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ABSTRACT 

 
We utilize GPU to accelerate an essential component for computer 
vision and multimedia information retrieval, i.e. scene 
categorization. To construct bag of word models, we modify 
calculation of Euclidean distance so that feature clustering and 
visual word quantization can be processed in a parallel manner. 
We provide details of GPU implementations and conduct 
comprehensive experiments to verify the efficiency of GPU on 
multimedia analysis.  
 

Index Terms— GPU, scene categorization, multiscale 
category-specific visual words 
 

1. INTRODUCTION 
 
Scene information provides clues about “where” a photo was 
captured and “what” objects appeared. As a widespread research 
field, researchers work hard on scene categorization in the past 
decades. With the popularity of digital consumer devices, scene 
categorization is also used in organizing home-made photos and 
videos. In recent years, it is more likely considered as a basic tool 
for advanced analysis. Therefore, automatic scene categorization 
should be efficient and robust.  

Some researches on scene categorization already reach good 
accuracy rate. However, these works often need to process 
tremendous amounts of data, and the time cost is high. To tackle 
with these problems, we modify methods for feature extraction and 
clustering, and take advantage of the GPU programming model to 
reduce execution time. Contributions of this work are listed as 
follows: 
� Features are extracted from different scales and elaborately 

combined. By clustering features, visual words are then 
constructed in a category-specific manner, which is proven 
more effective in scene categorization.  

� Euclidean distances are calculated in a matrix form so that 
GPU can be efficiently used. GPU implementations are 
proposed for several sub-tasks with the consideration of 
hardware limitations.  
The reminder of this paper is organized as follows. In Section 2, 

we exploit the category-specific visual word model to classify 
scene images. GPU implementations and acceleration algorithms 
are introduced. We also analyze time complexity. Performance is 
reported in Section 3, and Section 4 concludes this paper.  

 
 
 

2. GPU-ACCELERATED SCENE CATEGORIZATION 
2.1. Overview 
 
Figure 1 illustrates the system framework. In the training part, 
images in the same scene are first divided into patches at different 
scales, and from which SIFT features [2] are extracted. By 
respectively clustering feature vectors from the same scale, visual 
codebooks for different scales are generated. For a feature vector 
extracted from a patch in scale , it is quantized into a visual word 
by consulting the codebook also generated from scale . By jointly 
considering all patches (in different scales) in an image, a scene 
image is finally represented as a vector indicating appearance of 
various visual words. A multi-class SVM classifier is built based 
on a set of this representation. The same processes are applied to a 
test image, and the trained SVM classifier is used to determine 
scene type of the test image. In this paper, we focus on accelerating 
feature extraction and codebook construction.  

 
Figure 1. System framework of GPU-accelerated scene 
categorization.  
 
2.2. Feature Extraction 
 
Inspired by [1], we divide an image into overlapped patches at 
different scales in order to capture both local and global 

information. At scale , the height and width of the patch are  

and , where  and  denote the height and width of the 
image, respectively. A set of patches 

 are sampled from the image at scale 

, where  is the number of patches. Figure 2 
illustrates patch sampling at different scales. At scale 1, the whole 
image is considered as a patch. At scale 2, nine points are sampled 
and each patch has size equal to a quarter of the whole image. 



Unlike traditional SIFT descriptor extraction [2], patches may have 
different sizes, and by jointly considering features at different 
scales we can more appropriately describe a scene.  

 
Figure 2. Patches at different scales. 

 

 
  
2.3. Feature Vector Extraction 
 
Instructions of extracting features for different patches are almost 
the same except for different pixel locations, and thus can be done 
in parallel. For a pixel at , , , in an 
image, its edge magnitude  and orientation  are first 
calculated. For a patch at scale , we divide it into sixteen regions, 
and in each region each pixel’s orientation relative to the main 
orientation is calculated. This relative orientation is then quantized 
into eight intervals, and by accumulating pixels’ edge magnitudes 
in one of eight orientations, we construct an eight-dimensional 
orientation histogram for each region. Finally, a 128-dimensional 
feature vector ( ) is generated by cascading all 
histograms to represent a patch [2].  

By utilizing GPU, we process patches at the same scale in a 
parallel manner. In the CUDA (Compute Unified Device 
Architecture) architecture [6], device can be divided into blocks 
and threads to access different portions of data. We use threads in a 
block to access pixels in a patch, and use different blocks to access 
different patches.  

Since number of threads is limited, threads should be reused. A 
thread can access different memory locations by shifting the thread 
index. To generate an orientation histogram, a block of threads is 
used. Threads in different blocks access different portions of 
matrices  and , where  and . Hence, 
the accessed location of every thread must be calculated precisely. 

The procedures to generate orientation histograms at scale  are 
listed in GPU Procedure 1. In this way,  feature vectors can be 
computed in parallel. Note that in step 5 atomic operations in 
CUDA are used to avoid a race condition.  

 
2.4. Category-Specific Visual Word Model 
 
In the conventional BoW model, scene images in all categories are 
taken as input, and features of different scenes are mixed together. 
This representation is less discriminative. In our work, images of 
different categories form independent visual words to construct the 
category-specific visual word model. Assume that there are  
scene categories in the training set, and  denotes a set 
of images in the category . Features extracted at scale  from  
form a feature pool . Feature in this pool are then 
clustered to generate a set of visual words, which can be 
represented as . Feature pools from different scales are 
clustered independently, and thus independent visual words are 
constructed. Therefore,  if  or .  

To take advantage of GPU computing in visual word 
construction, we modify conventional vector quantization as 
follows. If we want to quantize  vectors into  target vectors, 
totally  Euclidean distances are needed to compute. For two 

-dimensional vectors  and 

, we can calculate Euclidean distance as  

.  (1) 
The calculation is broken into smaller steps, and GPU threads can 
be utilized more effectively. With the decomposed Euclidean 
distance, the algorithm for quantizing  vectors into  targets is 
shown in GPU Procedure 2 [3].  

The th row of the  matrix  corresponds to the th 
vector in the space. Each row of  indicates a target vector. Line 1 
to line 6 calculate sum of squares of each vector in  and . 
LengthsA and LengthsB are two arrays storing these vectors’ 
squares of L2-norms. Line 7 computes the inner product term 
defined in equation (1). Note that this step is accomplished by a 
matrix multiplication . Elements of  are the dot 
products of the vector pairs from  and . From line 8 to line 16, 
the vector from  that is closest to a vector from  is found.  

 

GPU Procedure 2 
1 → for i = 1 to n do 

2 →  lengthsA[i] ←  //  is the th row of   
3 → end for 
4 → for j = 1 to m do 

5 →  lengthsB[j] ←  //  is the th row of  
6 → end for 
7 →  ← MatrixMultiply( , MatrixTranspose( )) 
8 → for i = 1 to n do 
9 →  minDist ← ∞ 
10→  lengthA ← lenghsA[i] 
11→  for j = 1 to m do 
12→   d ← lengthA + lengthsB[j]－2  
13→   if d < minDist then minDist ← d, best ← j 
14→ end for 
15→  assignTo[i] ← best 
16→ end for 
17→ return assignTo 

GPU Procedure 1 
Initial → blockIdx.x, blockIdx.y and threadIdx refer to the 2D block 

index and the 1D thread index, respectively. 
Step 1 → Calculate the height  and width  of each patch.  
Step 2 → Calculate the block offset  for each patch:  

 

Step 3 → Transfer 1D thread index into a 2D coordinates threadIdx.x 
and threadIdx.y:  

 
 

Step 4 → Calculate the targeted access location of the thread  in  
and  

  
Step 5 → Use  to access  and , and accumulate magnitudes and 

orientations to generate the orientation histograms. 
Note 1: Block offset is the offset of the first element of the patch 

relative to the first element of the image. 

Note 2:   



� GPU Implementations 
Each thread on the GPU device controls different portion of data. 

Each  and  in this algorithm is computed by a single 
thread, and all threads are executed in parallel. Hence, the two 
loops from line 1 to line 6 can be done immediately in the GPU 

implementation. Moreover, the value  just needs to be 
computed for once, and we put it into the shared memory on the 
device. Accessing shared memory is much faster than that of global 
memory, and we can thereby save more time especially when a 
great number of shared memory access is needed.  

The elements of  share the row index of  and the column 

index of . With the CUDA architecture, all threads are indexed 
in a 2D manner, and totally  threads are utilized. A thread 
with index  can access both the th row of  and the th 

column of . As a result,  dot products can be executed 
in parallel with only one loop.  

Due to hardware limitations, all 2D arrays on the GPU device 
are simulated by a 1D array by shifting indices. Memory reading is 
linear when we access a row of a matrix. However, when we access 
a column of a matrix, memory reading becomes scattered. For this 
reason, we skip the matrix transpose step, and a thread will access 
a row of matrix  in place of a column of  in practice.  

 
2.5. Visual Word Matching and Scene Classification 
 
Quantizing feature points into visual words is done separately at 
different scales. That is, features extracted from a specific scale  
can only be quantized into the visual words generated from the 
same scale . After feature quantization, each scene image is 
comprised of a set of visual words from different scales.  

A multi-class SVM classifier is then constructed based on 
features extracted from the training data:  

,  (2) 
where  is a vector representing the th training image, and  is a 
label indicating one of the  categories. This SVM classifier 
predicts scene label by giving the vector representation of a test 
image.  
 
2.6. Complexity Analysis 
 
In calculating edge magnitude and orientation, for CPU two loops 
are used to control rows and columns, and therefore  
calculations are needed. For GPU, these calculations can be done 
immediately since  threads are used. Magnitude and 
orientation of each pixel are accumulated within a patch, and 

complexity for this step is: , which 
can be simplified as , where  is the patch number 
in scale . Likewise, complexity of the GPU implementation is 
reduced to  since each pixel is dealt with a thread.  

We analyze time costs of the following four implementations 
for vector quantization: (1) Original Euclidean distance with CPU; 
(2) Original Euclidean distance plus 1D thread indices with GPU 
[4]; (3) Original Euclidean distance plus 2D thread indices with 
GPU [4]; (4) Our implementation. Time cost is defined as number 
of operations per thread, and Table 1 lists the results. We see that 
time cost of our work is much less than settings (1) and (2). 
Although setting (3) has the same time complexity in terms of the 
big-O notation, our work actually has less time cost since our 

implementation contains a caching mechanism which not only 
reduces execution time but also memory accessing time.  

Table 1. Time cost of different implementations. 
 (1) (2) (3) (4) 
Total 
operations 

3nmd - 1 3nmd - 1 3nmd - 1 (nm+n+m)(2d-1) + 
3nm 

Utilized 
threads 

1 n n×m n×m + n + m 

Time cost 3nmd -1 3md 3d 2d + c 
Complexity O(nmd) O(md) O(d) O(d) 

 
3. EXPERIMENTAL RESULTS 

 
To evaluate performance, a PC with a quad-core processor (Intel 
Core i7) with 3.5GB RAM plus a graphics card with a GPU 
(NVIDIA Geforce GTX 580) is used. The GPU has 512 cores in 
physical, and the number of available threads can be at most 1024 
× 65535 when programming. We evaluate feature extraction, 
vector quantization, and scene categorization based on using the 
CPU only, and based on using GPU. 

The scene dataset “13 Natural Scene Categories” proposed by 
Fei-Fei [5] is used for evaluation. We employ a part of this dataset 
which contains totally 2688 outdoor scene images from 8 
categories, including coast, forest, highway, inside city, mountain, 
open country, street and tall building. Resolutions of these scene 
images are 256×256.  
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Figure 3. Average time for feature extraction. 
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Figure 4. Ratios of speed-up for (a) feature extraction, and (b) 
vector quantization. 
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Figure 5. Time cost of vector quantization versus number of 
descriptors for different implementations.  
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Figure 6. Processing time of K-means clustering with (a) upmost 
10000 data points, (b) upmost 40000 data points.  
 
3.1 Execution Speed 
 
Figure 3 shows average time for feature extraction from images of 
different sizes. Differences between CPU and GPU increase when 
the image size gets larger. In fact, GPU can be at most 20 times 
faster than CPU in extracting features. Figure 4(a) illustrates the 
ratio of speed-up for two implementations at different scales.     

In evaluating vector quantization, feature dimension is 128 and 
the codebook size is 4000. Figure 5 shows time cost of vector 
quantization versus number of descriptors. Performance of an 
implementation based on another CPU (core 2) is also shown. 
Time cost grows as the number of descriptor increases, and there is 
a huge gap between three implementations. In fact, time cost of 
CPU vector quantization can be at most 120 times more than that 
of the GPU (Figure 4(b)).  

Figure 6(a) and 6(b) show execution time with a particular 
number of vectors in a single iteration of the K-means clustering. 
For example, the curve “GPU5000” shows the time cost variation 
for quantizing five thousands vectors into several numbers of 
groups based on GPUs. Curves of the GPU implementations are 
close to zero all along, and time cost of CPU implementations 
increases with the group number significantly.  

 
 
 

3.2 Performance of Classification 
 
The 10-fold cross validation strategy is adopted to obtain average 
classification performance. We compare performance between 
CPU and GPU implementations based on features combining scale 
1 and scale 2. As Figure 7 reveals, differences of accuracies 
between the two implementations are quite small. This verifies that 
our GPU-accelerated scene classification is competitive with the 
CPU version without dropping in accuracy rates.  
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Figure 7. Classification accuracies. 
 

4. CONCLUSION 
 
We propose a fast and efficient scene categorization system which 
utilizes a category-specific visual word model and is accelerated by 
GPU. A multiscale feature extraction approach is applied to jointly 
capture global and local characteristics of a scene. Calculating of 
Euclidean distance is modified to facilitate vector quantization 
accelerated by GPUs. Theoretical analysis and experimental results 
reveal that the accelerated vector quantization needs fewer 
instructions. GPU implementations are proven to be 20 to 100 
times faster than CPU does.  
 

Acknowledgement 
 
The work was partially supported by the National Science Council 
of Taiwan, Republic of China under research contract NSC 100-
2221-E-194-061.  
 

5. REFERENCES 
[1] J. Qin and N. H. C. Yung. Scene Categorization with 

Multiscale Category-specific Visual Words. Optical 
Engineering, vol. 48, no. 4, 2009.  

[2] D.G. Lowe. Object Recognition from Local Scale-invariant 
Features. IEEE International Conference on Computer Vision, 
vol. 2, pp. 1150-1157, 1999.  

[3] K.E.A. van de Sande, T. Gevers, and C.G.M. Snoek. 
Empowering Visual Categorization with the GPU. IEEE 
Transactions on Circuits and Systems Society, pp. 60-70, 2011.  

[4] D. Chang, N. A. Jones, D. Li and M. Quyang. Compute 
Pairwise Euclidean Distances of Data Points with GPUs. 
IASTD International Conference on Intelligent Systems and 
Control, pp 278-283, 2008.  

[5] 13 Natural Scene Categories Dataset, 
http://vision.stanford.edu/resources_links.html  

[6] J. Sanders and E. Kandrot. CUDA by Example: An 
Introduction to General-purpose GPU Programming. NVIDIA 
Corporation, 2010.  


