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Abstract—To facilitate weather property estimation from im-
ages, a large-scale image dataset associated with rich weather
information is developed. Through the taken time and geo-
graphical information of a photo, we associate it with weather
properties obtained from a weather forecast website. Through
data filtering like indoor/outdoor classification and sky region
detection, a clean and large-scale image-weather dataset (named
Image2Weather dataset) consisting of more than 250,000 photos
is built to promote related researches. In addition to reporting
statistical characteristics of this dataset, we also investigate
the relationship between several visual features and weather
properties, which then serve as the foundation of interesting
applications like weather type classification and temperature
estimation. We show effectiveness of weather property estimation
based on the Image2Weather dataset, and discuss how it can be
leveraged to facilitate related studies.

I. I NTRODUCTION

Estimating image properties from visual content is a fun-
damental step of various computer vision studies. For exam-
ple, estimating image scene labels [1] [2] facilitates image
browsing and retrieval, and recognizing whether images were
captured indoors or outdoors [3] facilitates place recognition.
Recently, estimating geographic information from images [4]
attracts much attention because various potential applications
can be expected. In this paper, we advocate an image property
that affects visual appearance of images and well perceivedby
human beings, but has attracted little research attention for a
long time:weather information.

By analyzing geographical or weather information of user-
generated images shared on the web, we couldunveil char-
acteristics in the real world from images available in the cy-
berspace. Comparing with geographical information, weather
keeps changing even at the same place, and thus we think
weather variations across time periods provide richer infor-
mation and give impact to wider fields. For example, by esti-
mating weather information from images uploaded by users,
the population’s cameras can be viewed as weather sensors,
and fine-grained weather monitoring can be achieved. Cou-
pling estimated weather information with time/geographical
information, explicit or implicit human behaviors can be
discovered. For example, more people travel (and thus more
photos taken) on weekends if it is sunny, and some places are
especially attractive if the temperature is under−5◦C. Weather
information can also serve as an important prior for many com-
puter vision applications, e.g., object detection/recognition,

scene categorization, and image retrieval. Examples in Fig.
1 show that Eiffel Tower has drastically different visual ap-
pearances in different weather conditions, which draws signifi-
cant challenges on object/landmark recognition. Once weather
properties can be estimated, an object detector/recognizer can
adapt its parameters for different weathers, so that influence
of visual variations can be reduced.

Although estimating weather properties from images poses
many research potentials, related studies are just at their
infant stages and emerging research ideas have not been well
exchanged due to lack of common benchmark and baseline
experimental studies. Our goal in this paper is to build a
large-scale image dataset where images were captured by
amateur photographers spanning across the Europe, and each
is associated with rich weather information. To demonstrate
that estimating weather properties from consumer photos isa
doable computer vision research, in this work we particularly
focus on: (1) How to collect a large-scale image collection
associated with weather information and other useful meta-
data? (2) What explict/implicit knowledge is embedded by
such cross-platform image data? (3) What kind of applications
can be benefited by the estimated weather properties?

The rest of this paper is organized as follows. In Section III,
we describe how to crawl weather information from a web-
based weather platform, i.e., Weather Underground1, based
on an existing large-scale image collection that was collected
from Flickr2, i.e., the European City 1M (EC1M) dataset [5].
In Section IV, we will show interesting statistics derived from
the collected dataset. Correlation between metadata/visual
features and weather information will be demonstrated as the
second contribution. Section V describe potential applications
based on the proposed dataset, giving clues for future weather-
related researches. Summary and future works are given in
Section VI.

II. RELATED WORKS

Recently estimating weather property from visual content
has been envisioned to give potential clues for computer
vision applications. Narasimhan and Nayar [6] proposed one
of the earliest works to study visual manifestations of different
weather conditions. Chromatic effects are modeled for images

1http://www.wunderground.com/
2http://www.flickr.com



Fig. 1. Eiffel tower in different weathers. Left to right: sunny, cloudy, snowy, rainy, and foggy.

with fog or haze. They further presented the WILD database
that consisted of registered and calibrated images of a fixed
outdoor scene to facilitate related studies [7]. To enhance
driver assistance systems on vehicles, Roser and Mossmann
[8] constructed an SVM classifier based on contrast, intensity,
sharpness, and color features to classify images captured by
the camera mounted on vehicles into clear, light rain, and
heavy rain weather conditions.

For years Jacobs and his colleagues have a series of studies
on scene attributes based on an image dataset called the
Archive of Many Outdoor Scene (AMOS) [9], in which
images were captured by static webcams over a long period
of time. In [9], they discovered scene variations incurred by
weather conditions, human activity, and change of season
at longer timescales. In [10], they augmented the AMOS
dataset with automatic scene alignment and object labeling.
Based on the augmented dataset, they proposed that webcams
installed across the earth can be viewed as image sensors
enabling us to understand weather patterns and variations.
Later, the AMOS+C dataset [11] was proposed as the first
large-scale image dataset associated with weather information.
With the AMOS+C dataset, Jacobs and his colleagues explore
the relationships between image appearance, sun position,and
weather conditions [11].

Most recently, Laffont et al. [12] constructed regressors to
estimate scene attributes, including lighting, weather, seasons
and subjective impressions for images captured by webcams.
Crowdsourcing techniques were used to label attributes for
images selected from AMOS [9] and Webcam Clipart [13]
datasets. In [14], Lu et al. proposed five weather features, i.e.,
sky, shadow, reflection, contrast, and haze, and proposed a
collaborative learning framework to classify images into sunny
or cloudy. A weather image dataset of moderate size (10K
images) was collected from Flickr and the SUN dataset [15]
for evaluation.

III. B UILDING THE IMG2WEATHER DATASET

A. Cross-Platform Data Association

We need a large-scale image collection associated with het-
erogenous metadata to support rich image-weather association
studies. In this work, we collect weather properties for each
image from the Weather Underground website. Considering
the most common potential applications, we mainly target the
following weather properties:

• Five weather types: sunny, cloudy3, snowy, rainy, and
foggy.

• Temperature: in terms of centigrade, generally from
−25◦C to 45◦C.

• Humidity: from 0% to 100%.
According to our knowledge and availability of data, in-

formation related to the aforementioned weather properties
includes, but not limited to:

• Taken time and taken location: Taken time indicates what
season an image was taken, which is a factor highly
correlated to an image’s weather properties because the
climate periodically changes. Taken location is also very
important because weather is obviously a status limited
to a locality.

• Textual annotation related to an image, such as tags,
description, and image title: Text in these fields may
implicitly or explicitly indicate weather properties, such
as “hot”, “cold”, and “ski”.

• Elevation: Temperatures at places with the same latitude
would be significantly different because of higher eleva-
tion generally yielding lower temperature.

To quickly build a convincing dataset, we crawl weather-
related information based on an existing large-scale image
collection, i.e., the European City 1 Million (EC1M) dataset
[5], which has been widely used in image clustering and
retrieval. Based on the URL and photo ID available in EC1M,
we adopt the Flickr API to obtain the image itself, and its
associated metadata such as taken time, taken location, and
tags. Based on taken location (in the representation of latitude
and longitude), the corresponding elevation information (in the
representation of meters) is acquired through the Google Maps
API. Figure 2 is the framework of our web crawler. Table I
shows the metadata collected from multiple platforms. Note
that we totally collect more than twenty-eight properties,and
list only a few of them in this table. In this work, we will
not utilize all of these properties in building the estimation
model. Readers are referred to our publicly available dataset
for more details, and are welcome to discover usefulness of
various properties in weather estimation in addition to theones
we use.

Based on longitude and latitude of an image, we utilize the
Weather Underground API to retrieve more than thirty weather

3Note that we can collect a variety of cloudy conditions from the website,
e.g., most cloudy and partially cloudy, but we roughly view all of them as
cloudy.



TABLE I
TEXTUAL PROPERTIES AND THE CORRESPONDING MEANINGS OF

COLLECTED METADATA, WHICH ARE OBTAINED FROM FLICKR AND

GOOGLE MAPS∗.

Property Meaning

ID Photo ID on Flickr
Owner Owner of this photo
Dates Date of image taken
URL Associated URL
Title Photo title
Comments Number of comments
Tags Associated tags
Location Latitude and longitude
Views Number of views
Visibility Public or only shard with friends
Description Textual description related to this photo
Elevation∗ Associated elevation

properties, while Table II shows a subset of these properties.
For an image captured at timet and located at longitudex
and latitudey, we find the temporally closest weather record
captured by the spatially closest meteorological station.If the
spatial distance between this station and the image is less
than five kilometers, and the temporal distance between the
weather record and the taken time is less than two hours, the
retrieved weather properties are used to “label” this image.
Main properties to be estimated in this paper are weather types,
temperature, and humidity, while other properties are leftfor
future study.

Weather information on the Weather Underground website
is from 60,000+ weather stations. With innovative forecast
models and cross verification, it provides unrivaled amount
of local neighborhood weather data. Figure 3 shows the
cumulative distribution of distances from our collected images
to their closest meteorological stations. For about 80% of
images, the distance from them to the closest stations is less
than four kilometers, which means that the retrieved weather
information, if available, is quite accurate.

The advantages of using the EC1M dataset as the basis to
collect cross-platform data association is worthy describing
as follows. First, based on available photo ID and URL, we
are able to quickly build a large-scale dataset associated with
heterogeneous metadata. Second, photos in the EC1M dataset
are mainly from big European cities, where meteorological
stations are densely set up so that weather records are relatively
richer and more accurate. Third, because the EC1M dataset
was originally designed for landmark retrieval, with landmark
information and the retrieved weather properties, researchers
may be able to discover some implicit correlation between
weather and landmarks, e.g., some place is more popular in
winter if it is snowing.

B. Data Filtering

The EC1M dataset consists of 1,037,574 geo-tagged photos
captured in 22 European cities. By excluding images with
broken links and without corresponding weather properties,
we totally collect 652,212 images from Flickr. A photo is said
to have the corresponding weather properties if we can find a

TABLE II
WEATHER PROPERTIES OBTAINED FROM THEWEATHER UNDERGROUND

WEB SITE.

Property Meaning

type Weather types: clear (sunny), cloudy, snowy, rainy, foggy
hum Humidity
date Local time of the weather record
utcdate Coordinated universal time
tempm Temperature in terms of Centigrade
tempi Temperature in terms of Fahrenheit
dewptm Dew point temperature in terms of centigradea

dewpti Dew point temperature in terms of Fahrenheit
wspdm Wind speed kph
wspdi Wind speed mph
wgustm Wind gust kph
wgusti Wind gust mph
wdird Wind direction in degrees
wdire Wind direction description
vism Visibility in km
wismi Visibility in miles
pressurem Pressure in mBar
pressurei Pressure in inHg
windchillm Wind chill in terms of Centigradeb

windchilli Wind chill in terms of Fahrenheit
heatindexm Heat index in terms of Centigradec

heatindexi Heat index in terms of Fahrenheit
precipm Precipitation in mm
precipi Precipitation in inches

ahttp://apollo.lsc.vsc.edu/classes/idm3020/tutfolder/nick tutorial/
bhttp://www.nws.noaa.gov/om/winter/windchill.shtml
chttp://en.wikipedia.org/wiki/Heatindex

Fig. 2. The framework of our web crawler associating images with
heterogeneous metadata (weather, tags, elevation).

Fig. 3. Cumulative distribution function of distance between images and
nearest weather stations.



weather record that is temporally apart from the photo’s taken
time within two hours, and is spatially apart from the photo’s
taken position within 4 kilometers.

For the sake of weather estimation, we focus on photos
captured outdoors and within a photo the sky region occupies
more than ten percent of the whole photo. To filter out pho-
tos captured indoors, we extract CNN (convolutional neural
network) features based on the MatConvNet [16] toolbox
as image representation, and accordingly construct a support
vector machine (SVM) classifier to achieve indoor-outdoor
classification. We collected totally 23,900 indoor photos and
17,906 outdoor photos from [17], the SUN database [15],
and Flickr for classifier construction and evaluation. The pre-
trained model in MatConvNet has five convolutional layers
and three fully-connected layers. In this work, we take output
of the seventh layer to be 4096-dimensional CNN features.
Ninety percent of indoor and outdoor photos were randomly
selected as the training data, and the remaining are for testing.
According to our experiments, this classifier achieves more
than 98% accuracy and facilitates us to largely eliminate
indoor photos.

To detect sky in photos, we adopt the method proposed in
[14] and classify each pixel into sky or non-sky. In additionto
being used in data filtering, sky is also the region where several
important visual features are extracted to build the weather
estimation model (described in Section V).

Table III shows statistics of the Image2Weather dataset after
different stages of data filtering (top half) and numbers of pho-
tos in five different weather types. Note that the final dataset
(D∗) consists of totally 25x,xxx images, which is much fewer
than the number of images we originally collected (800,371
images). This is because we largely eliminate indoor images
as well as outdoor images with the sky region no larger than
10% of the whole image. Overall, geographically the collected
images span from 9.25 degrees west longitude to 30.4 degrees
east longitude, and from 35 degrees north latitude to 62.21
degrees north latitude (covering most part of the Europe).
The range of temperature is from−25◦C to 45◦C, and the
range of humidity is from4% to 67%. From this table we
can clearly see that numbers of images in different weathers
are imbalanced, which reflects that people tend to travel and
take photos in fine-weather (sunny or cloudy) days. Table IV
shows images randomly sampled from the collected dataset,
with five samples for each weather type. From these samples
we can realize the challenge of weather type estimation due
to significant visual variations. It is especially difficultto
distinguish cloudy images from rainy images.

Fig. 4(a) and Fig. 4(c) respectively show mean/standard
deviation of temperature and humidity in different weathers.
As we expect, the lowest temperature happens on snowy
days, whereas the highest temperature happens on sunny days.
Snowy, rainy, and foggy days have higher humidity. Fig. 4(b)
shows a temperature distribution across different months.Like
the distribution often seen in a travel guide book, higher
temperature happens in summer. Fig. 4(d) shows that humidity
is higher from October to March in the next year, which also

TABLE III
STATISTICS OF THEIMAGE2WEATHER DATASET AFTER DATA FILTERING,

AND THE NUMBER OF PHOTOS IN FIVE DIFFERENT WEATHERS IN THE

FINAL DATASET.

D1 = {Photos in EC1M} 1,037,574
D2 = D1

⋂
{Photos without broken links} 800,371

D3 = D2

⋂
{Photos with weather info.} 669,113

D4 = D3

⋂
{Outdoor photos} 293,071

D
∗
= D4

⋂
{Photos with large sky} 25x,xxx

Number of sunny images 164,065
Number of cloudy images 72,405
Number of snowy images 2,190
Number of rainy images 14,957
Number of foggy images 2,220
Total 255,837

TABLE IV
FIVE RANDOM SAMPLES FOR EACH WEATHER TYPE. FROM TOP TO

BOTTOM: SUNNY, CLOUDY, SNOWY, RAINY, AND FOGGY.

matches with our impression on Europe’s winter and spring.
These distributions show that characteristics of the collected
images are quite typical.

Table V compares the Image2Weather dataset with pre-
vious ones in terms of geographical information, weather
information, and fixed/dynamic viewpoints. The Weather and
Illumination Database (WILD) [7] contains images captured
from static viewpoints. The Archive of Many Outdoor Scenes
(AMOS) dataset [9] is a large-scale outdoor image dataset
coming from static webcams but without clear weather meta-
data. The Archive of Many Outdoor Scenes with Additional
Context (AMOS+C) dataset [11] consists of a subset of the
AMOS dataset [9] and associated weather data coming from a
variety of sources. The dataset in [14] mainly contains images
captured on sunny or cloudy days, and contains totally 10,000
images captured from dynamic viewpoints. Comparing with
these datasets, the Image2Weather dataset consists of large-
scale dynamic viewpoints images, richer weather information,
and textual metadata collected from multiple platforms.

IV. A NALYSIS OF IMAGE2WEATHER

Based on the collected images, we first discuss the rela-
tionship between weather types and photo taking behavior.
From the perspective of building weather estimation models
from visual features, we then investigate how various features
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Fig. 4. Statistics showing the relationships between temperature/humidity and weathers, and between temperature/humidity and time.
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Fig. 5. Numbers of images on different days, different environments, in different weathers.

TABLE V
COMPARISON OF DIFFERENT DATASETS.

Dataset Geo. Weather Viewpoints #images
WILD [7] yes yes static 3K
AMOS [9] some no static 17M
AMOS+C [11] yes yes static 3.5K
[14] no yes dynamic 10K
Image2Weather yes yes dynamic 255K

correlate with weather types, temperature, and humidity. Fea-
tures used in this work include photo taken time, RGB color
histogram, Gabor wavelet texture [19], intensity histogram,
cloud features [20], local binary pattern (LBP) [21], contrast
features, and haze features [14].

Relationship between weather type and photo taking behav-
ior. The following statistics are obtained based on all images
with weather information (669,113 images). Fig. 5(a) shows
numbers of photos taken on different days. It is not surprising
that photos taken on weekends are more than that taken in
weekdays. Fig. 5(b) shows the ratio the number of images
on Saturday to that on Monday, in different weathers. We can
clearly see that the ratios are larger on sunny, cloudy, and rainy
days, indicating in such weathers people tend to travel more
and take more photos on weekends. On the other hand, when
it is snowy, the number of photos taken on weekend is similar
to that on weekdays. Fig. 5(c) shows the ratio of the number
of images taken outdoors to indoors, in different weathers.
As we expect, more photos were taken on sunny and cloudy
days. The number of photos taken outdoors is only80% of that
taken indoors when it is snowy. Figure 5(d) shows numbers of
photos vs. temperature ranges. It can be seen that more photos
were taken when the temperature ranges from5◦C to 25◦C.
Figure 5(e) shows numbers of photos in different humidity

TABLE VI
RATIOS OF THE NUMBER OF SUNNY OR CLOUDY PHOTOS TO TOTAL

NUMBER OF PHOTOS; AND RATIOS OF THE NUMBER OF VIEWS IN SUNNY
OR CLOUDY PHOTOS TO TOTAL NUMBER OF VIEWS.

Landmark Ratio of Photos Ratio of Views

Colosseum
Sunny: 0.79 Sunny: 0.77

Cloudy: 0.17 Cloudy: 0.16

Big Ben
Sunny: 0.64 Sunny: 0.67

Cloudy: 0.28 Cloudy: 0.25

Eiffel Tower Sunny: 0.49 Sunny: 0.44
Cloudy: 0.44 Cloudy: 0.51

Notre Dame Sunny: 0.50 Sunny: 0.52
Cloudy: 0.41 Cloudy: 0.41

London Eye Sunny: 0.64 Sunny: 0.67
Cloudy: 0.27 Cloudy: 0.25

ranges.
Table VI shows “the ratios of numbers of photos taken

on sunny (cloudy) days to that taken on all days”, as well
as “the ratios of numbers of views in sunny (cloudy) photos
to the total number of views”, at several famous landmarks.
Most of them have similar patterns, i.e, there are more photos
and views on sunny days. For Eiffel Tower, the difference
between sunny photos and cloudy photos is not as apparent
as other landmarks. Interestingly, we can observe that photos
of Eiffel Tower captured on cloudy days attract more views.
This discovery may inspire new research direction, e.g., some
place is more popular in specific weather conditions.

The relationship between time distance and weather proper-
ties.Considering two photos that were taken on the same day.
It is expected that weather properties of these two photos differ
more if their were taken at larger temporal distance, e.g., one
was taken in the early morning and another one taken in the
late afternoon. However, when we consider photos at a larger
scale, e.g., one year, periodicity of climate change may play an



important role in measuring weather property difference. For
example, temperature of a photo taken at noon of someday
in March may be similar to that of a photo taken at noon of
someday in September, because temperature changes in spring
and in fall are similar.

We especially care the month and the hour when a photo
was taken, because month information embeds which season
this photo was taken, and hour information is correlated with
sunlight. Let us consider two photos taken at(m1, h1) and
(m2, h2), respectively, herem1, m2, h1, andh2 are months
and hours of the taken time of two photos. To investigate the
relationship between time distance and weather properties, in
the meantime to consider periodicity of climate change, we
collect average temperature of every month from the weather
forecast website. These data points are then fit by a polynomial
curvef . The curvef acts as a function that transforms month
information m into the valuem̂ = f(m), which indicates
the estimated average temperature of the monthm. Similarly,
we can also fit average temperature of every hour and fit
them with a curve (function)g, which then transforms hour
information h into the valueĥ = g(h). The time distance
between the considered two photos is thus calculated by
√

w1(m̂1 − m̂2)2 + w2(ĥ1 − ĥ2)2. The weightw1 = 10w2

is designed to emphasize the distance between months.

Fig. 6(a) shows probabilities of sharing weather types vs.
time distances between photo pairs. The x-axis denotes the
time distance between photo pairs calculated by the equation
mentioned above, and the y-axis denotes the probability of
sharing the same weather type. For example, the red trianglein
this figure shows that the probability of two photos belonging
to the same weather type is 0.5, if their time distance is 2. From
this figure, we see that the probability of sharing the same
wether type decreases as the time distance between photos
increases. Fig. 6(e) is a heat map showing the relationship
between temperature distance and time distances. The x-axis
denotes the time distances between photo pairs, and the y-
axis denotes the temperature distances between photo pairs.
For example, the white circle in this figure shows that, when
the time distance between a photo pair is 1 (x-axis), the
probability of their temperature distance ranges from 0 to 1
degree centigrade (y-axis) is around 0.225. The white triangle,
on the other hand, shows that, when the time distance between
a photo pair is 5 (x-axis), the probability of their temperature
distance ranges from 0 to 1 degree centigrade (y-axis) is
around 0.05. When the taken time of two photos is close,
the probability of their temperature distance less than two
degrees centigrade is much higher than other cases. Similarly,
Fig. 6(i) is the heat map showing the probability of humidity
distance within a range versus time distance between photos.
A trend similar to Fig. 6(e) can be seen. Particularly when
the time distance between two photos is small, the probability
of humidity distance less than5% is much higher than other
cases.

The relationships between visual feature distances and
weather properties.Fig. 6(b) shows the probability of sharing

weather type versus photo pairs’ RGB color histogram dis-
tances (measured by Euclidean distance). We can see smaller
distance between color distributions indicating higher proba-
bility of sharing weather type. On the other hand, from the
dynamic range of probability we see this effect is relatively
moderate and noisy, comparing with the effect shown in Fig.
6(a). Fig. 6(f) is the heat map showing the relationship between
color histogram distance (x-axis) and temperature distance (y-
axis) within a range. We see that, if color histogram distance
is less than 0.3, the probability of temperature distance less
than one degree centigrade is much higher than other cases.
This confirms that color distribution distance would be a good
feature for us to estimate temperature. Fig. 6(j) also showsthe
characteristic on estimating humidity.

What is the relationship between other visual feature dis-
tances and weather properties? Generally, the trends derived
from other visual features are similar to that from color
distribution, while the strength would be different. Comparing
the heat maps in Fig. 6(g) and Fig. 6(k) with Fig. 6(f) and
Fig. 6(j), respectively, we see that texture features wouldbe
more reliable to estimate temperature and humidity because
the patterns are more concentrated. On the contrary, Fig. 6(l)
shows that intensity distance is a rather weaker feature to
estimate humidity.

The same analysis is also done for describing the relation-
ship between other feature distances and weather properties.
We skip detailed illustration because relationships similar to
color features and texture features can be observed. The influ-
ences of different features on weather properties are different
and complex. In Section V, we will construct weather estima-
tion models that automatically adopt features with different
extents learned from training data.

V. A PPLICATIONS OFIMAGE2WEATHER

A. Weather Type Classification

Based on Image2Weather dataset, we construct a random
forest classifier [22] to estimate weather type for a given
image. A random forest classifier is composed of a number
of decision trees, and each decision tree is a simple and weak
classifier. By combining results of a large number of weak
classifiers, a robust classification result can be obtained.In this
work, totally 100 decision trees are constructed to constitute
the random forest. To construct this random forest classifier,
for each weather type we randomly sample 1,100 images
from the collected Image2Weather dataset. The random-split
scheme is used for training and testing. That is, for each run
1,000 images are randomly selected from each weather type
for training, and the remaining 100 images are for testing. We
conduct ten runs of training and testing in this application.

Table VII shows the confusion matrix of weather type
classification, where columns show truth types and rows show
estimated types. Encouraging classification results (around or
higher than 70%) are obtained for the weather types of sunny,
cloudy, and snowy. These results show that estimating weather
types from single images is promising, even based on simple
visual features and time information. Much more accurate
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Fig. 6. Relationships between various properties and weather properties. (a)–(d) The prob. of sharing the same weathertype vs. time/color/texture/intensity
distances. (e)–(h) The prob. of temperature distance within a range vs. time/color/texture/intensity differences between photo pairs. (i)–(l) The prob. of humidity
distance within a range vs. time/color/texture/intensitydifferences between photo pairs. (Better viewed in color)

results than random guess, i.e., 0.20, can be obtained by
the proposed method, even for the rainy and foggy images
that are relatively difficult to be classified. The relatively
worse performance for rainy and foggy images is not beyond
our expectation, and may attribute to the following factors:
noises in data, user’s photo taking behavior, and weakness of
visual features. First, information of the meteorologicalstation
closest to a photo is used to be its ground truth. Sometimes
weather conditions differ in two places even they are apart
from each other by five kilometers. Moreover, it is sometimes
difficult for people to distinguish rainy photos from cloudy
photos. Second, people tend to take photos with less rain even
it is raining. We seldom see a photo taken in rainy days consist
of many raindrops. In most cases, only gloomy sky can be seen
in such photos. Third, when it is foggy, features like texture,
LBP, and contrast may not well describe image content due
to blur appearance.

B. Temperature and Humidity Estimation

We formulate the temperature estimation task as a regres-
sion problem, and use random forest regressors to estimate
temperature. Given the training set, a random forest consisting
of a number of decision trees is constructed. We construct
a random forest consisting of 100 decision trees, based on
the eight types of features mentioned above. Given an image,
we traverse each decision tree based on extracted features to

TABLE VII
THE CONFUSION MATRIX OF WEATHER TYPE CLASSIFICATION BASED ON

THE RANDOM FOREST CLASSIFIER.

sunny cloudy snowy rainy foggy
sunny 0.83 0.07 0.03 0.03 0.05
cloudy 0.05 0.69 0.05 0.18 0.04
snowy 0.05 0.06 0.68 0.10 0.13
rainy 0.04 0.22 0.10 0.52 0.14
foggy 0.14 0.10 0.14 0.17 0.47

TABLE VIII
THE CONFUSION MATRIX OF WEATHER TYPE CLASSIFICATION BASED ON

THE KNN CLASSIFIER.

sunny cloudy snowy rainy foggy
sunny 0.80 0.10 0.04 0.04 0.03
cloudy 0.04 0.73 0.06 0.16 0.02
snowy 0.05 0.09 0.66 0.12 0.08
rainy 0.03 0.27 0.19 0.41 0.09
foggy 0.14 0.12 0.21 0.15 0.38

the leaf, and calculate mean temperature of training images
at this leaf as the estimated temperature. The 100 estimated
temperatures from 100 decision trees are averaged to be the
final estimation value. Similarly, the humidity estimationtask
can also be formulated as a regression problem and solved by
random forest regressors.

Similar to weather type classification, we perform temper-



ature estimation for 100 runs. At each run, 1,000 images are
randomly selected as the training data, and the remaining
100 images are for testing. The average Pearson correlation
and Spearman correlation after 100 runs are 0.85 and 0.84,
respectively. The estimation results are highly correlated with
the ground truth, indicating that estimating temperature from
single images is an encouraging research direction. The aver-
age difference between estimated temperature and the ground
truth is around3.48◦C.

For humidity estimation, after 100 runs, the average Pear-
son correlation and Spearman correlation are 0.74 and 0.64,
respectively. The estimation results are also highly correlated
with the ground truth. The average difference between esti-
mated humidity and ground truths is around9.58%. Generally,
estimating humidity is relatively less reliable in our work.

Figure 7 shows some samples of weather type classification,
temperature estimation, and humidity estimation. We see that
very promising results can be obtained if a photo was well
taken to include the sky region.
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Ground truth

Temperature : 24C

Humidity : 50%

Sunny Predicted result
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Humidity : 68%

Ground truth
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Fig. 7. Examples of weather properties estimation. Photos at the top row
are sunny and cloudy Eiffel Tower in Paris, respectively. Photos at the second
row are foggy and cloudy Notre Dame in Paris, respectively. The photo at the
last row is sunny Colosseum in Rome.

VI. CONCLUSION

We have presented a large-scale image dataset where images
were captured in all around the Europe and from various
perspectives, and are associated with rich weather information
obtained from a weather forecast website. This information-
rich dataset thus brings many research potentials in the com-
puter vision society. In this paper, we explore photo taking
behaviors from the Image2Weather dataset, and investigatethe
relationship between visual feature differences and weather
types. These studies further facilitate the development of
weather estimation models. In the future, more interesting
characteristics considering various weather properties are to
be explored, and advanced weather estimation models are to
be built based on the dataset.
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