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Abstract

Efficient access to broadcasted computer game videos is urgently demanded due to the emergence

of live streaming platforms. The popularity of game video streaming builds a big market showing

commercial potentials and arising many technical challenges. In this work we facilitate efficient access

from two aspects: event detection and highlight detection. By recognizing designated text displayed on

screen when important events occur, we associate game events with time stamps, and accordingly develop

an interface to facilitate direct access. For highlight detection, we jointly consider visual features, event

features, and viewer’s behavior to construct two highlight models based on the psychophysiological

approach and the data-driven approach, respectively. The concatenated highlights then enable compact

game video presentation. To facilitate adaptive live streaming, a novel highlight forecast model is built

to predict whether there will be a highlight in the next seconds, so that the streaming system can allocate

more resource for more important segments on the fly. Comprehensive experiments based on various

experimental settings demonstrate effectiveness of the proposed methods. We believe that this work

is one of the early attempts on analyzing broadcasted computer game videos from the perspective of

multimedia content analysis.

Index Terms: Broadcasted computer game video, event detection, highlight detection, highlight

forecast, genetic algorithm, linear exponential smoothing

I. INTRODUCTION

Online live streaming platforms emerges rapidly in recent years. Streaming video services,

including edited video programs like movies and TV shows, and live broadcast of events like
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sports, festival, and computer games, attract millions of users and cause significant network

traffic on platforms like UStream1, Livestream2, and Twitch3. Among various types of videos,

gaming videos, or the so-called electronic sports, is explosively growing in the aspects of the

number of participants as well as the commercial market. It is also interesting that casual gamers

were found to prefer watching professional gamers rather than playing the game by themselves

[17]. In 2014 there were 100 millions unique users per month watching 16 billion minutes

of streaming video on Twitch. In the same year over 11 millions videos were broadcasted on

this platform per month. Such tremendous amounts of users and network traffic imply much

commercial potential and many technical challenges. Among various issues, efficient access is

obviously a key ingredient to making a streaming platform successful. In this work we will take

League of Legend broadcasted on Twitch as an instance to investigate the efficient access issue,

from the perspectives of events and highlights.

League of Legend (LoL) is a multiplayer online battle arena video game developed by Riot

Games4. It is one of the most popular PC games in several continents such as Europe and North

America. As of January 2014, there are 67 million gamers playing per month, 27 million gamers

playing per day, and over 7.5 million gamers playing at the same time during each day’s peak

play time. Riot Games organizes the League of Legends Championship Series in many countries

and continents. The biggest championship series attracted 32 million viewers online and granted

the champion one million US dollars. From the aforementioned statistics, we see that this is a

big business attracting tremendous amounts of users (gamers and viewers). From the viewpoint

of multimedia research, explosive number of broadcasting videos and rich viewer behaviors,

e.g., giving comments in the chat room, give rise to significant demands as well as research

opportunities on efficient game video access, retrieval, and summarization.

In this work, we make an attempt to analyze game videos in order to facilitate efficient game

video access and compact game representation. Three important components are described as

follows.

• Event detection: Designated messages are shown on screen when important game events

1http://www.ustream.tv
2https://new.livestream.com/
3http://www.twitch.tv/
4http://www.riotgames.com
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occur. We detect events through detecting and recognizing text displayed on screen, and

then construct an index linking events and time stamps of game videos. Automatic text

broadcast, therefore, can be achieved as the byproduct of event detection and can be used

to facilitate efficient access.

• Highlight detection: Important events, prominent visual effects, as well as viewer’s behavior

are jointly considered to detect highlights. Two highlight detection methods are proposed: the

psychophysiological approach based on the arousal model [15] and the data-driven approach

based on support vector machine (SVM). Game highlight like the ones edited by professional

reporters thus can be automatically generated to facilitate efficient browsing. In order to

further improve highlight detection, we find the best subsegment among each candidate

highlight and formulate it as an optimization problem solved by a genetic algorithm.

• Highlight forecasting: From the perspective of a streaming system, network bandwidth can

be more efficiently utilized if streaming bitrates are dynamically adjusted depending on

importance of video content. Based on feature characteristics and highlight modeling, we

forecast whether there will be a highlight in the next few seconds so that the streaming

server can accordingly adapt its streaming settings.

Event detection and highlight detection indeed have well-studied in many video domains.

However, very few studies have been proposed for the newly-emerged game videos. It is worth

mentioning that we propose a new application for a new type of video domain, especially

considering the domain knowledge and special characteristics of game videos. One another

novel component in highlight detection is the optimal subsegment selection based on a genetic

algorithm (details to be described in Section IV-D). This component refines coarse results

given by either the psychophysiological highlight detection approach or the data-driven highlight

detection approach.

Highlight forecast, on the other hand, is relatively rarer in the literature. Although there were

some works on highlight prediction, most of them focus on estimating the degree of highlight

or determining whether a given video segment contains highlight or not. We, however, focus

on whether there will be a highlight in the next few seconds. To our best knowledge, very few

studies have been proposed on this issue.

Overall, the contributions of this work are threefold:

• We apply state-of-the-art event detection and highlight detection methods to a newly-
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emerged video domain and demonstrate practical applications.

• We formulate highlight refinement as an optimization problem and systematically solve it,

in order to improve the results obtained by either the psychophysiological approach or the

data-driven approach.

• We propose a novel highlight forecast application in order to facilitate adaptive game

streaming, which would largely decrease cost of a streaming platform and simultaneously

maintain user experience.

The rest of this paper is organized as follows. Sec. II provides literature survey. Sec. III

describes details of event detection. Feature extraction and highlight models are described in

Sec. IV, followed by the proposed highlight forecast model in Sec. V. Sec. VI provides perfor-

mance evaluation from various perspectives, and Sec. VII concludes this paper.

II. RELATED WORKS

In this section we review related literature from three perspectives: live streaming systems,

game video analysis, and video event detection and summarization.

A. Live Streaming Systems

As the emergence of live streaming systems, many works have been proposed to study such

systems from various perspectives. Kaytoue et al. [17] focused on electronic sports videos

streamed by Twitch and advocated that much potential revenue can be made to professional

gamers, casters, and streaming platforms. They also showed that number of viewers is predictable

and explainable. Pires and Simon [23] presented a dataset consisting of data collected from two

main user-generated live streaming systems, i.e., Twitch and live service of YouTube. With

this rich dataset, they studied overall bandwidth, number of unique channels, and popularity

distribution in these systems. In [22], some observations from Twitch motivated them to imple-

ment adaptive bitrate streaming in order to reduce delivery bandwidth and to increase quality

of experience of viewers. Hamilton et al. [14] presented an ethnographic investigation of the

live streaming of video games on Twitch. They interviewed several Twitch users and found that

difficulty of interaction influenced user’s feeling. They explored the design problems and the

implications of streaming systems as clues to improve not only the Twitch streaming system but

also other streaming services.
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B. Game Video Analysis

Studies designed for game videos, especially from the perspective of visual analysis, are

quite few. Here we survey literature related to visual analysis for game videos. Douglass [9]

utilized several image processing and computer vision techniques to show gameplay recording.

For example, keyframes of game recording are shown in a grid manner, and many frames are

superimposed to create average images showing recurrent visual artifacts. Lewis et al. [18]

analyzed player’s actions, such as actions per minute and spatial variance of action, to discover

the correlation between actions and winning games. Not surprisingly, they found that gamers

able to most quickly execute actions tend to win. Rioult et al. [25] extracted topological clues,

such as the area of polygon where players move and the inertia of the team, to predict outcomes

of multiplayer online battle arena games. Riegler et al. [24] developed a set of tools like zoom

and drawing to annotate computer game videos, so that users can communicate general concepts

of a specific game.

C. Video Event Detection and Summarization

Video event detection, highlight extraction, and summarization have been widely studied for

years. In this section, we briefly describe some of the most recent works based on video genres,

including sports videos, movies, TV shows, and consumer videos. Generally, no matter which

video genre, the research trend starts from purely content-based analysis to adoption of external

knowledge such as webcast text and social media. Most recently, crowdsourcing techniques and

multiple resource integration also enable more advanced analysis.

The Bagadus system [26] seamlessly integrated data from multiple cameras mounted in a

stadium and data from sensors on soccer players, and provided a real-time interaction subsystem

for experts to annotate soccer events. This system enables a user to follow particular player(s),

view events in the representation of panorama videos, and create video summaries. Annotating

events by experts is expensive, and thus Sulser et al. [27] proposed to adopt the crowdsourcing

technique to integrate annotations from crowd workers. A Bayesian network-based method was

proposed to detect events for soccer videos in [29]. The proposed method captured dependencies

among extracted features, based on the automatically learnt joint distribution of variables. In

addition to conventional highlight events like goals and penalty kicks, Nguyen and Yoshitaka

[21] proposed to include scenes of intensive competition and emotional moments in soccer video
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summaries. They measured interest level of a video clip based on cinematographic features and

motion features. To annotate baseball videos, Chiu et al. [5] aligned high-level webcast text with

video content in order to avoid unstable performance caused by purely content-based methods.

For basketball videos, Hu et al. [16] proposed a robust player tracking system, and adopted player

trajectories to detect highlight events and conduct tactic analysis. Chen and Chen [3] proposed

a framework consisting of scoreboard detection, text/video alignment, and replay detection for

basketball videos. Chen et al. [4] formulated video summarization as a discrete optimization

problem and solved it by approaches originally proposed for resource allocation.

For movies, Evangelopoulos et al. [11] modeled time-varying perceptual importance of movies

by fusing multimodal saliency, including auditory saliency derived from frequency analysis,

visual saliency derived from intensity and color, and linguistic saliency derived from part-of-

speech tagging. The multimodal saliency is then used to develop a generic video summarization

algorithm. Tsai et al. [30] mined relationship between role-communities, and developed a movie

summarization method based on social power of role-communities. Lu et al. [20] summarized

movies from the auditory perspective. Important audio events such as cheer, laugh, and gunshot

were detected and concatenated to form video summaries. Zhao et al. [34] summarized movies

based on affective content analysis. Based on the extracted audio-visual affective features with a

well-developed transformation, affective curves indicating types and intensities of emotions are

formed, and the most affective video shots were selected in the summary.

Duan et al. [10] detected events in consumer videos by leveraging a large number of loosely

labeled web images from multiple sources. They developed a decision function to select most

relevant source domains and achieved much performance gain in event recognition. Dang and

Radha [8] proposed an entropy-based measure of the heterogeneity of image patches, and utilized

its temporal variation to achieve key frame extraction and video skimming for consumer videos.

The idea of sparse coding reconstruction was adopted to do consumer video summarization in

[7] and [33], while the former [7] used the entire video for reconstruction and needed much

computation, and the latter [33] largely reduced computational cost by learning a dictionary by

group sparse coding.
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Fig. 1. The flowchart of event detection.

III. EVENT DETECTION

In League of Legends (LOL), important events like someone slaying others are presented as

text messages on screen, as shown in Fig. 1(a). By recognizing this message and associating it

with the corresponding time stamp, text broadcast showing the game progress can be generated.

Fig. 2 shows the interface displaying the generated text broadcast of a game. Such presentation

facilitates users to grasp the game progress at a glance and enables event-based access of the

game video.

Fig. 1 shows the flowchart of event detection. For each video frame, we first apply the Sobel

edge detector to extract edges (Fig. 1(b)), and conduct binarization to filter out weak edges

(Fig. 1(c)). By morphological operations including dilation and erosion (Fig. 1(d)), more noisy

edge pixels are filtered out, and the minimum bounding boxes of connected edge pixels are

determined. Too small boxes are finally discarded (Fig. 1(e)). Although a more elegant bounding

box determination method like the one proposed in [31] can be used, we found the proposed

simple method already achieves satisfactory results.
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Fig. 2. The interface showing the generated text broadcast.

TABLE I

TEXT SHOWING IMPORTANT EVENTS IN LOL. THE TERMS (A) AND (B) COULD BE REPLACED WITH GAMER’S NAMES.

S1 Welcome to Summoner’s Rift! S2 Thirty seconds until minions spawn.

S3 Minions have spawned. S4 First Blood!

S5 (A) has slain (B)! S6 (A) is on a killing spree!

S7 (A) is on a Rampage! S8 (A) is Unstoppable!

S9 (A) is Dominating! S10 (A) is Godlike!

S11 (A) is Legendary S12 The red team has slain the Dragon!

S13 The red team has slain Baron Nashor! S14 (A) has destroyed a blue turret!

S15 (A) has destroyed a blue inhibitor! S16 A minion has destroyed a blue turret!

Fig. 3. Samples of detected text regions. Top: regions with clear background; bottom: regions with cluttered background.
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We employ the Tesseract OCR package5 to recognize text in each detected bounding box. Let

W = {w1, ..., wM} be the set of recognized words. We compare W with predefined sentences S1,

..., and S16 shown in Table I that would be displayed when the corresponding events occur. The

bounding box consisting of W is claimed to represent the event i∗ if i∗ = arg maxi |W
⋂
Si|,

where | · | denotes the number of words in the input set. If recognized words in a box do not

match with any of Si, this box is viewed as noise and discarded.

The detected text regions are often with cluttered background, which impedes accurate text

recognition. Fig. 3 shows samples of detected regions. The two regions at the top row are with

clear background, while the two at the bottom row are with cluttered background. According

to our experience, accuracy of the Tesseract OCR package on such data is only around 0.6.

To resist to noises, we collect matching results in a duration and determine the occurred event

by majority voting. The event text is usually displayed for 3 to 4 seconds. If a text region is

recognized to contain Si, we would check the recognition results of video frames in the following

4 seconds. This 4-second clip is determined to have the event j∗ if j∗ = arg maxj ∆j , where

∆j =
∑K

k=1 δ(fk, Sj), δ(fk, Sj) = 1 if the frame fk contains text Sj , and K is the number of

video frames in the considered clip.

IV. HIGHLIGHT DETECTION

To detect highlights in a game video, we extract features from both the video and viewers, and

then construct highlight models based on the psychophysiological approach and the data-driven

approach, respectively.

A. Features

Whether a video segment is attractive can be described from several perspectives. In this work,

three types of features are extracted: visual features like motion intensity and frame dynamics,

event features indicating the occurrence of events, and viewer’s behavior features derived from

chat logs. We divide a given game video into pieces of one-second segments, and extract the

following features from each of them.

5https://code.google.com/p/tesseract-ocr/
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• Motion intensity (G1). Generally there is more motion when a highlight occurs, e.g., battle

between two groups of gamers. We extract motion intensity between consecutive video

frames, and average intensity values over all frames in a one-second segment. Higher motion

usually indicates more interesting visual content. Suppose that the set of motion vectors

between the ith frame and the (i + 1)th frame is Ui = {u1, ...,un}. The motion intensity

between these two frames is defined as
∑n

j=1‖uj‖, where ‖uj‖ denotes the norm of the

motion vector uj . More non-zero motion vectors with larger norms cause higher motion

intensity.

• Frame dynamics (G2). Special visual effects often occur when gamers invoke special attack

abilities, and appearance of frames would suddenly change. We extract color histogram

difference between frames, and average frame difference over all frames in a one-second

segment. Usually larger frame dynamics indicates more interesting visual content.

• Number of gamers (G3). Numbers of gamers involved in a battle is a strong clue to show

how important this battle is. More gamers indicate more violent or more important events.

Because name of each gamer is always displayed right above the corresponding avatar, as

shown in Fig. 1(a), we can calculate the number of gamers appearing on screen by detecting

text regions showing gamers’ names. The region detection method mentioned in Sec. III

is again adopted to detect text regions in appropriate sizes, i.e., not as large as the event

text region, as well as not too small. We don’t recognize words in these regions, because

it is not necessary to know real names of these gamers. The number of detected bounding

boxes is then viewed as the number of gamers appearing on screen. The average number

of gamers over all frames of a one-second segment is then calculated as a feature.

• Event ratio (G4). Occurrence of important events certainly indicates interesting content.

Based on the events that have been detected by the method mentioned in Sec. III, we

calculate the ratio of duration of events to the duration of a one-second segment as the

feature. A larger ratio indicates that more events occur in this segment, and this segment is

thus more attractive.

• Number of viewers chat (G5). Considering user’s behavior is important in event detection

for social media platforms [13]. In addition to visual content, we also extract clues from chat

logs given by viewers in online broadcasting. Chats directly reflect how viewers perceive

the events just happened. More viewers chat or say praising words like “What a shot” or
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“WOW” when important events occur. We thus calculate the number of speaking viewers

per second as a feature. Note that the burst of chats emerge after important events occur.

Therefore, the feature extracted from the tth segment actually indicates the importance of

the (t− b)th segment. In the evaluation section, we will show this effect with varied b’s.

• Number of emotion symbols (G6). Twitch designs several emotion symbols to let viewers

quickly express their feeling. We calculate the average number of emotion symbols over all

frames of a one-second segment as the feature.

B. Arousal Model for Highlight Detection

We model game highlight by two approaches: the psychophysiological approach based on

the arousal model [15] and the data-driven approach based on support vector machine (SVM).

From psychophysiological experiments, when a user watches a video, the level of arousal rises

as motion intensity increases. In this work, we investigate combining more clues in addition

to motion to build the arousal model. As a data-driven approach, we can collect features

extracted from highlighted/non-highlighted segments, and instead view highlight detection as

a classification problem that can be solved by constructing an SVM classifier.

Before highlight detection, we detect shot change boundaries based on color histogram dif-

ference and edge change ratio [19]. We use one-second video segment as the unit for feature

extraction and arousal model construction, while use video shot as the unit for SVM model

construction.

Evolution of each feature mentioned above describes the level of arousal from one perspective.

We can jointly consider all perspectives by appropriately combining them. Inspired by [15], the

level of arousal of the kth video segment can be described as

A(k) = F (Ĝi(k)), i = 1, ..., 6; k = 1, ..., N, (1)

where Ĝi(k) is the ith feature value Gi after the smooth process, and the function F is for

combining arousals from various perspectives. The smooth process is defined as

Ĝi(k) =
maxk(Gi(k))

maxk(G̃i(k))
× G̃i(k), (2)

where G̃i(k) is the result of convolving the curve Gi(k) with a Kaiser window of the length

and shape parameter l and β, respectively, i.e., G̃i(k) = Gi(k) ∗K(li, βi). The smooth process
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is designed to account for the degree of memory retention, and ensures that arousal does not

change abruptly for consecutive video segments. The normalization defined in eqn. (2) makes

different feature curves comparable, and eases curve integration. The function F in eqn. (1)

can simply be a linear combination, and is defined as F (Ĝi(k)) = 1
6

∑6
i=1 Ĝi(k). Fig. 4 shows

examples of arousal curves obtained from six features and the final integration curve.

Given a test video, we extract features from all one-second segments and construct arousal

curves, and H highlight parts are detected by selecting H highest peaks of the integrated arousal

curve. Suppose that the jth video segment vj corresponds to the ith selected peak, the video

segments preceding (vp’s) or following (vq’s) the jth video segment vj are all selected as in the

ith highlight Hi if they all belong to the same video shot Sj:

Hi = {vp, vj, vq|vp ∈ Sj, vq ∈ Sj,

p = j − 1, j − 2, ...; q = j + 1, j + 2, ...}.
(3)

C. SVM Model for Highlight Detection

In this model, we view highlight detection as a classification problem, i.e., classifying each test

segment as a highlight or not. Here we use video shot as the analysis unit, and describe a shot by

features extracted from one-second segments belonging to the same video shot. Mean, maximum,

minimum, variance, and dynamic range (maximum minus minimum) of motion intensity in a

shot, for example, are calculated. These derived features from G1 to G6 are concatenated as a

30-dimensional feature vector to represent a video shot.

We collect highlight/non-highlight video shots as positive/negative examples, and utilize the

libSVM package [2] to train an SVM classifier with probability estimation. Given an unknown

video shot, the SVM model determines whether it is a highlight shot or not. Note that we also

can estimate the probability of being a highlight as well. This probability will be used in the

highlight forecast model described later.

D. Optimal Subsegment Selection

The unit of highlights selected in the aforementioned methods is video shot, i.e., boundaries of

a highlight certainly coincide with boundaries of shots. However, professional editors rarely limit

themselves with shot boundaries when they select highlights. It is often that an edited highlight
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Fig. 4. Arousal curves constructed from different features (1st row to 6th row, Ĝ1(k) to Ĝ6(k)), and the integrated curve (7th

row, A(k)).

only includes the most important part of a video shot. Therefore, according to our preliminary

experiments, we found that performance of highlight detection suffers from low precision value,

i.e., the selected highlights are too long to be concise.

Given a “candidate” highlight selected by the arousal model or the SVM model, we would

like to find a subsegment of it that most matches with the characteristics of true (manually

edited) highlights. To narrow the gap between low-level features and high-level highlights, we

adopt the idea of mid-level representation proposed in semantic concept analysis [6]. Features

from G1 to G6 are first modeled by parametric models, from which parameters are viewed as

mid-level features for building a high-level model. Details of the two-stage modeling approach

are described below.
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At the first stage, from the evaluation dataset we collect the true highlights {H1, ..., HN} and

extract associated features G1 to G6. We view all G1 features, for example, extracted from the

true highlights constitute a set, and then fit the distribution of G1 by a Gaussian mixture model

(GMM) M1 =
∑M

i=1wiN (µi, σi), where wi is the weight of the ith 1-dimensional Gaussian,

and N (µi, σi) is the ith Gaussian with mean µi and standard deviation σi, respectively. We view

the parameters wi, µi, and σi as mid-level features describing distribution of G1. In this work,

three Gaussian mixtures are used to build this GMM, i.e., M = 3, and thus in the G1 aspect we

totally extract 3× 3 = 9 mid-level features (3 parameters for each mixture, and we have totally

3 mixtures). From the perspectives of G1 to G6, we describe all distributions by 9 × 6 = 54

mid-level features.

At the second stage, the collection of 54-dimensional mid-level feature vectors is again

described by a mid-level Gaussian mixture model M̂, where the number of mixtures is also set

as 3. We extract mid-level feature vectors from true highlights, and then adopt the expectation-

maximization algorithm to construct the model M̂.

Given a candidate highlight starting from the (ta)th second to the (tb)th second, denoted as

[ta, tb], the problem of finding the optimal subsegment [t∗1, t
∗
2] that best matches with the model

M̂ is formulated as follows.

(t∗1, t
∗
2) = arg max

t1,t2
p(F([t1, t2])|M̂)

subject to t1 < t2; ta ≤ t1; t2 ≤ tb; t2 − t1 > ε

(4)

where F(t1, t2) denotes the mid-level feature vector of the subsegment [t1, t2]. p(F([t1, t2])|M̂)

is the probability of the mid-level feature vector F([t1, t2]) generated by the Gaussian mixture

model M̂. The selected subsegment [t∗1, t
∗
2] must start after ta and ends before tb, and its length

must be no less then ε seconds. The optimal subsegment is found by maximizing the likelihood

value. The parameter ε is dynamically set as the 80% of the total length of the candidate highlight.

That is, if the length of the candidate highlight segment is T seconds, the parameter ε is 0.8×T .

This setting avoids selecting a very short subsegment from the candidate highlight.

We solve the aforementioned optimization problem by a genetic algorithm. If the length of

the candidate highlight is T seconds, a potential subsegment [t1, t2] is represented as a T -bit

binary chromosome c = c1, ...., cT , where cj = 0 for j = 1, ..., T , except for ct1 = 1 and ct2 = 1.

For example, 010010 denotes a subsegment starting at the 2nd second and ending at the 5th
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Fig. 5. Illustration of the crossover operation and corresponding postprocessing.

second, from a six-second candidate highlight segment. We call the bit with 1 as a 1-bit in the

following. To start the genetic algorithm, we initialize P chromosomes of length T to form the

initial population, and evaluate the fitness (objective function value) of each chromosome by

eqn. (4). We then select chromosomes and apply crossover and mutation operations to generate

the next-generation population. The processes of fitness evaluation, chromosome selection, and

next-generation population generation keeps iterating until the predefined stop criterion meets.

In this work, we run the process 100 times and select the optimal subsegment corresponding to

the chromosome with the maximum fitness.

About chromosome selection, we form a mating pool by selecting chromosome one by one

from the initial population based on the roulette-wheel selection scheme. That is, a chromosome

ck is selected into the mating pool according to the probability f(ck)/
∑P

k=1 f(ck), where the

numerator f(ck) is the fitness of the chromosome ck, and the denominator is the total fitness of

the initial population. This scheme more likely selects better (with higher fitness) chromosomes

to generate the next population. In this work, totally 60 chromosomes, i.e., P = 60, are selected

into the mating pool. More or less numbers of chromosomes can be selected, and the genetic

algorithm can still get convergence with appropriate number of iteration.

We randomly select a pair of chromosomes from the mating pool as the parents, and employ

the crossover operation to generate a pair of offspring chromosomes. Let us denote the two

chromosome as c = c1, ...., cT and c′ = c′1, ...., c
′
T . A number between 2 and T − 1 is randomly
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chosen, say s, to be the location of the crossing site. We then perform the crossover operation

by exchanging substrings of the parents to the left of the crossing site. That is, one offspring

chromosome is ĉ = c1, ..., cs−1, c
′
s, c
′
s+1, ..., c

′
T , and another is ĉ′ = c′1, ..., c

′
s−1, cs, cs+1, ..., cT . The

crossover operation conceptually exchanges the ways two chromosomes define the beginnings

and the endings of selected subsegments.

Note that the generated offspring chromosomes not necessarily contain exactly two 1-bits.

There are four cases after the crossover operation. (1) If there is exactly one 1-bit on the left

side and on the right side of the crossing site, no future postprocessing is needed, as shown in

the first case of Fig. 5. (2) If any one side of the crossing site contains no 1-bit, this offspring

chromosome is said to be invalid and is discarded, as shown in the first offspring of Fig. 5(b)

and the second offspring of Fig. 5(c). (3) The left side of the crossing site contains two 1-bits

and the right side contains only one 1-bit. The two 1-bits at the left side turn out to come from

the same partent, and we randomly select one of them and set it as 0 to ensure only one 1-bit

appears at each side. The second offspring chromosome of Fig. 5(b) shows this case. (4) If both

sides of the crossing site contain two 1-bits, for each side we randomly select one of them and

set it as 0. The first offspring chromosome of Fig. 5(c) shows this case.

After the crossover operation, we apply the mutation operation by randomly moving the

location of 1-bit with a given (small) probability. Taking a chromosome c = c1, ...., cT , where

ct1 = 1 and ct2 = 1, 1 < t1 < t2 < T as an instance, if the 1-bit at t1 is decided to be mutated, it

is set as 0, and one another bit located between 1 and T , except for that at t1 and t2, is randomly

selected and set as 1.

V. HIGHLIGHT FORECAST

Although live game streaming is quite popular in industry, there is still much room to improve

user experience. Zhang and Liu [32] reported that Twitch viewers suffer from ≥ 12 seconds lags

on average, which is unacceptable because real-time interactivity is required between streamers

and viewers. To improve user experience, Twitch was forced to build new date centers and

upgrade existing ones. In [22], Twitch was estimated to consume 1Tbps bandwidth on average

in 2014, and that cost Twitch over 10 million dollars per month. Therefore, how to save bandwith

without sacrificing user experience becomes an important issue.

To tackle this problem, one of the best strategies for a streaming platform is to dynamically
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adjust streaming bitrates so that the delivery bandwidth can be reduced and quality of experience

of viewers can be maintained. Recently, Dynamic Adaptive Streaming over HTTP (DASH) was

implemented on Twitch to verify the effectiveness of adaptive streaming [22]. They proposed

two simple strategies respectively based on number of viewers and popularity of channel to adapt

streaming bitrate. We advocate that adapting bitrate based on game content is another interesting

alternative. Fan-Chiang et al. [12] proposed a segment-of-interest driven live game streaming

system, which dynamically allocates more resources to more important segments. This system

coincides with our concept: if we can forecast whether there will be a highlight in a few seconds,

this information could be the key for the server to allocate resources.

To forecast a highlight, a simple method is that we assume the probability of highlight

occurrence is the same in a locality. The local mean probability at the tth second is calculated

as

mt = αht + (1− α)mt−1, (5)

where ht is the probability of highlight occurrence at the tth second, given by the SVM-based

highlight detection model. The parameter α is a smooth constant controlling the balance between

the current observation ht and the previous smooth value mt−1. The probability of highlight

occurrence at the (t+ 1)th second can be simply estimated as ĥt+1 = mt.

The aforementioned method assumes there is no trend in the data. However, more visual

clues, such as gamers gathering together, appear when a highlight tends to occur. Therefore, we

adopt Brown’s linear exponential smoothing method [1] that can more effectively capture the

time-varying trend to forecast highlight probability. Let m′ denote the singly-smoothed series

obtained by applying the simple smooth process mentioned above. That is,

m′t = αht + (1− α)m′t−1, (6)

where ht is the probability of highlight occurrence at the tth second, given by the SVM-based

highlight detection model. Let m′′ denote the doubly-smoothed series obtained by applying the

simple smooth process to series m′:

m′′t = αm′t + (1− α)m′′t−1. (7)

The probability of highlight occurrence at the (t+ k)th second is estimated as

ĥt+q = Lt + kTt, (8)
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where Lt = 2m′t−m′′t−1 is the estimated level at the tth second, and Tt = (α/(1−α))(m′t−m′′t−1)

is the estimated trend at the tth second. This estimation model starts with m′1 = m′′1 = h1, i.e.,

setting both series equal to the first observed value at t = 1. By jointly considering the estimated

level and the trend, we estimate the probability of highlight that will occur q seconds later. In

the evaluation section, we will evaluate accuracy of highlight forecast with different settings on

q.

Note that we need to carefully examine the probability ht. Because solely estimating this

probability based on features in a one-second segment is too limited and often incurs worse

performance, we actually estimate ht based on features extracted from the (t − p)th second to

the tth second. The influence of the parameter p on highlight forecast performance will be shown

in the evaluation section.

VI. EVALUATION

A. Evaluation Dataset

We collect 24 games of 2014 League of Legends World Champion that were broadcasted by

Twitch as the evaluation dataset. As the highlight ground truth, we collect manually-edited high-

lights of each game that were produced by a team6 constituted by professional gamers. Table II

shows average lengths of six game series and the edited highlights. To evaluate performance

of text broadcast generation, we also collect text broadcast corresponding to each game from a

computer game website7. Availability of these data in different web platforms shows that these

games widely attracted gamers around the global. To evaluate performance of event detection,

we examine each game video and manually label events and their corresponding timestamps.

B. Automatic Text Broadcast

Performance evaluation of text broadcast can be conducted from two perspectives: overlap

between the detected events and manual text broadcast, and accuracy of the detected events.

From the first perspective, we manually examine the overlap between text broadcast ground

truth and detected events. It is worth emphasizing that the number of detected events is often

6https://www.youtube.com/user/Kazawuna/about
7http://www.tgbus.com/

March 10, 2016 DRAFT



18

TABLE II

STATISTICS OF THE EVALUATION DATASET.

Videos Avg. Length (mm:ss) Avg. Length of Highlight (sec.)

2014 NWSa VS OMG GAME 1–3 51:28 550

2014 SHR VS EDG GAMES 1–5 40:27 459

2014 SHR VS OMG GAMES 1–5 44:08 594

2014 SHR VS SSW GAMES 1–4 34:36 441

2014 SSB VS C9 GAMES 1–4 42:28 628

2014 SSB VS SSW GAMES 1–3 35:42 517

Average 40:35 531

aNWS, OMG, SHR, EDG, SSW, SSB, and C9 are all team names.

more than that mentioned in the manually edited text broadcast. The text broadcaster often

summarizes several consecutive events into a single battle due to space limitation. Therefore,

we define the hit rate of detected events as the ratio of the number of detected events that are

really included in records of text broadcast. Table III shows average hit rates of detected events

in different game series. As can be seen from this table, over 90% of detected events are really

included in manual text broadcast, which serve as good clues for highlight detection.

From the second perspective, we calculate the average precision values (the ratio of the number

of detected events that are really important events to that of all detected events) and the average

recall values (the ratio of the number of detected events that are really important events to

that of all events defined in ground truths) of detected events in each game series (Table IV).

From this table we clearly see that the proposed event detection method achieves very high

precision. Relatively worse performance is obtained in terms of recall, due to mis-detection

caused by extremely cluttered background. Moreover, sometimes several consecutive events occur

intensively with dazzling visual artifacts, and our method fails to detect all of them.

Fig. 6 shows visual samples of three detected events. From top to bottom, these samples are:

A gamer is on a rampage (S7 shown in Table I); a gamer is unstoppable! (S8); and a gamer

has slain another gamer (S5). We can see that event messages are shown on the screen, very

probably with cluttered background.
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TABLE III

AVERAGE HIT RATES OF DETECTED EVENTS, CALCULATING BASED ON OVERLAP BETWEEN THE TEXT BROADCAST

GROUND TRUTH AND DETECTED EVENTS.

Videos Average Hit Rates

2014 NWS VS OMG GAME 1–3 0.89

2014 SHR VS EDG GAME 1–5 0.93

2014 SHR VS OMG GAME 1–5 0.92

2014 SHR VS SSW GAME 1–4 0.89

2014 SSB VS C9 GAME 1–4 0.96

2014 SSB VS SSW GAME 1–3 0.95

Overall 0.92

TABLE IV

AVERAGE PRECISION AND RECALL VALUES OF DETECTED EVENTS.

Videos Average Precision Average Recall

2014 NWS VS OMG GAME 1–3 0.98 0.87

2014 SHR VS EDG GAME 1–5 0.99 0.78

2014 SHR VS OMG GAME 1–5 1.00 0.82

2014 SHR VS SSW GAME 1–4 0.98 0.74

2014 SSB VS C9 GAME 1–4 0.98 0.79

2014 SSB VS SSW GAME 1–3 0.99 0.78

Overall 0.99 0.79

C. Highlight Detection

Performance measurement. Performance of highlight detection is measured in terms of pre-

cision, recall, and F-measure. Let G denote the set of true highlight segments and D the set

of detected highlight segments. The precision rate is calculated as p(Ci, Cj) =
|Ci∩Cj |
|Cj | , where

Ci ∈ G and Cj ∈ D. The notation | · | denotes the length in term of seconds. The recall rate is

calculated as r(Ci, Cj) =
|Ci∩Cj |
|Ci| . By jointly considering precision and recall, the F-measure F

is calculated as:

F =
1

Z

∑
Ci∈G

|Ci|max
Cj∈D
{f(Ci, Cj)}, (9)

f(Ci, Cj) =
2× p(Ci, Cj)× r(Ci, Cj)

p(Ci, Cj) + r(Ci, Cj)
, (10)
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(a)

(b)

(c)

Fig. 6. Visual samples of three detected events. From top to bottom: A gamer is on a rampage (S7 shown in Table I); a gamer

is unstoppable! (S8); and a gamer has slain another gamer (S5).

The value Z =
∑

Ci∈G |Ci| is the normalization factor. Higher F-measure means better detection

performance.

Feature Settings. In the following, we first evaluate the influence of different feature settings

on highlight detection based on the arousal model. As mentioned in Sec. IV-A, chats usually

largely emerge after some events happen for a while. We evaluate F-measure of detection results
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Fig. 7. Backtracking parameters vs. precision of highlight detection.

based on different backtrack settings, i.e., the parameter b mentioned in the description of G5

and G6 (Sec. IV-A), and show performance variations in Fig. 7. From this figure, the best

detection performance can be achieved if we backtrack 20 seconds for G5 and 11 seconds for

G6, respectively. That means, G5 and G6 of the tth video segment (at the tth second) is actually

extracted from the text at the (t + 20)th second and at the (t + 11)th second, respectively.

The difference between settings for G5 and G6 is not surprising, because viewers usually type

predefined emotion symbols just after some events happen, and then type text comment. We use

these backtrack settings in the following experiments.

Generally three types of features are used in highlight detection, i.e., visual features (G1 to

G3), event feature (G4), and viewer behavior features (G5 and G6). We separately evaluate each

type of features as well as jointly consider all of them, and show highlight detection performance

in Table V. Comparing the first three rows shows that visual features are the most robust, which

is not surprising because viewer’s behavior (chat) is unlimited and is often noisy. By jointly

considering all features, the best highlight detection performance can be obtained.

Smooth Settings. The influence of the size of Kaiser window, which simulates human’s short-

term memory and reduces noise, on highlight detection performance is shown in Fig. 8. Overall,

detection performance sharply increases as the window size increases from 5 seconds to 15

seconds, and is gradually decreasing as the window size increases further. From this figure we
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TABLE V

PERFORMANCE OF HIGHLIGHT DETECTION BASED ON THE AROUSAL MODEL WITH DIFFERENT FEATURE SETTINGS.

Features Precision Recall F-measure

G1, G2, G3 (visual) 0.501 0.584 0.540

G4 (event) 0.495 0.540 0.517

G5 and G6 (chat) 0.437 0.538 0.482

G1 to G6 0.545 0.626 0.583
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Fig. 8. Kaiser window size vs. performance of highlight detection.

set the size of Kaiser window for constructing arousal curves as 15 seconds in the following

experiments.

Peak Selection and Segment Boundaries. After the integrated arousal curve is constructed,

appropriate number of peaks are selected and the corresponding video segments are extracted as

game highlights. Therefore, two problem arises: how many peaks should we pick, and how to

determine the video segment corresponding to each peak? We design two schemes to deal with

these problems.

• Scheme 1: We select the 16 highest peaks. For a peak located at the tth second, the video

segment ranging from t−17 seconds to t+17 seconds is extracted as the highlight. Sixteen

extracted video segments corresponding to the 16 selected peaks are concatenated as the

final highlight. The number of selected peaks and the setting of selected ranges are from

statistics of the data collection, i.e., there are averagely 16 highlight segments in a game,
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TABLE VI

PERFORMANCE OF HIGHLIGHT DETECTION BASED ON THE AROUSAL MODEL WITH DIFFERENT PEAK SELECTION SCHEMES.

Features Precision Recall F-1 measure

Scheme 1 0.486 0.653 0.557

Scheme 2 0.545 0.626 0.583

and each segment averagely lasts 34 seconds.

• Scheme 2: An iterative selection scheme is proposed here. Let {P1, ..., PN} denote the

set of N peaks that have already been selected. The average peak value is calculated as

P̄ = 1
N

∑N
i=1 Pi. The (N + 1)th highest peak PN+1 will also be selected as highlight if

PN+1 > 0.8× P̄ . We sequentially select highest peaks until the next highest peak does not

meet the criterion. For a peak located at the tth second, we select the video shot containing

the tth second as the highlight. This selection design makes boundaries of highlight segments

coincide with shot boundaries.

Table VI shows highlight detection performance based on the two different peak selection

schemes. As can be seen, although Scheme 1 gives highlights that best match with the average

statistics from the training data, the adaptive designs in Scheme 2 yields much better precision

and thus yields better detection performance in terms of F-measure.

Arousal model vs. SVM model. After the investigation mentioned above, we adopt the best

feature settings to extract features, and accordingly train the SVM model for highlight detection.

In the following experiment, we adopt the five-fold cross validation scheme to evaluate the SVM

approach. Table VII shows highlight detection performance comparison between the arousal

model and the SVM model. The rows with SS in the parentheses denote obtained performance

with subsegment selection mentioned in Sec. IV-D. From this table we can see that, although

both models yields similar precision rates, the SVM model achieves much higher recall rates.

In the arousal model, we smooth feature values to construct arousal curves. The smooth oper-

ation reduces noises but also causes information loss, and might be the reason of lower recall

rate. Based on this experiment, we conclude that the SVM model generally outperforms the

arousal model. Comparing performance with and without subsegment selection, we observe that

more performance gain can be achieved for the SVM model. Another observation is that the
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TABLE VII

PERFORMANCE OF HIGHLIGHT DETECTION BASED ON THE AROUSAL MODEL AND THE SVM MODEL.

Models Precision Recall F-1 measure

Arousal model 0.545 0.626 0.583

Arousal model (SS) 0.557 0.620 0.587

SVM model 0.520 0.821 0.637

SVM model (SS) 0.535 0.806 0.644

subsegment selection process only gives marginal improvement over the baseline cases. After

careful examination, we found that the main problem is not the malfunction of the optimization

algorithm, but the effectiveness of features. Integrating more effective game-specific features is

thus an important research direction for the future.

Tolerance on detection performance. In eqn. (9) and eqn. (10), precision, recall, and F-measure

can be unity only when the detected highlight is 100% overlapped with the ground truth. However,

professional reports usually cut video shots at the time instant right before/after important events

occur. On the other hand, what viewers want is compact representation, and viewers are usually

satisfied with detected highlights with more than 50% overlapping with the “real highlights”.

Motivated by the PASCAL VOC object detection task, where a correct detection is claimed

if the detected object is overlapped with the ground truth by over 50%, we evaluate detection

performance variations with various tolerance settings. The tolerance factor is 0 in eqn. (9) and

eqn. (10), and is 0.3 if we view a detected highlight with more than 70% overlapping with the

ground truth as a correct detection.

Fig. 9 shows performance variations based on different tolerance factors. As expected, per-

formance increases if we allow more tolerance. For the arousal model and the SVM model, the

F-measures respectively increase to 0.70 and 0.77 if we set the tolerance factor as 0.5. These

results are promising and show the effectiveness of both highlight models.

Fig. 10 shows selected keyframes from a highlight automatically detected from 2014 SHR

vs. OMG Game 3. This was a fierce battle starting from the gamer “Cloud” of team OMG

slew the gamer “Uzi” of team SHR (Fig. 10(b)), followed by the gamer “Loveling” killing

“Zero” (Fig. 10(c)). The team SHR then struck back by the gamer “corn” consecutively killing

two rivals (Fig. 10(e) and Fig. 10(f)). The gamer “Gogoing” of team OMG then aggressively
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Fig. 9. Detection performance vs. different tolerance settings for highlight detection.

(a) (b) OMG Cloud has slain SHR Uzi! (c) OMG Loveling has slain SHR Zero!

(d) (e) SHR corn is on a killing spree! (f) DOUBLE KILL!

(g) OMG Gogoing is on a rampage! (h) OMG san has slain SHR inSec!

Fig. 10. Sample keyframes of a detected highlight.

sprinted (Fig. 10(g)), and the whole battle ends with the gamer “san” killing the rival “inSec”

(Fig. 10(h)). Overall, the team SHR collapsed after this big battle.
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Fig. 11. Performance of highlight forecast. (a) Performance variation based on different settings of observations. (b) Performance

variation based on different settings of forecast.

D. Highlight Forecast

We evaluate highlight forecast from the classification viewpoint. We forecast that there will be

a highlight occurring at the (t+ q)th second if the estimated probability ĥt+q is larger than 0.5.

Therefore, each one-second segment is labeled with highlight or non-highlight, and is compared

with the ground truth. Precision, recall, and F-measure thus can be calculated to show forecast

performance, and are shown in Fig. 11. Fig. 11(a) shows forecast performance with different

settings of observations, i.e., the length of observation window p (mentioned in Sec. V) where

features are extracted. Overall, forecast based on features extracted from the (t − 4)th second

to the tth second yields the most accurate results. The following experiment thus uses the four-

second-segment features to implement forecast. Fig. 11(b) shows performance variation based

on different settings of forecast, i.e., the forecast length q mentioned in Sec. V. As expected,

forecast performance decreases as the forecast length increases.

VII. CONCLUSION

We have presented three components to facilitate efficient access to broadcasted computer

game videos. Through recognizing designated text displayed on screen when events occur, we

detect game events and build an interface to ease direct access. For game highlight detection,

we propose features to describe visual appearance, events, and viewer’s behavior, and then

construct two highlight models based on the psychophysiological approach and the data-driven

approach, respectively. A highlight forecast method is further proposed to estimate whether there
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will be a highlight in a few seconds, to facilitate dynamic game video streaming. Evaluation

on famous game videos shows that the proposed methods yield accurate event detection and

promising highlight detection performance. In the future, performances of event detection or

highlight detection are to be boosted by considering more elegant features. In addition, adopting

a learning model that automatically learns features and parameters to describe highlights will be

another research direction [28].
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