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Abstract—For object detection, evaluating all sliding windows 

at various scales draws a computational efficiency issue. In this 

paper, we propose a fast object detection framework using the 

multistage particle window strategy to accelerate the cascade 

deformable part model (DPM). Coupling this strategy with the 

proposed early jump scheme, adaptive particle window 

generation, and efficient preprocessing, we demonstrate that 

the proposed method runs 34.5 times faster than the 

conventional DPM to detect objects in images, and is able to 

efficiently detect vehicles and pedestrians in on-road videos. 

Keywords- deformable part model; multistage particle 

window; early jump; adaptive particle window generation 

I.  INTRODUCTION 

Object detection is one of the fundamental challenges in 
computer vision. It can be seen as a classification problem 
(object vs. non-object), where sliding windows at all possible 
positions and scales are examined to determine whether the 
targeted object is included. This task is both time consuming 
and challenging due to different object appearances, sizes, 
illumination/viewpoint changes, and non-rigid deformation.  

The deformable part model (DPM) [1] is one of the state-
of-art works achieving promising object detection. Feature 
pyramids of a test image are extracted, and a sliding window 
approach is adopted to calculate the response of a specific 
window to the object model. The window causing the 
highest response is selected as the detection result. Although 
this approach achieves promising performance, construction 
of feature pyramids and response evaluation over all sliding 
windows cause computational problems:  
� Feature pyramid construction: To detect objects of 

unknown sizes, extracting features at different scales is 
necessary and time consuming. To solve this problem, 
Dollar et al. computed features at a single scale and 
approximated features at nearby scales [7].  

� Response evaluation: A few studies adopted the cascade 
strategy to speed up the detection process. This strategy 
quickly rejected most true negatives in early stages using 
simpler classifiers, and left complex evaluation in later 
stages only if necessary [4].  
Although the cascade strategy makes detection faster, the 

computational cost is still high because all sliding windows 
were exhaustively examined. In this work, focusing on 
reducing the cost of response evaluation, we propose a new 
paradigm to accelerate the DPM: the multistage particle 
window DPM (mspw-DPM). Motivated by [3] that adopted 
the Monte Carlo sampling scheme to efficiently reduce the 
search space, we embed the idea of multistage particle 

window into the framework of the cascade DPM [4]. Based 
on the mspw-DPM, more speed-ups are further made from 
three perspectives: early jump in the detection procedure, 
adaptive particle window generation, and effective 
preprocessing based on the BRIEF descriptor [8].  

The rest of this paper is organized as follows. Section II 
describes the mspw-DPM and the three strategies to further 
accelerate object detection. Section III employs the proposed 
model to detect objects in images, as well as pedestrians and 
vehicles in on-road videos. Section IV demonstrates 
detection performance, followed by conclusion in Section V.   

II. MULTISTAGE PARTICLE WINDOW DPM 

A. MSPW-DPM 

We separate the detection process into stages. At the first 
stage, appropriate numbers of sliding windows 
(corresponding to particle windows in the proposed scheme) 
are sampled according to a density function that is initialized 
as a uniform distribution. Each particle window is then tested 
by the cascade DPM [4]. The likelihood of a particle window 
containing a targeted object is estimated by the ratio of layers 
passed by this particle window to the total number of layers 
in the cascade DPM. Scores of all particle windows are then 
collected to update the density function, by which new 
particle windows are sampled at the next stage. After several 
stages, the sampled particle windows are expected to be 
close to the true object locations. Figure 1 illustrates the 
process when we employ the bicycle cascade DPM to detect 
bicycles in an image. As can be seen, the sampled particle 
windows gradually converge stage by stage.  

According to the density function , at the th stage 

totally  particle windows are sampled for the image . 

Note that the number  is much smaller than the total 

number of all possible sliding windows, and thus at each 
stage there are only moderate numbers of response 
evaluations. The width and height of each particle window 
are randomly given. In response evaluation, the score of the 

th particle window  at the th stage is ,

  where  is the total number of layers in the cascade 

DPM, and  is the number of layers passed by . A 

particle window with low score means that its nearby region 
unlikely contains the targeted object.  

The main idea of the mspw-DPM is skipping those 
regions with low scores, and sampling more particle 
windows closer to the regions with high scores at new stages. 
To update the density function at each stage, after response 



evaluation, each particle windows is assigned a Gaussian 

kernel , where its mean  is set according to 

the center of the th particle window , and the 

covariance matrix  is consistent for all particle windows. 

The density function for sampling particle windows at the 

th stage is then updated by  

,  (1) 

,  (2) 

where  denotes the weight of the th Gaussian 

component,  is the score the particle window .  

With the updated density function, more particle 
windows will be sampled at the positions closer to where the 
targeted object locates. Figure 1 shows a test image and its 
corresponding density function after one update. We can 
clearly see that, after only one update, the updated density 
has efficiently evolved to indicate possible locations of the 
bicycle object. Keeping the same process for a few stages, 
accurate object locations can be efficiently identified.  

Figure 2 shows the distributions of particle windows at 
different stages, where we can see that the density function 
quickly converges and accordingly many samples would be 
drawn in a small locality. When the sampled particle 
windows are close enough to the targeted object, responses 
of them are similar. Therefore, there is no need to draw as 
many samples as we initially do at the first stage. In this 

work, we set , where  is empirically set 

as 0.44. As can be seen in Figure 2, the number of particle 

windows reduces stage by stage. If the parameter  is 

smaller, fewer samples will be drawn, making detection fast 

but less accurate. On the other hand, if the parameter  is 

larger, generally more accurate detection result can be 
obtained but the detection process is slower.  

At each stage, if response of a particle window is larger 
than a threshold, this particle window is viewed to have the 
targeted object inside. In our work, totally five stages of 
detection and update are conducted in the test procedure. 

 
Figure 1.  Left: The test image where we try to detect the bicycle object. 

Right: The updated density function after one update (for sampling particle 
windows at the second stage). 

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5  
Figure 2.  Distributions of particle windows at different stages. Each blue 

dot denotes the position of the left-top corner of a particle window.  

The proposed method speeds up the cascade DPM [4] by 

1) sampling just parts of sliding windows, and 2) adaptively 

reducing the number of samples. To further accelerate 

detection, we further propose processes from three 

perspectives, as described in the following 

B. Early Jump Scheme 

For a test image, we examine all object models to detect 
which objects are in the image. If we can know there is no 
targeted object in the test image earlier, the corresponding 
object model can be skipped at early stages to speed up the 
whole process. To achieve this, at each stage we evaluate 
scores of all sampled particle windows and stop the detection 
and density update processes if all scores are lower than a 

threshold. If we skip an object model at the th stage, the 

number of response evaluation we save is , 

where  is the total number of layers of a cascade DPM, and 

 is the number of particle windows at the th stage. This 

improvement speeds up object detection by disregarding 
inappropriate object models as early as possible.  

C. Adaptive Particle Window Generation 

Because there may be multiple targeted objects in an 
image, if we have likely detected one of them at a stage, we 
would like to put more efforts on the regions other than the 
detected region at the following stages. Assume that, at the 

th stage, one targeted object has been detected in a particle 

window centered at . When updating the density 

function to be used at the th stage, we set the scores of 

particle windows located within the particle window 

centered at  as zero. With this design, the peak of 

density function will move somewhere else, and more 
particle windows will be sampled at the positions far from 

. Namely, we will put more efforts on unexplored 

regions. Overall, the design of this updating strategy more 
effectively allocates computation resources.   

D. Effective Preprocessing based on BRIEF 

The BRIEF descriptor [8] is a binary vector computed 
from an image patch, and is designed to facilitate efficient 
image patch matching. If two image patches are similar, the 
Hamming distance between their BRIEF descriptors should 
be small. Because BRIEF descriptors and Hamming 
distances can be computed extremely fast, we exploit this 
idea to speed up the detection process.  

Figure 3 describes how we utilize the idea of BRIEF in 
preprocessing. The root filter of the car model and a particle 
window can be separately viewed as two different patches. 

The root filter is divided into  blocks, each of which is 

represented by a histogram of oriented gradient (HOG). To 
construct the HOG-based BRIEF descriptor for the root filter, 
we randomly select pairs of blocks and randomly select a 
histogram bin to compare. By random selecting and 
comparing for 256 times, we obtain a 256-dimensional 
binary vector to represent a patch. To construct the 
counterpart for a particle window, HOGs are extracted from 
the region covered by the particle window, and then the 
HOGs and bins same as for the root filter are selected and 



compared to form a 256-dimensional binary vector. By 
calculating the Hamming distances between two HOG-based 
BRIEF descriptors, we can efficiently remove the particle 
windows that unlikely contain the targeted object.  
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Figure 3.  Preprocessing based on the BRIEF descriptor. 

III. FAST OBJECT DETECTION AND TRACKING 

Object Detection in Images. The goal of this task is 
finding locations of targeted objects in test images. We 
employ the proposed mspw-DPM to detect objects in images 
of the PASCAL VOC challenge 2007 dataset [2]. Because 
there is no clue to knowing what objects would appear in a 
test image in advance, for each test image we detect objects 
by going through all object models.  

On-Road Pedestrian Detection. The constructed person 
mspw-DPM is employed to detect pedestrians in the image 
sequences proposed in [9], which were recorded at a 
resolution of  pixels and 15 fps using a camera 

mounted on a children’s stroller. The first sequence 
(containing 450 frames, with 2,388 pedestrians) was taken 
on a sidewalk in a cloudy day, and the second sequence 
(containing 354 frames, with 1,900 pedestrians) was taken 
on a sidewalk in a sunny day. Different weather conditions, 
frequent partial occlusion, and complex background make 
the task extremely difficult.  

On-Road Vehicle Detection. As the evaluation dataset, 
two videos were recorded at a resolution of  pixels 

and 30 fps using a camera mounted in a car. For efficiency, 
we adopt the color-based probabilistic tracking technique [10] 
based on a particle filter to locate object location rapidly, 
because appearance of objects in nearby frames does not 
change too much. Generally, we can detect the object in the 

th frame and then track the object in th frame, 

. After tracking the object over an interval of  

frames, we can do detection again to avoid error propagation 
and to handle new object coming.  

IV. EXPERIMENTS 

We evaluate performance of the proposed mspw-DPM, 
which was implemented in Matlab/C and executed in a PC 
with Intel Core 2 Duo 1.86GHz, 4GB RAM.  

A. Datasets and Setup 

Object Detection in Images. The PASCAL VOC 

challenge 2007 dataset [2] contains 9,963 images with 
24,400 annotated objects. There are 20 object categories 
(aeroplane, bicycle, bird, boat, bottle, bus, car, cat, chair, 
cow, dining table, dog, horse, motorbike, person, potted plant, 

sheep, sofa, train, and tv/monitor) and each category contains 
hundreds of images.  

A detected bounding box is considered correct if it 
overlaps the ground-truth bounding box by more than 50%. 
If several detected bounding boxes meet this criterion, only 
one detected bounding box is viewed correct, and the others 
are false positives. The average precision of the precision-
recall curve is used to show overall performance [6].  

On-Road Pedestrian Detection and Vehicle Detection 
Datasets. Table I and Table II respectively show detailed 
information of the datasets used for on-road pedestrian 
detection and vehicle detection. We compute precision and 
recall rates to demonstrate detection performance. Similarly, 
a detected bounding box is considered correct if it overlaps 
the ground-truth bounding box by more than 50%. We used 
the person model and the car model provided by [1][4], 
associated with the proposed multistage particle window 
strategy and acceleration approaches. In these two 
experiments, we did not utilize the BRIEF preprocessing.  

TABLE I.  DETAILED INFORMATION OF THE ON-ROAD PEDESTRIAN 

DATASET.  
Video ID resolution duration(s) fps #Labeled pedestrian 

1  30 15 2,388 

2  23.6 15 1900 

TABLE II.  DETAILED INFORMATION OF THE ON-ROAD VEHICLE 

DATASET.  

Video ID resolution duration(s) fps #Labeled car 

3  113 30 2,308 

4  168 15 2,253 

 
Experimental Settings. The parameters of mspw-DPM 

are described below. The total number of particle windows at 

the first stage  is set as , where  is the total 

blocks of the HOGs in the feature pyramid. Each cascade 
DPM has 18 layers. The dimension of a binary BRIEF 
descriptor is 256, and the threshold  for preprocessing is 

120. The threshold  for early jump is set as 8. About the 

parameters of object tracking, the total number of particles is 
100, and the tracking interval is 10 frames, i.e., the whole 
detection process is performed for every 10 frames.  

B. Performance of Object Detection in Images 

Table III shows the average precision of detection 
performances obtained by various methods. DPM denotes 
the conventional DPM [1], csc-DPM  denotes the cascade 
DPM [4], ESS (efficient subwindow search) denotes the 
branch-and-bound DPM [5], mspw-DPM denotes the 
proposed multistage particle window DPM, and the extra 
improvements ‘early jump scheme’, ‘adaptive particle 
window generation’, and ‘BRIEF preprocessing’ are extra 
denoted by , , and  respectively. Overall, average 

precision of the mspw-DPM decreases a little because 
sometimes the targeted object cannot be found in five stages. 
Increasing the numbers of stages or particle windows may 
improve average precision, but take more time to detection. 
Table IV shows the detection time and the speedup factor 
with respect to the cascade DPM. The proposed mspw-DPM 
is significantly faster than the ESS and the cascade DPM.   



TABLE III.  PASCAL VOC CHALLENGE 2007 RESULTS. 

Methods DPM csc-DPM ESS mspw-DPM mspw-DPM(e) mspw-DPM (e+a) mspw-DPM (e+a+b) 

Average precision 0.307 0.280 0.276 0.241 0.242 0.243 0.202 

TABLE IV.  PASCAL VOC CHALLENGE 2007 DETECTION TIME AND SPEEDUP (IN SECONDS).  

Categories DPM csc-DPM ESS mspw-DPM mspw-DPM  (e) mspw-DPM  (e+a) mspw-DPM (e+a+b) 

Mean exe time 19.267 1.364 1.049 0.754 0.697 0.716 0.542 

Speedup factor - - 1.301 1.809 1.957 1.905 2.517 

TABLE V.  SPEEDUP FACTORS OF DEFERENT METHODS IN THE PASCAL VOC CHALLENGE 2007. 

Method Fourier-DPM csc-DPM ESS mspw-DPM mspw-DPM (e) mspw-DPM (e+a) mspw-DPM (e+a+b) 

Speedup 7.4 14.4 18.3 24.5 25.4 26.9 34.5 

 

TABLE VI.  PERFORMANCE OF ON-ROAD PEDESTRIAN DETECTION. 
Method Video 

ID 

precision recall mean detection 

time(s) 

csc-DPM 1 0.527 0.351 2.314 

mspw-DPM(e+a) 1 0.596 0.207 1.139 

csc-DPM 2 0.833 0.730 2.145 

mspw-DPM(e+a) 2 0.895 0.384 1.819 

TABLE VII.  PRECISION, RECALL, AND MEAN DETECTION TIME OF ON-
ROAD VEHICLE DETECTION 

Method Video 

ID 

precision recall mean detection 

time(s) 

mspw-DPM(e+a) 3 0.799 0.645 0.454 

mspw-DPM(e+a) 4 0.867 0.651 0.344 

Comparing Table III with Table IV, the adaptive particle 
window generation policy makes detection faster and does 
not degrade performance. The BRIEF preprocessing can fast 
prune useless particle windows and speed up detection, but it 
decreases average precision a little because sometimes this 
descriptor is not so robust.  

We also compare the speedup factors of the cascade 
DPM [4], the Fourier transform approach [11], ESS [5], and 
the mspw-DPM, with respect to the conventional DPM [1]. 
Table V shows the speed-up factors of deferent methods. 
Generally the mspw-DPM achieves the speed-up 
significantly higher than others, with slight degradation on 
average precision. 

C. Performance of On-Road Pedestrian Detection and 

Vehicle Detection 

Table VI and Table VII respectively show precision and 
recall rates, and average detection time of on-road pedestrian 
detection and vehicle detection. In Table VI we compare our 
detection results with the cascade DPM. Although the 
proposed detection process is averagely 1.5 times faster than 
the cascade DPM, we find that recall of the proposed method 
is much lower. The reason is that some pedestrians are mis-
detected when too many pedestrians appear in a frame.  

V. CONCLUSION 

We have shown a fast object detection framework 
employing the multistage particle window strategy 
associated with the cascade DPM. The detection process is 
iterated in several stages, and dynamically sampled particle 
windows are evaluated. The density function used to sample 
particle windows keeps updating based on responses of 
particle windows to object models. Instead of exhaustively 

examining all possible sliding windows, the proposed 
method efficiently samples parts of them and largely reduces 
detection time. Experimental results demonstrate the 
proposed method at most runs 34.5 times faster than the 
conventional DPM in detecting objects in images. Coupling 
with a tracking technique, the average time to detect vehicles 
in on-road videos is 0.344 seconds.  
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