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Image Style Classification based on Learnt Deep
Correlation Features

Wei-Ta Chu, Senior Member, IEEE, Yi-Ling Wu

Abstract—This paper presents a comprehensive study of deep
correlation features on image style classification. Inspired by that
correlation between feature maps can effectively describe image
texture, we design various correlations and transform them into
style vectors, and investigate classification performance brought
by different variants. In addition to intra-layer correlation,
inter-layer correlation is proposed as well, and its effectiveness
is verified. After showing the effectiveness of deep correlation
features, we further propose a learning framework to automati-
cally learn correlations between feature maps. Through extensive
experiments on image style classification and artist classification,
we demonstrate that the proposed learnt deep correlation features
outperform several variants of CNN features by a large margin,
and achieve the state-of-the-art performance.

Index Terms—Painting images, convolutional neural network,
Gram matrix, deep correlation features, learnt correlation fea-
tures.

I. INTRODUCTION

DESPITE various studies on visual attributes and semantic
concept detection, some image properties are implicit

and difficult to extract, but may be quite useful in image
management and retrieval. Some bio-inspired properties, like
sentiment [1] and emotion, can be easily perceived by human
beings, but are hard to be modeled in a computational way.
In this work, we focus on the image style that emerges
recently and is believed to be a potential extension of current
classification/retrieval works. We will mainly take oil painting
images as the targeted domain because image styles such as
Academicism, Baroque, and Cubism are well defined. We will
extract or learn correlations between feature maps obtained
based on deep neural networks, and achieve image style
classification on various image datasets.

Foreseeing the potential of visual style analysis, several
inspiring works have been proposed. Focusing on branded
handbag recognition, Wang et al. [2] proposed a random
forest-based strategy to determine discriminative patches on
handbags, in order to construct handbag style representation.
Tarvainen et al. [3] proposed a movie dataset to facilitate
affective movie content analysis, which is largely determined
by movie style and aesthetics. Karayev et al. [4] proposed two
image datasets respectively consisting of photos from Flickr
and painting images from Wikiart.org, and investigated various
visual features on image style classification. Specific to paint-
ing images, Khan et al. [5] constructed a large-scale painting
image dataset consisting of paintings from 91 different artists.
They studied how local and global features perform in three
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applications, i.e., artist categorization, style classification, and
saliency detection. Most recently, Tseng et al. [6] proposed a
ranking model for style identification based on random forests.
Based on visual features like Lab color histogram and GIST,
they concentrate on mitigating the overfitting problem and the
ambiguity problem by using random forests.

To do image style classification, image representation is
obviously the key. In [4], Karayev et al. reported that deep
features, which have been demonstrated to achieve promising
performance in various fields, also yield performance much
better than hand-crafted features like color histogram, GIST,
and visual saliency. However, the complex interplay between
visual appearance and perceived image style is still not clear.
Recently, Gatys et al. [7] proposed a feature space that was
originally designed for texture synthesis [8] on top of the filter
responses of each layer in a convolutional neural network.
Particularly, the correlations between different filter responses
are calculated, as the important clues to transfer a photograph
into a painting of some artist’s style. Since then, a large
number of studies and commercial software are developed for
style transfer [9][10][11][12][13][14][15][16][17] and image
style analysis [18] [19]. In fact, style transfer is viewed as
one of the major achievements in deep learning in year 2016
[20].

We focus on image style analysis and take painting image
classification as the main target. Figure 1 shows sample images
of styles from Academicism to Rococo. Given a painting
image, style descriptor is extracted, and then the image is
classified into one of the style classes. In our previous work
[19], we transformed correlations between feature maps into
image style descriptors. Descriptors derived from different
layers with different settings were comprehensively evaluated.
In addition to correlations between feature maps at the same
layer (intra correlations), we further proposed descriptors from
correlations across multiple layers (inter correlations). Benefits
of jointly considering various correlations were verified. After
verifying the effectiveness of deep correlation features, in
this work we attempt to discover correlations by a learn-
ing framework and demonstrate the learnt correlations can
significantly improve classification performance. In addition
to painting styles, we also show the effectiveness of the
proposed descriptors on photo style classification, illustration
style classification, and artist classification.

Notice that taking correlations between different features as
texture description is not a new idea. In early years, Jain and
Healey [21] proposed correlation between different Gabor fil-
ter bands to describe texture information in multiple scales. In
our work, we try to discover effectiveness of correlation-based
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description in the context of deep learning. Recently, Lin et
al. [22] proposed bilinear CNN models that take outer product
between outputs derived from two CNN models to be image
representation. They claimed that the outer product captures
pairwise correlations between feature channels. Bilinear CNN
models provide a generic framework to consider correlation
between outputs of multiple CNN models, while our work
considers correlation between feature maps at different layers
of a single CNN model.

The rest of this paper is organized as follows. In Section II,
most recent related works on image style transfer and im-
age style analysis are described. Section III describes basic
deep correlation features derived from common statistical
techniques, and Section IV describes the learning framework
to automatically discover implicit correlation between feature
maps. Comprehensive experimental results on the collected oil
painting dataset are provided in Section V, and performance
comparison on other painting datasets as well as generalization
to other types of datasets are given in Section VI. Finally,
summary and discussion are given in Section VII.

II. RELATED WORKS

A. Style Transfer

Image style refers to how an image is perceived. It is hardly
to be described literally but can be easily perceived visually.
Difference between various styles may come from texture,
color distribution, semantics, etc. One research topic highly
related to image style is thus texture synthesis, which has been
studied for years. Approaches based on physical simulation,
Markov random field, Gibbs sampling, or feature matching
were proposed [23]. For example, Zhang et al. [24] formulated
style transfer as an optimization problem by using Markov
random fields. They jointly considered the content and style
so that the generated results not only synthesize the style,
but also preserve the image content well. Recently, the power
of convolutional neural networks (CNN) on texture synthesis
has been revealed [8]. Gatys et al. found that textures can be
well represented by the correlations between feature maps of
different layers. This finding motivates the pioneering work
[7] that transfers a photo into an image with a style similar
to a given targeted painting. Given a photo P and a reference
image I with the targeted style, the idea of [7] is to adjust
P , such that correlations between feature maps (obtained by
inputting the adjusted image P̂ to a CNN) are similar to that
of I , while CNN features of P̂ are similar to the original
P . With this breakthrough, this research topic becomes quite
flourishing in year 2016.

The adjustment process in [7] is computationally expensive,
and thus a few works were proposed to speed up the pro-
cess. Johnson et al. [10] constructed transformation networks
using perceptual loss functions, which are defined based on
high-level features from a loss network. The perceptual loss
functions more robustly measure image similarities, and the
transformation networks achieve style transfer much more
efficiently. Ulyanov et al. [9] proposed a feed-forward convolu-
tional network to move the adjustment process into a learning
stage, and made style transfer much more light-weight. They

improved the proposed Texture Networks by designing a new
normalization scheme and a learning formulation to further
improve quality and diversity of stylization [17]. Although the
learnt networks mentioned above are efficient, they are tied to
a single style. To transfer an image into a specific style, a
separate network should be constructed. Dumoulin et al. [12]
proposed conditional instance normalization, and developed a
generic network that can flexibly capture properties of different
styles. Ruder et al. [13] extended style transfer to videos.
In addition to do style transfer for each video frame, they
introduced temporal consistency loss and a multi-pass algo-
rithm to make transformation results smooth. Tanno et al. [14]
extended the style transfer network in [10] to learn multiple
styles at the same time, and further reduced computational
requirement to develop a real-time style transfer application on
mobile phones. In addition to this, other style transfer mobile
applications like Prisma [15] are also available.

Style transfer achieved by the convolutional neural network
is basically semantics-unaware. Champandard [11] empowered
this approach by further considering a semantic map corre-
sponding to the input image. A user can sketch a spatial layout
associated with semantic meanings, and then the proposed
system is able to synthesize a fine artwork with specified style
conforming to the sketched layout and semantics. Despite the
amazing results of style transfer, why correlations between
feature maps can well catch style representation is unclear.
Li et al. [16] proposed a novel interpretation to show that
matching the Gram matrices of feature maps is equivalent to
minimize the maximum mean discrepancy with the second
order polynomial kernel.

B. Image Style Classification

In addition to style transfer, some works have been pro-
posed to utilize style representation in image style analysis.
Wang et al. [2] constructed handbag style representation and
color representation based on discriminative patch discovery
and dominant color features, respectively. Handbags are first
classified into different style classes, and within each class
handbags of different colors are further discriminated. These
aforementioned representations are respectively used to mea-
sure inter-class style similarity and intra-class color variations.
Based on the Gestalt theory, Shen and Cheng [25] proposed
Gestalt feature points to improve repeatability of local features
in images of the same content but in different styles. They
demonstrated superior performance yielded by the proposed
Gestalt feature points over existing local features.

Karayev et al. [4] showed that deep features yield perfor-
mance much better than conventional hand-crafted features in
recognizing image styles. Lu et al. [26] proposed a multi-
patch aggregation neural network to integrate feature learning
and aggregation. This network was shown to yield promising
performance in image style classification, aesthetics catego-
rization, and quality estimation. In [27], the same research
group jointly considered global and local characteristics by
a deep learning framework to predict image aesthetics. They
further proposed to utilize image styles and semantic attributes
to boost aesthetics estimation performance. Folego et al. [28]
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Fig. 1. Sample painting images of different styles. Left to right, top to bottom: Academicism, Baroque, Expressionism, High Renaissance, Low Renaissance,
Impressionism, Neoclassicism, Primitivism, Realism, and Rococo.

divided a painting image into non-overlapping patches, and
extracted CNN features from each patch. Each patch was
classified individually, and results of different patches are
fused to get final results, i.e., whether a painting was produced
by van Gogh or not. Motivated by the finding of [7], Matsuo
and Yanai [18] transformed the Gram matrices of feature maps
into style vectors, and then used them to do style image
retrieval and artist retrieval.

Deep features have been demonstrated to yield good perfor-
mance in image style analysis. However, the potential of deep
features on image style analysis, especially the correlation
between deep features mentioned in [7], was far from well
explored. Karayev et al. [4] showed deep features extracted
from pre-trained neural networks work well, and Matsuo and
Yanai [18] showed that correlation between feature maps yield
even better performance. In our previous work [19], in addition
to the Gram-based style representation, we investigated several
more types of correlations and demonstrated performance
variations. In this work, in contrast to calculate correlations
defined in statistics textbooks, we further propose to automat-
ically learn correlations by neural networks, and demonstrate
that the learnt correlations can provide significantly better
performance. The main contribution of this work is thus the
proposal of automatically learnt deep correlation features on
image style classification.

III. GRAM-BASED DEEP CORRELATION FEATURES

Motivated by the inspiring work [7], we attempt to trans-
form correlations between feature maps into style representa-
tion of images, and then construct classifiers based on such
representations to do image style classification. In addition to
the Gram-based representation [7][18], we further investigate
performance of various correlations well defined in statistics.

In this work we utilize the VGG-19 network [29] trained
based on the ImageNet dataset to obtain filter responses at
different layers. This network consists of sixteen convolutional
layers and three fully-connected layers. At each convolutional
layer, the receptive field is fixed to 3×3 with convolution stride
1 pixel. Spatial pooling is carried out by five max-pooling (or
average-pooling) layers, which respectively follow the 2nd, the
4th, the 8th, the 12th, and the 16th convolutional layers (note

that not every convolutional layer is followed by a pooling
layer). Max-pooling (or average-pooling) is performed over
2 × 2 pixel window, with stride 2. Because of the pooling
layers, convolutional layers in this framework can be divided
into five groups. The work in [7] named convolutional layers
as ’conv1 1’, ’conv1 2’, ’conv2 1’, ’conv2 2’, and so on. The
’conv2 1’ layer, for example, are the 3rd convolutional layer
that just follows the first pooling layer. In this work, we use the
imagenet-vgg-verydeep-19 model trained by the MatConvNet
toolbox [30], based on the ImageNet dataset, to conduct the
following studies.

Gram-based Deep Correlation Features. Gatys et al. [8]
built a style representation based on the correlations between
filter responses (feature maps), in order to transfer a photo
into an image with a targeted style. In [7], the correlations are
represented by the Gram matrix Gl ∈ RNl×Nl , where Gl

ij is
the inner product between the vectorized feature map i and j
in layer l, i.e.,

Gl
ij =

∑
k

F l
ikF

l
jk, (1)

where F l
ik is the activation of the ith filter at position k in

layer l.
Taking the ’conv5 1’ layer of the VGG-19 model as the

example, there are 512 feature maps1, and the width and
height of each feature map are both 14. Each feature map is
therefore vectorized into a 14× 14 = 196-dimensional vector.
We can calculate the inner product between any pair of 196-
dim vectors, and thus a (symmetric) 512 × 512 Gram matrix
can be constructed.

In order to achieve image style classification, we traverse the
Gram matrix Gl by raster scan and transform the matrix into
a style vector, which is then classified by an SVM classifier
(support vector machine) constructed for image styles. With
the example mentioned above, A 512 × 512 Gram matrix is
flattened as a 262,144-dim deep correlation feature vector. In
the following, we will describe such style vector as Gram-
based deep learning features.

Figure 2 illustrates the system framework. In the eval-
uation section, we will especially investigate performance

1Detailed configurations of the VGG-19 model please refer to [29].



4

Fig. 2. Illustration of the system framework. Given an image, feature maps
are extracted based on the VGG-19 model, and then deep correlation features
are calculated. A support vector machine is constructed for style classification.

obtained based on style representation derived from ’conv1 1’,
’conv2 1’, ’conv3 1’, ’conv4 1’, and ’conv5 1’, respectively.

Other Deep Correlation Features. In addition to Gram-
based features, which is derived from inner product, we would
like to further investigate the possibility of other correlation
features. In statistics, many similarity measures are designed
to describe relationships between random variables. We con-
ceptually think that each feature map is generated according
to a random variable, and then evaluate correlations between
feature maps based on several well-adopted measurements.
In addition to Gram matrix, we calculate the following cor-
relations between feature maps: (1) Pearson correlation, (2)
Spearman correlation, (3) covariance, (4) Chebychev distance,
(5) Euclidean distance, and (6) Cosine similarity. We will
respectively transform each of these correlations into style
representation, and evaluate its performance on image style
classification. Combinations of some of them will also be
extensively evaluated.

To clearly describe these correlation metrics in mathematics,
we take feature maps of ’conv5 1’ as the main example. The
196 values of a feature map can be viewed as values generated
based on a random variable, and the ith feature map and the
jth feature map can be represented by two 196-dimensional
vectors F (i) = {f (i)1 , ..., f

(i)
196} and F (j) = {f (j)1 , ..., f

(j)
196},

respectively.
• Pearson correlation: The Pearson correlation coefficient
ρi,j between the ith feature map and the jth feature map
is defined as

ρi,j =
E[(f (i) − f̄ (i))(f (j) − f̄ (j))]

σ(i)σ(j)
, (2)

where σ(i) and σ(j) are standard deviations of F (i) and
F (j), respectively, f̄ (i) and f̄ (j) are means of F (i) and
F (j), respectively, and E(·) is the expectation function.

• Spearman correlation: The Spearman correlation coeffi-
cient ri,j is actually the Pearson correlation coefficient
between the ranked variables. Therefore, the value ri,j
between the ith feature map and the jth feature map is
defined as

ri,j =
E[(g(i) − ḡ(i))(g(j) − ḡ(j))]

σ
(i)
g σ

(j)
g

, (3)

where g(i) is the sorted f (i), ḡ(i) is the mean of sorted
F (i), and σ(i)

g is the standard deviation of sorted F (i).

• Covariance: The covariance covi,j between the ith feature
map and the jth feature map is defined as

covij = E[(f (i) − f̄ (i))(f (j) − f̄ (j))]. (4)

• Chebychev distance: The Chebychev distance vi,j be-
tween the ith feature map and the jth feature map is
defined as

vij = lim
k→∞

( 196∑
i=1

|f (i)k − f
(j)
k |

k
)1/k

, (5)

which is also known as the L∞ norm between F (i) and
F (j).

• Euclidean distance: The Euclidean distance di,j between
the ith feature map and the jth feature map is defined as

dij =

√√√√ 196∑
k=1

(f
(i)
k − f

(j)
k )2. (6)

• Cosine similarity: The Cosine similarity si,j between the
ith feature map and the jth feature map is defined as

sij =
F (i) · F (j)

‖F (i)‖‖F (j)‖
, (7)

where F (i) · F (j) denotes the inner product of F (i) and
F (j).

We can calculate a specific correlation value between any
pair of feature map. The ’conv5 1’ layer outputs 512 feature
maps, and thus totally 512 × 512 = 262, 144 Spearman
correlation values, for example, can be obtained.

Inter-layer Deep Correlation Features. The correlations
mentioned above are calculated based on feature maps coming
from the same layer. They are ’intra-layer’ correlations. We are
wondering if correlations between feature maps across layers
also benefit style classification. To verify this, we calculate
Gram matrices of feature maps at each convolutional layer,
and then calculate inner products between intra-layer Gram
matrices (after dimension reduction) to measure the inter-
layer correlation, i.e., the Gram matrix of Gram matrices. For
example, the correlation between Gram matrices derived from
’conv4 1’ and ’conv5 1’ can be calculated. Other forms of
inter-layer correlations will also be studied.

IV. LEARNT DEEP CORRELATION FEATURES

In [19], we verified the effectiveness of deep correlation
features on image style classification. With the success of
correlations defined in statistics textbooks, we are wondering
if the correlations between feature maps can be automatically
learnt by a neural network, such that the transformed style
representation can yield even better performance. Therefore,
given a set of feature maps, we would like to construct a neural
network that automatically learns correlations between feature
maps. This neural network replaces the roles of inner product
or Pearson correlation mentioned above. Figure 3 illustrates
the framework to automatically learn deep correlations as well
as style classification.

The idea of automatically learning correlation between
features or modalities was already proposed before. Wang et



5

al. [31] proposed a hashing-based orthogonal deep model to
learn multimodal representation. This method captures intra-
modality and inter-modality correlations, and yields substan-
tially better performance on cross-modal retrieval. Also for
cross-modal retrieval, Hua et al. [32] put more focus on se-
mantic coherence and proposed a correlation learning method
by adaptive hierarchical semantic aggregation. In contrast to
learning correlation between different modalities, our work
attempts to learn correlation between feature maps derived
from the deep learning framework. Different feature maps
conceptually represent responses of different object parts at
different scales.

The essential idea of building a neural network to automat-
ically learn correlation between random variables is described
as follows. Calculating the correlation between two random
variables X and Y can be viewed as a real-valued function
f such that C = f(X,Y ), where C means the correlation
between X and Y . A neural network can be viewed as a
function set, and a specific set of parameters in the network
indicates a specific function. By finding the best parameters to
build the network (with respect to the defined loss function),
conceptually we find the best function that transforms two
inputs X and Y into C so that C most appropriately describes
image styles and thus yields better classification results.

Particularly, to learn correlation between feature maps, we
first flatten each feature map into a vector, and then stack all
vectors as a matrix. Taking feature maps from ’conv5 1’ as
the example, there are 512 feature maps, and each feature
map is 14 × 14. Each feature map is flatten into a 196-
dimensional vector, and thus all vectors are stacked to be
a 196 × 512 aggregated feature map, which is resized into
224× 224 afterwards. To especially capture feature deviation,
it is subtracted from the mean aggregated map obtained from
the training data. After this process, this aggregated feature
map is fed into a neural network to learn correlation features.

With the same idea, we can also learn “correlation between
correlations (especially in terms of Gram matrix)”. Taking the
Gram matrix derived from ’conv5 1’ as the example again, the
Gram matrix is 512×512, and we resize it into 224×224. The
resized Gram matrix is fed into the learning model to derive
correlation between correlations.

Note that resizing the aggregated feature map or Gram ma-
trix into smaller size can largely reduce the required training
time, but may incur information loss or distortion. Fortunately,
according to our experiments, performance remains similar
when the input is resized.

Figure 4 shows detailed structure and settings of the learning
model. A given aggregated feature map is convolved with
a 19 × 19 window, with zero padding and the ReLU acti-
vation function, and 32 filter responses are obtained. After
max pooling, these filter responses are further sequentially
processed by two fully-connected layers, consisting of 512
nodes and 256 nodes, respectively. These fully-connected
layers act as a classifier, and the probabilities of the input
being each image style are output by the final softmax layer.
This model is trained by minimizing the cross entropy loss
function. Parameters of this model are updated by using the
ADADELTA method [33], with the learning rate lr = 1.0,

Fig. 3. Illustration of learnt deep correlation features.

Fig. 4. Detailed structure of the correlation learning model.

decay constant ρ = 0.95, and fuzz factor ε =1× 10−8. The
mini-batch size is 100, and the numbers of epochs for training
are around 20 to 50, depending on different datasets.

The main difference between frameworks in Figure 2 and
Figure 3 is how to extract the deep correlation features. In
Figure 2, correlation features are extracted by computing the
Gram matrix between feature maps. In Figure 3, correlation
features are automatically learnt by a neural network. One
another difference is the classification method. In Figure 2,
an SVM classifier is constructed based on the Gram-based
correlation features. In Figure 3, classification is done by the
neural network same as feature learning.

V. PERFORMANCE EVALUATION

We conduct comprehensive performance evaluation and
divide it into two sections. In Sec. V, we focus on verifying
that (1) considering correlation between feature maps (Gram-
based correlation) is better than commonly-used CNN features
(usually derived from the first or the second fully-connected
layers); and (2) learnt correlation features further work better
than the Gram-based correlation features. Results shown in
Sec. V are obtained based on the OilPainting dataset. In
Section VI, we experiment on more datasets and demonstrate
the state-of-the-art performance comparing to existing works.

A. Painting Image Datasets

From WikiArt.org, we collected totally 19,787 oil painting
images belonging to 17 image styles for the following eval-
uation. Table I shows detailed information of the collected
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dataset, named OilPainting, where each style class contains
at least 200 images. To fairly do performance comparison,
we also evaluate performance on the Wikipaintings dataset
[4] and the Painting-91 dataset [5]. The former consists of
82,442 images belonging to 25 styles, and the latter consists
of 2,338 painting images belonging to 13 styles. Note that our
OilPainting dataset contains only oil paintings, while the other
two datasets may contain other types of images, like comics
and watercolor paintings. We have shown sample images of
the OilPainting dataset in Figure 1. Figure 5 shows five sample
images of the WikiPaintings dataset, and Figure 6 shows five
sample images of the Painting-91 dataset. We see that some
styles are common in these three datasets. In this section, we
will mainly use the OilPainting dataset to demonstrate the
effectiveness of deep correlation features.

Different artists have their unique styles in producing art-
works. Several previous works thus also study classifying im-
ages according to artists. In this paper, we also study this issue
based on two datasets. We select the artists who produced more
than 50 images from the OilPainting dataset, and construct the
OilPainting Artist dataset that includes totally 15,357 images
produced by 104 artists. Another dataset is from [5], called
the Painting-91 Artist dataset, which contains 4,266 images
produced by 91 artists. Table II shows overall information of
all evaluated datasets.

In all the following experiments, the five-fold cross valida-
tion scheme was adopted. Taking the OilPainting dataset as
the example, at each run, from each style 80% of the data is
randomly selected as the training data, and the remaining 20%
is used for testing. We conduct the same process for five runs,
and the report the average classification accuracy.

B. Performance of Gram-based Deep Correlation Features
from Different Layers

We first investigate performance variations yielded by deep
correlation features computed from different layers. According
to [7], we especially focus on the Gram matrices derived from
’conv1 1’, ’conv2 1’, ’conv3 1’, ’conv4 1’, and ’conv5 1’,
respectively, which are all the first convolutional layer after
the pool layer (except for ’conv1 1’). The five Gram matrices
are of different dimensions, and so do the transformed style
vectors. To fairly compare performance of style vectors from
different layers, we adopt principal component analysis (PCA)
to reduce dimensions of all style vectors into 4096.

Table III and Table IV show performance variations ob-
tained by Gram-based deep correlation features from different
layers, when average pooling and max pooling are applied,
respectively. The experiments are conducted based on the
OilPainting dataset with the five-fold cross validation scheme,
and the average classification accuracies are reported. As can
be seen from both tables, we see that Gram-based features
derived from the 16th convolutional layer, i.e., ’conv5 1’,
perform the best. The ’conv5 1’ layer is thus widely used
in the following experiments. The ’fc7’ row shows the per-
formance obtained by vectors coming from the second fully-
connected layer (other than convolutional layers, before this
layer there are five max pooling layers and one fully-connected

layer, and this is why it is called fc7), which was commonly
used in many classification tasks. Comparing fc7 with others,
fc7 outperforms most except for ’conv5 1’. This shows that
output of the fully-connected is quite effective. However,
more performance gain can be obtained if we extract deep
correlation features from an appropriate layer, e.g., ’conv5 1’.
In Table IV, we also show even if the VGG-19 model is fine-
tuned with the painting images, performance similar to that
without fine-tuning is obtained.

Previous studies showed that features extracted from con-
volutional layers may give better generalization abilities than
the output of fully-connected layers. Therefore, we also eval-
uate performance obtained by directly taking feature maps
as features. The ’FM of conv5 1’ shows the performance
yielded by the feature maps of the ’conv5 1’ layer. As can be
seen, comparing with the Gram-based features derived from
’conv5 1’, much worse performance is obtained. Finally, by
comparing Table III and Table IV, we found that the network
with max pooling performs better.

C. Performance of Various Deep Correlation Features

The aforementioned results show effectiveness of Gram-
based correlation features. We would like to investigate if other
correlations commonly seen in statistics also yield effective
style representation. Table V shows performance variations of
various deep correlation features. This table can be divided
into four parts. The first part is just the subset of Table IV,
showing the best performance obtained by Gram-based fea-
tures. The second part shows average accuracies obtained
by six different style vectors derived from six correlations,
respectively. Note that each individual style vector is reduced
to 4096-dimensional by PCA. By comparing the first two parts,
we see no other correlation works better than Gram-based
features. This verifies that the choice in [7] is really good.
Among the correlations other than Gram matrix, Euclidean
distances and Cosine similarity are relatively better.

The third part of Table V tests the conjecture: will bet-
ter performance be obtained if we jointly consider multiple
style representations derived from different correlations? For
example, the cell ’Gram-Cos.’ means that we concatenate
the style representation derived from Gram matrices with
that from Cosine similarity. Note that in order to make fair
comparison, we reduce dimensionality of each kind of style
vector into 2048, so that concatenation of two different style
vectors form a 4096-dimensional vector. The third part of
Table V shows that, by concatenating style vectors derived
from Gram matrices and covariance, performance better than
other combinations can be achieved (accuracy=60.56%). This
verifies that combining two different style vectors outperforms
the best individual one (Gram matrix, accuracy=58.13%).

Since considering multiple correlations yields performance
gain, how about calculating correlation between multiple cor-
relations and viewing it as a “meta style representation”? The
fourth part of Table V shows performances obtained by style
representations derived from correlation (measured by inner
product) between Euclidean distances and Cosine similarity
(denoted by ’Eud. dot Cos.’), and correlation between Gram
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Fig. 5. Five sample images from the WikiPaintings dataset. From the left to the right, the styles are Color Field, Cubism, Post Impressionism, Realism, and
Rococo.

Fig. 6. Five sample images from the Painting-91 dataset. From the left to the right, the styles are Abstract Expressionism, Baroque, Constructivism, Cubism,
and Impressionism.

TABLE I
STYLE CLASSES AND THE NUMBERS OF IMAGES IN EACH CLASS IN THE OILPAINTING DATASET.

Style Academicism Art Nouveau Baroque Cubism Expressionism High Renaissance
#img 342 263 1892 349 1127 408
Style Impressionism Mannerism Naive Art Neoclassicism Northern Renaissance Post-Impressionism
#img 4557 607 373 442 549 2183
Style Realism Rococo Romanticism Surrealism Symbolism
#img 2766 1097 1532 794 506

TABLE II
OVERALL INFORMATION OF THE EVALUATED DATASETS.

Datasets #Styles #Artists #Images
OilPainting 17 – 19,787
Wikipaintings 25 – 82,442
Painting-91 13 – 2,338
OilPainting Artist – 105 15,357
Painting-91 Artist – 91 4,266

TABLE III
PERFORMANCE VARIATIONS OF GRAM-BASED DEEP CORRELATION
FEATURES FROM DIFFERENT LAYERS, BASED ON THE OILPAINTING
DATASET (AVERAGE POOLING WAS APPLIED IN THE FRAMEWORK).

Layer Original dim. Reduced dim. Avg. Accuracy
fc7 4096 4096 52.86%
FM of conv5 1 100352 4096 31.98%
conv1 1 4096 4096 32.71%
conv2 1 16384 4096 34.24%
conv3 1 65536 4096 40.77%
conv4 1 262144 4096 47.87%
conv5 1 262144 4096 57.19%

matrices and Cosine similarity (denoted by ’Gram dot Cos.’).
Surprisingly, we obtain further performance gain (61.28% vs.
60.56%), by comparing the ’Gram dot Cos.’ with ’Gram-
Cov.’. Other meta correlations are also experimented, but
performance gains are not significant and are not shown
here. We can thus push the idea proposed in [7] one step
further: correlation between deep correlation features even
works better.

TABLE IV
PERFORMANCE VARIATIONS OF GRAM-BASED DEEP CORRELATION
FEATURES FROM DIFFERENT LAYERS, BASED ON THE OILPAINTING

DATASET (MAX POOLING WAS APPLIED IN THE FRAMEWORK).

Layer Original dim. Reduced dim. Avg. Accuracy
fc7 4096 4096 56.83%
fc7 (fine tuned) 4096 4096 56.59%
FM of conv5 1 100352 4096 31.81%
conv1 1 4096 4096 30.08%
conv2 1 16384 4096 35.05%
conv3 1 65536 4096 44.70%
conv4 1 262144 4096 50.60%
conv5 1 262144 4096 58.13%

D. Intra-Layer and Inter-Layer Correlations

The Gram matrices mentioned above are calculated based
on feature maps of the ’conv5 1’ layer. They are ’intra-layer’
correlations because only information within the ’conv5 1’
layer is considered. We are wondering if correlations between
feature maps across layers also benefit style classification. To
verify this, we calculate Gram matrices of feature maps at
each convolutional layer, and then calculate inner products
between intra-layer Gram matrices (after dimension reduction)
to measure the inter-layer correlation, i.e., the Gram matrix of
Gram matrices.

Table VI shows performances obtained by style representa-
tion derived from ’conv5 1’ only, and by the concatenation of
style vectors from ’conv5 1’ and the Gram matrix of Gram
matrices, respectively. As can be seen, by further consider-
ing inter-layer correlation, performance gain can be obtained
(59.91% vs. 58.13%). There may be many ways to jointly
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TABLE V
PERFORMANCE VARIATIONS OF VARIOUS DEEP CORRELATION FEATURES, BASED ON THE OILPAINTING DATASET.

Correlation fc7 fc7 (fine tune) Gram matrix
Avg. Acc. 56.83% 56.59% 58.13%
Correlation Pearson Spearman Covariance Chebychev dist. Euclidean dist. Cosine Sim.
Avg. Acc. 44.96% 44.92% 45.51% 46.05% 51.33% 53.34%
Correlation Pear.-Spear. Pear.-Cos. Gram-Pear. Gram-Cos. Gram.-Eud. Gram-Cov.
Avg. Acc. 47.36% 55.68% 60.22% 60.36% 60.42% 60.56%
Correlation Eud. dot Cos. Gram dot Cos.
Avg. Acc. 51.17% 61.28%

TABLE VI
PERFORMANCE VARIATIONS OF STYLE VECTORS DERIVED FROM

INTRA-LAYER CORRELATION ONLY AND INTRA-INTER CORRELATION.

Correlation Average accuracy
fc7 56.83%
Gram matrix (from ’conv5 1’) 58.13%
Gram matrix + Gram of Gram 59.91%

consider intra-layer and inter-layer correlations, which are left
for future exploration.

E. Performance of Learnt Correlation Features

In this section, we evaluate deep correlation features learnt
from information derived from ’conv5 1’. Inputs of the learn-
ing models include Gram matrix of feature maps (FM), and
inner products between the Gram matrix and Cosine simi-
larity, respectively. Table VII shows performance comparison
between Gram-based deep correlation features (GDCF) and
learnt deep correlation features (LDCF). Table VII(1) shows
accuracy obtained based on the Gram-based representation
derived from FM, while Table VII(3) shows accuracy obtained
based on features learnt from FM. They are both correlations
between feature maps. Comparison between them clearly
shows that the learnt transformation (Table VII(3)) signifi-
cantly outperforms inner products (Table VII(1)). Table VII(4)
shows the performance obtained by the “meta correlation”
transformed from the Gram matrix. The “learnt meta represen-
tation” (Table VII(4)) significantly outperforms “handcrafted
meta representation” (Table VII(2)). These results verify that
correlation between feature maps can be automatically learnt,
and such learnt features can more effectively describe image
styles. As can be seen, LDCF yields much better performance
no matter which input is given. The best performance achieved
by GDCF is 61.28%, while the best performance achieved by
LDCF is 71.99%.

Fig. 7 shows the confusion matrix of classification
results for the OilPainting dataset, obtained based
on learnt deep correlation features. We obtain the
best performance for Impressionism paintings. On
the other hand, more confusions exist between High-
Renaissance/Northern-Renaissance/Mannerism (Late
Renaissance), between Realism/Romanticism/Symbolism,
and between Academicism/Neoclassicism. More elegant
features or external knowledge may be utilized to improve
performance in the future.

Fig. 7. The confusion matrix of classification results for the OilPainting
dataset.

VI. PERFORMANCE COMPARISON

A. Other Painting Datasets

After showing effectiveness of GDCF and LDCF, in this
section we will extensively evaluate the proposed features
based on more datasets and compare with other state-of-the-art
methods.

Table VIII shows performance comparison between our
methods and [4] [18], based on the Wikipaintings dataset.
In [4], deep features from a fully-connected layer are used
as image representation (DeCAF6). They also utilized class
confidences of high-level attribute classifiers [34] as image
presentation, by further considering the inter-correlation of
four aggregated classifier confidence (Fusion × Content). The
work [18] also used Gram matrix of feature maps (with the
VGG-16 framework, while we use the VGG-19 framework) as
image representation. However, they did not thoroughly study
the influence of different types of intra-layer correlations and
the inter-layer correlation.

As can be seen from Table VIII, in GDCF, correlation
between Gram matrices and Cosine similarity again yields
the best performance, which surpasses the most recent results
reported in [18]. The last row shows that the learnt deep
correlation features further improve classification accuracy sig-
nificantly. With learnt correlation between correlation, around
71% accuracy can be achieved.
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TABLE VII
AVERAGE ACCURACIES OBTAINED BY GRAM-BASED DEEP CORRELATION FEATURES AND LEARNT DEEP CORRELATION FEATURES. THESE EXPERIMENTS

ARE CONDUCTED BASED ON THE OILPAINTING DATASET.

Correlation btw feature maps Correlation btw Correlation
Gram matrix of FM Gram dot Cos.

Gram-based deep corr. features (GDCF) (1) 58.13% (2) 61.28%
learnt from FM learnt from Gram

Learnt deep corr. features (LDCF) (3) 65.37% (4) 71.99%

TABLE VIII
AVERAGE ACCURACIES OBTAINED BY DIFFERENT STYLE

REPRESENTATIONS, BASED ON THE WIKIPAINTINGS DATASET.

Fusion × Content [4] DeCAF6 [4] [18]
Avg. accuracy 47.30% 35.60% 57.00%

GDCF Gram matrix of FM Gram dot Cos.
Avg. accuracy 56.58% 58.19%

LDCF learnt from FM learnt from Gram
Avg. accuracy 63.96% 70.99%

Table IX shows average accuracies obtained based on dif-
ferent style representations, based on the Painting-91 dataset.
Khan et al. [5] integrated handcrafted local and global features
as image representation, which is surpassed by [35] that con-
sidered features extracted from multiple layers of CNN. From
the second row, we see that the Gram-based deep correlation
features provide clear improvement over [35] (71.86% vs.
69.21%). If correlation between correlations is considered
(Gram dot Cos), more improvement (73.59% vs. 69.21%) can
be made.

In LDCF, the features learnt from feature maps have sim-
ilar performance to ’Gram dot Cos’. Unlike performance
improvement seen from Table VIII (63.96% vs. 58.19%),
in Table IX the learnt features are not significantly better.
This may be because the number of training images in the
Painting-91 dataset is much fewer (see Table II). Even so, the
features learnt from Gram matrices still clearly outperform
other settings (78.27%).

To visualize the effectiveness of style classification, we
randomly select 100 paintings from each of the five picked
styles in the Painting-91 dataset. The styles are Abstract
Expressionism, Constructivism, Popart, Post Impressionism,
and Surrealism. For each painting image, we take the re-
sult of the first fully-connected layer of the model shown
in Figure 4 as image representation. This representation is
512-dimensional, and we adopt the t-SNE technique [36] to
map it into a 2-dimensional vector. Figure 8 shows the 2-
dimensional embedding of the selected painting images. From
this figure we clearly see that paintings of the same styles
tend to be embedded into a neighboring area. This visualizes
effectiveness of the learnt correlation features.

B. Other Types of Datasets

With the success of deep correlation features, we are won-
dering if these features can also be used in databases other than
painting images. In [4], in addition to painting images, they
also collected 80K photos from Flickr groups and classified
them into 20 styles. These styles may be related to optical

TABLE IX
AVERAGE ACCURACIES OBTAINED BY DIFFERENT STYLE

REPRESENTATIONS, BASED ON THE PAINTING-91 DATASET.

[5] [35]
Avg. accuracy 62.20% 69.21%

GDCF Gram of FM Gram dot Cos.
Avg. accuracy 71.86% 73.59%

LDCF learnt from FM learnt from Gram
Avg. accuracy 73.20% 78.27%

TABLE X
AVERAGE ACCURACIES OBTAINED BY DIFFERENT STYLE

REPRESENTATIONS, BASED ON THE FLICKR DATASET.

Fusion × Content [4] DeCAF6 [4]
Avg. accuracy 36.80% 33.60%

GDCF Gram matrix of FM Gram dot Cos.
Avg. accuracy 41.76% 43.22%

LDCF learnt from FM learnt from Gram
Avg. accuracy 48.57% 60.04%

techniques (e.g., Macro and Bokeh), atmosphere (e.g., Hazy
and Sunny), Mood (e.g., Serene and Melancholy), and so on.
We can expect that these styles may not be mutually exclusive,
i.e., one image may be related to both Sunny and Romantic.
However, because of the collection mechanism of [4], only
one label is associated with each image. This is viewed as
an unfortunate but acceptable reality of working with a large-
scale dataset.

With the program provided by the authors of [4], we
collected 72,440 photos belonging to 20 styles in total, be-
cause some photos have been unlinked from Flickr. Figure 9
shows five sample photos with the styles Bokeh, Bright, Noir,
Romantic, and Sunny, respectively. This dataset is adopted to
evaluate the proposed deep features.

Table X shows average classification accuracies based on the
Flickr dataset. As can be seen, the GDCF outperforms the deep
features proposed in [4]. With the proposed learning method,
the LDCF significantly improves classification performance.
This verifies that the proposed deep correlation features are
also effective in discriminating styles of natural images. This
may be because texture (which is the information deep corre-
lation features tend to describe) is also an important clue to
present different photography styles.

Another type of images we want to evaluate is illustration
images, in particular clip art images. There is a vast range of
visual styles in clip art images, such as sketches, woodcuts,
cartoon, and gradient-shading. We adopt the illustration dataset
collected in [37], where 4,591 illustrations of 220 styles are
included. Of the 4,591 illustrations, 1,000 illustrations were
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Fig. 8. An illustration showing the two-dimensional distribution of selected painting images in the Painting-91 dataset.

Fig. 9. Five sample photos from the Flickr datasets. From the left to the right, the styles are Bokeh, Bright, Noir, Romantic, and Sunny.

TABLE XI
AVERAGE ACCURACIES OBTAINED BY DIFFERENT STYLE

REPRESENTATIONS, BASED ON THE ILLUSTRATION DATASET.

GDCF Gram matrix of FM Gram dot Cos.
Avg. accuracy 66.73% 68.57%

LDCF learnt from FM learnt from Gram
Avg. accuracy 71.83% 72.44%

collected from the Art Explosion dataset2, and the remaining
3,591 illustrations were from the clipart included in Microsoft
Office. Figure 10 shows sample illustrations of five different
styles. We can clearly perceive style difference between differ-
ent sample illustrations, though the difference or the definition
of style cannot be verbally stated.

Table XI shows average classification accuracies based
on the illustration dataset. We again see the superiority of
LDCF over GDCF. Overall, the classification accuracy is quite
promising (over 72% accuracy for a dataset of 220 styles).

C. Artist Classification

Different artists have different skills and preferences to
make their artworks. Classifying paintings based on style

2http://www.novadevelopment.com

representation can thus be applied to do artist classification.
Here we evaluate the proposed style representations based
on two artist datasets, i.e., the OilPainting Artist dataset and
Painting-91 Artist dataset mentioned in Table II.

Figure 11 shows some paintings produced by two artists,
Paul Cezanne and Vincent van Gogh. Their paintings are
famous artworks categorized into Expressionism. However,
from Figure 11 we can implicitly perceive difference in
painting styles and topics.

Table XII shows average classification accuracies for the
OilPainting Artist dataset, which consists of 105 artists. The
reported average accuracy is obtained based on the five-fold
cross validation scheme. Table XII again shows the superiority
of deep correlation features. Correlation between Gram matri-
ces and Cosine similarity yields 63.17% accuracy that signif-
icantly outperforms the fully-connected layer (55.59%). The
learnt deep correlation features further improve performance
to 64.65% and 69.74% based on the schemes of learning from
feature maps and learning from Gram matrices, respectively.

The Painting-91 Artist dataset consists of 91 artists, and
each artist has 30 to 50 painting images. Table XIII shows
performance comparison between ours (GDCF and LDCF)
and [5][35]. By considering the correlation between Gram
matrices and Cosine similarity, average accuracy 63.17% can
be obtained, which is better than prior studies [5] and [35].
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Fig. 10. Sample illustrations of five different styles.

TABLE XII
AVERAGE ARTIST CLASSIFICATION ACCURACIES OBTAINED BY DIFFERENT
STYLE REPRESENTATIONS, BASED ON THE OILPAINTING ARTIST DATASET.

GDCF fc7 Gram matrix of FM Gram dot Cos
Avg. Accuracy 55.59% 60.90% 63.17%

LDCF – learnt from FM learnt from Gram
Avg. Accuracy – 64.65% 69.74%

TABLE XIII
AVERAGE ARTIST CLASSIFICATION ACCURACIES OBTAINED BY DIFFERENT
STYLE REPRESENTATIONS, BASED ON THE PAINTING-91 ARTIST DATASET.

[5] [35]
Avg. Accuracy 53.10% 56.40%

GDCF fc7 Gram matrices of FM Gram dot Cos
Avg. Accuracy 55.59% 60.90% 63.17%

LDCF – learnt from FM learnt from Gram
Avg. Accuracy – 61.28% 64.32%

The best average accuracy 64.32% is obtained based on LDCF
(learnt from Gram) for this challenging dataset. Comparing
with other experiments, the extent of improvement brought by
LDCF is smaller. This again is due to the small volume of
training data.

D. Influence of Volume of Training Data

From Table IX and Table XIII, we see that performance
improvement tends to be smaller when training data are
fewer. To quantitatively verify this, we combine the collected
OilPainting dataset and the WikiPaintings dataset [4]. Only
images of the 16 styles common in both datasets are combined,
and finally the combined dataset contains 90,572 images. From
each style, 80% of images is randomly selected in the set X
and the remaining 20% is put into the set Y . We intentionally
select 10%, 20%, ..., and 100% of X to respectively construct
ten learning models for LDCF extraction (learnt from Gram
matrices), which are then used to do style classification for
the images in Y . Figure 12 shows the relationship between
classification accuracy and the number of training data (in
percentage). As can be seen, this curve clearly shows the
influence of the number of training data on the performance
of learnt deep correlation features.

VII. CONCLUSION

Inspired by the interesting work [7] that showed the ef-
fectiveness of correlation between feature maps, we transform
such correlations into style vectors, and utilize them to achieve
image style classification. We comprehensively study perfor-
mance variations brought by correlations in different layers,

performance variations of different correlations, and the idea
of inter-layer correlation. In addition to correlations commonly
defined in statistics, we further explore the possibility of
learning correlation between feature maps automatically based
on a neural network. Based on experimental results on various
datasets, including the ones other than painting images, we
demonstrate that in most cases the learnt deep correlation
features yield better performance by a large margin.

In the future, in addition to deep correlation features that
mainly capture texture information, we will explore the impact
of semantics or image attributes on image style classification.
Furthermore, as shown in Fig. 7, some painting styles are more
confused and hardly to be discriminated. To combat this issue,
hierarchical approaches, i.e., doing rough classification first
and then finer classification, may be helpful.
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