasonable and is for 
simplification purpose, because we cannot expect every subject affords to spend more 
than six hours to see two baseball games. 2) The subjects judge the selected 
highlighted concepts based on the concepts themselves rather than their preference on 
specific teams or specific players.  

The experimented scenario is set to be concept-based. Because of the assumption 
1, we didn’t ask subjects “Does the game highlight contain the most highlighted parts 
of this game?” Instead, we request subjects to evaluate each selected concept. This 
evaluation somehow represents the “accuracy” of the proposed highlight selection 
method. Because a concept’s significance sometimes depends on the effectiveness of 
the succeeding concepts, we present multiple concepts together if they are in the same 
half inning. After the presentation of one half inning, the subjects give one opinion 
score (from one to five, indicating from bad to excellent) to each selected concept to 
judge whether it’s a highlight part.  

The selected highlight concepts and their corresponding meanings are listed in 
Tables 3-10 and 3-11. Table 4-12 shows the subjective results of highlights with 
different lengths. Eleven concepts and eight concepts are selected to construct 7-min 
and 5-min highlights, respectively. From Table 4-12, highlights from both games 
satisfy users and get average score larger than 3.3. The shorter highlight getting 
higher score indicates that the proposed significance degree modeling positively 
captures the characteristics of highlights. Moreover, human’s subjective satisfaction is 
slightly affected by the competitive content of games. In “Bulls vs. Lions”, three 
home runs occurred and two teams have a keen competition. On the other hand, the 
team “Lions” dominates in “Lions vs. Bears”, and the game presents flat content. 
Therefore, the concepts selected in “Bulls vs. Lions” often excite the subjects more 
and get higher scores.  

Recently, game highlights are popular materials for representing game content in 
sports news or on-line entertainment services [MLB06]. A man-made highlight, e.g. 
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the highlight reel of an MLB game, consists of video shots elaborately edited and 
remarkable comments. This kind of game highlight impresses the audience while it 
requires lots of professional equipments and working time. In this work, we present 
an automatic highlight selection method that provides satisfactory highlights and is 
free from user intervention. For personalization purpose in digital home environment, 
users can adjust the weights with respect to concept rank, occurrence time, and audio 
energy dynamics to generate different flavors of highlights.  
 

Table 4-10. The selected concepts in “Lions vs. Bears.” 
Lions vs. Bears (2005/4/2) 

Inning Selected concepts 
Top 2nd sacrifice fly (RBI=1) 
Bottom 5th hit by pitch 
Top 6th walk 

double 
sacrifice fly (RBI=1) 

Top 6th sacrifice bunt 
single (RBI=1) 
double (RBI=1) 

Bottom 8th single 
steal 
walk 

 
Table 4-11. The selected concepts in “Bulls vs. Lions.” 

Bulls vs. Lions (2005/4/8) 
Inning Selected concepts 
Top 4th home run (RBI=1) 

single 
home run (RBI=2) 

Bottom 4th sacrifice fly (RBI=1) 
Bottom 6th home run (RBI=2) 

field out (good defense play) 
Bottom 8th walk 

field out (good defense play) 
Bottom 9th single 

sacrifice bunt 
sacrifice bunt 
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Table 4-12. The evaluation results of highlights from two games. 
Game highlights Average mean opinion score 
Lions vs. Bears  
7-min highlight (11 concepts) 

3.35 

Lions vs. Bears 
5-min highlight (8 concepts) 

3.43 

Bulls vs. Lions 
7-min highlight (11 concepts) 

3.67 

Bulls vs. Lions 
5-min highlight (8 concepts) 

3.87 

 
4.5.3 An Integrated Baseball System 
The results of explicit concept detection imply an intuitive application, i.e. 
concept-on-demand service via a scoreboard-like interface, as shown in Figure 4-13. 
Users can select the games we have processed and see what happened in the game at a 
glance. The concept list (left-up side of Figure 4-13) shows what kind of concept 
occurred, who did it, and the corresponding timestamps.  

The detected metadata of baseball videos can be stored in a database for more 
flexible access. We cooperate our results with a question analysis system 
[Day05][ASQA06] and build a baseball question answering system, as shown in 
Figure 4-14. Users can input a natural query string like “I want to see the homeruns 
shot by Player A.” Through the query analysis, the system knows the concept of 
interest is homerun, which was hit by Player A. By checking the detected metadata 
stored in database, this system automatically retrieves the corresponding video clips 
and answer user’s question by video.  

The context of baseball concepts often represents the conventions or tactics of a 
team or the performance of a player. Therefore, a sequential mining technique is 
integrated to find the subtle characteristics. The mining results are shown as 
probabilistic presentations. The occurrence probability of a specific concept, which 
follows a series of concepts, is obtained by giving enough training data. Figure 4-15 
shows a flash-based user interface, in which the mining results corresponding to a 
specific play are displayed. For example, in the case that no out and the first and the 
second bases are occupied, the occurrence probability of a sacrifice is 71.43%, and the 
occurrence probability of a double or a strikeout is 14.29%. These mining results not 
only enhance the entertainment functionality of watching baseball games, but also 
provide some foundations for further knowledge-level analysis.  
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Concept list (player name, event type, time duration, control button)

Nine innings 
In this game

The corresponding video clip

Concept list (player name, event type, time duration, control button)

Nine innings 
In this game

The corresponding video clip

 
Figure 4-13. Snapshot of the baseball concept-on-demand system. 

 

Question: 我想看彭政閔的安打畫面

Results of 
query analysis

Retrieved
concept list

The corresponding video clip

Question: 我想看彭政閔的安打畫面

Results of 
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Retrieved
concept list

The corresponding video clip

 
Figure 4-14. Snapshot of the baseball question answering system.  
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Mining results

Concept list

Mining results

Concept list

 
Figure 4-15. Integrated user interface and the presentation of mining results. 

 

4.6 Discussion and Summary 
We have presented a complete strategy to perform explicit concept detection and 
develop practical applications for broadcasting baseball videos. Color and geometric 
information is utilized to achieve shot classification. Adaptive field color 
determination and dynamic pitcher position detection are devised to make shot 
classification more reliable and general. Then, the rule-based and model-based 
decision methods are integrated to explicitly detect thirteen baseball concepts. Official 
baseball rules are transformed into a decision tree in the rule-based decision module, 
while the context of shots is considered in the model-based decision module. Speech 
information is also taken into account to improve the performance of semantic 
concept detection. A fusion scheme based on combining probabilistic classifiers is 
proposed. Finally, on the basis of explicit concept detection, automatic game 
summarization and highlight selection are implemented to preserve “informativeness” 
and “enjoyability” within short duration. Elaborate design of the significance degree 
of concepts and various evaluations are presented. The proposed approaches automate 
broadcasting baseball video analysis and facilitate various applications.  

The primary idea corresponds to the framework described in Chapter 2 and is 
illustrated in Figure 4-16. Based on visual features, statistical pattern recognition 
techniques are used to recognize number of score and out, and rule-based methods are 
used to perform shot classification. The mid-level representation is constructed by 
information changes on caption and shot transition information. With the help of 
baseball rules and broadcasting conventions, we achieve explicit semantic concept 
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detection via the methods of decision tree and k-nearest neighbor. In this framework, 
the results of different types of classifiers are combined to infer what happened in 
baseball games. From feature to semantics, the hybrid approach that integrates 
rule-based and statistical techniques effectively bridges the semantic gap.  
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Figure 4-16. Explicit baseball concept detection in terms of the framework described 

in Chapter 2. 
 

In summary, the major contribution of this work is that we propose a systematic 
method to explicitly and comprehensively analyze baseball videos. We believe that 
the analytical results and developed applications are more realistic to users. It’s 
arguable that this work specifically concentrates on the domain of baseball games and 
is not intuitive to be extended. However, utilizing domain knowledge more 
exhaustively leads to more practical functionalities. We engage in thorough studies of 
baseball video analysis and report results that appropriately match the demands of 
most users. From all of our survey, the proposed method best exploit official rules in 
concept detection and game abstraction, and provides the most comprehensive and 
practical results in baseball video analysis. 

Although we explicitly detect various concepts in baseball games, some special 
concepts are still not included. For example, player substitution and defense error are 
subtle or are determined subjectively by the umpire. Furthermore, there is still space 
to improve the highlight selection method. More sophisticated concept modeling can 
be designed. For example, increase the significance degree of the concept that a 
slugger gets a strikeout, or suppress a non-scoring concept’s significance if only one 
concept is selected in the half inning. Therefore, various applications with different 
purposes and for different services can be developed.  
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Chapter 5 
Semantic Analysis in Sports Videos 
through Ball Trajectory 
 

5.1 Introduction 
Many techniques based on color, motion, caption [Zhan02], or external game logs 
[Baba04] have been proposed for sports video analysis. Most approaches focus on 
detecting predefined event sets in games and performing game abstraction. On the 
other hand, some implicit game statistics, which may be helpful in tactic analysis or 
improving athlete’s performance, have drawn little attention. For example, possession 
time in soccer games indicates each team’s performance, and pitch type usage in 
baseball games indicates the pitching tactics. This subtle but useful information 
cannot be modeled or detected through conventional content-based approaches. In this 
chapter, we propose a new medium, i.e. ball trajectory, in sports video analysis. It is 
believed that ball trajectories can provide new sights in more advanced and useful 
sports video analysis.  

Recently, approaches based on ball trajectory have been proposed to facilitate 
implicit game status extraction. Yu et al. [Yu03] detect and track ball trajectory in 
soccer games, and perform possession time analysis and play-break structure 
discovery. For baseball games, the well-known K Zone system [Guez02] is reported 
to track pitching baseball trajectory. Two cameras (locating high above the home plate 
and the fist base) and three subsystems are equipped to real-time tracking ball in 
broadcasting baseball games. More specifically, Theobalt et al. [Theo04] track the 
position, velocity, rotation axis, and spin of the pitching ball with low-cost 
commodity.  

The approaches described above are only applied to some specific games or 
should be equipped with high-cost tracking instruments. Nowadays, tremendous video 
sequences can be accessed on the internet [MLB06], but such entertaining 
functionality is not provided. Techniques that automatically extract ball trajectory 
without specific equipment settings are worth developing to enrich the experience of 
watching ball games. In this chapter, we focus on extracting ball trajectory from 
single-view video sequences. We apply a Kalman filter-based approach [Welc04] to 
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perform ball tracking and generate trajectory candidates. This approach robustly 
provides good tracking performance even some real ball candidates are missing in 
some frames. From the detected trajectory candidates, the optimal ball trajectory is 
determined by a physical model [Adai02].  

Extracting the ball trajectory significantly aids subtle information analysis in ball 
games. For example, in baseball games, the pitching ball trajectory indicates the skill 
of a pitcher, and the sequential pattern of several consecutive pitches unveils the 
pitching tactics. In soccer games, how the ball moves aids in detecting possession 
time and play-break structure. With the help of goal-mouth detection, concepts like 
goal and shot can be automatically detected [Yu03]. Moreover, in tennis games, we 
can analyze game tactics, such as drop-shot, volley, or passing shot, through checking 
the ball trajectory. With the helps of such informative information, we are able to 
advance sports video analysis towards more useful applications.  

In this chapter, we take baseball trajectory extraction as the main example, while 
the same process can be applied to other sports videos. Some sample results and 
possible applications will be introduced for baseball, soccer, and tennis videos.  
 

5.2 System Overview 
Figure 5-1 illustrates the framework of ball trajectory extraction. Given a video 
sequence, ball candidates in each frame are first detected by checking color, position, 
size, and shape information. Several ball candidates may be extracted for one frame, 
and the real ball object may be misdetected because the ball is occluded by players or 
is merged into with white regions, such as player’s white uniform or advertisement.  

On the basis of ball candidates, a trajectory forming process is elaborately 
designed to concatenate isolated ball-like objects and generate a reasonable ball 
trajectory. This process consists of three stages: trajectory segment generation, 
trajectory candidate generation, and physical model-based validation.  

(1) A Kalman filter-based approach is used to track the positions of ball-like 
objects and generate trajectory segments.  

(2) Because the real ball object is often occluded by other objects, it’s often the 
case that none of the trajectory segments present the real ball trajectory. We 
develop a trajectory candidate generation module to interpolate the ball 
position between two adjacent trajectory segments. Trajectory candidates 
that last the whole video sequences are consequently generated.  

(3) Many trajectory candidates may be detected for a video sequence. However, 
only one trajectory is the valid ball trajectory. We devise a physical 
model-based validation module to validate the detected candidates and 
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determine which of them is the most reasonable ball trajectory. The planar 
ball position (in terms of (x,y)) of each frame is finally determined.  

 
Figure 5-2 shows two sample results of trajectory detection in baseball games. 

The pitch in Figure 5-2(a) is captured from TV broadcasting [Vide06] and the pitch in 
Figure 5-2(b) is downloaded from internet [MLB06]. We can see that the proposed 
approach works well in different types of pitching conditions (Chinese Professional 
Baseball League vs. Major League Baseball and right-hander vs. left-hander).  
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Figure 5-1. The framework of ball trajectory extraction.  

 

(a) (b)(a) (b)  
Figure 5-2. Two sample results of ball trajectory detection. (a) Chinese Professional 

Baseball League, right-hander; (b) Major League Baseball, left-hander.  
 

5.3 Ball Candidate Detection 
Given a video sequence, we first detect white background regions that always remain 
white in the whole sequence (usually 10~18 frames in 30-fps pitching baseball 
sequences). For each video frame, the pixels in white background regions are omitted 
first. White objects that are out of background regions are viewed as ball candidates if 
they meet certain constraints, including color, position, size, and shape. Figure 5-3 
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illustrates the process of ball candidate detection.  
1) Color filter: Color of the ball is similar to white even in different broadcasting 

situations. Therefore, the objects whose color is not close to white are filtered 
out. The definition of ball color may be different in different sports. In our 
implementation for baseball trajectory extraction, objects are claimed to be 
white if all their RGB values are larger than 150.  

2) Position filter: In baseball games, the ball always flies in specific region, either 
in different broadcasting styles, right-hander or left-hander. We can feel free to 
filter out the suspected white objects in very high or very low regions. In our 
implementation, we discard all objects higher than (1/5)×(frame height) and 
lower than (4/5)×(frame height).  

3) Size filter: Although the size of ball may be different in various game 
broadcasts, it falls within a specific range. This filter sieves out the white 
objects with reasonable size and ignores pixel-size white noises or massive 
objects caused by the player’s white uniform or advertisement boards. In 
baseball experiments, we use 352×240 images, and the range of reasonable 
ball size is from 2 pixels to 10 pixels.  

4) Shape filter: Finally, the ball should be similar to a circle on screen. The 
objects that are far from circle are filtered out. An object’s radius r is defined 
as the maximum value of width or height. An object is viewed as a circle if the 
ratio of object area to πr2 is larger than 0.3. 

 
Note that the parameters described above are just for pitching baseball sequences. 

Different settings may be employed when we apply the process to find ball 
trajectories in other ball games.  

 
After these filtering processes, reasonable ball-like objects are detected. Figure 

5-4 shows the detected ball candidates in different video frames, in which the x axis 
denotes the frame index, and the y axis denotes the diagonal distance between the ball 
object and the left-top corner of the frame. However, many of them are noises or none 
of them is the real ball. We have to devise a method to concatenate some ball 
candidates and generate reasonable trajectories.  
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Figure 5-3. The Flowchart for ball candidate detection  
 

 
Figure 5-4. Ball candidates in different video frames. 

 

5.4 Trajectory Forming Process 
The trajectory forming process consists of three steps. We first connect neighboring 
ball candidates in adjacent frames to form trajectory segments. If the real ball is 
completely detected in the whole pitching sequences, we can feel free to say that one 
of these trajectory segments is the real ball trajectory. However, ball is often 
misdetected because of occlusion, merging, or deformation, and the real trajectory is 
cut into several disjoint segments. Therefore, the process of trajectory candidate 
generation interpolates the missing part between two segments and tries to generate 
trajectory candidates that last for the whole video sequence. Because only one of the 
trajectory candidates is the real ball trajectory, we have to find the one that best 
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matches the movement of a ball. In the final stage, an elaborate trajectory validation 
process is developed, on the basis of physical principles, to filter out illegal 
trajectories.  
 
5.4.1 Trajectory Segments Generation 
The main challenge of trajectory generation is that the ball often overlaps with white 
objects and is not detected (filtered out) in the process of ball candidate generation. 
Therefore, the developed trajectory forming process should estimate the missing ball 
positions and generates reasonable trajectory candidates. In this work, we apply a 
Kalman filter-based approach to track the ball positions.  

In general, the Kalman filter describes a system as:  

k k k-1 k= +x A x w ,                                                (5-1) 

k k k kz = H x + v .                                                 (5-2) 

xk is the state vector (representing the vector of estimated ball position at the kth 
frame), Ak is the system evolution matrix, and wk is the system noise. zk is the 
measurement (positions of the detected ball candidates), Hk is the unit array, and vk is 
the measure noise.  

The Kalman filter estimates a process by using a form of feedback control: the 
filter estimates the process state at some time and then obtains feedback in the form of 
measurements [Welc04]. Equation (5-1) denotes a time update process and equation 
(5-2) denotes a measurement update process. The time update equation forward 
projects the current status to a priori estimate for the next time step. The measurement 
update equation incorporates a new measurement into a priori estimate to obtain an 
improved a priori estimate.  

In general, the time update process can be seen as a predictor, and the 
measurement update process can be seen as a corrector. The whole process proceeds 
“estimation” and “update” alternately. It adaptively adjusts the evolution matrix for 
estimation, according to the real measurements. Figure 5-5 illustrates the iterative 
process of a Kalman filter.  
 

Time update
(predictor)

Measurement update
(corrector)

Time update
(predictor)

Measurement update
(corrector)

 
Figure 5-5. The iterative process of a Kalman filter [Welc04].  
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Figure 5-6. Kalman filter-based tracking in ball trajectory extraction.  

 
Figure 5-6 illustrates the tracking process, in which each cross denotes a detected 

ball candidate. We first find trajectory seeds to start the Kalman filtering process. A 
trajectory seed is a pair of ball candidates that are spatially close to each other in two 
adjacent frames. In Figure 5-6, the ball candidates bi,2 and bi+1,3 in the ith and (i+1)-th 
frames are concatenated as an initial trajectory seed. In our implementation, two ball 
candidates are viewed as a trajectory seed if both their vertical and horizontal 
distances are less than 15 pixels.  

After using the found seed to estimate the system evolution matrix Ak, we grow 
the trajectory forward along the time dimension. The suspected ball position b’

i+2 in 
the (i+2)-th frame is estimated by the Kalman filter, as illustrated by the dash arrow in 
Figure 5-6. In the measurement update stage, if there is any ball candidate close to the 
estimated position, the trajectory extends along this measurement, and we update the 
system evolution matrix. In this example, the ball candidate bi+2,2 is close to the 
estimated position and is the measured ground for extending the trajectory and 
updating tracking parameters. In our implementation, b’

i+2 and bi+2,2 are claimed to be 
close because their Euclidean distance is less than 15 pixels. The classical 
predictor-corrector process [Welc04] repeats until all video frames are analyzed or no 
close candidates can be the basis for trajectory growing.  

Figure 5-7 shows all the trajectory segments found by the Kalman filter-based 
process. Note that the real ball trajectory may not exist at all frames. Therefore, we 
have to concatenate these trajectory segments in a reasonable way and construct 
trajectory candidates which remain in the whole duration.  
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Figure 5-7. Examples of the detected trajectory segments.  

 
5.4.2 Trajectory Candidates Generation 
To generate trajectory candidates from the found trajectory segments, a process that 
consists of three stages are developed. From the trajectory segments pool, we search 
for segments that are probably able to be concatenated as a reasonable trajectory. By 
evaluating how close between the endpoints of two segments, this process decides 
whether to concatenate them or not. The connection process repeats until all trajectory 
segments are examined. The ball is often misdetected in the final few frames of 
pitching because of many noises caused by the batter’s uniform or catcher’s chest 
protector. If the detected trajectory candidate only lacks a few frames (less than 4 
frames), we fit the trajectory with a polynomial and extend it to be a complete 
trajectory candidate. This process is illustrated in Figure 5-8, and the details of the 
three stages are described as follows.  

1) Find stage: For each trajectory segment Ti, which ends at the ei-th frame, find 
the trajectory segments that start before the (ei+5)-th frame, and the distance 
between their end points is less than a threshold. In the example of Figure 5-16, 
the trajectory Tj is close to Ti and is selected to be the candidate for 
connection.  

2) Connect stage: If Ti is longer than 3 frames, use a polynomial to fit Ti, and 
estimate the ball position at the (ei+3)-th frame. If the Euclidean distance 
between the estimated ball position and the endpoint of Tj is less than a 
threshold, connect Ti and Tj. The missing ball positions at the (ei+1)-th and the 
(ei+2)-th frames are determined by the estimated values based on Ti.  
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The process returns to the first stage until the connected trajectory reaches the 
final video frame or no other segments are valid for connecting.  

3) Extend stage: If the connected trajectory segments are longer than (L-4) 
frames and shorter than L frames (L is number of total frames of a pitching), 
use a polynomial to fit this trajectory and estimate the rest of this trajectory.  
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Figure 5-8. An example of trajectory candidate generation.  

 
After these processes, we generate trajectory candidates that last for the whole 

video sequence, as illustrated in the bold solid line in Figure 5-8.  
The trajectory generation process may generate many trajectory candidates that 

are drastically different from the real ball trajectory, though all of them conform to the 
constraints described above. For example, in pitching baseball videos, the catcher’s 
white kneecap often moves smoothly and forms a plausible trajectory. Therefore, we 
devise a validation method to examine the detected trajectory candidates on the basis 
of physical principles. A real ball trajectory should conform to aerodynamics, in 
which the gravity, air friction, velocity, spin rate, and other factors affect the 
movement of the flying ball.  
 
5.4.3 Physical Model-Based Trajectory Validation 
5.4.3.1 Physical Model of Ball Trajectory 
There have been many literatures on aerodynamics of baseball, by which we can 
confirm the reasonability of the generated trajectory candidates. According to the 
physics of baseball [Adai02], the trajectory of a ball can be roughly determined by its 
velocity, rotation axis, and spin rate. To induce the physical characteristics of a flying 
baseball, we simulate trajectories of fastball, curveball, and slider and gather the 
statistics of corresponding trajectory vectors. The position of a ball in x (right of 
batter), y (up from batter), and z (towards batter) directions can be formulated as 
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follows:  
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                                    (5-3) 

where xt is the horizontal position at time t, vx(t) is the velocity in horizontal 
direction, and ax(t) is the corresponding acceleration. Related to the releasing angle 
and beginning velocity v0, the x, y, z components of velocity are:  
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                         (5-4) 

where aimx (aimy) is the included angle between the releasing vector (the direction 
of v0) and the yz (xz) plane, as shown in Figure 5-9.  
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Figure 5-9. Velocity components of the releasing ball.  

 
The evolution of velocity can be formulized as:  

( 1) ( ) ( ) ,
( 1) ( ) ( ) ,

( 1) ( ) ( ) ,

x x x

y y y

z z z

v t v t a t t
v t v t a t t

v t v t a t t

+ = + ×
+ = + ×

+ = + ×

                                         (5-5) 

and the evolution of acceleration becomes:  

0( ) ( ) ( ),x y z xa t B s v t fv v v t= × × − × ×                                 (5-6) 
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0( ) ( ) ( ),y x z ya t B s v t G fv v v t= × × − − × ×                             (5-7) 

( ) 0( ) ( ) ( ) ( ),z y x x y za t B s v t s v t fv v v t= × × − × − × ×                        (5-8) 

where B and fv are coefficients for spin and air friction, G is the acceleration of 
gravity, sx is the spin rate with rotation axis x. In each direction, the evolution of 
acceleration is affected by the force evoked by spin and the drag force. For example, 
in equation (5-6), the acceleration in x direction is strengthened by the drag force 
caused by y-direction spin (the first item), and is reduced by the air friction that is 
proportional to the x-direction speed. On the other hand, the gravity should also be 
considered in formulizing the y-direction acceleration. The imbalance of pressure 
caused by spin is known as “Magnus effect” [Adai02].  

With these formulas, given the beginning velocity v0, spin rate in x and y 
directions (sx and sy), we can simulate ball trajectories in different conditions. To find 
the criterion for valid ball trajectories, we simulate trajectories with different 
parameter sets that are possible conditions a pitcher can evoke. Table 5-1 shows the 
ranges of simulation parameters. Totally 715 (5×13×11) different trajectories were 
simulated. Note that in physics books the orientation of rotation axis also should be 
considered. However, in our experiments, the difference of rotation orientation affects 
slightly and can be neglected.  

 
Table 5-1. Ranges of simulation parameters. 

Parameters Range 
v0 60, 70, 80, 90, 100 (mph) 
sx and sy -600, -500, …, 400, 500, 600 (rad/s) 
aimx and aimy -5°, -4°, …, 3°, 4°, 5° 

 
For each simulated trajectory, we compute the included angle of two adjacent 

flying vectors:  

1 1

1

cos ,i i
i

i i

θ − −

−

⎛ ⎞
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v v
v v
i                                           (5-9) 

where ( )1 1 1, ,i i i i i i ix x y y z z− − −= − − −v .  

After simulating all possible trajectories, the included angles of adjacent vectors 
are gathered to be the reference for trajectory validation. Figure 5-10 shows the angle 
histogram. In this histogram, we can see that all legal angles fall into the range less 
than 1.2°. This characteristic imposes a constraint on legal trajectory.  
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Figure 5-10. The angle histogram of trajectory vectors. 

 
5.4.3.2 Trajectory Validation via Physical Limitation 
With the physical limitation derived from trajectory simulation, we can filter out 
abnormal trajectory candidates. However, what we extract from single-view video 
sequences are 2-dimensional (2-dim) ball trajectories, in terms of pixels. We should 
estimate the depths (the ball positions at the z-axis) so that the constraints described in 
the previous subsection can be applied.  

In this work, we estimate the proportion of the vertical movement (movement at 
the y-axis) to the depth in our simulation processes. The ratio of the vertical 
movement to the depth is estimated as 0.0558. Actually, this ratio matches the naïve 
estimation, which can be calculated through dividing average vertical movement (a 
reasonable assumed value is 1 meter) by the distance from the mound to the home 
plate (18.44 meters). On the other hand, the average vertical movement in our dataset 
is estimated as 38.1736 pixels. Proportionally, the depth of the detected 2-dim 
trajectories is estimated as 38.1736/0.0558 ≈ 684 pixels, as illustrated in Figure 5-11. 
The depth of each ball candidate is then obtained through the estimated depth divided 
by the frame number of the sequence.  

 

38.1736 pixels

684 pixels (estimated value)

38.1736 pixels

684 pixels (estimated value)  
Figure 5-11. An illustration of the relation between the vertical movement and the 

depth.  
 



 

97 

For each detected 3-dim trajectory candidate, the included angle between two 
adjacent vectors is computed. A trajectory candidate is viewed as abnormal if one of 
the included angles of its flying vectors is larger than 3°. This threshold is set 
according to the constraint derived from Figure 5-10, and is loosed to cover slight 
noises caused by detection or tacking errors.  

After trajectory validation, the trajectory that conforms to physical principles is 
retained, and the ball positions in each frame are determined. Figure 5-12 shows an 
example of the detected trajectory. The proposed trajectory process can be applied to 
any types of pitching and broadcasting styles, as shown in Figure 5-2.  
 

 
Figure 5-12. The detected ball trajectory 

 
The physical model describes the movement of flying object, which is not affected 

by any external force except for gravity and air friction. The object that hits another 
object, e.g. the ball hits the ground or the catcher’s glove, would not follow the 
characteristics described above. Therefore, we focus on extracting the trajectory of the 
“unaffected” flying object in sports videos.  
 

5.5 Trajectory-based Analysis in Different Sports 
The proposed trajectory extraction process can be applied to different ball games, by 
adjusting some parameters in ball detection and trajectory processing. In this section, 
we respectively describe the assistance of ball trajectory in analyzing baseball, soccer, 
and tennis videos. These works suggest new viewpoints for analyzing sports videos.  
 
5.5.1 Pitch Type Recognition in Baseball Videos 
In baseball games, the trajectory of a pitching ball indicates the skill of the pitcher. In 
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addition, the sequential pattern of consecutive pitches implies the pitching tactics. For 
example, fastball and breaking ball are often dispatched alternately to confuse the 
batter. On the basis of the extracted ball trajectories, we perform pitch type 
recognition for consecutive pitches and facilitate game tactics analysis in baseball 
videos.  
 
5.5.1.1 Pitch Type Recognition 
In this work, we mainly focus on recognizing three typical pitching trajectories: 
fastball, curveball, and breaking ball. Fastball is a straight and very fast pitch, and its 
trajectory is relatively straight. A fastball is thrown with backspin, so that the Magnus 
effect produces an upward force on the ball. This counteracts the force of gravity, and 
causes the ball to follow a flatter trajectory, as shown in Figure 5-13(a).  

A curveball is thrown with rotating counterclockwise – as seen from above – by a 
right-handed pitcher. The Magnus effect produces a downward force on the ball. This 
force combines with the gravity force to make the ball curve down, as shown in 
Figure 5-13(b).  

There are many other pitch type variations by changing the speed and spin axis. 
For example, a slider is a kind of fast curveball. It is thrown at a higher velocity than 
the standard curveball, and will break less than the curveball. Screwball is a kind of 
reverse curveball, which breaks away from a right-handed batter. These variations and 
other unmentioned ones, such as change, palmball, knuckleball, splitter, and cut 
fastball, are roughly categorized as “other breaking balls” in this work. Figure 14 
shows the typical trajectories of different pitch types.  
 

 

Figure 5-13. Some illustrated examples of different pitch types. (This figure is quoted 
from [Bahi05]) 
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(a) Fastball 

 
(b) Curveball 

 
(c) Breaking ball 

Figure 5-14. Ball trajectories of different pitch types. 
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Based on the observations described above, we elaborately design two 

trajectory-based features to classify a ball trajectory into one of the three types of 
pitches.  

(A) Difference of mean vertical vectors in the fore and the later part of a 
trajectory (DVV): As compare to curveball and other breaking balls, the 
variation between the fore part and the later part of a fastball’s trajectory is 
small. We particularly focus on the vertical variations of the ball trajectory. 
As shown in Figure 5-15, the vertical variation of fastball is significantly 
different from that of curveball and breaking ball. A fastball has steady 
vertical movement, but curveball often moves upward in the fore part and 
drops drastically in the later part. The trajectories of other breaking balls 
move like the combination of these two pitches, but most of them also drop 
rapidly in the later part. Therefore, this feature would be a good clue for 
discriminating fastball trajectory from others.  

 
(B) Area of the arciform region (AAR): The curvatures in curveball and other 

breaking balls are evidently different. We extract the area of the arciform 
region, as shown in Figure 5-16, to be the feature for discriminating 
curveball and other breaking balls. Generally, curveballs have the largest 
vertical variation among all pitch types.  

 

 
(a) Fastball (b) Curveball (c) Slider 

Figure 5-15. Vertical variations in fastball, curveball, and slider. 
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(a) Curveball (b) Slider 
Figure 5-16. Examples of AAR for curveball and slider.  
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Figure 5-17. The progressive process for pitch type recognition 

 
The process of pitch type recognition is illustrated in Figure 5-17. We first 

distinguish fastball from other types of pitches, and then curveball and other breaking 
ball are categorized.  
 
5.5.1.2 Evaluation of Trajectory Extraction 
We use 38 pitching sequences, including fastball, splitter, slider, and curveball, for 
evaluation. The ball position of each video frame is manually identified as ground 
truth. The estimation error, in terms of pixels, between ground truth and the estimated 
ball positions is calculated. Table 5-2 shows the average and maximal estimation error 
in four types of pitches. Note that we use 352×240 MPEG-1 bitstreams, and the size 
of ball usually ranges from 4×4 to 6×6 pixels. Great ball detection accuracy is 
reported in Table 5-2. Actually, the reported errors are relatively small and can be 
viewed as the noises derived from the manually defined ground truth. Assume that the 
error from human remains consistent in different types of pitches, the values in Table 
5-2 also show reasonable results. Fastball goes straight and is relatively easy to be 
estimated, while curveball turns drastically and raises the difficulty of accurate 
tracking and detection. Splitter and slider, which act between fastball and curveball, 
have medium performance.  
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Table 5-2. Extraction performance in terms of estimation error.  

Pitch type Avg. estimation error 
(pixel) 

Max. estimation error 
(pixel) 

Fastball (18 sequences) 0.791 1.73 
Splitter (5 sequences) 1.02 1.91 
Slider (9 sequences) 1.28 2.48 
Curveball (6 sequences) 1.28 2.71 

 

(a) (b)(a) (b)  
Figure 5-18. Comparison of (a) the truth ball trajectory and (b) the extracted trajectory  
 

Figure 5-18 shows a trajectory extraction result that juxtaposes the real ball 
trajectory and the extracted one. More results can be seen at our website 
(http://www.cmlab.csie.ntu.edu.tw/~wtchu/baseball/index.html). 
 
5.5.1.3 Evaluation of Pitch Type Recognition 
About the performance of pitch type recognition, we collect 85 fastball, 11 curveball, 
33 slider, and 6 splitter sequences as the evaluation dataset. After extracting the 
corresponding trajectories, we calculate the corresponding prescribed DVV and AAR, 
and use Gaussian distributions to describe each pitch type’s features characteristics. 
Table 5-3 shows the statistics of each pitch type. In DVV statistics, DVV of fastballs 
are significantly different from other types of pitches. Moreover, we can easily 
differentiate curveballs from other breaking balls through checking AAR. According 
to DVV statistics in Table 5-3, the threshold for discriminating fastball and others is 
manually set as 3. On the basis of AAR, the threshold for discriminating curveball and 
other breaking balls is set as 1000. The probability distributions of DVV and AAR are 
illustrated in Figure 5-19.  

Table 5-4 shows the performance of pitch type recognition. In general, satisfactory 
performance could be achieved for different pitch types. Only five fastballs are 
misclassified as breaking balls, three breaking balls are misclassified as fastballs, and 
two breaking balls are misclassified as curveballs.  
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Table 5-3. Statistics of DVV and AAR.  

Pitch type DVV (mean) DVV (std) AAR (mean) AAR (std) 
Fastball 2.12 0.59 — — 

Curveball 6.25 1.0 1669 418 
Slider 3.94 0.58 667 264 

Splitter 4.22 0.84 829 230 
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Figure 5-19. Probability distributions of DVV and AAR. 

 
Table 5-4. Performance of pitch type recognition.  
Pitch type Precision Recall 

Fastball 96.38 94.12 
Curveball 84.62 100 

Breaking balls 87.18 87.18 
 

Collecting a series of pitches from a specific match, we may employ a sequential 
mining method to discover pitching tactics of a team’s pitchers. Moreover, pitches 
thrown by different pitchers’ or by the same pitcher at different time may act a little 
different. Carefully examine how the ball moves would help a pitcher improve his 
skill. Overall, trajectory extraction in baseball videos provides a new medium for 
automatic analyzing baseball games.  
 
5.5.2 Penalty Kick Analysis in Soccer Videos 
5.5.2.1 Soccer Trajectory Extraction 
Yu et al. [Yu03] proposed a system for soccer video analysis through ball trajectory. 
By checking ball’s moving speed and goalmouth detection, “shot” events can be 
detected. Moreover, by checking the direction of the moving ball, ball possession time 
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of each team can be estimated.  
With the help of trajectory extraction, we analyze soccer videos from different 

viewpoints. We focus on the sequences that contain penalty kicks. In soccer games, 
the goalkeeper should setup his strategy (either jumps right or left) to hold up the ball. 
The moving relationship between the goalkeeper and the ball often grasps the eyesight 
of the audience, and is extremely important to the game results. Through gathering the 
trajectory results of a series of penalty kick videos, we can mine the keeping strategy 
of the goalkeeper, such as how he reacts to a ball kicked by a right-footer.  

The proposed Kalman filter-based approach can be employed in extracting soccer 
trajectory as well. While the procedure of trajectory extraction is the same as that for 
baseball, some parameters should be modified, such as ball size and ball color. In 
general, because the angle of flying soccer varies significantly in penalty kicks, we 
have to loose the constraints of reasonable position described in Section 5.3. Table 5-5 
shows the parameters we used in soccer trajectory extraction, in which no position 
constraint is set. The major challenge to extract a soccer trajectory is that the included 
angle between the ball trajectory and the middle line of the screen can vary 
significantly. It’s not the case in an ordinary baseball trajectory.  
 

Table 5-5. Parameters in soccer trajectory extraction. 
Ball candidate detection 
Color filter RGB values > 100 
Position filter None 
Size filter 10 pixels ≤ object size ≤ 100 pixels 
Shape filter Ratio > 0.2 

 

(a) (b)(a) (b)  
Figure 5-20. Examples of trajectory extraction for penalty kick in soccer videos. 

 
Figure 5-20 shows sample results of trajectory extraction in two different penalty 

kick sequences, which are captured from two different cameras. These results 
demonstrate the feasibility of the proposed approach.  
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The extracted trajectory information greatly helps in analyzing the tactics of the 
goalkeeper. We can characterize the habitual behavior of a specific goalkeeper by 
checking the moving relationship between him and the flying ball. More practical 
applications based on soccer ball trajectory can be developed in the future.  
 
5.5.2.2 Evaluation of Soccer Trajectory Extraction 
We take the penalty kick series in “World Cup 1994: Brazil vs. Italy” as the evaluation 
data. The resolution of video frame is 320×240. After evaluating the four different 
kicks in the series (two are captured from the front side of the goalmouth, and two are 
captured from the back side), the average estimation error is 1.09 pixels, and the 
maximal estimation error is 2.74 pixels. They are slighter larger than that in baseball 
trajectory extraction. We address that the following challenges are specific for soccer 
videos and probably the causes of larger estimation errors.  

(1) Estimation of soccer trajectory is harder than baseball because different 
trajectories may have significantly different flying directions. Generally, a 
kick causing a goal means the ball flies into the region of goalmouth (7.32 
meters × 2.44 meters), which is extremely larger than the strike zone in 
baseball.  

(2) Penalty kick videos are often suffered from noises caused by the audience, 
as shown in the upper regions of Figure 5-19(a) and Figure 5-19(b). White 
moving background objects, which are derived from the movement of the 
audience, often cause a plausible trajectory and make confusion in the 
trajectory forming process. On the other hand, the white background objects, 
which are derived from advertisement boards, are often still in a pitching 
baseball sequence.  

(3) For penalty kick videos, the ball size changes drastically when the ball flies 
from the penalty mark to the goalmouth. Seeing from the back side of the 
goalmouth, the ball size may vary from 4×4 pixels to 10×10 pixels within a 
period less than one second.  

 
5.5.3 Tactics Analysis in Tennis Videos 
5.5.3.1 Tennis Trajectory Extraction 
Likewise, the ball trajectory also plays an important role in tennis games. Through 
checking the pattern of trajectory, many hidden information can be found, such as:  

(1) Ground strokes: two players move along the base line and keep stroking the 
ball until the opponent is out of position.  

(2) Approach and volley (smash): a player returns the ball, and then approaches 
to the net immediately to prepare for a volley (smash).  
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(3) Passing shot: when the opponent approaches to the net, the player returns the 
ball at the opposite direction so that the opponent cannot successfully return 
the ball.  

 
These events are often the most interesting parts of a tennis game. They can be 

detected by checking the position relationship between the ball trajectory and the 
players.  

On the basis of the proposed trajectory extraction approach, we are able to 
automatically extract tennis trajectory and facilitate more advanced tennis video 
analysis. Figure 5-21 shows two sample results of trajectory extraction in a tennis 
game.  
 

(a) (b)(a) (b)  
Figure 5-21. Examples of trajectory extraction for tennis videos. 

 
The major challenge to extract a tennis trajectory is that the size of tennis ball is 

smaller than baseball; moreover, it flies faster than baseball (for man players, the 
moving speed of tennis ball is 180 km/hr in average). Therefore, not only the ball 
color and size are different, we also have to adjust the parameters of the tracking 
module such that reasonable trajectory segments can be concatenated. In our 
implementation, we extract tennis trajectories in MPEG-1 video sequences, with 
560×416 resolution. Table 5-6 shows the parameters for tennis trajectory extraction.  
 

Table 5-6. Parameters in tennis trajectory extraction. 
Ball candidate detection 
Color filter RGB values > 100 
Position filter None 
Size filter 2 pixels ≤ object size ≤ 10 pixels 
Shape filter Ratio > 0.3 
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5.5.3.2 Evaluation of Tennis Trajectory Extraction 
We compare trajectory extraction results of six different sequences with manually 
defined ground truths. The evaluation data is from “2005 US Open Quarterfinal: 
Andre Agassi vs. James Blake”. The average estimation error is 1.84 pixels, and the 
maximal estimated error is 11.7 pixels. The estimation errors of tennis trajectories are 
generally larger than baseball trajectories. We address that the following challenges 
are specific for tennis videos and probably the causes of larger estimation errors.  

(1) Tennis is smaller but flies faster than baseball, and sometimes even human 
cannot recognize. Therefore, we often miss the real ball object in the ball 
candidate detection stage. It’s often the case that we have to interpolate the 
missing positions between two trajectory segments. However, because of the 
shooting angle, the ball’s moving speed is different at the upper part and the 
bottom part of screen. The changeable speed makes accurate interpolation 
nontrivial and may cause larger estimation errors.  

(2) The resolution of evaluated video sequences is larger, and sometimes the 
position ground truth of deformed balls is hardly defined.  

 
Overall, the low estimate errors again demonstrate the accuracy of the proposed 

trajectory extraction process.  
 

5.6 Discussion and Summary 
We developed a system to automatically extract ball trajectory from sports videos. By 
checking color, position, size, and shape information, ball candidates in each video 
frame are detected. The Kalman filter-based approach is applied to track the ball 
position and generate trajectory segments. On the basis of trajectory segments, a 
process is designed to generate trajectory candidates, which last in the whole video 
sequence. We evaluate the reasonability of each trajectory and obtain the final 
trajectory result based on a physical model-based validation method. The proposed 
approach can be applied to different sports, by adjusting the constraints of ball color, 
ball size, and reasonable region.  

The trajectory information can significantly aid in sports video analysis. It 
provides a new type of metadata or be the clues for detecting subtle concepts, such as 
pitch type of a pitching baseball or offense tactics in tennis videos. In baseball videos, 
we elaborately design two features based on the ball trajectory, and perform pitch type 
recognition to distinguish between fastball, curveball, and other breaking balls. The 
experimental results show that we have only few errors in trajectory extraction and 
achieve high detection accuracy in pitch type recognition. In soccer and tennis videos, 
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the same approach can be employed to extract ball trajectories so that more advanced 
video analysis can be favored.  

The primary idea corresponds to the framework described in Chapter 2 and is 
illustrated in Figure 5-22. Based on color, size, shape, and region features, a 
heuristics-based approach is applied to detect ball candidates in each frame. From ball 
candidates to trajectory, we concatenate ball candidates to generate reasonable 
trajectories by applying a tracking method and physical model-based validation. In 
this work, ball trajectories play the role of mid-level representation, and are the 
foundations for more advanced concept detection. From trajectories to concepts, such 
as fastball and curveball, we develop a heuristics-based approach to recognize pitch 
types.  
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Figure 5-22. Trajectory extraction in terms of the framework described in Chapter 2. 

 
In the future, we plan to recognize more types of breaking balls, such as slider and 

splitter. A sequential mining module can be applied to find subtle pitching patterns for 
a specific pitcher. Likewise, the same idea can be applied in deriving goalkeeper’s 
defensive strategies. By checking the relative position between players and tennis ball 
trajectory, many interesting events can be automatically detected. In other words, the 
results of ball trajectory extraction can be applied to either entertainment or game 
analysis.  
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Chapter 6 
Future Research and Conclusions 
 

6.1 Discussions 
We would like to have some discussions about cooperating semantic content analysis 
with other disciplines before concluding this dissertation. Content adaptation and 
multimedia communication applications are the main subjects of this discussion.  
 
6.1.1 Content Adaptation Architecture 
With the drastic advances of video coding and transmission technologies, various 
multimedia communication applications such as mobile TV and video-on-demand 
services mushroomed in recent years. Accompanying with the popularity of digital 
TV and digital video broadcasting [Reim06], more and more high-definition visual 
content are produced and streamed over heterogeneous networks. To alleviate the 
inefficiency of content dissemination or usage, we have the urgent needs of elegant 
content analysis and adaptation techniques to facilitate intelligent manipulation of 
multimedia communications.  

The goal of content analysis is to scrutinize or classify digital content such that 
browsing, managing, presenting, and disseminating content could be efficient and/or 
effective. For example, with structural analysis, video adaptation [Chan05] 
applications such as video summarization and transcoding are developed to 
manipulate information more flexibly.  

Although content analysis techniques are widely studied in recent years, relatively 
little attention has been paid to jointly consider the issues of content analysis and 
multimedia communication. In this section we focus on this interdisciplinary subject 
and propose some integrated applications where multimedia communication and 
content analysis are collaborated with each other, seamlessly. A content repurposing 
framework that facilitates scalable delivery and differential services is proposed to 
demonstrate the mutual impacts of content analysis and media communications. Then 
we discuss the cooperative tasks in terms of two phases: 1) content-aware multimedia 
communication applications and 2) content-aware multimedia transmission 
architecture. Several convincible integrated approaches are proposed and some 
possible further developments are also discussed. 
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Figure 6-1 shows the overall content repurposing architecture. The incoming 
digital content is first dissected by various content analysis techniques. What kind of 
analysis should be applied is decided by the capability of clients and the target of 
applications. We call the content after analysis “structured content” since it has been 
well classified, indexed, or organized. Users can browse the structured content and 
query specific portions of it, directly. With the aid of organization functionality, users 
can easily obtain a content summary that reserves important information within a 
shorter duration. This content-aware application scenario eases the burden and 
reduces the cost of content transmission. For example, it’s expensive and 
time-consuming to transmit a complete sports video to users, while a content 
summarization module is able to shrink a lengthy game video into a short summary or 
highlight video clips such that less transmission time and bandwidth are required.  

 

Content
Analysis

Original 
Content

Structured
Content 
Database

Semantic-level
Adaptation

Format 
Transcoder

Adapter n

…

Network

…

(b) Adaptation (c) Content Usage(a) Analysis

Adapted
content

Ada
pte

d
Con

ten
t

Adapter i…

…

Content
Analysis

Original 
Content

Structured
Content 
Database

Semantic-level
Adaptation

Format 
Transcoder

Adapter n

…

Network

…

(b) Adaptation (c) Content Usage(a) Analysis

Adapted
content

Ada
pte

d
Con

ten
t

Adapter i…

…

 

Figure 6-1. Overall architecture of the content adaptation process.  
 
The proposed architecture provides a realistic instance of universal multimedia 

access pursued by MPEG-21 [Burn03], which draws a picture of transparent digital 
data usage through taking resource and description adaptation to match characteristics 
of users, terminals, and networks. With content analysis techniques, a variety of 
repurposing processes can be performed to build fruitful multimedia communication 
applications.  

 
6.1.2 Content Adaptation Modeling 

Content adaptation can be modeled as a resource allocation problem [Moha99] as 
follows:  

max   such that  i i client
i i

V R R⎧ ⎫ ≤⎨ ⎬
⎩ ⎭
∑ ∑ ,                               (6-1) 

where Vi and Ri are the values and resources used by the ith adapted content item 
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Mi, and Rclient is the maximum resource available at the client. Mohan et al. [Moha99] 
proposed this general model and adapted internet content (web pages) for universal 
access. However, how to appropriately evaluate the value of content, which affects the 
adapted results most, is not well defined. While previous works assumed that the 
content value Vi is some function of the resource Ri, we argue that it’s more 
reasonable to take content semantics into account.  

Accompanying with the advance of content analysis, we are able to explicitly 
uncover embedded content semantics and clearly develop content value estimation 
functions. The content value Vi of the adapted content item Mi can be defined as:  

( )
1

J

i j j i
j

V w f M
=

= ×∑ ,                                             (6-2) 

where fj is a specific mapping function that evaluates the content value of Mi. 
Different mapping functions can be defined to represent values of various types of 
content. For example, if Mi is a video clip representing a baseball event, a function fj 
can be defined according to the contribution (or importance) of its appearance to the 
game, which implies fj (“a hit causing score”) > fj (“an out”). Other mapping functions 
can be defined as well, say according to user preference and consuming bit-rates. The 
integrated content value Vi of the content item Mi is then calculated by linearly 
combining content values derived from different perspectives. The weighting 
parameters wj can be determined heuristically or learnt from subjective evaluation 
results.  

The original content (e.g. a baseball video) can be indexed by a content analysis 
module (e.g. a concept detection module) so that the content is segmented into 
short-term content items (e.g. baseball concepts), as shown in Figure 6-2. After 
content values evaluation, we sort them in descending order and estimate the 
corresponding consumed resources by calculating each item’s data size. To solve the 
constrainted resource allocation problem, we can just apply a greedy selection method 
such that the total content values are maximal, subject to the client’s resource 
constraint. After we determine how many and which events should be selected, they 
are concatenated according to the temporal order of the original content.  

The combination of the prescribed adaptation processes enables the flexibility of 
content presentation. We call the data after repurposing adapted content in this work. 
As shown in Figure 6-1, the adapted content is generated by the efforts of analysis and 
repurposing techniques. The whole processes in Figure 6-1(a) and Figure 6-1(b) can 
be viewed as presenting the same content with different appearances (e.g. video 
resolutions in 1024 768×  vs. 352 240× ) or information coverage (e.g. audio only vs. 
video).  
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Figure 6-2. An example process of content adaptation. 

 
We present the idea of collaborating content analysis technologies with 

multimedia communication issues. We suggest that semantics analysis facilitate the 
evaluation of content value, which was estimated by an over-simplified assumption in 
the conventional content adaptation model. Based on the content adaptation 
techniques, several examples are given to show the tight collaboration between 
content analysis and media communications.  

 

6.2 Future Research 
In addition to the works described in this dissertation, multimedia semantic analysis 
remains a very challenging problem in general domain media. Many related issues are 
still left for long-term research.  

How to define the analysis levels for different cases is still an open issue. In our 
works, we empirically define analysis levels and develop techniques to bridge them, 
according to the domain knowledge or observation. There may be other ways, such as 
machine learning or pattern analysis, to determine the semantic granularities.  

General semantic concept detection is a seriously challenging problem. Many 
methodologies have been taken to model the relationships between semantic concepts, 
but none of them is always superior to others. Advances in feature extraction, feature 
design, pattern classification, data mining, ontology, or knowledge management 
would provide more supports on this topic. Multimedia semantic analysis researches 
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certainly remain ongoing.  
Collaborating multimedia content analysis with other research fields would arouse 

many interesting studies, such as the multimedia communication applications 
described in Section 6.1. Actually, studies on content analysis often rely on the 
supports from computer vision, machine learning, and pattern recognition researches. 
The interdisciplinary nature of content analysis makes it even appropriate to cooperate 
with other fields.  
 

6.3 Conclusions 
In this dissertation, we have presented a framework that serves as a guideline for 
multimedia semantic analysis. We respectively study visual and aural characteristics 
in different media, and develop corresponding techniques to bridge low-level features 
and high-level semantics. The contributions of this dissertation are summarized as 
follows.  

 Multilevel framework: The proposed multilevel framework conceptually 
analogizes multimedia semantic analysis to the process of language learning. 
Mapping functions that bridge different levels can be flexibly implemented 
according to the content characteristics.  

 Semantic concept detection in baseball games: With the help of clear domain 
knowledge and elaborate visual analysis, we develop a system to explicitly 
detect concepts in broadcasting baseball videos and build realistic applications. 
Moreover, a novel attempt on visual content is to analyze by extracting the 
ball trajectory.  

 Semantic concept detection in movies: In terms of nondeterministic 
relationship and aural perspective, we develop a system that statistically 
models semantic concept such as gunplay and car chasing in movies. Two 
types of models, i.e. generative and discriminative models, are implemented to 
conduct this study.  

 
These studies would be essential parts of future multimedia information retrieval, 

digital asset management, and digital home applications. The attempts we made could 
be the foundations of content-aware systems or human-centric functionalities.  

This dissertation describes systematic studies on multimedia semantic analysis. 
Nonetheless, the semantic gap problem that is involved with many non-mechanical 
factors is far from solved. Human perception and cognition, personal style of the 
video producer, and the insufficiency of recent computational methodologies affect 
the effectiveness of semantic analysis. We believe that the related researches will 
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attract much more attention in the near future, and bridging the semantic gap would 
significantly change our experience in the digital world.  
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Appendix A 
Hidden Markov Model 
 
Hidden Markov model has been successfully applied in speech recognition for a few 
decades. Many variations have also been developed for other research fields, such as 
computer vision and image/video analysis. An HMM is a statistical model where the 
system being modeled is assumed to be a Markov process with unknown parameters. 
The major challenge of using an HMM is to estimate the hidden parameters from 
observable data. In this section, we briefly introduce the formulation of HMM and 
describe the training and testing issues.  

A.1 Specification 
A hidden Markov model λ consists of the following parameters [Rabi89].  
1. N, the number of states in the model. The individual states are labeled as {1, 

2, …, N}, and the state at time t is denoted as qt.  
2. M, the number of distinct observation symbols in all states. The individual 

symbols are denoted as V={v1,v2,…,vM}.  
3. The state transition probability distribution A={aij}, where aij is the probability of 

taking a transition from state i to state j, i.e. 
aij = P[qt+1=j | qt=i], 1≦ i, j ≦ N.                                  (A-1) 

4. The observation probability distribution B={bj(k)}, where bj(k) is the probability 
of emitting symbol vk when state j is entered. Let O=(o1, o2, …, ot) be the 
observed output of the HMM. The state sequence Q=q1, q2, …, qt is not observed 
(hidden), and bj(k) can be written as:  
bj(k) = P[ot=vk | qt=j], 1≦ k ≦ M, 1≦ j ≦ N.                        (A-2) 

5. The initial state distribution π={πi} in which 
πi = P[q0=i], 1≦ i ≦ N.                                         (A-3) 

 
Since aij, bj(k), and πi are all probabilities, they must satisfy the following 

properties:  

( )0,   0,   0     all , ,ij j ia b k i j kπ≥ ≥ ≥ ∀ ,  
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ij
j
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=
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Figure A-1. An example of a 3-state ergodic HMM.  

 
On the basis of this specification, Figure A-1 shows a 3-state ergodic HMM, 

which means any state can transit to any other state. In speech recognition, we usually 
employ left-right HMMs, in which no transitions are allowed to states whose indices 
are lower than that of the current state.  

 

A.2 Inside HMM 
Given the form of HMM, three basic problems have to be discussed before they can 
be applied to real-world applications.  

 The Evaluation Problem: Given a model λ and a sequence of observations 
O=(o1, o2, …, oT), how do we efficiently compute P(O|λ), i.e. the probability 
that the model generates the observations? 

 The Decoding Problem: Given a model λ and a sequence of observations, 
what is the most likely state sequence Q=(q1, q2, …, qT) in the model that 
produces the observations?  

 The Learning Problem: Given a model λ and a set of observations, how can 
we adjust the model parameter to maximize P(O|λ)?  

 
The following subsections briefly describe the widely accepted methods for 

solving these problems.  
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A.2.1 Solution to the Evaluate Problem — The Forward Algorithm 
To compute P(O|λ), we first enumerate all possible state sequences Q of length T, 
which generate the observation sequence O, and then sum all the probabilities. The 
probability of each state sequence is the product of the state sequence probability and 
the joint output probability. Given an HMM, the state sequence probability denotes 
the occurrence probability of a specific state sequence. Given an HMM and a specific 
state sequence, the joint output probability denotes the occurrence probability of a 
specific observation sequence. That is,  

( ) ( ) ( )

( ) ( ) ( ) ( )( )
all 

1 1 2 2 3 1 1 1 2 2
all 

,

.q q q q q qT qT q q qT T

P P P

a a a b b b

λ λ λ

π −

=

= ⋅⋅⋅ × ⋅ ⋅⋅ ⋅

∑

∑
Q

Q

Ο Q Ο Q

o o o
              (A-4) 

However, direction evaluation of the equation (A-4) requires enumeration of O(NT) 
possible state sequences, which results in exponential computational complexity. 
Therefore a more efficient algorithm, i.e. forward algorithm, is designed for the 
evaluation problem. The trick is to store intermediate results and use them for 
subsequent state-sequence calculations to save computation.  

The forward probability αt(i) is defined as 

( ) ( )1 2... ,t t ti P q iα λ= =o o o .                                      (A-5) 

This denotes the probability that the HMM is in state i at time t having generated 
partial observation sequence, o1, o2, …, ot. We can solve for αt(i) inductively by the 
forward algorithm:  

1. Initialization 

( ) ( )1 1 ,     1 .i ii b i Nα π= ≤ ≤o                                    (A-6) 

2. Induction 

( ) ( ) ( )1 1
1

,     1 ,   1 1.
N

t t ij j t
i

j i a b j N t Tα α+ +
=

⎡ ⎤= ≤ ≤ ≤ ≤ −⎢ ⎥⎣ ⎦
∑ o            (A-7) 

3. Termination 

( ) ( )
1

.
N

T
i

P iλ α
=

=∑Ο                                           (A-8) 

 
The core of this algorithm is the induction step. The forward probability, αt+1(j), is 

the product of observation probability, bj(ot+1), and the summation of the forward 
probabilities over all the N possible states before time t. This algorithm requires 
O(N2T) calculations and efficiently evaluate an HMM.  
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A.2.2 Solution to the Decoding Problem — The Vertibi Algorithm 
To find the best state sequence, Q=(q1, q2, …, qT), for the given observation sequence, 
O=(o1, o2, …, oT), we define the quantity 

( )
1 2 1

1 2 1 1 2, ,...,
max ... , , ... ,

t
t t t tq q q

i P q q q q iδ λ
−

−= ⎡ = ⎤⎣ ⎦o o o                         (A-9) 

where δt(i) denotes the highest probability along a single path, which accounts for 
the first t observations and ends in state i. By induction we have 

( ) ( ) ( )1 1max .t t ij j ti
j i a bδ δ+ +

⎡ ⎤= ⋅⎣ ⎦ o                                  (A-10) 

Based on these definitions, the Viterbi algorithm that solves the decoding problem 
proceeds as follows:  

1. Initialization 

( ) ( )1 1 ,     1 ,i ii b i Nδ π= ≤ ≤o                                  (A-11a) 

( )1 0.iϕ =                                                 (A-11b) 

2. Recursion 

( ) ( ) ( )11
max ,     1 ,   2 ,t t ij j ti N

j i a b j N t Tδ δ −≤ ≤
⎡ ⎤= ≤ ≤ ≤ ≤⎣ ⎦ o             (A-12a) 

( ) ( )11
arg max ,     1 ,   2 .t t iji N

j i a j N t Tϕ δ −≤ ≤
⎡ ⎤= ≤ ≤ ≤ ≤⎣ ⎦               (A-12b) 

3. Termination 

( )*

1
max ,Ti N

P iδ
≤ ≤

= ⎡ ⎤⎣ ⎦                                          (A-13a) 

( )*

1
arg max .T Ti N

q iδ
≤ ≤

= ⎡ ⎤⎣ ⎦                                       (A-13b) 

4. Path backtracking 

( )* *
1 1 ,     1, 2,...,1,t t tq q t T Tϕ + += = − −                            (A-14) 

( )* * * *
1 2, ,...,  is the best sequence.Tq q q=Q  

 
The major difference between the Vertibi algorithm and the forward algorithm is 

the maximization in Eq. (A-12a) over previous states, which is used in place of the 
summing procedure in Eq. (A-7). The kernel idea of this algorithm is like dynamic 
programming, which stores the optimal sub-solutions as it sees partial observations, 
and backtracks to find the optimal path.  
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A.2.3 Solution to the Learning Problem — Baum-Welch Algorithm 
The most difficult problem of HMMs is to adjust the model parameters (A,B,π) for 
maximizing the likelihood P(O|λ), by giving a model and a set of observations. The 
Baum-Welch algorithm (also known as the forward-backward algorithm) based on 
expectation-maximization (EM) strategy is developed to solve this problem. The main 
idea is to iteratively refine the HMM parameters by maximizing the likelihood P(O|λ) 
at each iteration. Because the procedure is complicated and is not appropriate to be 
addressed in the appendix, we leave the details in the excellent survey [Rabi89]. More 
extensive HMM-based studies on speech recognition can be seen in the books of 
[Rabi93] and [Huan01].  
 

In the works of semantic concept detection in movies, we employ HMMs to 
model audio events and semantic concept. In audio event model/detection, audio 
features, such as zero-crossing rate and sub-band energy ratio, are the observations O. 
By the forward algorithm, we detect an audio event by evaluating the likelihood 
P(O|λi), where i is the index of audio models. Likewise, in the semantic concept 
model/detection, the pseudo-semantic features are the observations. The same 
evaluation method is applied to audio event detection and semantic concept detection, 
while the basis observations are different.  

Many packages based on C [HTK][GHMM] and Matlab [Murp05][Ghah06] can 
be downloaded for rapidly constructing your own applications. In our works, we 
employ the easy-to-use Matlab package developed by Kevin Murphy [Murp05].  
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Appendix B 
Support Vector Machine 
 
This section briefly describes the idea of support vector machine (SVM) in terms of 
training and testing. The introductory content is mainly quoted from [Hsu06] and 
[Well05]. Extensive studies can be seen in [Vapn98] and [Plat00].  
 

B.1 Introduction 
In recent years, support vector machine has been proved to be a powerful tool for data 
classification. A classification task is usually involved with training and testing data 
that consist of some data instances. Each data instance in the training set contains one 
class label and several features. The goal of SVM is to produce a model which 
predicts the labels of data instances by giving features.  

Given a training set that consists of instance-label pairs (xi,yi), i=1,2,…,N, where 

d
ix ∈\  and { }1, 1iy ∈ + − , the task is to predict whether a test sample belongs to one 

of two classes (1 or -1). Let’s consider a very simple example that can be linearly 
separated: We can draw a straight line f(x)=wTx-b such that all cases with yi=-1 fall on 
one side and have f(xi)<0 and cases with yi=+1 fall on the other and have f(xi)>0. If we 
can find such straight line that discriminates two classes of data, we can classify new 
test cases according to the rule ytest=sign(xtest).  

With the above definition, we can write down the following constraint that any 
solution must satisfy 

1    1,T
i iw x b y− ≤ − ∀ = −                                          (B-1) 

and 1    1,T
i iw x b y− ≥ + ∀ = +                                      (B-2) 

or in one equation 

( ) 1 0.T
i iy w x b− − ≥                                              (B-3) 

We now formulate the primal problem of the SVM:  
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( )

21min
2

subject to  1 0  .T
i i

w

y w x b i− − ≥ ∀
                                  (B-4) 

By this formulation, we maximize the margin, subject to the constraints that all 
training cases fall on either side of the boundary. The vectors that lie on the boundary 
are called support vectors, since they support the decision boundary and determine the 
solution to the problem.  

The formulation of SVM can be further generalized as follows:  

( )( )
1

1min
2

subject to  1 ,     0.

N
T

i
i

T
i i i i

C

y x b

ω ω ζ

ω φ ζ ζ
=

⎛ ⎞+⎜ ⎟
⎝ ⎠

+ ≥ − ≥

∑
                          (B-5) 

The training vectors xi are mapped to a higher dimensional space by the function 
φ . We want to find a linear hyperplane with the maximal margin to separate two 
classes of data, in the higher dimensional space. In order to prevent overfitting, we 
loose the optimization constraints and allow some misclassification in training, with 
some penalty C (C>0) on the error terms ζi.  

Figure B-1 shows a 2-dimensional illustration of the SVM classifier. There would 
be infinite decision boundaries to separate two classed of data. The optimal one we 
want is the boundary with maximal margin, allowing some misclassified cases to 
prevent overfitting. The determined decision boundary that has the maximal margin to 
two data instances is expected to have better discriminative power in testing.  

 

Maximal marginMaximal margin

 

Figure B-1. A 2-dimensional illustration of the SVM classifier.  
 

B.2 Training and Testing 
In the training stage, two factors have to be determined: (1) the function that maps 
data instances to higher dimensional space; and (2) the parameters of the hyperplane 
that facilitates the minimal training error.  
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For the first problem, we define the kernel function as ( ) ( ) ( ), T
i j i jK x x x xφ φ≡  

to present different types of mapping functions. Some classical kernels are:  

 Liner: ( ), .T
i j i jK x x x x=  

 Polynomial: ( ) ( ), ,   0.
dT

i j i jK x x x x rγ γ= + >  

 Radial basis function (RBF): ( ) ( )2
, exp ,   0.i j i jK x x x xγ γ= − − >  

 Sigmoid: ( ) ( ), tanh .T
i j i jK x x x x rγ= +  

Here, γ, r, and d are kernel parameters. According to the study in [Hsu02], radial 
basis function is preferred to being the kernel function.  

Once we determine the kernel function, we have to find appropriate parameters to 
find the hyperplance that has maximal margin to two classes of data. There are two 
parameters in using RBF kernels: C and γ. The goal of training is to identify good (C, 
γ) pair (based on training data) so that the classifier can accurately predict unknown 
data, i.e. testing data. To reliably adjust the parameters, we usually separate training 
data to v subsets. One of the subset is considered unknown and is tested using the 
classifier trained on the remaining v-1 subsets. Then the prediction accuracy on this 
set can more precisely reflect the performance on classifying unknown data. This 
training method is called v-fold cross-validation. The cross-validation procedure 
prevents the overfitting problem and is widely adopted in training a reliable classifier.  

In the testing stage, the SVM classifier just takes the input vector and evaluates 
which side the test vector is located. It returns the label by checking the sign after 
evaluation.  

 

B.3 Multiclass SVM 
As mentioned above, SVM classifiers generally perform binary classification. 
However, multiclass classification should be achieved in many real-world 
applications, including the semantic concept detection work described in Chapter 3. 
To match this demand, many variations that combine several binary classifiers into a 
multiclass classifier have been developed.  

One of the variations for multiclass classification is one-against-all method. It 
constructs k SVM classifiers, where k is the number of classes. The ith SVM is trained 
on the basis of the data instances in the ith class with positive labels, and all instances 
in other classes with negative labels.  



 

123 

The second variation is one-against-one method. This method constructs k(k-1)/2 
SVM classifiers, where each one is trained based on the data from two classes. In 
testing, voting strategy is often used to decide the label of the test vector. Assume that 
we test on a SVM classifier that is trained for distinguishing class A and class B. If the 
classifier says the test vector is in A, then vote for class A is added by one. Otherwise, 
vote for class B is added by one. After checking all the k(k-1)/2 classifiers, the class 
that has the largest votes is the answer.  

The third method for multiclass classification, which is used in our work, is the 
directed acyclic graph SVM (DAGSVM). It has the same training process as the 
one-against-one method, thus k(k-1)/2 classifiers are constructed. In the testing phase, 
it uses a rooted binary directed acyclic graph which has k(k-1)/2 internal nodes and k 
leaves. Each node is a binary one-against-one SVM classifier. Given a test vector, we 
start from the root node and evaluate whether the flow should move left or right 
according to the output value of root node. The process keeps going until it reaches a 
leaf node, which indicates the predicted class.  

 
According to the studies in [Hsu02], we apply the DAGSVM [Plat00] to classify 

gunplay, car-chasing, and other concepts. On the basis of the pseudo-semantic 
features, three one-against-one SVM classifiers are combined.  

Some SVM packages, such as LIBSVM [LIBS] and SVM toolbox [Cawl00], can 
be downloaded for rapidly constructing your own applications. In our work, we 
employ the LIBSVM package developed by Chang and Lin [LIBS] for SVM training 
and testing. This tool adopts “grid-search” on C and γ using cross-validation. Pairs of 
(C, γ) are tried and the one with best cross-validation accuracy is picked.  
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Appendix C 
Computational Media Aesthetics 
 

C.1 Film Grammar 
Since the movie or film was invented in the late 19th century, many techniques have 
been applied to filmmaking, and the audiovisual medium is capable to convey 
thoughts or to express information. Although various kinds of films have been 
produced in the last century, some filmmaking guidelines are widely adopted. Film 
grammar [Mona00], therefore, gradually takes shape after a long-time grope. It 
elucidates the relationship among audiovisual elements that are employed by 
filmmakers.  

One of the most famous filmmaking techniques is Montage [Brau98]. It is an idea 
of film editing, deriving from the concept that there should be contrast between two 
different independent shots. The Russian director Sergei M. Eisenstein firstly applied 
this concept in the movie “The Battleship Potemkin (1925)”. Since that, both the 
directors and the audience realize the influence of elaborate arrangement of video 
shots.  

In recent years, the emergence of multimedia further triggers a new revolution in 
filmmaking. Herbert Zettl addresses the relationships between media elements and 
filmmaking [Zett99]. He defines “media aesthetics” as a study and analysis of media 
elements such as lighting, motion, color and sound by themselves and their roles in 
creating effective productions. This subject describes filmmaking from the viewpoints 
of aestheticians and directors. Dorai and Venkatesh [Dora02], on the other hand, 
propose a study named “computational media aesthetics” to algorithmically 
investigate filmmaking from audio/video elements in a computational manner. The 
following subsections will describe the idea of “computational media aesthetics” and 
some recent works.  
 

C.2 Computational Media Aesthetics (CMA) 
The definition of computational media aesthetics is [Dora02]:  

The algorithmic study of a number of image and aural elements in media and the 
computational analysis of the principles that have emerged underlying their use 
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and manipulation, individually or jointly, in the creative art of clarifying, 
intensifying, and interpreting some event for the audience.  

 
On the basis of the idea of media aesthetics, Dorai and Venkatesh propose a 

computational framework to analyze videos and to facilitate high-level video/film 
abstraction. This framework exploits media production knowledge to elucidate the 
relationships between basic visual and aural elements, their intended meaning, and 
perceived impacts on content users.  

The two-tiered framework is shown in Figure C-1. It consists of “primitive feature 
extraction” and “semantic construct extraction”. In the stage of primitive feature 
extraction, audio and/or video features are directly extracted from signals. Attributes 
of audio/video elements that are described in Zettl’s work are estimated in a 
computational manner.  

The semantic construct extraction stage sets this framework apart from other 
schemes. The key difference is that this framework analyzes content based on 
production knowledge or the so-called film grammar in filmmaking. The production 
knowledge both defines what and how to extract the aesthetic elements that constructs 
semantics. The examples of semantic construct shown in Figure C-1 are tone, tempo, 
and rhythm. Taking tempo as the example, it is determined by the combination of 
average shot length, motion, and sound energy. The interrelationship between tempo 
and the related primitive features are inspired from the film grammar.  

 

Shot n Shot n+1 Shot n+2 Shot n+3 Shot n+..

Lighting Color Time
Shot Length/Type

Motion
Magnitude/Direction Sound Energy

Primitive Feature Extraction

Tone Pace/Tempo Rhythm

Semantic Construct Extraction

Film
Grammar

Shot n Shot n+1 Shot n+2 Shot n+3 Shot n+..

Lighting Color Time
Shot Length/Type

Motion
Magnitude/Direction Sound Energy

Primitive Feature Extraction

Tone Pace/Tempo Rhythm

Semantic Construct Extraction

Film
Grammar

 
Figure C-1. Computational media aesthetics framework [Dora02].  
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C.3 Examples of CMA Applications 
In this subsection, we describe some recent works based on computation media 
aesthetics.  
 
C.3.1 Formulating Film Tempo [Dora02] 
Adams et al. formalize the concept of tempo as being a function of the “information 
delivery rate” thrust at the viewer. Two dominant factors about tempo are motion 
(both object motion and camera motion) and shot rate (shot length). Therefore, the 
authors extract these two components for constructing tempo. This step corresponds 
to the stage of “primitive feature extraction” in Figure C-1.  

The tempo function is defines as a linear combination of shot length and motion 
magnitude factors.  

( ) ( )( )( ) ( )( )
,m

m

m n
T n W s n

β μ
α

σ
−

= +                               (C-1) 

where s(n) denotes the frame numbers of the nth shot, m(n) denotes the motion 
magnitude of the nth shot. The mean and standard deviation of motion magnitude are 
denotes as μm and σm , respectively. W(.) is the weighting function used in shot length 
normalization. The weights α and β can be adjusted for different applications or 
different videos.  

Finally, they generate a tempo curve for a movie. The region with sharp slope 
means that some important events occur or story changes.  
 
C.3.2 Horror Film Genre Typing and Scene Labeling via Audio 

Analysis [Monc03] 
Moncrieff et al. analyze audio tracks of films and find specific sound patterns that 
result from the changes in sound energy intensity over time. They focus on the 
detection of scenes with a high degree of horror thematic content, rather than scenes 
that contain a single brief scary shot. Through sound energy analysis, four types of 
sound energy events are studied: (1) surprise or alarm; (2) apprehension, or the 
emphasis of an event; (3) surprise followed by sustained alarm; and (4) apprehension 
building up to a climax.  
 
C.3.3 Pivot Vector Space Approach for Audio-Video Mixing 

[Mulh03] 
The goal of this work is to find appropriate music segments (from a music database) 
to help mixer dub in background music, by giving a video clip without sounds. 
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Several features are extracted from video and music segments. These features are 
categorized as dynamics (light, color energy, color brightness for video and dynamics 
for music), motion (motion vectors of video and tempo of music), and pitch (color hue 
of video and pitch of music). According to the values of features, they are classified as 
low, medium, or high level. For example, they can say that a clip is low-dynamics, 
medium motion, and high pitch. In a word, the system finds the music segments that 
have similar dynamics, motion, and pitch levels to the given video clip.  
 

C.4 Semantic Indexing vs. CMA 
For multimedia content analysis, we believe that many studies have the same ultimate 
goal, while the ideas or methodologies are different. The content described in this 
dissertation can be roughly categorized as semantic indexing. In this section, we 
briefly compare the works on semantic indexing and CMA.  

Both semantic indexing and CMA have the same purpose for systematic studies 
on multimedia content analysis. No matter how they process or model this task, they 
have to start from extracting features from audio/video signals. That’s the 
indispensable process for computational framework. In addition to this common 
process, the works of semantic indexing and CMA have many differences. Table C-1 
lists the characteristics of them from different perspectives.  
 

Table C-1. Comparison between semantic indexing and CMA. 
 Semantic indexing CMA 

Purpose  Identify “what it is” or “what things 

/objects exist in a video segment”.  

Identify “how this video segment 

affects our emotion” or “what 

circumstance the director wants to 

present to viewers”.  

Approach Complete and theoretically attractive 

probabilistic frameworks, such as HMM 

and SVM, afford modeling and training. 

Up to now, only simple approaches, 

such as linear combination of feature 

vectors, have been proposed.  

Prior 

knowledge 

The phenomena of co-occurrence of 

relevant objects/events. The spatial 

/temporal relationships between relevant 

objects.  

Film grammar and production rules in 

different video applications.  

Flexibility The same framework could be applied to 

various video applications by just 

extracting different features and detecting 

different events.  

According to different production rules, 

the kernel function such as linear 

combination should be changed.  
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