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ABSTRACT

A new color descriptor has now been proposed toeeinablor information into the framework of CENsusifisform histogram
(CENTRIST), so that such a state-of-the-art visleaicriptor can be further improved to categorizagenscenes. In the proposed
color CENTRIST descriptor, global structure chagsastics are described by both gradients derivewh intensity values and color
variations between image pixels. The spatial pydassheme has also been adopted to convey informatidifferent scales.
Comprehensive studies based on various datasescaeducted to verify the effectiveness of the cGBBENTRIST from different
aspects, including the way to quantize the colacspselection of color space, and categorizaofopnance on various datasets.
We demonstrated that the color CENTRIST descriptas not only easy to implement, but also reliabthieved superior
performance over CENTRIST. An application was gisiposed to demonstrate the possibility of applytregcolor CENTRIST in
various domains.

Index Terms: Census transform histogram; color index; scenegoaization; color descriptor.

I. INTRODUCTION

Scene categorization, or scene recognition, hasmbea fundamental process for efficient image biugysretrieval, and
organization. For example, if an image’s scenegmatecan be recognized, we would reduce the sesgrate of object recognition,
or more accurately, detect semantic concepts préséhis image. The results of scene categorinatimy also help a robot to
localize itself in a building. Detecting semantitegory of an image is undoubtedly important, aedsing good visual descriptors
plays the core role in this task.

In the literature, many visual descriptors havenh@®posed for image scene recognition. They cawlghly divided into two
groups: 1) part-based representation, with theideretion of multiple scales or spatial distribagand 2) holistic representation
that directly models global configurations. Thenfier approach describes texture information in impgthes, and has been
proven to be extremely effective when detectingeotsj under various conditions. By considering tistridution of local
descriptors over image patches, sometimes in aistalé manner, global information is captured. @héhe most popular

part-based descriptors is Scale-Invariant Featumasform (SIFT) [7], and one of the most promirgmproaches to consider the



global distribution is the spatial pyramid appro§&h Despite the SIFT descriptors associated thighbag of visual words model
[8] which have shown discriminative power on sceag&gorization, directly modeling global texturdommation often more
reliably describes spatial structure of a scene.Sdme scene may be taken from various viewp@intspbjects with significantly
different appearances may appear in the same fygeene. In contrast with the local texture infotima, holistic representation,
such as GIST [2], captures global structure andeael high accuracy in natural scene categorizatRetently, CENsus
TRansform hiSTogram (CENTRIST) [1] was proposedbtovide accurate and stable performance on varsoese image
datasets.
We found that most works were targeted on gray ésagnd existing visual descriptors mainly reliedosiented gradient
calculated based on intensity values. However,rgeeathat color information also plays an importate, although it would not be
as important as intensity, and should not be négfiem scene categorization. Figure 1 shows an pbeambout how color
information is used in distinguishing scene categoVithout color information, these two imageséaimilar structure and are
hard to recognize. With color information we realthat the open country image has a blue regighetop half, while the coast
image has two distinct blue regions at the top &atf the bottom half, respectively. It is cleart tt@nsidering color information
benefits scene categorization.
In this work, we devise a visual descriptor cattetbr CENTRIST to embed color information into fremework of CENTRIST,
and demonstrate its effectiveness through evalyatimious color image datasets. Through comprehersialuation, we verify
effectiveness of the color CENTRIST. The main dbutions of this work are briefly described asdals, which were also shown
in our preliminary work [21].
® \We devise a color index scheme to embed HSV coformation into the framework of CENTRIST. Inforrimat of three color
channels is encapsulated into an 8-bit representasio that the framework of CENTRIST can be diyeemployed, and
various performance comparisons can be impart@hducted. We verify that different color channgft®uld be allocated
different numbers of bits to more accurately chma@me image content.

® Performance of the proposed descriptor is evaluad&séd on various datasets, including the 8-clzmsesdataset, the 8-event
dataset, the 67-indoor scene dataset, the KTH-I2@d the KTH-INDECS datasets. Working on variousasets shows

robustness and effectiveness of the proposed géscri

The unique contributions of this work over our poes work [21] are described as follows.
® \We verify the best multilevel representation of fmposed descriptor by carefully evaluating perfances obtained by

different levels of descriptors. Moreover, statigtianalysis is conducted to show that the perfan@auperiority is statistically



significant.

® \We verify that extracting the proposed descriptonfthe HSV color space gives stable performance.

® We verify that combining the proposed descriptdhv@ENTRIST further yields better performance.

® \We compare performance obtained by the proposenligtes with that obtained by SIFT, and its colariants, based on the bag
of words framework.

® \We compare performance obtained by the proposeatiges with that obtained by several promisingocdlBPs.

® An application on object detection is proposed émndnstrate the possibility of applying the colorNJRIST in different

domains.

The rest of this paper is organized as followstiBedl provides a literature survey. The color CHNST descriptor is proposed
after briefly reviewing conventional CENTRIST inien 1. Preliminary analysis of different deguior settings is described in
Section IV. We provide comprehensive evaluationvarious datasets in Section V, and a novel appdicabased on color

CENTRIST in Section VI. Section VII concludes thisper with discussions of the proposed descriptdrfature research.

Il.  RELATED WORKS
In recent years, significant advancement had bestenfor scene recognition by the computer visioth @aittern recognition
community. Some studies focused on feature/descrigsign to more reliably describe scene chairatitey, while some studies
focused on distance metric or recognition schenaehieve a more accurate classification. Becadatetkliterature was rich, we

just made a brief survey from the perspective afufiee/descriptor design in the following.

A. Scene Categorization by Local Descriptors

Currently, SIFT [7] and other local descriptorsoasated with the bag of words (BOW) model [8] wére dominant scheme in
scene categorization. Fei-Fei and Perona [5] desdrimages with a collection of local regions, \khigere represented by
codewords derived from a visual word codebook. Treposed the theme models, modified from the Ltddinichlet Allocation,
to represent the distribution of codewords in esgdne category. Lazebnik et al. [3] argued thatritiag bags of visual words in
multiple scales provided an encouraging performamceatural scene recognition. Focusing on codelesign, van Gemert et al.
[6] dealt with codeword uncertainty and codeworalgibility. They proposed a kernel codebook methatlallowed some degree
of ambiguity in assigning a visual descriptor toltiple codewords. Also based on BOW representat®osch et al. [11]

investigated classification methodologies for sceagorization. They proposed a hybrid approaah fitst discovered latent



topics in scene images by pLSA (probabilistic latsemantic analysis), and then topic distributiomse fed to discriminative
classifiers. Rather than directly modeling texfiggures, Vogel and Schiele [20] first detectedassin concepts for image patches,
and then modeled an image by the distribution atept occurrence.

Recently, Vasconcelos’s group proposed a seria®rs to construct semantic spaces based on blagaiffeatures [27][28].
They demonstrated that, by representing imagesfiénsemantic space (manifold), distances betweegesaad been well
measured and thus scene categories had been rnoarataty recognized. In [29], a multiclass probleas treated as a collection
of one-versus-one binary problem. For each binanblpm, a unified objective function was designedjdintly optimize
parameters of SIFT-based codebook constructionckassifier training. To encode spatial layout, Kaaget al. [30] employed
Gaussian mixture models associated with Fishergketo describe spatial information of local featurFornoni and Caputo [34]
argued that saliency information had been usecdtufe pooling, and thus spatial context was meliably captured. They
adopted SIFT descriptors and demonstrated theigsed scheme was especially useful in indoor scémg&8], local context and
spatially regularized characteristics were joimmihnsidered to construct codebooks.

One emerging idea was recognizing objects firstthad using relationships between objects (ratiaar tocal features extracted
from image patches) to facilitate scene recognitiunet al. [31] proposed a reasoning module tteatiively detected objects in
each run and decided the scene class based oesihense of object detection results. Zheng e#8l. modeled relationships
between objects based on response of object fersfiwhich were implemented by deformable pasedamodels. They also
showed that performance was further improved i€obtpart information and global texture like GIZT fere jointly modeled. Niu
et al. [35] developed a context aware topic modk jointly considered global and local contextseen scene elements, e.g., sky
and car, in different scene categories. In [39]inaage was viewed as a collection of regions, wiele represented by region
models. Jiang et al. [41] focused on determininiinugd spatial layout of images based a randomipedial partition scheme. The

most descriptive pattern for each scene categosydiggzovered to boost scene recognition accuracy.

B. Scene Categorization by Global Descriptors

Oliva and Torralba [2] argued that modeling objedbrmation was not necessarily needed for recaggia scene. They
proposed the GIST descriptor to model the struafieescene, and assumed that images coming fresetine scene category had
similar configurations. This idea had been provéiecdve in recognizing outdoor scenes, e.g., mawnt@and coast, but
performance decreased significantly for indoor eseBased on census transform, Wu and Rehg [1ppeaha simple yet effective
visual descriptor, called CENsus TRansform hISTogrédCENTRIST), to model global configurations of ses. They

demonstrated that structure information can bectffely described by comparing the intensity vatiea pixel with its eight



neighboring pixels. By considering the global dimttion of visual descriptors in images using spgtiyramids, they constructed a
holistic representation for images. Comprehensiudias were provided in [1] to show multilevel CERIBTSs yield superior
performance over SIFT and GIST in most cases. dé& of CENTRIST was similar to LBP (local binanttpen) [22], which had
also been widely adopted in various computer visipplications [42], such as face detection, fagigdression recognition [37],
and moving object tracking. Global descriptors st been incorporated with object informationaailitate scene categorization.
Pandey and Lazebnik [32] utilized deformable pastieis to detect recurring visual elements and r#atibjects. By integrating
object information and global image features (GdST), promising recognition performance was régbr

Various features had been proposed to associdieefféictive classification schemes. However, meatures employed texture
or gradient information, and much fewer studies haeén conducted to investigate how color infornmatidfected scene
categorization. The work in [11] was one of the f&wdies that investigated color descriptors. Ftiogir reported results, color
information consistently brought performance inceetrif it was appropriately incorporated into visdascriptors. Van de Sande
et al. [13] evaluated color variants of SIFT dgsttiis on object and scene recognition. Their reaiio conformed to the trend,
but only SIFT-based descriptors were evaluatethitnpaper, we designed a method to incorporaiar @formation into one of
the state-of-the-art visual descriptor, i.e., CENSR[1], and demonstrated its effectiveness throocgmprehensive evaluation

from various perspectives.

[Il. DESCRIPTORS
A. CENTRIST

To handle scene categorization, Wu and Rehg destdbsired properties of appropriate visual desmsg1], including that
holistic representation may be robust, structurapprties should be captured, rough geometry afecenay be helpful, and the
descriptor should be general for different scertegmies. By considering these, Wu and Rehg prapad®listic representation
modeling distribution of local structures, calleBsus TRansform hiISTogram (CENTRIST). Rough gedp@tinformation was
captured by CENTRISTs extracted from spatial pydsnin different levels. In the following, we brigfteview conventional
CENTRIST before we propose its color extension.

To describe the relationship between a pixel aadnéighboring pixels, census transform was caroetlby comparing
characteristics of pixels in local patches [4]. Ktance, Figure 2 shows an example of censusftnan based on comparing
intensity value of a pixel with that of its eighgagially neighboring pixels. Namely, replacing aghdoring pixel with bit 1 if its
intensity value was less than or equal to the cqikel’'s intensity value. Otherwise, a bit 0 was. By concatenating these bits

from top-left to bottom right, an 8-bit binary regentation was constructed, and the correspondisg-b0 number was called



Census Transform value (CT value) of the centezlpMote that CT values of pixels at the image bosdvere undefined. Because
the CT value described the relative intensity thstion of a pixel in a local patch, it was robiistgamma variations and
ilumination changes. Basically, the Census Tramsfaas similar to the local binary pattern cdd#Pg ; [22], except that a bit
shifting mechanism was designed to maB®s ; rotation invariant.

After assessing a CT value for each pixel, theolgistm of CT values, i.e., CENTRIST, was construt¢tedescribe an image.
Note that CENTRIST was 256-dimensional becausedlJeg were described by eight bits, and CT valumsnange from 0 to 255.
Wu and Rehg discussed detailed properties of Clegahnd CENTRIST descriptors in [1].

Missing spatial information and lack of multilewelpresentation were common drawbacks of histogrased descriptors. To
improve the robustness of CENTRIST, Wu and Rehg@sed a spatial pyramid scheme, as illustratedgar€é 3. To construct
level k spatial pyramids, a®V x N image was equally divided in@¥ blocks in the horizontal direction and in the it
direction, respectively. That is, each block Wasimé% X % To avoid artifacts caused by non-overlappinggion, the blocks
centered at the common corners of four neighbdriogks were considered as well. Taking level 2igppyramids as an example,
an image was split int2® x 22 4 9 = 25 blocks, as illustrated in Figure 3. With the sasplitting scheme, an image was split into
five blocks to construct level 1 spatial pyramiead one block to construct the level 0 spatial pyda Note that images were
resized to ensure all blocks from different leweése of the same size.

From each block, the CENTRIST descriptor was etd@cand descriptors from all blocks were concdehéo describe the
image. Different dimensions of the CENTRIST dedoripvere not independent, and thus Wu and Rehgusecipal component
analysis (PCA) to reduce dimensionality of CENTRIS®O0. This compact representation was calledaftincipal component
Analysis of Census Transform (spatial PACT) hisémgr or abbreviated to sPACT. In this case, an inveitfe level 2 spatial
pyramids was thus described bytax (25 + 5 + 1) = 1240-dimensional descriptor. Note that when welssgl 2 spatial pyramids,

descriptors extracted from blocks generated bylde¥gel, and O split were all considered together.

B. Color CENTRIST

In this work, we devise a color index scheme to esintolor information into the framework of CENTRISTThrough extensive
experimental studies, we will demonstrate thatptoposedcolor CENTRIST descriptor effectively enhanced the performance of
scene categorization.

We represent color in the hue-saturation-value (H&Vor space, where three channels are normalizeghge from 0 to 255

Theoretically, representing color of a pixel ne@dshits in this setting. To make the proposed rgmtation comparable to CT

! Converting RGB to HSV is implemented based orQpenCV library.



values in CENTRIST, we devise a color index schemtepresent color information of a pixel by 8 pitéth the design of different
guantization granularities for different color chats. For example, if we respectively allocatgbz, andbs bits (b1 + b2 + b3 = 8)
to represent hue, saturation, and value componémise channels were uniformly quantized igte, 2°2, and2®: levels,

respectively. Let us denote the hue, saturatiod,vatue components (in the base 10 numeric systém)pixel by~, s, andv,

respectively. The hue component is transformedantioase 10) color index = L%J, which is then represented in the base 2

s.2h2 ,.9b3

system byb; bits. Similarly, the color indices for saturatiand value components are computed;as %55 andi, = %556,

and are represented in the base 2 systeba apdbs bits, respectively.

Figure 4 shows the flowchart to extract a color GIR\ST, especially with an example showing how cadbra pixel is
represented by 8 bits. In this example, colordadicorresponding to the hue, saturation, and walogonents are allocated 1, 2,
and 5 bits, respectively. The hue axis is dividgd 2! = 2 ranges, i.e., [0, 127] and [128, 255]. The sainmadxis is divided into

2? = 4 ranges, i.e., [0, 63], [64, 127], [128, 191], [1985]. The value axis is divided in2d = 32 ranges, i.e., [0, 7], [8, 15], ...,

[240, 247], and [248, 255]. The pixel's hue compuris 183, and thus the corresponding color index i= Llsgggl)J =1in

decimal. The valué;, is then represented in the base 2 system (byigrest, = 1. The saturation component of the pixel is 220,

the corresponding color indexiis = L”;’;gﬂ = 3, and thus in the base 2 system (by two bits¥ 11. Similarly, the color index

corresponding to the value component 9%.is= L912'§§)J = 11, and thus in the base 2 system (by five bits¥ 01011. To give

the highest priority to the value component, thercimdices in binary forms are concatenated inrttaener(i, i, i). Therefore,
the pixel originally represented by 24 bits, (@83, 220, 91), is represented by eight bits (i,,s,%,) = 01011 11 1in binary,
or 95 in decimal.

Through the process mentioned above, we repreaehtpxel by a color index. Just like an index wokr palette, the number
95 indicates that the color (183, 220, 91) fall® ithe 95th range of the quantized HSV color sp¥i¢e.then conduct a census
transform based on color indices of pixels, rathan on the intensity of pixels. If the color indeithe center pixel is larger than
or equal to one of its neighbors, a bit 1 is s¢hatcorresponding position. Otherwise, a bit §es From top-left to bottom right,
these bits are concatenated to form a binary reptaton, which is then evaluated to a base 10 eurcdlled the color Census
Transform value (cCT value) of the center pixele Histogram of cCT values over the whole imag@allfy constructed to form
acolor CENTRIST. Note that a color CENTRIST is also 256-dimensidyecause there are 256 different types of cCTeslu
Similar to CENTRIST, we reduce dimensionality of@or CENTRIST by PCA, and model rough global sfuoe of an image

based on spatial pyramids.



By considering color information, the cCT valuenegents whether a pixel's color index is aheadehind, the color indices
of its neighboring pixels, and thus describes cdistribution around it. Although the physical memnof cCT values is not as

intuitive as that of CT values, we will verify thiis representation effectively benefits scenegatization.

C. Propertiesof Color CENTRIST

We use Figure 5 and Figure 6 to underline the idiffee between CENTRIST and color CENTRIST. One érfagm the “open
country” category and one image from the “coasttegary are compared based on CENTRISTs and coloMTEHESTS,
respectively. The second column of Figure 5 shewesitnages in gray, and from which we can see tiet ook similar when only
intensity information is considered. The third aohs of Figure 5 and Figure 6 show the corresponcimgus transformed images,
where each pixel is replaced by its CT value and@ e&lue, respectively. The last columns in two fegishow the corresponding
CENTRISTs and color CENTRISTS, respectively. Vigygtom CENTRISTS, we see that both open country eoast images
have two peaked ranges. From color CENTRIST, howyelie coast image has two peaked ranges, whilegha country image
has only one clear peaked range. To quantify théervation, similarity between two CENTRISTs (opteolor CENTRISTS) of

256 B a
the open country image and the coast image is medby histogram intersection, i.e;; = iz =inlHlk) H; (b))

oo max(H, (k),H;(k))® wheref; and

H; are CENTRISTSs (or color CENTRISTS) of two imagespectively. Based on CENTRIST, the histogranrseatetion between
the open country image and the coast image is 0B&%d on color CENTRIST, the histogram intersectietween the open
country image and the coast image reduces to 01389 indicates that color CENTRIST more accuratigriminates these two
images, because the similarity between these tffereint images reduces when color CENTRISTs aral us® image

representation.

We further illustrate the difference between twsdiptors based on a designed image as shown ime-ig The image of size
33 x 33 pixels is constituted by three regions in pureel{lR,G,B = 0,0,255), pure red (R,G,B = 255,0,0} jpare green (R,G,B =
0,255,0), from left to right, respectively. The HS®lues corresponding to these three regions a@ @55, 255), (0, 255, 255),
and (85, 255, 255), respectively. Because all pirale the same intensity value, CT values ofiedlpare equal to 255, except for
the ones at the image borders, which are undefifieel top of Figure 7(b) shows CT values of pixalsg the top of Figure 7(c)
shows the corresponding CENTRIST. According toghentization table illustrated in Figure 4, thecrahdices corresponding to
those three regions are 255, 254, and 254, respBctThe bottom of Figure 7(a) shows a samplelptiat is centered by a pixel
located in the red region, and can be seen atigheside of the boundary between the blue andeteregions (we call it right
boundary pixels in the following, in contrast t@ thixels at the left boundary between the bluethaded regions). In contrast to

intensity values, the blue region and the red rebeve different color indices, and the correspogdiCT value is 107. Comparing



CT values with cCT values of these pixels, we ¢tjesee that cCT values provide more cues to disoéta color regions. The
bottom of Figure 7(b) shows detailed cCT valuepigéls located at different positions, and the dotof Figure 7(c) shows the
corresponding color CENTRIST. The color CENTRIS hésically the same as CENTRIST, except at thehlBift, where cCT
values come from the right boundary pixels betwdar and red. From this example, we see that, satbr CENTRIST, not only

structure characteristics but also color variatioas be described.

IV. ANALYSIS OF DESCRIPTORSETTINGS

This section presents how different experimentregdtinfluence scene categorization accuracy. Expets in this section (and
also in Section V) were conducted in five runs, dmel recognition accuracies of five runs are awedlap show the overall
performance. At each run, parts of a dataset ih saene category were randomly selected for trgjrand the remaining is for
testing. We call it théve-random-run scheme in the following.

In the following experiments, we remove the twoshivith CT or cCT values equal to 0 and 255 in KGENTRISTs and color
CENTRISTSs, and normalize them into unit vectorsni&ir to SPACT in [1], to reduce dimensionality adlor CENTRIST, 40
eigenvectors corresponding to 40 largest eigensaue found, and 254-dimensional color CENTRISTedptors are projected
into the eigenspace to form a 40-dimensional sPA@Epatial Principal component Analysis of color €enTransform histogram).
To include more image statistics, mean and stardiarition of intensity values in a block are cdeoated at the end of a SPACT
in [1]. We analogize this setting and concatenat@mand standard deviation of color indices atetiet of a SPACCT as well.
Therefore, the feature vectors of both level 2 sPAGd level 2 SPAcCCT hay@0 + 2) x (25 + 5+ 1) = 1302 dimensions. Based
on these visual descriptors, SVM classifiers witBFRkernels are constructed to conduct scene caragjon, where kernel

parameters are chosen based on the cross-validati@me provided by the LIBSVM package [25].

A. Color Quantization

To represent color information, we quantize the HBYr space into a number of color ranges, amsfoam color components
of a pixel into color indices. To determine the emof bits to describe color indices, we examiene recognition accuracy for
the 8-class scene dataset [2], by using 4 bitgs812 bits, or 16 bits to describe quantizatevels, respectively. Namely, the HSV
color space is quantized in2d, 2%, 2'2, or 2'¢ ranges. For the 8-bit settings, for example, weddferent allocation schemes that
present the hue, saturation, and value compongrd#ferent numbers of bits. Table 1 shows detasleeine recognition rates for
the 8-class scene dataset, based on the 8-biigs€lte result in the sixth row H-S-V (1-1-6), fexample, means that the hue

channel and saturation channel are respectivelgtizeal into2! = 2 levels, and the value channel is quantized 2fite 64 levels.



The first row H-S-V (8-0-0) means that saturatiowl @alue channels are discarded, and the hue dsaameequantized into 256
levels. Note that the setting (H-S-V 0-0-8) in théd row is similar to CENTRIST (but not exactliyget same) because only
(quantized) intensity is considered to do censarssform.

By comparing the first three rows in Table 1, weatly see that intensity values still play the mogtortant role in scene
description. However, by jointly considering huedasaturation, and appropriately quantizing différeolor channels, better
performance can be further achieved. We see thhgiB-bit setting the best performance is obtamethe (H-S-V 1-2-5) scheme,
the worst performance is obtained by the (H-S-\*\@-@8cheme, and the average accuracy is 86.00%hdw that performance
superiority of the (H-S-V 1-2-5) scheme is stat@lily significant, recognition accuracies obtaifdthis scheme and another in
five runs are compared pairwise. Table 1 showssttal significance in terms of the p-values df ffaired two-sample t-tests [17]
between the best scheme (H-S-V 1-2-5) and othedsj@monstrates that, in most cases, performampegistity of the best scheme
over others is significant. Note that in Table &, do not exhaustively list performances of all gdesschemes because of space
limitation. Although we did exhaustively evaluatk @mbinations, only a few samples are shown is thble to reveal the
performance variation.

We evaluate different allocation schemes baseth®d-tit, 12-bit, and 16-bit settings as well. BaBIshows detailed schemes
evaluated based on different settings. From edtihgewe respectively find the best, the worsd #me average performance, and
illustrate them in Figure 8. From this figure wancaee that the 8-bits setting averagely achievebeist recognition performance.
Note that in this figure we only show the worsteswhere hue, saturation, and value componentsdlarsed. According to Table
1 and Figure 8, the (H-S-V 1-2-5) scheme in thet&4tdting is used in the following experiments.

Based on the experimental results and the col@axisgétting mentioned above, we need to emphasizevih are not claiming
color information is more important than intensitly.color CENTRIST, we still largely employ intetysi(by setting the value
component in most significant bits). What we clamith appropriate arrangement, the performanceefs categorization can be

improved if color information is considered togethe

B. Color Space Selection

The designed color CENTRISTSs are extracted basekeodSV color space. To verify the influence dfatient color spaces on
scene categorization and that motivates our chaeieescompare the performance of level 2 SPAcCCT etdthbased on the HSV,
RGB, and Lab color spaces, respectively for théa8scscene dataset [2] and the 67-scene indooe siegaset [10]. Similar to the
procedure described in Sec. IV.A, we try differalidcation schemes to find the best quantizatittingefor each color space, and

achieve the best accuracy for two datasets.



Table 3 shows that color CENTRISTs from the RGBcspace achieve the best performance for thes®-sleene dataset. The
p-values of RGB vs. HSV and RGB vs. Lab are 0.06B&016, respectively. Color CENTRISTs from thé lcalor space achieve
the best performance for the 67-class indoor sdateset. The p-values of Lab vs. HSV and Lab viBRé 0.213 and 0.005,
respectively. Although not being the one achievirgbest performance, the difference between HSMflambest methods in both
datasets is not statistically significant. ColorNJRISTs extracted from the HSV color space stablyieve in-between results,
and this is why the HSV color space is chosen traekcolor CENTRIST for large-scale and variousrgccategorization tasks in

this study.

C. Comparing Color CENTRIST with CENTRIST Extracted from Multiple Channels

An index scheme is designed to embed color infdondtom three channels into a compact color indlete to be represented by
8 bits. To verify effectiveness of the proposedexdcheme is effective, here we evaluate scengar&ation performance
obtained by color CENTRISTSs with this index scheare] that obtained by concatenating CENTRISTs sy extracted from
H, S, and V color channels rather than the intgr$iannel solely.

From the hue channel, for example, the censusftnangor a pixel is conducted by comparing its lsoenponent with that of its
eight neighbors. The CT values are then colleaeambhstruct the CENTRIST in the hue channel, dehageh-CENTRIST. With
the spatial pyramid scheme and principal compoaealysis, a 1302-dimensional level 2 h-sPACT cam the constructed from
the hue channel. In this experiment, a 1302-dinegrailevel 2 SPACCT is compared with the 3906-disiamal (302 x 3 = 2906)
concatenation of h-sPACT, s-sPACT, and v-sPACT ctvhis denoted by hsv-sPACT. Based on the 8-classesdataset, the
recognition rate obtained by the level 2 sSPAcCIa92%, while the recognition rate obtained byldvel 2 hsv-sPACT is 86.27%.
The p-value of the paired two-sample t-tests betwe® sets of experimental results is 0.037, whibbws that performance
superiority of the proposed color index schemdatsdically significant, though the dimension e¥él 2 sSPAcCT is much smaller
than that of level 2 hsv-sPACT. The reason for @atithg based on level 2 representation is thadiisistently gives the best

performance for both cCENTRIST and CENTRIST, whigh be shown in the following section.

V. PERFORMANCEEVALUATION
With the experiment settings discovered abovectiier CENTRIST descriptor is tested based on fatadets: 8-class scene
category [2], 8-class sports event [9], 67-claskar scene recognition [10], and KTH-IDOL/KTH-INDB(14][15]. These

datasets include a variety of images with varidesal characteristics.



A. The 8-Class Scene Category Dataset

The 8-class scene recognition data set was builbwa and Torralba [2]. Although this dataset wgaadually extended to 13
classes and 15 classes by Fei-Fei and Peronan®]l.azebnik et al. [3], respectively, only the anag 8 classes of images are
colorful. We thus evaluate CENTRIST and color CENSR (abbreviated as cCCENTRIST in the following) é&®n this smaller
dataset. This data set contains a wide range oéstaegories in outdoor environments, such ag,doasst, mountain, and so on.
Figure 9 shows some sample images in this dat@esblutions of all these color images 2#¢ x 256 pixels, and there are 260 to
410 images in each category.

Experiments of image scene categorization are adadun five runs, and the recognition accuracfdie runs are averaged to
show the overall performance. At each run, 100 &sag each category are randomly selected foritigirand the remaining
images are for testing. A multiclass SVM classifigth RBF kernel is constructed for recognition.tdlthat the multiclass SVM
classifier implemented in the LIBSVM package [26Fbnstituted by a collection of binary SVM claiesi with a one against one
approach. We compare CENTRIST with cCENTRIST basekkvel O representation, and based on repregemaif levels 1, 2,
and 3, with and without PCA. For cCENTRIST with Splpyramid scheme but without dimension reductiae call it spatial
color Census Transform (spatial cCT) histogramglibreviated to scCT. The dimensions of scCT witlelld pyramids, level 2
pyramids, and level 3 pyramids d854 + 2) x 6 = 1536, (254 + 2) x 31 = 7936 , and(254 + 2) x 144 = 36864, respectively.
You may recall that the terf254 + 2) comes from removing the two bins with cCT valuegiad to 0 and 255 from the
256-dimensional color CENTRIST, and concatenating naahstandard deviation of color indices in a block

Table 4 shows the experimental results. At eacél lthe best result is shown in boldface, and peslof comparing the best
results with others at the same level are caladi@mehow statistical significance. This table desimtes the following trends. First,
the proposed cCENTRIST stably has superior perfocemaover CENTRIST at all levels. These resultsfydhat, if color
information is appropriately embedded, scene imagebetter categorized. Second, the level 2 reptaton with PCA provides
the best performance over all other settings. Taiforms to the trend reported in [1] and [3]. Bescriptors modeling global
structure, if we appropriately extract descriptordocal patches and consider information in diéfar levels as well, better
performance can be obtained. Third, by compariegtrformance obtained with PCA and without PCheegls 1, 2, and 3, we
found that applying PCA can effectively eliminateisy features and improve performance.

The confusion matrices of scene recognition basdewel 2 SPACCT and level 2 SPACT are shown imfédL0, where rows are
true labels and columns are predicted labels. &bed P SPACCT yields the best performance in farasttall building categories.

The level 2 sPACT also works best for forest, bagginot work that well for tall building. Thereasclear structure and color



difference between tall buildings and the sky, #ngs cCENTRIST brings more clues for recognizifglaildings. The most
confused case comes from open country versus agldgist) also conforms to the trend reported in [id &3].

Figure 11 and Figure 12 show sample images thatamectly and incorrectly recognized based onlével 2 sPAcCT,
respectively. The caption “highway(coast)”, for exde, means the corresponding image is detectéigaway, while the true
label is coast. From Figure 11 we can see that CIBHNT achieves reliable performance even therégisifcant intra-class

variation. On the other hand, in Figure 12, sonsesdhat may also confuse humans still annoy thieogsed descriptor.

B. The 8-Class Event Dataset

The 8-class event dataset [9] includes imagegbt sports: badminton, bocce, croquet, polo, rowiagk climbing, sailing, and
snowboarding (see Figure 13). Although this dataset designed for event recognition, in this experit we classify events by
classifying scenes, and do not attempt to recogndieidual objects or persons. Images in this siettare in high resolutions (from
800 x 600 to thousands of pixels per dimension). There 8etd 250 images in each category. With the fivedoan-run scheme,
70 images per class are randomly selected foiitiggiand the remaining images are for testing. 8asethe LIBSVM package, we
respectively construct multiclass SVM classifieifwhe RBF kernel, based on CENTRIST or cCENTRIiSThe representation
of level 0, the representations of levels 1, 2, andith or without PCA.

Table 5 shows the experimental results, wheredht kesel the best result is shown in boldface. Binto the results of the 8-class
scene dataset, CCENTRIST achieves better perforenaver CENTRIST in all levels of representationise Denefits brought by
PCA are also confirmed. However, comparing Tablétb Table 4, performance superiority of CCENTRI®%r CENTRIST for
the 8-class event dataset is slightly less tharfah¢he 8-class scene dataset. The 8-class datadet was not specifically collected
to represent image scenes. Because a variety pérpland sports alliances largely occupy the insupece, there are fewer
regular-texture regions inside images. Recognipieriormance obtained based on cCENTRISTs and CEST®RIs thus getting
close.

Figure 14 shows the confusion matrices of scenegrétion based on level 2 sPAcCT and level 2 sPA@Spectively. In both
matrices, the most confused case is bocce veregset. Based on sPACCT, 22% of bocce images areeoignized as croquet,
and 25% of croquet images are misrecognized asb8esed on sPACT, 16% of bocce images are misnezas croquet, and
23% of croquet images are misrecognized as bodus.tfend is expectable because bocce images agdetrimages share very
similar backgrounds. When comparing these two cedlisPAcCT especially works better for recognizok climbing (91%),
rowing (91%), and sailing (88%), which are over 833%8%, and 82% obtained by sPACT, respectively. dMajecture that

considering color information in SPACCT helps tachibe large-area colorful regions, such as water, and rock.



C. The67-Class Indoor Scene Dataset

The 67-class indoor scene dataset was proposé@]inilhe indoor scenes range from specific categde.g., dental office) to
generic concepts (e.g., mall), and contain a wftdb,620 images. It was argued in [10] that bottal and global information are
needed to recognize complex indoor scenes. In fti@]global GIST feature averagely achieved 21%geition accuracy for this
challenging data set. By jointly considering loitsibrmation, the accuracy was improved to 25%.

Following the experiment settings in [10] and [8], images were randomly selected from each catefgonyaining, and 20
images were selected for testing. The five-randomscheme is also used. Multiclass SVM classifiétis the RBF kernel were
constructed, respectively based on CENTRIST and\EIFHST in the representation of level 0, the reprgation of level 1 with
PCA, and the representation of level 2 with PCAI&® shows the experimental results, where at keaehthe best result is shown
in boldface. The average recognition accuracy baselbvel 2 sPAcCT is 36.09%, which shows the perémce of SPACCT

derived from cCENTRIST is significantly better th@ahST and sPACT.

D. TheKTH-IDOL and The KTH-INDECS Dataset

The KTH Image Database for rObot Localization (ID@htaset [14] includes pictures captured by twbiteaobot platforms,
Minnie and Dumbo, that move in an indoor environtreemsisting of five rooms of different functiortédss, including a one-person
office, a two-person office, a kitchen, a corridamd a printer area. A complete image sequencea@sared when a robot moved
around all the five rooms, under one of three werattonditions (cloudy, night, and sunny). For eealot and each weather
condition, four image sequences were captured féereint days, and thus there &re 3 x 4 = 24 sequences. Resolution of these
images is320 x 240. In different image sequences, various objectsadikvalking person or furniture may be added oorerd. The
first two rows of Figure 15 show sample images wagat by Minnie and Dumbo in a one-person officejarrdifferent weather
conditions. In the same environment as the IDOlaskt; images in the KTH-INDECS dataset [15] wengtwad by cameras
mounted in several fixed locations inside each robhe third row of Figure 15 shows three samplegi@sain this dataset.

We use the first two runs of image sequences caghtoy each robot in each weather condition. THeviahg four experimental
settings were evaluated:
® Setting 1: Train and test using the data captbsethe same robot, and under the same weathertmdiRun 1 is used for

training and run 2 is used for testing, and vicesae

@ Setting 2: Train and test using the data capthyettie same robot, but under different weather itimmg. This experiment tests

generality over variations of object locations dhamination.



@ Setting 3: Train and test using the data capturetbr the same weather conditions, but capturediffgrent robots. Cameras
mounted at different heights on the robots, ansleékperiment tests generality over scene layougains.

® Setting 4: The KTH-INDECS dataset is used fomiraj, and images from INDECS under different weatoaditions are used
for testing.

Following the settings mentioned above, multicl¥#/ classifiers with the RBF kernel were constrd¢tespectively based on
level 2 sPACT and level 2 sPAcCT. Table 7 showsaberage recognition accuracies based on Settihg this experiment,
sPACT and sPAcCT have similar performances fordyand sunny conditions. However, SPAcCT achieessin 1% accuracy
behind that of SPACT for the night conditions. the images captured at night, light from fluoresdamps may have caused color
shift and influenced the robustness of color CENSRI

Table 8 shows average recognition accuracies wherirtg and testing data are in different weatlogrditions (Setting 2). The
training and test conditions in the first row, é&ample, mean that the sunny sequence captured findt run was used for training,
and the night sequence captured in the secondasmuged for testing. We found that sSPAcCT hasimfeerformance when night
images were used to train or test. On the othed,hahen the cloudy or sunny images were used tn tnatest, SPAcCT has
promising performance.

Table 9 shows the average recognition accuracies whages captured by different robots were seglgrased for training or
testing. From this table we can see that sPAcCTshglstly weaker robustness for this experimengdlirsg. Table 10 shows the
average recognition accuracies for the KTH-INDE@&sdet. SPACT and sPAcCT generally have simildopeaances.

Overall, sPAcCT achieves slightly worse performatitzen sPACT in the KTH-IDOL and KTH-INDECS datase®e
conjecture that fewer color variations exist inghalatasets, and thus embedding color informatiitim the cost of allocating a few
bits to represent hue and saturation, gives noftbém¢he original CENTRIST framework. To verifiis conjecture, we randomly
selected ten image pairs from each scene catefitirg 8-class scene dataset and calculated thé/estmtropy of each pair based
on HSV histograms of images. All relative entrojues from sampled image pairs are then averagsbto the intra-class color
variation. The same procedure was also conductseldban the KTH-IDOL/KTH-INDECS datasets. Quantitely, the average
relative entropy within classes of the 8-class eadataset is four times that of the KTH-IDOL/KTHDECS datasets. Therefore,
we conclude that color CENTRIST benefits scenegeitimn more when images in the same scene coneeg oolor variations.

The relationship between intra-class color variaiand categorization performance is thus wortlréustudy.



E. Combining Color CENTRIST with CENTRIST

We have evaluated cCENTRIST on various datasetwveanified that color information is helpful in degging images. In this
section, based on the 8-class scene dataset, estigate whether it is more helpful if we combirfeNO RIST and cCENTRIST.

The same procedure is used to extract SPACCT ah@Ehh levels 0, 1, and 2 pyramids. Then sPAcCT slRACT of an image
on each level are concatenated, respectively. Dhebimed descriptor describes level 0 image@dfyx 2 = 512 dimensions
(without PCA), level 1 images 852 x 2 = 504 dimensions (with PCA), and level 2 images1By2 x 2 = 2604 dimensions
(with PCA). The five-random-run scheme is usedtffaining and testing.

Table 11 shows the experimental results, whereaeh devel the best result is shown in boldface. Téwlt shows that
cCENTRIST combining with CENTRIST achieves betterfprmance than only using CENTRIST or only usiGiEdTRIST. We
also notice that the combined descriptor can ordygmally improve cCENTRIST (recognition rates irope by 0.31%~1.57%),

but can moderately improve CENTRIST (recognitioesamprove by 2.09%~3.06%).

F. Bag of Words Framework

In this section, we compare the proposed holistiorodescriptor with the local descriptors mentidie [13], based on the bag
of words (BOW) framework. We follow the dense saingpbkcheme and pyramid construction used in [13],dnd [13] to extract
descriptors. From an image we extract color CENTIR&Ad other local descriptors from patches of di@eby 16, which are
sampled over a grid with a spacing of 8 pixels. @nueth of the image patches sampled from the itigiset are used to generate
two codebooks (by the k-means algorithm), whichtaims 200 code words and 400 code words, respéctiver a level 2 pyramid
representation, the final descriptor that use€@@code words codebook has a dimensid206fx (16 + 4 + 1) = 4200, and the
dimension changes to 8400 if the 400 code wordelook is used. SVM classifiers with the histogramerisection kernel are
constructed to conduct scene categorization. Bardtie 8-class scene dataset, we compare color RENTwith other color
descriptors, including c-SIFT, opponent-SIFT, al@BSIFT [13], and other gray-level descriptorsjuing CENTRIST [1] and
SIFT [7]. We also compare the total time needezkteact these descriptors, based orctast category in the 8-class scene dataset,
which contains 360 images.

The average recognition rates are reported in TEhl&rom this table, we can see that the perfocenahcCENTRIST is similar
to that of other color descriptors. Comparing Tdl#levith Table 4, performance of cCENTRIST in the\B framework is worse
than that of level 1 and level 2 sSPAcCT, whichxpertable because cCENTRIST is inherently a gldleskriptor. Although
performance of cCENTRIST in the BOW framework i$ sigperior to other color descriptors, cCENTRIST ba extracted much

faster. Figure 16 shows the total time needed ti@eixdescriptors in all of the 360 images in¢bast category of the 8-class scene



dataset. Extracting CENTRIST and cCENTRIST is semghd fast. By jointly considering the categorimatperformance and
extraction time, color CENTRIST is especially shitafor high-resolution images or large-scale imegjéections, which inspires

us to develop an application described in Sectibn V

G. Comparing Color CENTRIST with Color LBP
As color CENTRIST is essentially similar to locahéry patterns (LBP) considering color informatiarstraightforward question
arises: how about comparing color CENTRIST wittoc@BPs? Recently, Zhu et al. [26] extended oribifigPs to construct six
color LBP descriptors. Based on the 8-class scetasdt, we compare color CENTRIST with the besgttwolor LBPs reported in
[26], which are Hue-LBP, Opponent-LBP, and nOpptid3P. The Hue-LBP is obtained by computing LBPnfrthe hue channel
of the HSV color space. Each pixel is representedifpht bits. The Opponent-LBP is obtained by cotimguLBP over all three
channels of the opponent color space, and the n@ppd BP is obtained by computing LBP over two aiels of the normalized
opponent color space. Note that each pixel is sgmted by 8, 24, and 16 bits when Hue-LBP, OppebBR, and
nOpponent-LBP are calculated, respectively. To nfakecomparison, we employ the spatial pyramidescé (with PCA-based
dimensionality reduction) to all color LBPs and@oCENTRIST, though a multi-scale scheme was pregas [26] as well.
Table 13 shows performance comparison between &@HENMTRIST and the three color LBPs. It can be sdwah color
CENTRIST works the best over all levels. Compardti ¥he Hue-LBP, we jointly consider hue, satumtiand value channels
with the proposed color index scheme. When comgawiith the Opponent-LBP and nOpponent-LBP that eésent color
information by 24 bits and 16 bits, color infornaatiin color CENTRIST is embedded into 8 bits. Ew#ihg results in different
levels of representation verify that the proposeldicCENTRIST provides robust and superior perfarogover existing color

LBPs.

VI. APPLICATIONS
We have shown that cCENTRIST can be extractedrfisia most of the other descriptors. This propierguitable to be applied
in studies which need a great number of operationthis section, we apply cCCENTRIST on object déta in a high-resolution
image, which is an important step in many resetoplts. Object detection is conducted based opamerama of a grocery store
produced in [23]. The resolution of the panoramialig9 x 711 pixels. For convenience, we only use the left phtiis panorama,
which is the food region. The size of the left pafrpanorama i§220 x 711, and the panorama is as shown in Figure 17. In the
object detection experiment, we select 20 pataioes this panorama as queries, extract cCCENTRIST fjoeries, and aim to find

the positions of these query patches in the paremram



To efficiently detect where a query patch comemfrave adopt a search method similar to the logaittsearch method in fast
motion estimation. The panorama is first dividei igrids without overlapping, which have the saire as the query patch. Based
on level 0 cCENTRIST, the histogram intersectiotwleen a grid and the query patch is calculated.tfife® grids that have the
largest histogram intersection to the query patehtlzen selected as candidate patches. We they aysfitling window pixel by
pixel from left to right, and from top to bottonrtiugh each candidate patch. Each sliding windowtiasame size as the query
patch, and is centered by a pixel in a candidatiehpa@he histogram intersection between a slidimglow and the query patch is
again calculated. Finally, the window with the kesghistogram intersection to the query patch isresthe query patch was located.
Other than the histogram intersection, we alsd tideevaluate the Euclidean distance and the clairedistance between query and
targeted patches, but found that the histogramsiettion gives the best detection performance.

The twenty query patches are shown in Figure b8nfivhich we see the queries includes patches @fdraizes, structures, and
appearances. For each query, the spatial Euclidestance between centers of the detected locatidntlze ground truth is
calculated to show the spatial error. As can ba BeEigure 19, two descriptors have similar perfance in most cases, except for
the query 4, where cCENTRIST significantly improvesrformance. The average spatial error over 2Ciegidased on
cCENTRIST is 54 pixels, and that based on CENTR$IB pixels. By carefully comparing detection penfiance query by query,
CcCENTRIST achieves better or equal performance BOITRIST in 13 of 20 queries. From this experimem, can see that
incorporating color information also benefits oljdetection.

Note that the developed descriptors can be utilzitd more efficient object detection approacheshsas efficient subimage

search [24]. But we simply focus our attention galeating the effectiveness of color CENTRIST iisthaper.

VII. CONCLUSION

In our presentation we have shown that embeddilyg cdormation into the CENTRIST framework consistly provides better
performance on scene categorization, through cdmpseve evaluation studies from various perspestiviecluding color
guantization, color index, color space selectionltitevel representation, and dimension reductigynappropriately quantizing the
HSV color space and with the designed color indsheme, color information is elaborately represerged incorporated to
construct the color CENTRIST descriptor. With salgbiyramids, structure information in multiple Iévean be described, and thus
robust performance can be obtained for variousseégaincluding the 8-class scene dataset, thas3-elent dataset, and 67-indoor
dataset. Based on the evaluation results for thel KIOL/INDECS datasets and the intra-class colaiateons measured by
average relative entropy, we now suggest that tbpgsed color CENTRIST is especially suitable foages with higher color

variations. To demonstrate the possibility of apmycolor CENTRIST in different domains, an applica on object detection is



proposed. We believe this would be one of the rmosiprehensive experimental studies on scene cé&agon based on color
holistic descriptors.

In the future, using color CENTRIST in more applicas will also be investigated. Because color CIRINST shares the same
limitations as CENTRIST, i.e., not invariant to atitbn and scale, we need to enhance the descriptodesigning a
rotation-invariant extraction scheme. How intrasslaolor variations relate to categorization penfamce is also worth further
study. Whereas with the current classification rdtiogy, we simply utilize the standard SVM claissd. By considering
manifold assumption, more advanced SVM like Hessiularized SVM [36], or dimension reduction teicjues considering
geometry preservation [18], can be adopted to ingirene categorization. Combining color CENTRISH wther features,
scene categorization based on multimodal or melthfeatures [19] can be accomplished by multivi&s [33] or sparse coding

schemes [16].
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Figure 1. An example showing importance of coldoimation in scene categorization. Left: gray-leveages; Right: colorful

images (better seen in color).
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Figure 2. An example of census transform.
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Figure 4. Flowchart for extracting color CENTRIST.
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Figure 5. CENTRISTSs of two images in different seeategories (better seen in color).
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Figure 6. Color CENTRISTSs of two images in differesnene categories (better seen in color).
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Figure 7. A designed example to illustrate theedldhce between CENTRIST and color CENTRIST.
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Figure 9. Sample images from eight scene categoFiesse categories are coast, forest, highwaygénsity, mountain, open

country, street, and tall building, respectivelp(h left to right, top to down).
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Figure 10. Confusion matrices of the 8-class scetaset. Only rates higher than 0.1 are showreifigre. Left: level 2 SPAcCT;
right: level 2 sPACT.
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Figure 11. Examples of correctly recognized images.
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Figure 12. Examples of incorrectly recognized insage

Figure 13. Sample images from the 8-class eveatdatThe categories are badminton, bocce, crgoiet,rowing, rock climbing,

sailing, and snowboarding, respectively (from teftight, top to bottom).
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Figure 14. Confusion matrices of the 8-class edatdset. Only rates higher than 0.1 are showreifighres. Left: SPAcCT,; right:

SPACT.
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Figure 15. Sample images from the KTH-IDOL datdéte first and the second rows) and the KTH-INDE2&set (the third row),
in different weather conditions. These examplesshearly the same angle of a one-person office.
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Figure 16. The total time needed to extract colBNCRIST and other descriptors from all images imdbast category of the
8-class scene dataset.

Figure 18. Twenty query patches extracted fronptngorama.
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Table 1. Recognition rates under different bit@diion schemes, using the 8-bit setting, basett®Bclass scene dataset.

Different schemes Setting Recognition rates p-\&alue
1 H-S-V (8-0-0) 74./5+1.1¢€ < 0.001
2 H-S-V (0-8-0) 83.110.4z < 0.001
3 H-S-V (0-0-8) 85.5240.8C 0.00¢
4 H-S-V (0-1-7) 85.76+0.42 0.004
5 H-S-V (0-2-6) 86.6¢+0.4¢ 0.26¢€
6 H-S-V (1-1-6) 86.74+0.44 0.29¢
7 H-S-V (0-3-5) 86.85+0.76 0.443
8 H-S-V (1-2-5) 86.92+0.58
9 H-S-V (0-4-4) 85.3¢+1.05 0.01¢
10 H-S-V (1-3-4) 85.741.1¢ 0.04¢
11 H-S-V (2-2-4) 85.87+1.10 0.054
12 H-S-V (2-3-3) 84.71+0.9¢ 0.00zZ

Average 86.0(

Table 2. Detailed bit allocation schemes evaluateabe 4-bit, 8-bit, 12-bit, and 16-bit settings.

4-bit setting 8-hit setting 12-bit setting 16-bit setting

H-S-V (0-0-4) H-S-V (8-0-0) H-S-V (0-4-8) H-S-V (0-8-8)
H-S-V (0-1-3) H-S-V (0-8-0) H-S-V (1-3-8) H-S-V (1-7-8)
H-S-V (0-2-2) H-S-V (0-0-8) H-S-V (2-2-8) H-S-V (2-6-8)
H-S-V (1-1-2) H-S-V (0-1-7) H-S-V (0-5-7) H-S-V (3-5-8)
H-S-V (0-2-6) H-S-V (1-4-7) H-S-V (4-4-8)
H-S-V (1-1-6) H-S-V (2-3-7) H-S-V (2-7-7)
H-S-V (0-3-5) H-S-V (0-6-6) H-S-V (3-6-7)
H-S-V (1-2-5) H-S-V (1-5-6) H-S-V (4-5-7)
H-S-V (0-4-4) H-S-V (2-4-6) H-S-V (4-6-6)
H-S-V (1-3-4) H-S-V (3-3-6) H-S-V (5-5-6)

H-S-V (2-2-4) H-S-V (2-5-5)

H-S-V (2-3-3) H-S-V (3-4-5)

H-S-V (4-4-4)

Table 3. Best average recognition accuracies baisd¢lde HSV, RGB, and Lab color spaces.

HSV RGB Lab
8 scene 86.92+0.58 87.47#0.46 86.58+0.60
67 scene 36.09+0.70 34.07+1.28 36.51+0.87

Table 4. Recognition rates on the 8-class sceraseéitbased on CENTRISTs or cCENTRISTSs with diffesettings.

Level Method Feature type Rates p-values
0 CENTRIST CENTRIST, not using PC 77.70£1.04 0.03(
0 cCENTRIST cCENTRIST, not using PC 79.19+1.12

1 sPACT CENTRIST, 40 eigenvectc 83.75+0.66 0.00z
1 SPACCT cCENTRIST, 40 eigenvectors 85.53+0.77

1 scCT cCENTRIST, not using PCA  83.26+0.72 < 0.001
2 sPACT CENTRIST, 40 eigenvectors 84.63+1.08 0.003
2 SPACCT cCENTRIST, 40 eigenvectc 86.92+0.58

2 scCT cCENTRIST, not using PCA 83.32+1.14 < 0.001
3 sPACT CENTRIST, 40 eigenvectc 83.92+0.74 0.11
3 SPACCT cCENTRIST, 40 eigenvectors 84.62+0.92

3 scCT cCENTRIST, not using PCA  81.36+0.72 < 0.001




Table 5. Recognition rates on the 8-class eveisegat

L Method Feature type Rates p-value
0 CENTRIST CENTRIST, not using PC  65.24+1.7¢ 0.04
0 cCENTRIST cCENTRIST, not using PCA67.12+1.06
1 sPACT CENTRIST, 40 eigenvectors7.37+1.37 0.14
1  sPAcCT cCENTRIST, 40 eigenvector§8.16+0.53
1 scCT cCENTRIST, not using PCA74.07+0.89 < 0.001
2 sPACT CENTRIST, 40 eigenvectors9.82+0.75 0.45
2  sPAcCT cCENTRIST, 40 eigenvectc 79.88+0.59
2 scCT cCENTRIST, not using PCA74.15+0.54 < 0.001
3 sPAC1 CENTRIST, 40 eigenvectc  78.04+0.4Z 0.12
3  sPAcCT cCENTRIST, 40 eigenvector§8.39+0.50
3 scCT cCENTRIST, not using PCA70.93+1.12 < 0.001
Table 6. Recognition rates on the 67-class indoenes dataset.
L Method Feature type Rates p-value
0 CENTRIST CENTRIST, not using PCA 22.09+1.71 0.084
0 cCENTRIST cCENTRIST, not using PCA 23.67+1.57
1 sPACT CENTRIST, 40 eigenvectors 30.84+1.61 0.057
1 sPACCT cCENTRIST, 40 eigenvectc 32.40+1.10
2 sPACT CENTRIST, 40 eigenvectc 3448+0.9¢ 0.01(
2  sPAcCT cCENTRIST, 40 eigenvectc 36.09+0.70
Table 7. Average recognition accuracies on the KIDBL dataset (Setting 1).
Exp Train Test Condition sPACT sPAcCCT
1 Minnie Minnie  Cloudy 94.85% 95.15%
2 Minnie Minnie  Sunny 97.24%  97.18%
3 Minnie Minnie Night 93.10% 92.27%
Table 8. Average recognition accuracies on the KDBL dataset (Setting 2).
Exp Train Test Train Test sPACT SPAcCCT
conditior Conditior
1 Minnie  Minnie Sunnyl Night2 80.69% 79.76%
2 Minnie  Minnie Nightl Sunny?2 86.10% 83.04%
3 Minnie  Minnie Cloudy] Sunny: 92.93% 93.40%
4 Minnie  Minnie Sunny: Cloudyz 91.01% 91.12%
5 Minnie  Minnie Nightl Cloudy2 90.39% 87.81%
6 Minnie  Minnie Cloudyl Night2 92.72% 90.09%

Table 9. Average recognition accuracies on the KIDBL dataset (Setting 3).

Exp Train Tes Conditior sPACT sPAcC1
1 Minnie Dumbo Cloudy 74.96% 73.28%
2 Minnie Dumbo Sunny 78.81% 76.86%
3 Minnie Dumbc Night 74.19% 72.20%




Table 10. Average recognition accuracies on the KNBECS dataset (Setting 4).

Exp Train Test Train Test sPACT SPACCT
condition  condition

1 Cameri Cameri Sunny Night 84.52% 86.54%
2 Camer; Camer; Night Sunny 87.04% 89.26%
3 Camera Camera Cloudy Sunny  95.28% 92.96%
4 Cameri Cameri Sunny Cloudy 93.70% 92.78%
5 Camer; Camer; Night Cloudy 92.31% 91.39%
6 Camera Camera Cloudy Night 89.10% 91.30%

Table 11. Recognition rates on the 8-class scetasela based on CENTRIST, cCENTRIST, and the comsbitescriptor.

Method

L Feature type Rates p-value
0 CENTRIST CENTRIST, not using PCA 77.70£1.04 <0.001

0 cCENTRIST cCENTRIST, not using PCA 79.19+1.12 16.0
0 combinel 80.76+0.59

1 sPACT CENTRIST, 40 eigenvectors 83.7510.66 <0.001

1 sPAcCT cCENTRIST, 40 eigenvectc  85.53+0.77 0.23¢

1 combinec 85.84+0.42

2 sPACT CENTRIST, 40 eigenvectors 84.63+1.08 <0.001

2  sPAcCT cCENTRIST, 40 eigenvectors 86.92+0.58 ®.13
2 combined 87.46+0.75

Table 12. Average recognition rates on the 8-cdasse data set, using different descriptors withbdng of word framework.

Color descriptors
Pyramid | Codebook Color
ol St cenTRis] | C-SIFT | RGB-SIFT | Opponent-SIFT
0 20C 78.47+0.7. 79.47+0.9. | 80.40%0.5: 80.72+0.1!
0 40C 81.46+0.5! 82.18+0.8" | 83.16+0.3 83.54+0.5
2 200 82.90+0.43 82.82+0.27 83.42+0.71 83.02+0.82
2 400 84.24+0.68 83.53+0.4p 84.40+0.99 83.92+0.48
Grey level descriptors
Pyramid | Codebook | e\ rpisT SIFT
level size
0 200 78.08+0.59 79.12+0.54
0 400 80.58+0.57 81.08+0.69
2 200 83.12+0.67 82.14+0.77
2 40C 84.99+0.3! 83.21+0.9

Table 13. Performance comparison between color GHRNT and three color LBPs, at various levels, basethe 8-class scene
dataset. The p-values of all comparisons betweeg@ENTRIST and other descriptors are much lessQtz01.

Descriptors Level 0 Level 1 Level 2 Level 3
Hue-LBP 64.99+1.0€ 72.181.02 75.1240.45 74.1540.48
Opponer-LBP 62.24+0.57 72.581.5€ 75.2241.3¢ 72.8.40.7¢
nOpponent-LBP 70.4141.19 77.1610.83 79.80+0.94 50131
cCENTRIST 79.19+1.12 85.53+0.77 86.92+0.58 84.62+0.92




