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ABSTRACT  
We design a method to incorporate color information into the 
framework of CENsus Transform histogram (CENTRIST), a state-
of-the-art visual descriptor for scene categorization.  The newly 
proposed color CENTRIST descriptor describes global shape 
information by not only gradient derived from intensity values but 
also color variations between pixels in local image patches. 
Through extensive evaluations on various datasets, we 
demonstrate that the color CENTRIST descriptor is not only 
easily to be implemented, but also reliably achieves performance 
over that of CENTRIST.  

Categories and Subject Descriptors 
I.4.8 [Image Processing and Computer Vision]: Scene 
Analysis – color, shape. I.4.7 [Image Processing and Computer 
Vision]: Feature Measurement – feature representation.  

General Terms 
Algorithms, Performance, Experimentation. 

Keywords 
Census transform histogram, scene categorization, color 
descriptor. 

1. INTRODUCTION 
Scene categorization, or scene classification, has become a 
fundamental process for efficient image browsing, retrieval, and 
organization. For example, if an image’s scene category can be 
recognized, such as office and street, we would reduce the search 
space of object recognition, or more accurately detect semantic 
concepts present in this image. Place recognition, a subproblem of 
scene recognition, may help a robot to localize itself in a building. 
Detecting semantic category of an image is undoubtedly important, 
and devising good visual descriptors plays the core role in such 
task.  

In the literature, many visual descriptors have been proposed for 
image scene recognition. The existing descriptors can be roughly 
divided into two groups: 1) part-based representation, with some 
considerations of multiple scales or spatial distribution, and 2) 

holistic representation that directly models global configurations. 
The former approach describes texture/shape information in local 
image patches, which has been proven effective to detect objects 
under various conditions. By considering distributions of local 
descriptors over all image patches, sometimes in a multiscale 
manner, global information is captured. One of the most popular 
part-based descriptors is Scale-Invariant Feature Transform (SIFT) 
[7], and one of the most prominent approaches to consider global 
distribution is spatial pyramids [3]. Despite the SIFT descriptors 
plus the bag of visual words model [8] have shown discriminative 
power on scene categorization, directly modeling global texture 
information often more reliably describes spatial structure of a 
scene. The same scene may be taken from various viewpoints, and 
objects with significantly different appearance would present in 
the same type of scene. Without considering detailed local texture 
information, holistic representation such as GIST [2] captures 
global structure and achieves high accuracy in natural scene 
categorization. Recently, CENsus TRansform hISTogram 
(CENTRIST) [1] was proposed to provide accurate and stable 
performance on various scene image datasets.  

We found that most works target on gray images, and the 
proposed visual descriptors mainly rely on oriented gradient 
calculated based on intensity values. In this paper, we would like 
to study scene categorization for color images. We devise a new 
visual descriptor, i.e. color CENTRIST that incorporates color 
information into the framework of CENTRIST, and demonstrate 
its effectiveness through evaluating various color image datasets. 
Based on comprehensive evaluation, we conclude that considering 
color information indeed benefits scene categorization.  

The rest of this paper is organized as follows. Section 2 provides 
brief literature survey. The color CENTRIST descriptor is 
proposed after briefly reviewing conventional CENTRIST in 
Section 3. We provide comprehensive evaluation on various 
datasets in Section 4. Section 5 concludes this paper with 
discussions of the proposed method and future research.  

2. RELATED WORK 
Scene change detection has been a critical issue in video analysis 
for many years. Many studies evaluate visual coherence between 
video keyframes, mainly based on color and motion information, 
and accordingly detect scene boundaries by identifying the 
timestamps at which visual information changes significantly 
[16][17].  

Based on the experience of video scene detection, color and 
texture information was widely used in image scene recognition 
[18][19]. However, as the variations of scene categories increase, 
more elegant features are needed to provide more reliable 
performance. Currently, SIFT descriptors [7] associated with the 
bag of word model [8] have dominated the descriptor choice in 
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scene categorization. Fei-Fei and Perona [5] describe images by a 
collection of local regions, which are represented by codewords 
derived from a visual word codebook. They propose the theme 
models modified from the Latent Dirichlet Allocation to represent 
the distribution of codewords in each scene category. Lazebnik et 
al. [3] argue that describing bags of visual words in multiple 
scales provide encouraging performance on recognizing natural 
scene categories. Focusing on codebook design for scene 
categorization, van Gemert et al. [6] deal with the issues of 
codeword uncertainty and codeword plausibility. They propose a 
kernel codebook method to allow some degree of ambiguity in 
assigning a visual descriptor to codewords. Also based on bag of 
word representation, Bosch et al. [11] investigate classification 
methodologies for scene categorization. They proposed a hybrid 
approach that first discovers latent topics in scene images by 
pLSA (probabilistic latent semantic analysis), and then topic 
distributions are fed to discriminative classifiers based on KNN or 
SVM. Rather than directly modeling an image by a collection of 
shape and texture features in local image patches, Vogel and 
Schiele [20] first detect semantic concepts for each image patch, 
and then model an image by the distribution of concept 
occurrence. Support vector machine classifiers are constructed to 
detect scene categories.  

Oliva and Torralba [2] argue that recognizing a scene not 
necessarily needs modeling object information but global 
configurations. They propose the GIST descriptor to model shape 
of a scene, and assume that images coming from the same scene 
category have similar configurations. This idea has been proven 
effective in recognizing outdoor scenes, e.g., mountain and coast. 
However, the performance decreases significantly for indoor 
scenes. Based on census transform, Wu and Rehg [1] propose a 
simple yet effective visual descriptor to model global 
configurations of scenes. They demonstrate that shape information 
can be effectively described by comparing the intensity value of a 
pixel with its eight neighboring pixels. Comprehensive studies 
were provided in [1] to show the histograms of census transform 
values, at multiple levels, can provide superior performance over 
SIFT and GIST in most cases.  

Most works in the literature focus on describing scenes in grey-
level images, because shape or texture information can be 
effectively extracted from them. Much fewer studies have been 
conducted to investigate how color information affects scene 
categorization. The work in [11] is one of the few studies that 
investigate color descriptors. From their reported results, color 
information consistently brings performance increment if it is 
appropriately incorporated into visual descriptors. Van de Sande 
et al. [13] evaluate color variants of SIFT descriptors on object 
and scene recognition. Their results also conform to the trend, but 
only SIFT-based descriptors were evaluated. In this paper, we 
design a method to incorporate color information into one of the 
state-of-the-art visual descriptor, i.e., CENTRIST [1], and 
demonstrate its effectiveness through comprehensive evaluation.  

3. DESCRIPTORS 
3.1 CENTRIST 
To handle with scene categorization, Wu and Rehg describe 
desired properties of appropriate visual descriptors [1]:  

� Holistic representation: Exactly knowing objects in a scene 
does not necessarily benefit scene categorization. Oliva and 
Torralba therefore propose a holistic representation of spatial 
envelope [2].  

� Capturing the structural properties: The desired descriptor is 
expected to capture general structural properties such as 
rectangular shapes and flat surfaces, while suppressing 
detailed texture.  

� Rough geometry is useful: Variations of scenes would be 
higher than that of objects. Rough geometrical constraints are 
helpful in categorizing scenes.  

� Generalizability: A good descriptor would be compact within 
a category even under large visual variations, and would be 
distinct for different scene categories.  

By considering the properties mentioned above, Wu and Rehg 
propose a visual descriptor called CENsus TRansform hISTogram 
(CENTRIST), which is a holistic representation modeling 
distribution of local structures. Rough geometrical information is 
captured by describing CENTRIST extracted from spatial 
pyramids [3]. In the following, we briefly review conventional 
CENTRIST before we propose its color version.  

Census transform [4] compares the intensity value of a pixel with 
that of its eight spatially neighboring pixels. An example is shown 
in Figure 1. If the intensity of the center pixel is larger than one of 
its neighbors, a bit 1 is set in the corresponding position. 
Otherwise, a bit 0 is set. From left-top to right-bottom, these bits 
are concatenated to form a binary representation, which can be 
evaluated to a base-10 number called Census Transform value 
(CT value) for the center pixel.  

 
Figure 1. An example of census transform [1].  

After evaluating the CT value for each pixel, the histogram of CT 
values is constructed to form the CENTRIST descriptor. Note that 
CENTRIST is 256-dimensional because there are 256 different 
types of CT values. In [1], the authors discuss properties of CT 
values and CENTRIST descriptors.  

CENTRIST can only encode global shape structure in a small 
image patch. To capture rough global shape structure in an image, 
the spatial pyramid scheme [3] is used, as illustrated in Figure 2. 
The image is split into  blocks at level 2. These 
blocks are also shifted (dash line blocks) to avoid artifacts caused 
by nonoverlapping division. Therefore, there are 25 blocks at 
level 2, 5 blocks at level 1, and 1 block at level 0. From each 
block, the CENTRIST descriptor is extracted, and descriptors 
from all blocks are concatenated to describe the image. Different 
dimensions of the CENTRIST descriptor are not independent, and 
thus Wu and Rehg [1] use principal component analysis (PCA) to 
reduce dimensionality of CENTRIST to 40. This compact 
representation is called spatial Principal component Analysis of 
Census Transform (spatial PACT) histogram, or sPACT, in [1]. In 
this case, an image with level 2 pyramids is thus described by a 

-dimensional descriptor.  



Level 2

Level 1

Level 0

 
Figure 2. Spatial pyramids of levels 2, 1, and 0 of an image.  

Effectiveness of the CENTRIST descriptor on scene 
categorization was comprehensively studied in [1]. However, the 
authors also point out some limitations of this descriptor: 1) 
CENTRIST is not invariant to rotations or scale changes, though 
requirements of rotation and scale invariance are not critical for 
scene categorization. 2) CENTRIST is not a precise shape 
descriptor, which makes it inappropriate for shape retrieval. 3) 
CENTRIST ignores color information, and thus color information 
is not fully exploited for scene categorization.  

In this paper, we would like to incorporate color information into 
the CENTRIST descriptor. We will demonstrate that the proposed 
color CENTRIST descriptor effectively enhances performance of 
scene categorization, through evaluating a wide range of colorful 
image datasets.  

3.2 Color CENTRIST 
We represent color by the hue-saturation-value (HSV) color space, 
which is quantized into  quantized color ranges. To reflect 
different effects of different color components, we take different 
quantization granularities for different color components. In the 
following, we mainly set , for which the hue, saturation, 
and value components are equally quantized into two, four, and 
thirty-two ranges, respectively. That is, we index hue, saturation, 
and value of a pixel by 1, 2, and 5 bits, respectively. To give 
highest priority of the value component, these color indices are 
concatenated in the manner (value index, saturation index, hue 
index). Through this process, each pixel in a color image is 
represented as an 8-dimensional color index, which value ranges 
from 0 to 255. Figure 3 shows the flowchart for extracting color 
CENTRIST.  

Although each pixel is represented from 0 to 255 as well, this 
representation describes color information rather than intensity 
value used in the conventional CENTRIST. With this 
representation, we follow the same process illustrated in Figure 1 
to transform each pixel into a CT value, and an image’s global 
shape structure, with the consideration of color information, can 
be represented by a histogram of CT values. We call this 
histogram color CENTRIST. Similarly, we would reduce 
dimensionality of color CENTRIST by PCA, and model rough 
global shape structure of an image based on spatial pyramids.  

We use Figure 4 and Figure 5 to underline the difference between 
CENTRIST and color CENTRIST. In Figure 4, one image from 
the “open country” category and one image from the “coast” 
category are compared based on CENTRIST. From the second 
column of Figure 4, we see these two images look similar when 
they are represented in gray. From the third column, we see 
census transformed images can effectively represent shape 
information, which conforms to the description in [1]. We 
measure similarity between these two images by histogram 

intersection. Based on CENTRIST, the ratio of histogram 
intersection is 0.525. On the contrary, from the last column of 
Figure 5, color CENTRISTs of two images pose higher difference, 
and the ratio of histogram intersection between these two images 
is just 0.380. Describing images by more appropriate features 
provides more clues for scene categorization. This conjecture will 
be verified in the evaluation section. 
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Figure 3. Flowchart for extracting color CENTRIST.  
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Figure 4. CENTRISTs of two images in different scene categories.  
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Figure 5. Color CENTRISTs of two images in different scene 
categories.  

4. EXPERIMENTS 
In this section, we first show how different color space 
quantization settings influence the scene categorization accuracy. 
After finding the best setting, the color CENTRIST visual 
descriptor is tested on four data sets: 8-class scene category [2], 8-
class sports event [9], 67-class indoor scene recognition [10], and 
KTH-IDOL/KTH-INDECS [12][15]. In each dataset, data are 
randomly split into a training set and a testing set, with detailed 
settings described later. The random splitting is repeated five 
times, and the average accuracy is reported.  

In the following experiments, we remove the two bins with CT 
values equal to 0 and 255 in both color CENTRIST and 
conventional CENTRIST, and normalize them such that they have 
unit norms. Similar to sPACT in [1], to reduce dimensionality of 



color CENTRIST, 40 eigenvectors corresponding to 40 largest 
eigenvalues are found, and 256-dimensional color CENTRIST 
descriptors are projected into the eigenspace to form a 40-
dimensional sPAcCT (spatial Principal component Analysis of 
color Census Transform histogram).  

To include more image statistics, average and standard deviation 
of intensity values in a block are added to the sPACT [1]. We 
analogize this setting and add average and standard deviation of 
color indices in a block to sPAcCT as well. Therefore, the feature 
vectors of both level 2 sPACT and level 2 sPAcCT have 

 dimensions. Based on these 
visual descriptors, SVM classifiers are applied to conduct scene 
categorization1.  
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Figure 6. Average recognition rates based on 8-class scene dataset 
[2], when the quantization levels of the HSV color space are 
represented by 4 bits, 8 bits, 12 bits, and 16 bits.  

4.1 Color Quantization 
To represent color information, we quantize the HSV color space 
into a number of color ranges, and describe each pixel by 
concatenating quantization indices with respect to hue, saturation, 
and value. To determine the number of bits to describe 
quantization levels, we examine the average scene recognition 
rates for the 8-class scene dataset, by using 4 bits, 8 bits, 12 bits, 
and 16 bits to describe quantization levels, respectively. For the 
setting of 8 bits, for example, we test different allocation schemes 
and calculate the average recognition rate (c.f. Table 1). Figure 6 
shows that 8-bits setting, i.e. quantizing the color space into 256 
levels, most appropriately describes color information and 
achieves the best recognition performance. Using more bits to 
describe color information does not necessarily achive better 
performance. This may be because quantizing too finely makes 
the influence of noise apparent. In scene categorization, we are 
not willing to accurately distinguish light green and dark green, 
for example.  

Table 1 shows detailed results of different allocation schemes of 
the 8-bits setting. The result in the seventh row H-S-V (1-1-6), for 
example, means that the hue channel and saturation channel are 
respectively quantized into  levels, and the value channel is 

quantized into  levels. Therefore, the second row of this 
table means that saturation and value channels are discarded, and 
the hue channels are quantized into 256 levels. Note that the 
setting (H-S-V 0-0-8) in the fourth row is similar to CENTRIST 

                                                                 
1  The software for extracting color CENTRIST is available at: 

http://www.cs.ccu.edu.tw/~wtchu/projects/cCENTRIST/index.html 

(but not exactly the same) because only (quantized) intensity is 
considered to do census transform.  

By comparing the second to the fourth rows, we clearly see that 
intensity values still play the most important role in scene 
description. However, by considering hue and saturation, and 
appropriately quantizing different color channels, better 
performance can be further achieved. From Table 1, we see that 
the allocation scheme (H-S-V 1-2-5) gives the best performance. 
Therefore, as we describe in Sec. 3.2, the hue, saturation, and 
value components are equally quantized into two, four, and thirty-
two ranges, respectively. To give highest priority of the value 
component, color indices are concatenated in the manner (value 
index, saturation index, hue index). This setting is used in the 
following experiments.  

Table 1. Recognition rates under different bit allocation strategies.  

Setting Recognition rates 
H-S-V (8-0-0) 74.45±1.16 
H-S-V (0-8-0) 83.11±0.42 
H-S-V (0-0-8) 85.32±0.80 
H-S-V (0-1-7) 85.76±0.42 
H-S-V (0-2-6) 86.69±0.49 
H-S-V (1-1-6) 86.74±0.44 
H-S-V (0-3-5) 86.85±0.76 
H-S-V (1-2-5) 86.92±0.58 
H-S-V (0-4-4) 85.39±1.05 
H-S-V (1-3-4) 85.74±1.19 
H-S-V (2-2-4) 85.87±1.10 
H-S-V (2-3-3) 84.71±0.98 

4.2 The 8-Class Scene Category Dataset 
The 8-class scene recognition data set was built by Oliva and 
Torralba [2]. Although this dataset was gradually extended to 13 
classes and 15 classes by Fei-Fei and Perona [5], and Lazebnik et 
al. [3], respectively, only the original 8 classes of images are 
colorful. We thus evaluate CENTRIST and color CENTRIST 
(abbreviated as cCENTRIST in the following context) based on 
this smaller dataset. This data set contains a wide range of scene 
categories in outdoor environments, such as coast, forest, 
mountain, and etc. Figure 7 shows some sample images. All these 
color images are normalized to  pixels, and there are 
260 to 410 images in each category.  

The five-fold cross validation scheme is used to evaluate 
performance. In each fold, 100 images in each category are 
randomly selected for training, and the remaining images are for 
testing. A multiclass SVM classifier with RBF kernel is 
constructed for recognition. We compare CENTRIST with 
cCENTRIST, in the representation of level 0, the representation of 
level 1 with PCA, and the representation of level 2 with PCA. 
Table 2 shows the experimental results. We see that the proposed 
cCENTRIST stably has superior performance over CENTRIST at 
all levels. These results verify that color information provide extra 
benefit over shape for scene categorization. Another observation 
is that level 2 representation with PCA provides better 
performance over levels 0 or 1 for both CENTRIST and 
cCENTRIST. This conforms to the trend reported in [1] and [3].  
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Figure 9. Examples of correctly recognized images. 

Table 2. Recognition rates on the 8-class scene dataset.  

L Method Feature type Rates 

0 CENTRIST CENTRIST, not using PCA 77.70±1.04 
0 cCENTRIST cCENTRIST, not using PCA 79.19±1.12 
1 sPACT CENTRIST, 40 eigenvectors 83.75±0.66 
1 sPAcCT cCENTRIST, 40 eigenvectors 85.53±0.77 
2 sPACT CENTRIST, 40 eigenvectors 84.63±1.08 
2 sPAcCT cCENTRIST, 40 eigenvectors 86.92±0.58 

 
Figure 7. A sample image from each of the 8 scene categories. 
These categories are coast, forest, highway, inside city, mountain, 
open country, street, and tall building, respectively (from top to 
bottom, and from left to right).  
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Figure 8. Confusion matrix of the 8-class scene data set. Only 
rates higher than 0.1 are shown in the figure.  

highway(coast) tall building(forest) street(inside city)
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(open country)

inside city
(tall building)  

Figure 10. Examples of incorrectly recognized images.  

The confusion matrix of scene recognition based on level 2 
sPAcCT is shown in Figure 8, where rows are true labels and 
columns are predicted labels. We obtain the best performance for 
forest and tall building categories. CENTRIST also works best for 
forest but doesn’t work that well for tall building [1]. There is 
clear shape and color difference between tall buildings and the sky, 
and thus cCENTRIST brings more clues for recognizing tall 
buildings. The most confused case comes from open country/coast, 
which also conforms to the trend reported in [1] and [3]. 

Figure 9 and Figure 10 show images that are correctly and 
incorrectly recognized, respectively. The caption coast(coast), for 
example, means the corresponding image is detected as coast, 
while the true label is coast. From Figure 9 we see cCENTRIST 
achieves reliable performance even there is significant intra-class 
variation. On the other hand, in Figure 10, some cases that may 
also confuse humans still annoy the proposed descriptor. 

4.3 The 8-Class Event Dataset 
The 8-class event dataset includes images of eight sports: 
badminton, bocce, croquet, polo, rowing, rock climbing, sailing, 
and snowboarding (see Figure 11 for example images from each 
category). Although this dataset was designed for event 
recognition, in this experiment we classify events by classifying 
the scenes, and do not attempt to recognize objects or persons.  

In contrast to the 8-scene dataset, images in this dataset are in 
high resolutions (from  to thousands of pixels per 
dimension). There are 137 to 250 images in each category. With 



the five-fold cross validation scheme, 70 images per class are 
randomly selected for training, and the remaining images are for 
testing. Similarly, we respectively construct multiclass SVM 
classifiers with the RBF kernel, based on CENTRIST or 
cCENTRIST in the representation of level 0, the representation of 
level 1 with PCA, and the representation of level 2 with PCA.  

Table 3 shows experimental results. Similar to the results for the 
8-class scene dataset, cCENTRIST achieves better performance 
over CENTRIST with all levels of representations. But 
interestingly, the performance superiority of cCENTRIST 
decreases as level increases, which is opposite to results in Table 
2. Comparing sample images in Figure 7 with Figure 11, the 
reason for such trend may be less regular-texture regions in 
images of the 8-class event dataset. Moreover, even in the same 
sports game, color of different players’ uniforms may be 
significantly different. This also diminishes usefulness of color 
information.  

Figure 12 shows the confusion matrices of scene recognition 
based on level 2 sPAcCT (top) and level 2 sPACT (bottom), 
respectively. In both matrices, the most confused case is 
croquet/bocce, which is reasonable because the pair of events 
shares very similar scenes or backgrounds. Comparing these two 
matrices, sPAcCT works better for discriminating sailing/rowing. 
Both rowing and sailing have a flat background such as water or 
sky. Color information in sPAcCT helps in distinguishing water 
and sky.  

Table 3. Recognition rates on the 8-class event dataset.  

L Method Feature type Rates 

0 CENTRIST CENTRIST, not using PCA 65.24±1.78 
0 cCENTRIST cCENTRIST, not using PCA 67.12±1.06 
1 sPACT CENTRIST, 40 eigenvectors 77.37±1.37 
1 sPAcCT cCENTRIST, 40 eigenvectors 78.16±0.53 
2 sPACT CENTRIST, 40 eigenvectors 79.82±0.75 
2 sPAcCT cCENTRIST, 40 eigenvectors 79.88±0.59 

 
Figure 11. Sample images from 8-class event dataset. The 
categories are badminton, bocce, croquet, polo, rowing, rock 
climbing, sailing, and snowboarding, respectively (from top to 
bottom, and from left to right).  

4.4 The 67-Class Indoor Scene Dataset 
The 67-class indoor scene dataset was proposed in [10]. The 
indoor scenes range from specific categories (e.g., dental office) 
to generic concepts (e.g., mall), and contain totally 15,620 images. 
It was argued in [10] that both local and global information are 
needed to recognize complex indoor scenes. In [10], the global 
GIST feature achieved about 21 percent average recognition 

accuracy on this challenging data set. By jointly considering local 
information, the accuracy was improved to 25 percent.  

Following the experiment settings in [10] and [1], 80 images were 
randomly selected from each category for training, and 20 images 
were selected for testing. The five-fold cross validation scheme is 
also used. Multiclass SVM classifiers with the RBF kernel were 
constructed, respectively based on CENTRIST and cCENTRIST 
in the representation of level 0, the representation of level 1 with 
PCA, and the representation of level 2 with PCA.  

Table 4 shows the experimental results. The average recognition 
accuracy for level 2 sPAcCT is 36.09±0.70%, while the average 
recognition accuracy for level 2 sPACT is 34.48±0.98%. In this 
challenging indoor scene recognition problem, the performance of 
sPAcCT derived from cCENTRIST is better than GIST and 
sPACT. 
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Figure 12. Confusion matrix of the 8-class event dataset. Only 
rates higher than 0.1 are shown in the figures. Top: sPAcCT; 
bottom: sPACT [1].  

 

 



Table 4. Recognition rates on the 67-class indoor scene dataset. 

L Method Feature type Rates 

0 CENTRIST CENTRIST, not using PCA 22.09±1.71 
0 cCENTRIST cCENTRIST, not using PCA 23.67±1.57 
1 sPACT CENTRIST, 40 eigenvectors 30.84±1.61 
1 sPAcCT cCENTRIST, 40 eigenvectors 32.40±1.10 
2 sPACT CENTRIST, 40 eigenvectors 34.48±0.98 
2 sPAcCT cCENTRIST, 40 eigenvectors 36.09±0.70 

4.5 The KTH-IDOL and The KTH-INDECS 
Dataset 
The KTH Image Database for rObot Localization (IDOL) dataset 
[14] was captured by two robots, Minnie and Dumbo, that took 
pictures in a five-room office environment, including a one-
person office, a two-person office, a kitchen, a corridor, and a 
printer area. This dataset was designed to recognize which room 
the robot is in based on a single image.  

A robot captured a complete image sequence when it drove 
through all five rooms. Images were taken under three weather 
conditions: cloudy, night, and sunny. For each robot and each 
weather condition, four runs were captured on different days, and 
thus there are  sequences. Resolution of these 
images is . There may be walking persons and objects 
may be moved/added/removed in different image sequences. The 
first two rows of Figure 13 show sample images captured by 
Minnie and Dumbo in a one-person office, under different 
weather conditions.  

The KTH-INDECS dataset [15] was captured in the same 
environment as the IDOL dataset, but images were captured by 
cameras mounted in several fixed locations inside each room. The 
third row of Figure 13 shows three sample images in this dataset.  

We use first two runs of image sequences captured by each robot 
in each weather condition. The following four experimental 
settings were evaluated:  

� Setting 1: Train and test using the same robot under the same 
weather condition. Run 1 is used for training and run 2 is used 
for testing, and vice versa.  

� Setting 2: Train and test using the same robot but under 
different weather conditions. This experiment tests generality 
over variations of object locations and illumination.  

� Setting 3: Training set and testing set are under the same 
weather conditions, but are captured by different robots. 
Cameras mounted at different heights on the robots, and this 
experiment tests generality over scene layout variations.  

� Setting 4: The KTH-INDECS dataset was used for training, 
and images from INDECS under different weather conditions 
were used for testing.  

Table 5 shows the average recognition accuracies based on 
Setting 1. In this experiment, sPACT and sPAcCT have similar 
performance for cloudy and sunny conditions. However, sPAcCT 
achieves nearly 1% accuracy behind that of sPACT for the night 
condition. In the images captured at night, light from fluorescent 
lamps may cause color shift and influence the robustness of color 
CENTRIST.  

Table 6 shows average recognition accuracies when training and 
testing data are in different weather conditions (Setting 2). The 
training and test conditions in the second row, for example, mean 
that the sunny sequence captured in the first run was used for 
training, and the night sequence captured in the second run was 
used for testing. We found that sPAcCT still has worse 
performance when night images were used to train or test. On the 
other hand, when the cloudy or sunny images were used to train or 
test, sPAcCT has promising performance.  

Table 7 shows the average recognition accuracies when images 
taken by different robots were used for training and testing, 
respectively. From this table we see that sPAcCT has slightly 
weak robustness for this experimental setting. Table 8 shows the 
average recognition accuracies for the KTH-INDECS dataset. 
sPACT and sPAcCT generally have similar performance.  

Overall, sPAcCT has similar performance to that of sPACT in the 
KTH-IDOL and KTH-INDECS datasets. The reason may be that 
fewer color variations in these datasets. Comparing the results 
reported in Sections 4.1 to 4.5, we conclude that color 
CENTRIST benefits scene recognition more when images 
captured in difference scenes convey more color variations. 
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Figure 13. Sample images from the KTH-IDOL dataset (the first 
and the second rows) and the KTH-INDECS dataset, in different 
weather conditions. These examples show nearly the same angle 
of a one-person office.  

Table 5. Average recognition accuracies on the KTH-IDOL 
dataset (Setting 1).  
Train Test Condition sPACT sPAcCT 
Minnie Minnie Cloudy 94.85% 95.15% 
Minnie Minnie Sunny 97.24% 97.18% 
Minnie Minnie Night 93.10% 92.27% 

Table 6. Average recognition accuracies on the KTH-IDOL 
dataset (Setting 2).  
Train Test Train 

condition 
Test 
Condition 

sPACT sPAcCT 

Minnie Minnie Sunny1 Night2 80.69% 79.76% 
Minnie Minnie Night1 Sunny2 86.10% 83.04% 
Minnie Minnie Cloudy1 Sunny2 92.93% 93.40% 
Minnie Minnie Sunny1 Cloudy2 91.01% 91.12% 
Minnie Minnie Night1 Cloudy2 90.39% 87.81% 
Minnie Minnie Cloudy1 Night2 92.72% 90.09% 



Table 7. Average recognition accuracies on the KTH-IDOL 
dataset (Setting 3).  
Train Test Condition sPACT sPAcCT 
Minnie Dumbo Cloudy 74.96% 73.28% 
Minnie Dumbo Sunny 78.81% 76.86% 
Minnie Dumbo Night 74.19% 72.20% 

Table 8. Average recognition accuracies on the KTH-INDECS 
dataset (Setting 4).  
Train Test Train 

condition 
Test 
condition 

sPACT sPAcCT 

Camera Camera Sunny Night 84.52% 86.54% 
Camera Camera Night Sunny 87.04% 89.26% 
Camera Camera Cloudy Sunny 95.28% 92.96% 
Camera Camera Sunny Cloudy 93.70% 92.78% 
Camera Camera Night Cloudy 92.31% 91.39% 
Camera Camera Cloudy Night 89.10% 91.30% 
Average    90.33% 90.70% 

5. CONCLUSION 
We have presented a new color descriptor, i.e. color CENTRIST, 
that consistently provides better performance on scene 
categorization over conventional intensity-based descriptors. By 
appropriately quantizing the HSV color space, color information 
is elaborately represented and incorporated into the framework of 
CENTRIST. After evaluating various datasets, we conclude that 
this descriptor is especially suitable for images with higher color 
variations, though it reliably provides performance increment for 
almost all datasets.  

In the future, we would conduct comprehensive studies on 
comparing color CENTRIST with other color descriptors. The 
usage of color CENTRIST in other applications will also be 
investigated. Moreover, because color CENTRIST share the same 
limitation, i.e. not invariant to rotation and scale, as CENTRIST, 
we would further enhance descriptor design in the future.  

Acknowledgement: The work was partially supported by the 
National Science Council of Taiwan, Republic of China under 
research contract NSC 100-2221-E-194-061. 

6. REFERENCES 
[1] Wu, J. and Rehg, J.M. 2011. CENTRIST: a visual descriptor 

for scene categorization. IEEE Transactions on Pattern 
Analysis and Machine Intelligence, vol. 33, no. 8, pp. 1489-
1501.  

[2] Oliva, A. and Torralba, A. 2001. Modeling the shape of the 
scene: a holistic representation of the spatial envelope. 
International Journal of Computer Vision, vol. 42, no. 3, pp. 
145-175.  

[3] Lazebnik, S., Schmid, C., and Ponce, J. 2006. Beyond bags 
of features: spatial pyramid matching for recognizing natural 
scene categories. Proceedings of IEEE Computer Society 
Conference on Computer Vision and Pattern Recognition, pp. 
2169-2178.  

[4] Zabih, R. and Woodfill, J. 1994. Non-parametric local 
transforms for computing visual correspondence. 
Proceedings of European Conference on Computer Vision, 
vol. 2, pp. 151-158.  

[5] Fei-Fei, L. and Perona, L. 2005. A Bayesian hierarchical 
model for learning natural scene categories. Proceedings of 
IEEE Computer Society Conference on Computer Vision and 
Pattern Recognition, pp. 524-531.  

[6] Van Gemert, J.C., Geusebroek, J.-M., Veenman, C.J., and 
Smeulders, A.W.M. 2008. Kernel codebooks for scene 
categorization. Proceedings of European Conference on 
Computer Vision, vol. 3, pp. 696-709.  

[7] Lowe, D. 2004. Distinctive image features from scale-
invariant keypoints. International Journal on Computer 
Vision, vol. 60, no. 2, pp. 91-110.  

[8] Sivic, J. and Zisserman, A. 2003. Video Google: a text 
retrieval approach to object matching in videos. Proceedings 
of IEEE International Conference on Computer Vision, pp. 
1470-1477.  

[9] Li, L.-J. and Fei-Fei, L. 2007. What, Where and Who? 
Classifying events by scene and object recognition. 
Proceedings of IEEE International Conference on Computer 
Vision.  

[10] Quattoni, A. and Torralba, A. 2009. Recognizing indoor 
scenes. Proceedings of IEEE Computer Society Conference 
on Computer Vision and Pattern Recognition.  

[11] Bosch, A., Zisserman, A., and Munoz, X. 2008. Scene 
classification using a hybrid generative/discriminative 
approach. IEEE Transactions on Pattern Analysis and 
Machine Intelligence, vol. 30, no. 4, pp. 712-727.  

[12] Pronobis, A., Caputo, B., Jensfelt, P., and Christensen, H.I. 
2006. A discriminative approach to robust visual place 
recognition. Proceedings of IEEE/RSJ International 
Conference on Intelligent Robots and Systems.  

[13] Van de Sande, K.E.A, Gevers, T., and Snoek, C.G.M. 2010. 
Evaluating color descriptors for object and scene recognition. 
IEEE Transactions on Pattern Analysis and Machine 
Intelligence, vol. 32, no. 9, 1582-1596.  

[14] Luo, A., Pronobis, A., Caputo, B., and Jensfelt, P. 2006. The 
KTH-IDOL2 database. Technical Report CVAP304, 
Kungliga Tekniska Hoegskolan, CVAP/CAS, Oct. 2006. 

[15] Pronobis, A. and Caputo B. 2005. The KTH-INDECS 
database. Technical Report CVAP297, Kungliga Tekniska 
Hoegskolan, CVAP, Sep. 2005.  

[16] Yeung, M., Yeo, B.-L., and Liu, B. 1998. Segmentation of 
video by clustering and graph analysis. Computer Vision and 
Image Understanding, vol. 71, no. 1, pp. 94-109.  

[17] Rasheed, Z. and Shah, M. 2003. Scene detection in 
Hollywood movies and tv shows. Proceedings of IEEE 
Computer Society Conference on Computer Vision and 
Pattern Recognition, vol. 2, pp. 343-348.  

[18] Szummer, M. and Picard, R.W. 1998. Indoor-outdoor image 
classification. Proceedings of IEEE International Workshop 
on Content-Based Access of Image and Video Database, pp. 
42-51.  

[19] Vailaya, A., Jain, A., and Zhang, H.-J. 1998. On image 
classification: city vs. landscape. Proceedings of IEEE 
International Workshop on Content-Based Access of Image 
and Video Libraries, pp. 3-8.  

[20] Vogel, J. and Schiele, B. 2007. Semantic modeling of natural 
scenes for content-based image retrieval. International 
Journal on Computer Vision, vol. 72, no. 2, pp. 133-157.  

 


