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Abstract—Recently deep perceptual mapping (DPM) based on
auto-encoder provides the state-the-art thermal to visible face
recognition. Features extracted from patches of a long-wave
infra-red (LWIR) face image are transformed into a space by
an auto-encoder, such that features from infra-red images are
comparable with features from visible images. In this paper, we
comprehensively evaluate DPM with different settings, in order
to build a reference study for future research.

I. INTRODUCTION

Lighting/illumination variations cause significant visual ap-
pearance changes and largely degrade face recognition per-
formance. Some studies, therefore, have been proposed to
focus on recognizing infra-red face images. Thermal signa-
tures emitted by skin tissues are acquired by passive thermal
sensors, and thus infra-red faces are invariant to lighting.
Such characteristics makes infra-red face recognition quite
potential in night-time surveillance applications or access
control systems with the requirement of privacy protection.

To goal of infra-red face recognition is to identify a person
captured in infra-red spectrum by finding the most similar
face images captured in visible spectrum (usually in higher
resolution). This task is thus a cross-modal matching problem,
where we need a non-linear mapping from infra-red spectrum
to visible spectrum while preserving the identity information.

Infra-red images can be categorized according to the wave-
lengths sensed, including near infra-red ’NIR’ (0.74 µm – 1
µm), short-wave infra-red ’SWIR’ (1 µm – 3 µm), mid-wave
infra-red ’MWIR’ (3 µm – 5 µm), and long-wave infra-red
’LWIR’ (8 µm – 14 µm). NIR and SWIR are light-reflection-
based and their visual appearance are similar to visible images.
Most prior studies focused on NIR or SWIR, and promising
recognition performance has been achieved [1][2][3][4][5]. On
the contrary, MWIR and LWIR images are captured depending
on material emissivity and temperature, and give rise to much
severe challenges because of the significant gap between the
visible spectrum and infra-red spectrum. Currently only few
studies have focused on MWIR and LWIR face images, and
still only limited performance can be achieved [6][7].

Among the current studies on LWIR face recognition, the
deep perceptual mapping (DPM) method [6] acts as the state
of the art. The relationship between visible spectrum and infra-
red spectrum is highly nonlinear. Previous works discovered

this nonlinear mapping by manifold learning or kernel map-
ping, but nonlinearity of realistic data was not well described.
Inspired by the success of deep learning methods, the DPM
method learns such mapping based on an auto-encoder. SIFT
descriptors are extracted from overlapping patches of visible
face images, and then, by the leant auto-encoder, are projected
into a space commonly shared with the features extracted from
infra-red face images. Given a visible image, its identity is
determined by finding the infra-red image that has the feature
vector most similar to the transformed feature vector coming
from the visible image1. The DPM method was the first one
to bring the deep learning method to thermal face recognition,
and has yielded significant improvement over previous works.

The DPM method finds nonlinear mapping between patches
from infra-red images and visible images. In this paper, we
will study performance variations of DPMs with different
settings based on the thermal face dataset collected by Nagoya
University [7] (named as the NU dataset in the following). In
the NU dataset, visible and thermal face pairs are available.
In contrast to other thermal face dataset, visible faces and
thermal faces were captured simultaneously by two closely-
located cameras, respectively. Therefore, the visible face and
the thermal face of the same individual are well aligned.
We think such alignment is important for us to clearly study
performance variations of DPM with different parameters.

II. DEEP PERCEPTUAL MAPPING

Our work is based on one of the state-of-the-art thermal-
to-visible recognition methods, i.e., deep perceptual mapping
[6]. DPM is designed to map features extracted from one
modality to another modality by an auto-encoder consisting
of N + 1 layers. Given x ∈ Rd, each layer projects the
input by a learned projection matrix W and the nonlinear
activation function g(·). The output of the kth layer is h(k) =
g(W (k)h(k−1) + b(k)), where b(k) is a bias vector. The N th
layer is a linear mapping to make prediction from hidden
layers, and forms a vector of targeted dimensionality, i.e, x̂ =

1In [6], the query is a visible face image, and features extracted from
it are transformed to match with features extracted from infra-red images.
We actually can do the reverse, i.e., taking infra-red images as the query
and transforming features to match with that extracted from visible images.
According to our experiments, performance of these two schemes is similar.



Fig. 1. An illustration of the idea of the deep perceptual model.

W (N)h(N−1). The initial h(0) is the input x. To determine
the projection matrices W = {W (0),W (1), ...,W (N)} and
bias vectors b = {b(0), b(1), ..., b(N)}, the mean square error
between the features transformed by the auto-encoder, and the
features extracted from another modality, is calculated as the
objective function.

Fig. 1 illustrates the idea of the DPM. From the visible face
image and its corresponding thermal face image, we extract
features as x and x′, respectively. The DPM is constructed
to transform x into x̂ such that the transformed vector x̂ is
similar to the feature x′ extracted from the thermal face image.

The model mentioned above provides a good foundation
to find appropriate nonlinear mapping between two modali-
ties, yet data processing also plays a very important role in
achieving promising performance. In [6], densely computed
feature representations from overlapping regions in the images
are used as the input vector x’s. Particularly SIFT descriptors
are extracted from 20 × 20 image patches with a stride of 8
pixels, in the images of 110 × 150 pixels. Each image patch
is represented by as a SIFT descriptor, with dimensionality
reduced to 64 with principal component analysis, associated
with the patch center position (x, y) to embed spatial infor-
mation, yielding a 66-dimensional vector. With such local
representation, local perceptual difference can be described,
and the requirement of large training images is mitigated
because we can pool a large number of patches from the
limited set of training images. According to [6], different patch
sizes or overlapping cause 2–5% performance variations, and
SIFT outperforms HOG with 3% performance improvement.

In [6], the suggested DPM framework contains three layers,
with each layer consisting of 200 units. Given the feature
sets coming from visible training patches X = {x1, ...,xM}
and thermal training patches T = {t1, ..., tM}, the network
parameters are determined by the stochastic gradient descent
(SGD) method, with the hyperbolic tangent “tanh” as the non-
linear activation function g(·). Note that these training patches
are in pairs and with identity and spatial correspondence. For
example, the visible image where xi comes from the same
individual as the thermal image where ti comes from. In ad-
dition, the location of the patch where xi comes from the same
patch as where ti comes from. When testing, given the probe
image represented as a collection of patches x = {x1, ...,xK}
the transformed vectors {x̂1, ..., x̂K} are concatenated as a
vector, which is compared with the concatenated vectors of
each gallery image based on the cosine similarity. The identity
of probe image is determined as the identity of the gallery
image with the maximum cosine similarity value to it.

(a) thermal
image

(b) visible image

Fig. 2. Sample images of the NU database.

III. EVALUATION PROTOCOL

A. Database

In order to conduct a systematic and convincing parametric
study, we need a dataset where well-aligned visible face
images and thermal face images are available. In other words,
thermal and visible face images of the same individual were
captured in very similar pose, expression, and other visual
conditions. By avoiding the fluctuation of visual conditions,
we can focus on evaluating how different parameters influence
recognition performance.

In this work, we choose to utilize the Nagoya University
(NU) database [7] for our study. The NU database contains 180
Japanese people (169 males and 11 females), where five pars
of thermal images and visible image were captured for each in-
dividual. The ordinary camera capturing visible spectrum and
the infra-red camera capturing LWIR images were mounted
closely, and the same pair of thermal and visible images were
captured simultaneously, making the image pairs very well
aligned. This characteristic is distinct to other thermal face
dataset like the USTC-NVIE database [10], and provides us
a good foundation for the proposed study. There are thus 900
thermal images and 900 visible images in total. All of them are
frontal faces with neutral expression. The thermal images were
captured by the Advanced Thermo TVS-500EX camera, which
senses wavelength ranged from 8–14 µm. The corresponding
thermal and visible images were captured at the same time,
and were underwent the same preprocessing before used. After
cropping, calibration, and resizing, resolution of both types of
images is 56×64 pixels. Fig. 2(a) and Fig. 2(b) show a sample
image pair from the NU database.

B. Parametric Study

We attempt to verify effectiveness of the DPM framework
based on the NU database. In the evaluation protocol of [7],
180 individuals are separated into two parts, i.e., 160 people
and 20 people. The 160 people in the first part are equally
divided into 16 groups, i.e., each group consists of 10 people.
Among the 16 groups, 15 groups are selected to constructed
the DPM. Thermal faces of the remaining group, consisting
of 10 people, are taken as the probe image set (test data). In
the gallery set, in addition to visible images corresponding to
these 10 people, the 20 people in the second part separated at
the beginning are also included in the gallery set to increase
the number of candidate identities, i.e., increasing noise.

We implement the DPM framework consisting of four
fully-connected layers. Outputs of the first three layers are



TABLE I
DETAILED CONFIGURATION OF THE IMPLEMENTED DPM FRAMEWORK.

input (56× 56 thermal images)
fully-connected (2048 nodes)
activation fun.: ReLU
dropout(0.1)
Adding Gaussian noise

fully-connected (2048 nodes)
activation fun.: ReLU
dropout(0.1)
Adding Gaussian noise

fully-connected (2048 nodes)
activation fun.: ReLU
dropout(0.1)
Adding Gaussian noise

fully-connected (2048 nodes)
activation fun.: ReLU

intentionally added with Gaussian noise to mitigate overfitting.
The activation function of each layer is ReLU, the objective
function is the mean square error between transformed vector
and ground truth vector, and the optimization algorithm is
Adam. The training process was conducted in 40 epochs, with
mini-batch size 200. Table I shows detailed configuration of
the implemented DPM framework.

Based on the NU dataset, we would like to investigate how
the following factors yield performance variations.
• Features: The DPM method shown in [6] extracts SIFT

features from patches and then transforms with an auto-
encoder structure. They briefly said that SIFT features
outperforms HOG by 3%. In our work, we carefully
evaluate SIFT only, HOG only, and the combination of
them, and show performance comparison.

• Patch size: In [6], the size of patches is set as 20 × 20
pixels to extract features from 110 × 150 face images.
Although they briefly mentioned that performance varies
between 2–5% when different sizes of patches are used,
detailed evaluation was missing. In our work, we will
evaluate patches of 4 × 4 pixels, 8 × 8 pixels, 10 ×
10 pixels, and 16 × 16 pixels on the face images of 55
× 75 pixels in the NU database. The strides for these
four settings are 2 pixels, 4 pixels, 4 pixels, and 8 pixels,
respectively.

• Noise level: Noise level is the special design of [7]. For
testing thermal images of 10 people, other than these 10
people’s visible faces, visible faces of 20 other people
never seen at the training stage are put into the candidate
pool. In our work, we would like to investigate how the
noise level influences recognition performance.

• Glasses: In the NU database, among the 180 individuals,
21 individuals are wearing glasses. For these individu-
als, five visible/thermal images were captured without
glasses, and five other visible/thermal images were cap-
tured with glasses. In most of the experiments reported
in this paper, we only consider images without glasses
for training and testing. However, we will also conduct
an experiment studying the influence of glasses.

IV. EVALUATION RESULTS

A. Performance Variations given by Different Features
We first evaluate the performance variations yielded by

different features and compare the DPM method with [7]. As
can be seen in Table II, no matter which features are used,
the DPM method largely outperforms [7]. This confirms the
superiority of deep-based methods, especially DPM, on ther-
mal face recognition. In [7], the nonlinear mapping between

TABLE II
AVERAGE RECOGNITION ACCURACIES OF [7] AND THE DPM

FRAMEWORK WITH DIFFERENT FEATURES, BASED ON THE NU DATABASE.

[7] HOG SIFT SIFT+HOG
Avg. Accuracy (%) 23.13 43.50 59.50 57.13

TABLE III
AVERAGE RECOGNITION ACCURACIES OF [7] AND THE DPM

FRAMEWORK WITH DIFFERENT PATCH SIZES, BASED ON THE NU
DATABASE AND THE NOISE LEVEL MENTIONED IN [7].

4 × 4 8 × 8 10 × 10 16 × 16
Avg. Accuracy (%) 53.88 58.50 59.50 53.63

features extracted from two different modalities is determined
by canonical correlation analysis (CCA). By comparing HOG
with SIFT, we confirm that SIFT outperforms HOG. In [6],
they said that SIFT features outperforms HOG by 3%, and
SIFT features outperforms HOG by 16% based on the NU
database. We are also interested in if the performance can be
further improved if we combine them. However, as shown in
the last column of Table II, combining them slightly decreases
performance. In the following experiments, SIFT features are
used as the image descriptor in the DPM framework.

B. Performance Variations given by Different Patch Sizes

We then evaluate the influence of different patch sizes on
recognition performance. Table III shows the average recogni-
tion accuracies of the DPM framework with different patch
sizes, based on the NU database. Comparing performance
yielded by DPMs with different patch sizes, we see that the
best performance can be obtained based on patches of 10 ×
10 pixels. In the following experiments, patches of 10 × 10
pixels, with stride 4 pixels, are used.

C. Performance Variations given by Different Noise Levels

To mimic the realistic scenario, a training and testing
protocol was set in [7]. We name its setting as (tr=150, ts=10,
noise=20), indicating that data of 150 people are used for
training, and the other 10 people are for testing. In addition

TABLE IV
AVERAGE RECOGNITION ACCURACIES OF THE DPM FRAMEWORK WITH

DIFFERENT NOISE LEVELS, BASED ON THE NU DATABASE.

(tr=150, ts=10, noise=0) (tr=150, ts=10, noise=10)
Avg. Acc. 62.75 62.50

(tr=150, ts=10, noise=20) (tr=140, ts=10, noise=30)
Avg. Acc. 59.50 46.80

(tr=130, ts=10, noise=40)
Avg. Acc. 40.29



TABLE V
AVERAGE RECOGNITION ACCURACIES OBTAINED BY THE DPM

FRAMEWORK WITH THREE DIFFERENT TRAINING/TESTING SCHEMES.

(1) (2) (3)
Avg. Accuracy (%) 59.50 57.52 62.51

to the 10 people for testing, 20 other people who were never
seen by the model are added to the candidate pool to make
the recognition task more complex. We are interested in how
different noise levels yield performance variations.

Table IV shows performance variations yielded by different
noise levels. From the first column to the third column, we
see that, with the same number of training data, perfor-
mance slightly decreases as the noise level increases. This
is expectable, and the trend of slight decreasing shows the
robustness of the DPM method. From the fourth column and
the fifth column, we increase noise but decrease the number of
training data. In these cases, the average accuracy significantly
decreases.

D. Performance Variations with or without Glasses

We evaluate three training/testing schemes to show the
influence of wearing glasses. (1) Both the training data and
the testing data do not include images with glasses. (2)
The training data do not include images with glasses, but
the testing data include images with glasses. (3) Both the
training data and the testing data include images with glasses.
Table V shows average recognition accuracies with these three
schemes. Comparing with the first two schemes, it is not
surprising that performance degrades when the testing data
include images with glasses. Interestingly, by seeing the third
column, we see that the best performance can be obtained
when both training data and testing data include images with
glasses. Intensity contrast of thermal face images is relatively
weaker, and thus weaker SIFT descriptors can be extracted. In
this case, glasses usually present clear corners or boundaries,
and may convey more clues for us to do recognition.

Fig. 3 shows the idea of DPM in terms of SIFT distributions.
From the visible face, we extract the 128-dimensional dense
SIFT descriptor from each patch. The descriptors of all patches
are then averaged, and the distribution of the 128 values is
shown in the middle of Fig. 3(a). This distribution is signif-
icantly different from that extracted from the corresponding
thermal face, i.e., Fig. 3(c). The DPM transforms the original
SIFT distribution into Fig. 3(b), which is much similar to
Fig. 3(c) visually. This example clearly illustrates functionality
of the DPM.

V. CONCLUSION

In this paper, we present a parametric study to compre-
hensively investigate performance variations of the deep per-
ceptual model on thermal face recognition, based on various
parameter settings and a well-aligned thermal-visible face
database. The issues we investigate include how different
image descriptors influence performance, how different patch
sizes influence performance, how robust the DPM is with dif-
ferent noise levels, and if individuals wearing glasses influence

Fig. 3. Illustration of the transformation of the distribution of dense SIFTs
by the DPM.

performance. This comprehensive study provides guidelines
for future works that adopt DPM as the fundamental method.
In the future, more databases will be evaluated, and we will
propose variants of DPM to improve recognition performance.
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