
A Genetic Programming Approach to Integrate
Multilayer CNN Features for Image

Classification

Wei-Ta Chu and Hao-An Chu

National Chung Cheng University, Taiwan

Abstract. Fusing information extracted from multiple layers of a con-
volutional neural network has been proven effective in several domains.
Common fusion techniques include feature concatenation and Fisher em-
bedding. In this work, we propose to fuse multilayer information by ge-
netic programming (GP). With the evolutionary strategy, we iteratively
fuse multilayer information in a systematic manner. In the evaluation, we
verify the effectiveness of discovered GP-based representations on three
image classification datasets, and discuss characteristics of the GP pro-
cess. This study is one of the few works to fuse multilayer information
based on an evolutionary strategy. The reported preliminary results not
only demonstrate the potential of the GP fusion scheme, but also inspire
future study in several aspects.

Keywords: Genetic programming · Convolutional neural networks ·
Multilayer features · Image classification.

1 Introduction

Convolutional neural networks have been widely adopted in visual analysis, such
as image classification and object detection. A common network structure in-
cludes a sequence of convolutional blocks followed by several fully-connected
layers. Each convolutional block usually consists of one or more convolutional
layers followed by a pooling layer. With vary-sized convolutional kernels and
pooling, different convolutional layers extract visual features at various levels.
A sequence of convolutional blocks thus can be viewed as a powerful feature
extractor, and the extracted features are then fed to a classification network or
a regression network to accomplish the targeted task.

Features extracted from the first few layers more likely describe basic geo-
metric patterns, while features extracted from the last few layers more likely
describe higher level object parts. Though high-level features may be preferable
in recognizing visual semantics, in some domains low-level features and high-
level features are better jointly considered to achieve better performance. For
example, Li et al. [10] integrated features extracted from multiple CNN layers
based on the Fisher encoding scheme, and demonstrated very promising perfor-
mance in remote sensing scene classification. In [16], multilayer features from



2 Wei-Ta Chu and Hao-An Chu

CNNs were also jointly considered by the Fisher encoding scheme, and multiple
CNNs were employed to extract features from multiple modalities to facilitate
video classification.

To improve image classification performance, we introduce a novel way to
integrate features extracted from multiple CNN layers based on genetic pro-
gramming [8]. Both genetic programming (GP) and genetic algorithm (GA)
[6] are evolutionary strategies motivated by biological inheritance and evolu-
tion. They both work by iteratively applying genetic transformations, such as
crossover and mutation, to a population of individuals, in order to create better
performing individuals in subsequent generations. Different from GA, individu-
als in GP iterations are not limited to fixed-length chromosomes. More complex
data structures like tree or linked lists can be processed by GP. In our work, we
take features extracted from CNN layers as the population of individuals, and
attempt to find better representation by integrating individuals with GP.

Contributions of this paper are twofold:

– We introduce a multilayer feature fusion method based on genetic program-
ming. To our knowledge, this would be the first work adopting genetic pro-
gramming in integrating deep features extracted from different CNN layers.

– We demonstrate that this approach yields better image classification per-
formance on three image benchmarks. Extensive discussions are provided to
inspire future studies in several aspects.

2 Related Works

2.1 Multilayer Features

Many studies have been proposed to integrate features derived from multiple
models. In this subsection, we simply review those integrating features derived
from multiple layers of a single model, especially for image/video classification.
To classify remote sensing scene images, i.e., aerial images, Li et al. [10] extracted
visual features based on pre-trained deep convolutional neural networks. The
models they used include AlexNet [9], CaffeNet [7], and variants of VGG [2][13].
From an input image, a series of images at different scales is produced by the
Gaussian pyramid method. These images are fed to a CNN to get convolutional
features, which are then concatenated and encoded as a Fisher vector. Basically,
the idea of combining multilayer features in [10] is concatenation of convolutional
features encoded by the Fisher kernel.

Yang et al. [16] extracted features from multiple layers and from multiple
modalities to do video classification. Given a sequence of video frames, each
frame is first fed to a CNN separately. The filter responses over time but cor-
responding to the same (pre-defined) spatial neighborhood are then encoded
into Fisher vectors. In [16], Fisher vectors corresponding to different spatial lo-
cations are further weighted differently to improve the effectiveness. Basically,
jointly considering feature maps from multiple layers in the representation of
Fisher vectors is the idea of combining multilayer features.



Title Suppressed Due to Excessive Length 3

In [15], a directed acyclic graph structure was proposed to integrate features
extracted from different CNN layers. Feature maps from each layer are processed
with pooling, normalization, and embedding, and the processed features from all
layers are element-wisely added to form the final representation. This represen-
tation is then fed to a softmax layer to achieve scene image classification.

In most of these works, the operations to combine multiple layers are con-
catenation or addition. We will study how to automatically find more complex
operations to fuse multilayer information based on GP.

2.2 Genetic Programming

Genetic programming is a branch of evolutionary computation that iteratively
manipulates the population using crossover and mutation according to some
fitness function, and attempts to find the individual that achieves the best per-
formance. This strategy has been adopted in various domains. In this subsection,
we simply review studies on the ones related to visual analysis.

Shao et al. [12] proposed to use GP in feature learning for image classifica-
tion. Simple features like RGB colors and intensity values are extracted from
images, which are viewed as the basic primitives. To generate better represen-
tations, a set of functions is defined to process these primitives, like Gaussian
smooth, addition/subtraction, and max pooling. Basic primitives are processed
by a sequence of pre-defined functions, and then integrated representations can
be generated. Taking classification error rate as the fitness function, each in-
tegrated representation is evaluated, and better representations are selected to
generate the next-generation individuals at the next iteration.

Liang et al. [11] formulated foreground-background image segmentation as
a pixel classification problem. From each pixel, the Gabor features representing
gradient information at a specific scale and a specific orientation are extracted.
A binary classifier categorizing pixels as foreground or background is then con-
structed by the GP process.

Al-Sahaf et al. [1] learnt rotation-invariant texture image descriptors by GP.
The statistical values like mean and max of a window centered by a pixel are
viewed as the basic primitives, and a code is generated by a series of operations
on the primitives to represent information derived from a pixel. The codes of
pixels over the entire image are then quantized to be the image descriptor.

Inspired by the requests of designing a CNN structure for a specific task,
Suganuma et al. [14] adopted the GP search strategy to find better CNN struc-
tures. Taking common components in CNNs, like convolutional block and max
pooling, as the basic primitives, the proposed method automatically learns a
series of CNN structures. This work would be one of the first studies linking
CNN structure design with GP.

In our work, the basic idea is more like feature learning presented in [12].
However, the primitives are feature maps derived from pre-trained CNNs, and
we want to verify that the automatically learnt representation can yield better
performance in image classification. Different from [10] and [16], the operations
to combine multilayer features are automatically learnt by GP.



4 Wei-Ta Chu and Hao-An Chu

3 Overview of Genetic Programming

The three components in GP are the terminal set, the function set, and the
fitness function. The terminal set includes basic primitives to be manipulated.
Each single primitive itself usually is a simple solution, but we want to learn to
manipulate primitives to generate a better solution. For example, the terminal
set of [12] simply contains RGB colors and intensity values of pixels, and in our
work we take feature maps derived from a pre-defined CNN as the terminals.

The GP algorithm dynamically selects parts of the terminals, and sequen-
tially processes or combines them to form an integrated presentation. A sequence
of processing can be illustrated as a tree, as shown in Fig. 1(a) and Fig. 1(b).
In Fig. 1(a), the terminal T1 is first processed with F1, and then is combined
with T2 by the function F2. Then it is combined with T3 by the function F3

to form the final integrated representation. Notice that the terminal nodes and
the function nodes are automatically selected by the GP algorithm, given the
constraint of tree height. The same terminal nodes or function nodes may be
selected multiple times in the same tree, as shown in Fig. 1(b).

At each iteration of the GP algorithm, a set of S integrated representations
are generated. Each integrated representation can be described by a tree and
can be evaluated by the fitness function. Parts of the representations that yield
higher fitness values would be selected in the mating pool. The representations
in the mating pool are potential parents that generate children representations
by genetic operations like crossover and mutation at the next iteration.

Taking trees in Fig. 1(a) and Fig. 1(b) as the parents, Fig. 1(c) and Fig. 1(d)
show two generated children by the crossover operation. Fig. 1(c) is generated
from Fig. 1(a) by replacing the leaf node T2 with a subtree from Fig. 1(b).
Conversely, Fig. 1(d) is generated from Fig. 1(b) by replacing a subtree by the leaf
node T2 of Fig. 1(a). We intentionally draw subtrees from Fig. 1(a) and Fig. 1(b)
in blue and green, respectively, to clarify the idea. To conduct mutation, a tree
is randomly generated as the basic element, as shown in Fig. 1(e). A mutation
result from Fig. 1(a) is generated by replacing a subtree rooted at F2 by the one
shown in Fig. 1(e), yielding the illustration in Fig. 1(f).

We keep combining selected parents to generate children representation until
the number of children is the same as that of the previous population, i.e., the
number S mentioned above. Fitness values of the representations in the newly-
generated population are then evaluated, and then better ones are selected in
the mating pool for generating the next population. The same process keeps
iterating until some stop criterion meets. Finally, the best-so-far representation
is picked as the final representation.

4 GP-based Combination

This section provides details of how we employ GP in integrating features ex-
tracted from different CNN layers. Although the proposed integration method
is not limited to any specific CNN models, we take the VGG-S model [2] as the
main example in this section.



Title Suppressed Due to Excessive Length 5

(a) (b) (c) (d)

(e) (f)

Fig. 1. Illustrations of the GP processes. (a)(b) Trees describing sequences of processes
to generate integrated representations. (c)(d) Two children representations generated
by applying the crossover operation on trees in (a) and (b). (e) The randomly-generated
tree to conduct the mutation operation. (f) A tree generated from (a) with the mutation
operation shown in (e).

Assume that there are Ni feature maps of size Mi ×Mi from the ith CNN
layer, and there are Nj feature maps of size Mj×Mj from the jth CNN layer. For
each layer, we flatten the feature maps into vectors, and thus the ith terminal
Ti is represented as Ni vectors of dimensionality Mi ×Mi.

When the two terminals Ti and Tj are to be combined with element-wise
addition, for example, we would first ensure that vectors from two terminals are
comparable. Assume that Mi > Mj and Ni > Nj , we first reduce dimensionality
(Mi) of vectors in Ti into Mj by the principal component analysis method, and
then concatenate all of them to form a (Ni×Mj ×Mj)-dimensional vector ti to
represent Ti. For the terminal T2, we first concatenate all vectors and get a (Nj×
Mj ×Mj)-dimensional vector tj . Two different addition operations are designed
to make tj compatible with ti, which are denoted as AddPad and AddTrim,
respectively. If tj and ti are combined with the AddPad operation, we pad zeros
at the end of tj such that the dimensionality of tj is increased to (Ni ×Mj ×
Mj). This dimensionality transformation strategy follows the setting mentioned
in [14]. If tj and ti are combined with the AddTrim operation, appropriate
numbers of items at the end of ti are trimmed, such that the dimensionality of
of ti is decreased to (Nj ×Mj ×Mj). Similarly, the element-wise subtraction,
multiplication, and division operations all have the padded version and trimmed
version. The GP process determines whether the padded version or the trimmed
version is more effective automatically.

Pre-defined operations to combine two nodes are element-wise addition, sub-
traction, multiplication, division, and taking maximum/minimum/absolute val-



6 Wei-Ta Chu and Hao-An Chu

ues. Another operation is concatenation, which is also one of the most common
operations used in previous works [10][3]. Taking the terminals Ti and Tj as the
example, we concatenate the Ni (Mi×Mi)-dim vectors with the Nj (Mj ×Mj)-
dim vectors, and finally form a (NiMiMiNjMjMj)-dimensional vector.

A sequence of processes on terminal nodes and internal nodes can be de-
scribed as a tree like Fig. 1(a), and the root node represents the final integrated
descriptor. To evaluate goodness of the final representation, we define the classi-
fication error rate as the fitness value. For an evaluation dataset like the Caltech-
101 image collection [4], we divide it into three parts: training set, validation set,
and test set. From the training set, we feed images into the VGG-S model and ex-
tract feature maps from CNN layers. Integrated representations {f1,f2, ...,fN}
are generated by N sequences of processes, each of which is described by a tree.
Based on the ith integrated representations {f i} extracted from the training
images, we construct a multi-class classifier based on a support vector machine.
The ith integrated representations extracted from the validation set are then
used to test the classifier, and then the classification error rate can be calcu-
lated. The training set and the validation set are in fact shuffled based on the
five-fold cross validation scheme. Overall, the average classification error rate
after five runs of training and validation is viewed as the fitness value, which is
the clue for selecting better integrated representations into the mating pool.

One important parameter to generate an integrated representation is the
height of a tree. A tree of larger height means more processes are involved in
generating the integrated representation. Conceptually, if higher trees are al-
lowed, larger search space is allowed to find better representations, but the GP
algorithm is more computationally expensive. We thus dynamically increase the
heights of trees in the GP algorithm. Let Hmax denote the maximum height
allowed to generate a tree, and Hcur denote the height of the highest tree at the
current iteration. Starting from the parents selected from the tth iteration, if a
children tree Tc is generated by crossover or mutation for the (t+ 1)th iteration,
and its height is Hc, then it is filtered by the following process.

– If Hc ≤ Hcur, take the tree Tc into consideration at the (t + 1)th iteration.
The representation described by Tc will be evaluated.

– If Hc > Hcur and Hc ≤ Hmax, the representation described by Tc is evalu-
ated. If the solution described by Tc is better than all existing solutions, we
set Hcur as Hc. Otherwise, we discard the tree Tc.

– If Hc > Hmax, discard the tree Tc.
The idea of the aforementioned filtering process is that we increase the search

space only when better solutions can be obtained by higher trees. This guarantees
a reasonable computational cost when we conduct the GP process.

5 Experiments

5.1 Evaluation Settings and Datasets

We conduct experiments on the Caltech-101 dataset [4], the Caltech-256 dataset
[5], and the Stanford-40 action dataset [17]. The Caltech-101 dataset consists of



Title Suppressed Due to Excessive Length 7

Table 1. Configurations of the baseline models [2].

Arch. conv1 conv2 conv3 conv4 conv5 full6 full7 full8

VGG-S
96 × 7 × 7
st. 2, pad 0
LRN, x3 pool

256 × 5 × 5
st. 1, pad 1
x2 pool

512 × 3 × 3
st. 1, pad 1
–

512 × 3 × 3
st. 1, pad 1
–

512 × 3 × 3
st. 1, pad 1
x3 pool

4096
dropout

4096
dropout

1000
softmax

101 widely varied object categories, and each category contains between 45 to
400 images. The Caltech-256 dataset consists of 256 object categories, and each
category contains between 80 to 827 images. The Stanford-40 dataset contains
9,532 images in total with 180-300 images per action class. For the Caltech-
101 dataset, we follow the experimental protocol mentioned in [12]. The first 20
images from each category are selected as the training data, the following 15
images from each category are taken as the validation data, and the remaining
is taken as the testing data. For the Caltech-256 dataset, the first 45 images
from each category are selected as the training data, the following 15 images
from each category are taken as the validation data, and the remaining is taken
as the testing data. For the Stanford-40 dataset, the first 80 images from each
action class are selected as the training data, the following 20 images from each
class are the validation data, and the remaining is the testing data.

To generate GP-representations, we search for good GP-representations based
on information extracted by the VGG-S model [2]. Table 1 shows the configu-
rations of the VGG-S model. The first sub-row of each cell denotes the number
of convolution filters and their receptive field as “number × size × size”. In the
second sub-row, the notation “st” stands for the convolution stride, and “pad”
stands for spatial padding. In the third sub-row, LRN stands for Local Response
Normalization [9], followed by the max-pooling downsampling factor. For the
fully-connected layers, we specify the number of nodes. The layers full6 and
full7 are regularized using dropout, and the output of the full8 layer is activated
by a softmax function. Activation function of all layers is ReLU.

In the GP process, we take responses of all layers (including convolutional
layers and fully-connected layers) as the input, and iteratively combine them
with predefined operations. The GP process runs for 20 generations, and at each
generation, 100 trees are built and evaluated. After 20 generations, the best-so-
far representation is picked as the final GP representation, which is then used to
construct an SVM classifier to do image classification. The mean class accuracy
is reported in the following experiments.

5.2 Performance on the Caltech-101 Dataset

We first evaluate the GP representation determined based on the VGG-S model
on the Caltech-101 dataset. Table 2 shows mean class accuracies obtained based
on various image representations. The first sub-table lists performance yielded
by handcrafted features, including HOG, SIFT, LBP, Texton histogram, and
Centrist. At most 75% accuracy can be achieved by handcrafted features.

The second sub-table shows performance obtained based on three types of
learning features. The DBN item stands for a deep brief network consisting of



8 Wei-Ta Chu and Hao-An Chu

Table 2. The mean class accuracies obtained by handcrafted features, learned features,
and the proposed GP representation, based on the Caltech-101 dataset.

Handcrafted features
HOG SIFT LBP Texton his. CENTRIST

Accuracy 60.7 63.3 58.3 73.4 75.1

Learnt features
DBN CNN MOGP [12] VGG-S (w/o fine-tuning) VGG-S (with fine-tuning)

Accuracy 78.9 75.8 80.3 72.4 87.8

GP representation
Accuracy 90.4

three layers with 500, 500, and 2000 nodes, respectively. Responses of the final
layer are taken as the image representation, and an SVM classifier is constructed
to do image classification. The CNN item stands for a convolutional neural net-
work consisting of five convolutional layers. Responses of the final convolutional
layer are taken as the image representation to construct an SVM classifier. These
two learnt features yield performance better than handcrafted features. The
MOGP (Multi-Objective Genetic Programming) [12] is a GP-based method that
integrates simple handcrafted features, i.e., pixel’s RGB values and intensity, by
genetic programming. We see that over 80% accuracy can be achieved, even bet-
ter than the DBN or CNN features, though only very simple features are used
as the foundation for feature fusion.

Our main idea is that we would like to further improve performance by fusing
multilayer learnt features by GP. In this experiment, the baseline learnt features
are from the output of the last layer of the VGG-S model. The last two items in
the second sub-table show performance yielded by the baseline features. With-
out fine-tuning, the VGG-S features do not work well. By fine-tuning with the
Caltech-101 dataset, the classification accuracy is largely boosted to 87.8%, con-
forming to the trend shown in [2]. The third sub-table shows that the determined
GP representation yields the best performance, i.e., 90.4% mean class accuracy.
This verifies that the proposed GP method can effectively integrate multilayer
information and boost performance.

Fig. 2(a) shows that how the classification error rate gradually decreases as
the number of iteration increases. This shows appropriately fusing multilayer
features by GP really yields better classification performance. Fig. 2(b) shows
that, as the number of GP iteration increases, how the number of tree nodes and
the number of tree height change. From the orange curve, we see that generally
the number of nodes increases as the number of iteration increases. This means
the GP process tends to fuse more features as the evolution proceeds. From the
red curve, we see that trees grow higher as the evolution proceeds. The height
of the tree yielding the best performance in Table 2 is three.

Fig. 3(a) shows the final fusion result that yields the best performance. As
shown in the tree, information extracted by full7 and full6 is first combined by
the MaxPad operation (taking element-wise maximum after padding) to gener-
ate the internal representation X1. Another subtree shows that full8 and full6
are also combined by the MaxPad operation to generate X2. The international



Title Suppressed Due to Excessive Length 9

representations X1 and X2 are then concatenated to form the final GP represen-
tation X3. Notice that information from the same layer may be adopted multiple
times to form the GP representation, e.g., full6 in this case. The ways to combine
multilayer information and the information to be fused are all determined by the
genetic programming automatically.

5 10 15 20

13
.0

13
.5

14
.0

14
.5

generation

er
ro

r r
at

e

(a)

generation

nu
m

. o
f n

od
es

0

2

4

6

8

10

generation

0

2

4

6

8

10

he
ig
ht

5 10 15 20

num. of nodes
height

(b)

Fig. 2. (a) The evolutions of error rate as the number of generation increases. (b)
The evolutions of number of tree nodes and number of tree height as the number of
generation increases.

(a) (b)

Fig. 3. (a) The tree representing the final fusion result yielding the best performance in
Table 2. (b) The tree representing the final fusion result yielding the best performance
in Table 3.

5.3 Performance on Other Datasets

We evaluate the GP representation determined based on the VGG-S model on
the Caltech-256 dataset. Table 3 shows mean class accuracies obtained by the



10 Wei-Ta Chu and Hao-An Chu

Table 3. The mean class accuracies obtained by the baseline and the proposed GP
representation, based on the Caltech-256 dataset.

VGG-S (with fine-tuning) GP representation

Accuracy 70.32 71.78

baseline model and the GP representation. Notice that the setting for fine tuning
in Table 3 is different from that used in [2]. In [2], 60 images from each class were
selected for fine tuning, while in our work, only 45 images are selected for fine
tuning, and the remaining 15 images are used for validation in the GP process
due to hardware limit of our implementation. With such setting, Table 3 again
shows the superiority of the GP representation. The performance gain is around
1%. Fig. 3(b) shows how the GP representation is constructed. The internal
node X2 is actually the result of multiplying full7 by three. This simple process
is done by adding full7 three times. The internal node X3 is obtained by finding
the maximum of X2 and full6 element-wisely. Finally, the final GP representation
X4 is obtained by finding the maximum of X3 and full6 element-wisely.

We also evaluate the determined GP representation on the Stanford-40 action
dataset. Table 4 shows mean class accuracies obtained by the baseline model and
the GP representation. We see that, based on the GP representation, around 2%
performance improvement can be obtained.

Table 4. The mean class accuracies obtained by the baseline and the proposed GP
representation, based on the Stanford-40 dataset.

VGG-S (with fine-tuning) GP representation

Accuracy 59.76 61.80

5.4 Discussion

We make discussion based on the experiments on the Caltech-101 dataset. Fig. 4(a)
shows the number of times different layers’ information used in fusion as the
evolution proceeds. We count how many times a layer’s output is used at each
iteration. As can be seen in Fig. 4(a), the outputs of full6, full7, and full8 are
much frequently utilized in combination. Interestingly, this trend conforms to
previous studies that show deeper layers of a neural network extract high-level
semantics and are usually used to do image classification and many other tasks.

Fig. 4(b) shows the number of times different operations used to combine
multiplayer information as the GP process proceeds. Overall, the operations
of MaxPad, MaxTrim, and Concatenation are more frequently utilized to fuse
multilayer information. We think this characteristic may pave a way to improve
the commonly-used neural networks, but the reason why these operations are
utilized more frequently still needs further investigation in the future.



Title Suppressed Due to Excessive Length 11

5 10 15 20

0
20

40
60

80
10
0

12
0

generation

#u
se
d

conv1
conv2
conv3
conv4
conv5
full6
full7
full8

(a)

5 10 15 20

0
20

40
60

80
10
0

12
0

generation

#u
se
d

AddPad
SubPad
MulPad
DivPad
Concatenate
AddTrim
SubTrim
MulTrim
DivTrim
MaxPad
MaxTrim
MinPad
MinTrim
Abs

(b)

Fig. 4. (a) The number of times different layers’ information used in fusion as the
number of generation increases. (b) The number of times different operations used to
combine multilayer information as the number of generation increases.

6 Conclusion

We have presented a fusion method based on genetic programming to integrate
information extracted from multiple layers of a neural network. We verify the
effectiveness of the proposed GP method by showing that the automatically de-
termined representation yields better performance than the output of the best
single layer. In addition, we also discuss the characteristics of the trees embody-
ing the determined GP representation, and the trends of utilized operations
and layers as the evolution proceeds. A few directions can be investigated in
the future, such as conducting evaluation based on a large-scale collection, and
considering more basic operations in the GP process.

Acknowledgement. This work was partially supported by the Ministry of
Science and Technology under the grant 107-2221-E-194-038-MY2 and 107-2218-
E-002-054, and the Advanced Institute of Manufacturing with High-tech Innova-
tions (AIM-HI) from The Featured Areas Research Center Program within the
framework of the Higher Education Sprout Project by the Ministry of Education
(MOE) in Taiwan.

References

1. Al-Sahaf, H., Al-Sahaf, A., Xue, B., Johnston, M., Zhang, M.: Automatically evolv-
ing rotation-invariant texture image descriptors by genetic programming. IEEE
Transactions on Evolutionary Computation 21(1), 83–101 (2017)

2. Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A.: Return of the devil in
the details: Delving deep into convolutional networks. In: Proceedings of British
Machine Vision Conference (2014)



12 Wei-Ta Chu and Hao-An Chu

3. Dosovitskiy, A., Fischer, P., Ilg, E., Hausser, P., Hazirbas, C., Golkov, V., van der
Smagt, P., Cremers, D., Brox, T.: Flownet: Learning optical flow with convolutional
networks. In: Proceedings of IEEE International Conference on Computer Vision
(2015)

4. Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few
training examples: An incremental bayesian approach tested on 101 object cat-
egories. In: Proceedings of CVPR Workshop of Generative Model Based Vision
(2004)

5. Griffin, G., Holub, A., Perona, P.: Caltech-256 object category dataset. Tech. rep.,
California Institute of Technology (2007)

6. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control and Artificial Intelligence. MIT
Press (1992)

7. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadar-
rama, S., Darrell, T.: Caffe: Convolutional architecture for fast feature embedding.
In: Proceedings of ACM International Conference on Multimedia. pp. 675–678
(2014)

8. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press (1992)

9. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Proceedings of International Conference on Neural
Information Processing Systems. pp. 1097–1105 (2012)

10. Li, E., Xia, J., Du, P., Lin, C., Samat, A.: Integrating multilayer features of convo-
lutional neural networks for remote sensing scene classification. IEEE Transactions
on Geoscience and Remote Sensing 55(10), 5653–5665 (2017)

11. Liang, Y., Zhang, M., Browne, W.N.: Figure-ground image segmentation using
genetic programming and feature selection. In: Proceedings of IEEE Congress on
Evolutionary Computation (2016)

12. Shao, L., Liu, L., Li, X.: Feature learning for image classification via multiobjec-
tive genetic programming. IEEE Transactions on Neural Networks and Learning
Systems 25(7), 1359–1371 (2014)

13. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: Proceedings of International Conference on Learning Rep-
resentation (2015)

14. Suganuma, M., Shirakawa, S., Nagao, T.: A genetic programming approach to de-
signing convolutional neural network architectures. In: Proceedings of the Genetic
and Evolutionary Computation Conference. pp. 497–504 (2017)

15. Yang, S., Ramanan, D.: Multi-scale recognition with dag-cnns. In: Proceedings of
IEEE International Conference on Computer Vision (2015)

16. Yang, X., Molchanov, P., Kautz, J.: Multilayer and multimodal fusion of deep
neural networks for video classification. In: Proceedings of ACM Multimedia Con-
ference. pp. 978–987 (2016)

17. Yao, B., Jiang, X., Khosla, A., Lin, A.L., Guibas, L., Fei-Fei, L.: Human action
recognition by learning bases of action attributes and parts. In: Proceedings of
IEEE International Conference on Computer Vision (2011)


