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Rhythm of Motion Extraction and
RhythmBased Cross-Media Alignment for

Dance

Videos

Wei-Ta ChuMember, |IEEE, and Shang-Yin Tsai

Abstract—We present how to extract rhythm information in
dance videos and music, and accordingly correlatdqi¢m based on
rhythmic representation. From dancer’s movement, weconstruct
motion trajectories, detect turnings and stops ofrgjectories, and
then estimate rhythm of motion (ROM). For music, bats are
detected to describe rhythm of music. Two modalite are
therefore represented as sequences of rhythm infortion to
facilitate finding cross-media correspondence. Twapplications,
i.e. background music replacement and music videoegeration,
are developed to demonstrate the practicality of @ss-media
correspondence. We evaluate performance of ROM exction,
and conduct subjective/objective evaluation to showthat rich
browsing experience can be provided by the proposed
applications.

I ndex Terms—Rhythm of motion, motion trajectory, music beat,
background music replacement, music video generatio

. INTRODUCTION

HEN listening to music, people spontaneously tagr th

fingers or feet according to the music’s periodia&ure.
Dancing with music is a human nature to expressningeof
music or to show people’s emotion. In recent yehig;hop
culture drives the development of street dance,l@aiching to
dance has deeply attracted young people. Due tolgty of
street dance and ease of video capturing, manyedamnecord
their dances and share them on the web. Howevatitygof
these videos, especially the audio tracks acconipgmyith the
videos, is generally low. Moreover,
competitions or TV shows, music videos are elaledyat

produced by experts who have ample knowledge on

choreography, music rhythm, and video editingsIhéver an
easy task for amateur dancers who want to shapreserve
their performances for entertainment or educatimppses.

In this paper, we investigate how rhythm informatéan be
found and utilized in street dance videos. Fromvikeal track,

to promote danc

replacing background music of a dance video bygh-huality
music piece. In addition, music videos can be geedr by
concatenating multiple dance video clips with stmROMs.

The concept “rhythm” describes patterns of changes
various disciplines. In musiteat refers to a perceived pulse
marking off equal durational units [7], and is thasis with
which we compare or measure rhythmic durations Téinpo
refers to the rate at which beats strike, ameer describes
accent structure on beats. These parameters jaletlrmine
how we perceive music rhythm. In contrast to thmglbistory of
music cognition study, analyzing rhythm of motiorvideos is
just at its infant stage. We focus on extractimagion beats from
videos, which play an essential role in constigiti®OM. To
simplify description, we interchangeably use “rmgthand
“beats” in this paper.

Contributions of this work are summarized in Figtirand
are described as follows.
® ROM extraction: By tracking distinctive feature pts on

human body, motion trajectories are constructed and

transformed into time-varied signals, which are nthe
analyzed to extract ROM. ROM represents perioditiono
changes, such as “turning” and “stop” of trajeasri
® Music beat detection and segmentation: By integgati
energy dynamics in different frequency bands, mbsiats
are detected. Periodically evolved beats are trsad o
describe rhythm of music.
® Rhythm-based cross-media alignment: Two
sequences are compared, and an
correspondence between them is determined.
® Applications: Based on rhythm-based cross-medgmalent,
background music replacement and music video gtoera
are developed, which demonstrate practicality of
rhythm-based multimodal analysis.
The rest of this paper is organized as follows.tiSecll
provides a survey on rhythm analysis in music aideo; and
introduces a related area derived from musicoldg@M
extraction is described in Section Ill. Section fixst shows

rhythm

periodic motion changes of dancer’s movement are extractedpgy we find rhythm of music, and then rhythm-based

which constitute “rhythm of motion” (ROM). From mas
rhythm is constructed based on periodic propemiemusic
beats. After extracting rhythm information from twmdalities,
cross-media correspondence is determined

Wei-Ta Chu and Shang-Yin Tsai are with National @hCheng University,
Chiayi, Taiwan (e-mail: wichu@cs.ccu.edu.tw, shoag@hotmail.com).

correspondence is determined to conduct backgroomsic
replacement. Automatic music video generation &dbed in
Section V. Section VI reports evaluation resultd discussions,

to  &telit fo)1owed by concluding remarks in Section VII.

appropriate
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Figure 1. Framework of the proposed system.

Il. RELATED WORKS

A. Motion Analysisin Videos

changes of motion”, such as periodic charactesigtfc¢urning,
twisting, jumping, or stopping. Dancer’s movemepes not
necessarily repeat, but we still perceive he/sHbvis an
implicit periodicity to make movement changes.

Relatively fewer works have been done for periadamtion
analysis. Deman et al. [5] explore the use of dHjased
motion to detect specific events in observatiorgicRology.
Specific moving patterns are detected, but rhythforimation
from motion is not specially studied. Based on vileaptured
in light-controlled environments, Guedes calculdtgsinance
changes of pixels in consecutive frames [15], whiddicate
motion magnitude between frames. Evolution of motio
magnitude is then transformed into the frequenayain, and
the dominant frequency component is detected byiteh p
tracking technique. Our system detects periodicngba of
motion by a method similar to Guedes’s. Howevenun case,
dance videos were captured in uncontrolled enviemmand
varied luminance changes hurt Guedes’s approadterGnd
Davis [4] compute object’s self-similarity as itaves in time,

Research about motion analysis mainly focuses oeeth and then apply time-frequency analysis to detectogie

factors: motion magnitude (or moving speed, mo#otivity),
motion direction, and motion trajectory. Shiratetial. [28]
detect changes of moving speed in traditional Jeg@dances,
and then segment dance videos into a series of patfierns.
Deman et al. [5] detect temporal discontinuitieselxyracting
local minimums of motion magnitudes. Motion analy$s
conducted for the same object part in neighboriragnés.
Based on motion trajectories, Su et al. [29] degvel
framework for motion flow (i.e. motion trajectory our work)
construction, which is then adopted to conduct eidstrieval.
This work only extracts a single motion flow to repent video
content. With feature point detection and motioedbction, the
work proposed in [21] constructs multiple trajeaerin dance
videos based on a “color-optical flow” method, whijointly
considers motion and color information to faciktatotion
tracking. Based on the extracted dance patteris,sitstem
segments dance videos automatically.

Despite rich studies on motion analysis, informatim
constitute  ROM is not only motion magnitude
absolution/relative moving direction, but also peiodicity of
substantial motion changes. To extract implicitthiny derived
from human body movement, we need finer motionyaifor
body parts with complex dancing steps. For examfue,a
specific music rhythm, a dancer may move his laefichup and
right hand down, followed by jumping at the instaha music
beat strikes. For the same music rhythm, a diftedancer may
squat, followed by twisting his body at the instahthe music
beat strikes. They have different moving pattelng, we can
easily sense that they move according to the samemhythm.

We have to emphasize that ROM is not only derivedhf
“periodic motion,” but also “periodic changes of tino.”
According to [4], motion of a point is periodiciifrepeats itself
with a constant period, e.g. an object like a pamdigoes back
and forward periodically or an object cyclically wves around a
circle. However, ROM in dance mainly comes fromrfpdic

motion. Laptev et al. [18] view periodic motion seluences as
the same sequence captured by multiple cameragdier
motion is thus detected and segmented by approgimat
sequence matching algorithms. Both [4] and [18Liames that
orientation and size of objects do not change ogmitly, and
they analyze how objects repeat themselves. Howavdance
videos, ROM is not necessarily from motion repetiti and
different body parts are not guaranteed to havesistamt
moving orientation and object size.

Kim et al. [17] provide us a hint to extract RON1in motion
data. They detect rapid directional change on goiahd then
transform this information as motion signals. Pospectrum
density of signals is then analyzed to estimate dtmminant
period. This systematic approach is suitable for oase.
However, motion data in [17] were explicitly capmdrfrom
sensors. We focus on ROM from real dance videdimgsng
periodicity from noisy motion data is more challamy

B. Audio to Video Matching

Associating videos with music has been viewed g®ed
way to enrich presentation. Foote et al. [8] prepose of the
earliest works on automatically generating musiteos. Audio
clips are segmented based on significant audio ggwnand
videos are segmented based on camera motion amduerp
Video clips are then adjusted to align with audi@énerate a
music video. Also for home videos, Hua et al. [H&cover
repetitive patterns of music and estimate attentmnes from
video shots, and then combine two media to genematsc
videos. Wang et al. [31] extend this idea to getearausic video
for sports videos. Events in sports videos ar¢ dietected, and
two schemes (video-centric and music-centric) camuged to
integrate two media. Yoon et al. [33] transformeddand music
into feature curves, and then apply the dynamigimming
strategy to match these two modalities. To tackith vength
difference between music and video, they adopt sicrgraph
to elaborately scale music such that video-music

o
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synchronization can be guaranteed. Recently, Yaoai. §32]
align music with arbitrary videos by using featurigs a
multi-level way.

Generally, these works first segment videos andiaring
segments, extract features from segments, andntlaéch two
sequences of segments to generate final resutleosiare first
segmented based on color [16], events [31], camet&n and
brightness [8], or shape [32]. These features clhariae global
information in video frames, and object-based imfation, e.g.
object motion, may be overlooked. Works in [33] sider
object motion and construct feature curves foredéiowever,
few discussions were made about integrating locaian from
multiple parts, and the idea of periodic motion pariodic
changes of motion was not mentioned.

Finding association between video and audio (musi@
crucial step for audiovisual applications. Recerfigng et al.
[35] propose a probabilistic framework to model retation
between video and audio,
background music for home videos. Lee’s group itigetes
association between music and animation [36] , etwéen
music and video [37]. A directed graph is constdcand
traversed to generate background music fit to Hrgeted
animation. In fact, exploiting multimodal assoadiati to
generate background music has been studied foigatilme. An
earlier idea can be found in [38].

C. Embodied Music Cognition

Most computer scientists separately detect
information from music and video, and then synchrerthem
to generate audiovisual presentation. In fact, andn of
musicology, embodied music cognition [19], thatdstigates
the role of human body in relation to music aci@gthas been
studied for years. Human body can be seen as aatoedhat
transfers physical energy to represent musicalnfites,
meanings, or signification. People move when listgnto
music, and through movement, people give meaningusic.
This is exactly what dancers do in their perfornean@/e
provide a brief survey on this field in the followg.

Leman’s book [19] provides a great introductioemebodied
music cognition, and provides a framework for eegis,
psychologists, brain scientists, and musicologistsontribute
to this field. More specifically, the EyesWeb praijéocuses on
understanding affective and expressive content whdm’s
gesture [3]. The developed system analyzes bodyement
and gesture to facilitate controling sound, musieg visual
media. Similarly, Godgy [10] investigates relatioips
between musical imagery and gesture imagery. As i&n
ongoing research field, Godgy describes ideas, sheaad
research challenges to link music cognition withdyo
movement. Currently, researchers in this fieldtdtause signal
processing techniques to demonstrate that diffgyarts of the
body often synchronize music at different metriezkls [30].
The latest results suggest that metric structurenasic is
encoded in body movements. For computer scientibis,
studies mentioned above open another window toodésc
rhythmic relationship between music and motion.

rhythn |

.  RHYTHM OF MOTION

A. Overview of ROM

Objects may move forward and backward periodicatigye
in the same trajectory periodically, or stop/tustading to
some implicit tempo. In dance videos, ROM is a @heut how
a dancer interprets a music piece. Figure 2 shavwesample of
rhythm of motion. The dancer stands up with hand/ingp
down from frames 0 to 10, squats down with handimgpup
from frames 10 to 20, and repeats the same actibnoét)
periodically. Note that the human body gives rizenon-rigid
motion, with different parts moving toward diffetedirections
of different magnitudes. However, we can still isalthat the
dancer has periodic changes of motion. The impdieitod thus
forms rhythm of motion.

Different dancers may have different interpretatiéor the
same music, and they may not completely move wiigthm of

and automatically generateusic. Fortunately, most dancers have common censen

about how and when to move their bodies. Therefdamce
videos with same background music may consistroilai but
not completely the same ROM. Dancers usually divice
music into segments of “eight beats”, and thengtedancing
steps for each segment [39]. Although differentagas have

varied styles on poses or body movement, they make

emphasized stop or turning at boundaries of eight-begments.
This characteristic makes us capable to estimateldminant
period of emphasized motion stop/turning.

frame 0 frame 5 frame 10 frame 15 frame 20 frame 25

frame 35 Frame 40 frame 45 frame 50 Frame 55

frame 30

Figure 2. An example of rhythm of motion.

B. Motion Trajectory

To extract motion trajectories, we only considertior on
feature points rather than all pixels in video femmMotion
predicted from feature points effectively represertdeo
content and decreases interference from backgrowisk.
Although our work is not limited to any specificatere
detection method, we adopt the Shi-Tomasi (ST) eorn
detector [27], because it is shown to be robusteuraifine
transformation and can be implemented easily. Wuyaihe
Pyramid Lucas-Kanade (PLK) optical flow detectioathod [2]
to predict mation in various scales.

The moving direction of a feature pointfrom framet to
framet + 1 is estimated by:

si(#',y') = PLK (si(x,y)), Q)
wheres; (z. y) denotes position of the feature poiptat framet,
si(x',y") denotes the estimated position of the featuretpgin
at framet + 1, andPL K (-) denotes the estimation function.

To construct trajectories, we need to appropriatelynect
feature points in temporally adjacent frames. Mot@md color
information of feature points in neighboring franaee checked.
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For the feature point; at framet, we find the most appropriate filtered in the same way. After filtering, the nanti trajectory

feature points;- at framet + 1 by J = {s,J., J,} is smoother, and then we are able to detect
J* = argming e sy d(sis 85), (2)  stops and turns more precisely.

where N (s’) denotes neighborhood of the estimated location A stop action is often a joint of movements. A demmay

si(x’,y") The neighborhood region is defined as the set ®fove his hand toward some direction, stops whensiaieat

pixels in the circle centered Isy(x’, v'), with radiusr.
The distancel(s;, s;) is defined as
d(s;,85) = 27\71];‘)1 |Fi(m) — (), 3)
whereh; and/; are HSV color histograms of ti¥ex 9 image
patches centered By ands;, respectively. The values of hue
saturation and volume are quantized into 8 birgpeetively.
By this process, we construct feature-based ti@jest If a

feature points; at framet + 1 is able to be connected by

multiple feature point$s; } at framet, only the feature poirg;-
having the minimum distance t®; is selected, i.e.

i* = argmin,; d(s;, s;). In addition, to filter out short trajectory

segments caused by noisy feature points, we elteimstion
trajectories shorter than a predefined threshold.

Figure 3 shows examples of motion trajectoriesha same
video sequence but constructed based on diffegatitfe points.
Figures 3(a), 3(b), and 3(c) are correctly extrdcteotion
trajectories, and Figure 3(d) is a falsely extrdctaotion
trajectory. We roughly can see periodic properties

trajectories in Figures 3(a), 3(b), and 3(c).

@ ® © [6)
Figure 3. Examples of constructed motion trajeetorbased on different
feature points.

C. Motion Beat Candidate Detection

Based on the extracted trajectories, we detectidates$ of
motion beats for ROM extraction. A motion trajegtais
denoted by = {s.(zo.90), (z1,11), -, (Tss, Yum) }, Wheres
denotes the frame number at whitlstarts, andz;, ;) is the
xy-coordinate of the feature point at the frasne i. We detect
stops and turns of motion trajectories as motiat bandidates,
which can be described by substantial changes dfomo
magnitude and moving direction.

To alleviate the influence of trajectory extractiooise,
motion estimation errors are assumed to be Gaudstiibuted
[1], and we conduct low-pass filtering by convolyimotion
trajectories with a Gaussian kernel function:

c() -

e 2.2

1
\/EO' ' (4)
wherea is the standard deviation controlling smoothnasd;
denotes the difference (in terms of frame numbeginfan
arbitrary frame to the frame centered by the Ganssi

The horizontal movement datd, = {xo.z1,....,2m} is
filtered as

Jo(i) = Yoy Juolu) - Gl — w), (5)

strikes, and later moves reversely. The stop adtiodance
videos represents that the movement has completelgd, or
just a temporary stop which serves a start of aratiovement.
To detect stops of a motion trajectory, we examewaution of
the motion magnitudeH,; = {90. 91, ... gm-1}, where g;

'denotes the magnitude of the motion from frane frame

1+1, i.e.g; \/(IZ‘+1 — )2+ (yis1 — yi)%. We useH, [1]
to representg; in the following description. Magnitude
decreases when movement decelerates, and a logathumi
occurs at the moment of a stop. In this work, wiectelocal
minimums of the magnitude history based on a mediifiill
climbing algorithm [11].

There may be many stop points in a motion trajgctdo
detect every local minimum, we modify the hill cbing
algorithm as in Algorithm 1. If the magnitude okth/dz-th
frame in the neighborhood of the current frame dietl by
cldx) is smaller tharH [cIdx], we replace:ldz by nld«.
This procedure repeats until, [c/dz] is the smallest within the
neighborhood. Neighborhood of the inddxix is defined as
Nlcldz) = {cIde + 1,cldx + 2, ...,clde + A}. The value
A is setas 7 in our work, i.e. only the seven teralypadjacent
frames following the=/dz-th frame are checked. After the local
minimum is found, we again adopt hill climbing tod the local
maximum, which serves the start for finding the tnkscal
minimum. This process repeats until the whole mage
history is checked. Finally, the set of local minms are
viewed as motion beat candidates.

To find trajectory turning, we analyze evolution mbtion
orientation. The orientation history is denoted
H,={0p,01,...,0m 1}, Whereo; is the motion vector from
framei to framei + 1, and is represented in a united vector
form, i.e. o;= %(m,,-,ﬂ — 7, Y+1 — ) . Based on this
information, we design a method shown in Algoritarto find
turnings in a trajectory. When the trajectory keeypwying at the
same direction at framesand: + 1, the inner product of; and
0;+1 (denoted a$H, [i], H, [t + 1])) would be close to 1. On the
other hand, when the trajectory turns, the valuerwdr product
decreases or even reverses. Therefore, we accemolzr
products between motion vectors in a sequenceaofds, and
then find the turning points by checking the averaglue of
accumulated inner products (line 7 to line 11 ig&lthm 2). If
the average value is less than a thresholek find the instant at
which the average value of the accumulated innedymst
changes the most (line 12). This instant is stoaed, is then
updated as the nextart point. This process repeats until the
whole orientation history is checked. The set afiing points is
also viewed as motion beat candidates.

as

wherejm(i) denotes the filtered horizontal displacement at

frames + i. The vertical displacemedt, = {yo,¥1,-...Um} IS
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Algorithm 1: Finding stop points of a trajectory

Input: magnitude history H,

Output: a set of local minimums L in H,
1 L—@

2 cldr —0

3 decreasel'lag — True

4while elde <m —1

5 if decreaseFlag

6 nldr — argmin; Hyli], i € N(cldx)
7 if Hglnldz] < Hglcldz]

8 cldxr — nldz

9 else

10 L =L\ J{clIda}

11 decreasel’lag — False

12 else

13 nldr — argmax; Hyi], i € N(cIdx)
14 if Hy[cldx] < Hy[nldz)

15 cldr — nldx

16 else

17 decreasel’lag — True

18 end while

Algorithm 2: Finding turning points of a trajectory

Input: orientation history H,
Output: a set of turnings U
1U 9@

2 start < 0

3 while start <m —1

4 history — 0

5 diff — @

6 avg «— &

7 for j =start+1to m—1

8 history — history + (Ho[start], Ho[j])
9 avglj] « =Y

10 dif f1j) — avglj] — avglj 1]

11 if avglj] <e

12 i* = arg maXsiart<i<; dif f[i]
13 U—UU{e}

14 start = j

15 break

16 end while

D. Rhythm Estimation and Filtering

In this section, we use the scheme proposed inf¢t Thotion
beat refinement and dominant period estimationeNloat not
every detected turning point or stop point is trlyotion beat.
Therefore, the scheme first finds the dominant gaerfrom
motion beat candidates, and accordingly estimhteseference
beats. Guided by reference beats, we estimate|aoition
beats by finding the candidate beats that havel dsraporal
differences to reference beats.

Single trajectory:

To predict the dominant period from motion beatdidates,
we estimate pulse repetition interval (PRI) fromsignal
generated based on the time instants of beatingtfiR4]. This
method is computationally tractable and is robagtrajectory
extraction errors. From a motion trajectory, a wotibeat
sequence is denoted &s= {bo,b1.....b,}, Whereb; is the
timestamp (in terms of frame number) of tkie motion beat
candidate. We can model generation of these mbegais as

bi=¢+ kT +mn, (6)

whereT is the unknown period) is a shift ranging in the

interval [0, T), 7; is noise caused by the dancer or the beat
detection module and is set as in the intervdl/2,7/2), and
k; is a positive number indicating the index of be@he
reference motion beats can be modeled;as ¢ + ;T', which
represents periodic appearance of actual motiots ba#th this
model, we would find" and¢ for reference beat estimation.
Figure 4 shows how we estimate reference beatdbarse
motion beat candidates. First, we transform theusece of
motion beat candidates into a continuous-time $igaa

(D) = {cos (ZW(biibg’k‘_ll)) , i by 1 <t < by, @)
1, if t = by,

wherek = 2,3, ...,n. This signal is maximized when a motion
beat candidate appears, iyg(t) = 1 whent = b,. Whent is
located between two motion beat candidates, theevafly;.(¢)
is determined by a cosine function. For each bexadidate);, a
cosine centered &t is applied, and all sinusoids generated from
beat candidates are accumulated to generate d gighaas
shown in the second row of Figure 4.

Based ony(t), we estimate the dominant period by
calculating maximum of power spectrum density (P$Z3).
This process calculates energy of the accumulatessad in
different frequency bands. According to the Nyqgsiainpling
theorem, the maximum frequency able to be detdstbdlf of
sampling rate. Fortunately, we can reasonably asgbat the
frequency of motion beats is lower than half ohfearate (30
fps), because the human body hardly moves so Yalst.
calculate PSD by

2
PSD,(f) = |27 ()| 8)
whereM is the length of the accumulated sinusoid, Arslthe
index of a frequency band. The dominant frequerscyhie
frequency that gives the maximab D, (f):
fa = argmaxy PSD,(f). (9)
The dominant period” = 1/f; implies that most motion
beats periodically appear at multiplesiaf
We then estimate@ by finding the shift that causes the

maximal sum of periodic positive peaks:

¢ = argmax, Z)i]l y(UT + ¢),

where¢ is in the interval0, T').

(10)

Motion beat ] I I 1 ] |

candidates ! ' !
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t

$
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Figure 4. Reference beat estimation based on mbgahcandidates.
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S(t) = plt) + ...+ yx(t)
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Figure 5. Estimation of reference beats with midtipotion trajectories.
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Multiple trajectories:

The aforementioned process is applied to a motieat b
sequence derived from a single motion trajectony.jdintly
consider multiple beat sequences derived from pialtinotion
trajectories, we extend the process as illustrat&igure 5. The
idea of this process is similar to extracting fumeatal
frequency or pitch detection from a signal tha @iperposition
of sinusoids. This process is often adopted irhpiietection for
speech [20] or music. In our case, because diffgrars of the
dancer’s body acts according to the same rhythmusic,
sinusoids generated from different body parts aearlg
harmonically related. Although motion trajectoriesy have
different durations, this process is able to reg#siations of
different sequences and robustly finds the domipanbd.

Based on this idea, we construct an accumulatadsaic

6

IV. BACKGROUND MUSIC REPLACEMENT

We would like to replace the original audio tradkaadance
video, which is captured in an uncontrolled envinemt and is
deteriorated by noises, by a higher-quality muséce, which
conveys similar pulse as the original audio tragkib from a
CD recording or a high-quality mp3 file. We conduct
background music replacement based on ROM in deédees
and music beats in the selected music piece.

A. Music Beat Detection

Music beat detection and tracking has been studittk last
decade. Scheirer [25] divides spectrum into sevieegluency
bands, analyzes energy dynamics in each, and thses f
information from different bands to detect beat$xoD [6]
develops another classical work to automaticallyaex tempo
and beat from music performance. More recentlyéa et al.
[22] improve Dixon’s approach to achieve real-time
performance. Beat tracking becomes more challendimg
non-percussive music with soft onsets and timeiagriempo.
Grosche and Muller [13] propose a mid-level repnéstion to
derive musically meaningful tempo and beat infoforatThey
also propose a framework to evaluate consistermfidseat
tracking results over multiple performances of shene music
piece [14]. Covering a wide range of music, Eybeale[34]
propose one of the state-of-the-art onset deteetpproaches
based on neural networks. Readers who are intdrdate
relationship between rhythm and mathematical modets

y:(t) for each trajectory separately, and then superpose referred to [26]. A complete review for rhythm degtion

sinusoidal signalg: (), y2(1), ..., yx () as a superposed signa
assumingi different motion trajectories. The PSD of the

signalS(t) = y1(t) + y2(t) + ... + yx (t) is computed as
R s 2
PSDs(f) = |51, S(er/t | (11)

whereM is the length of the superposed signal, Ansl the
index of a frequency band. The dominant periodtaedohase
can be estimated by the way same as in singlectomje

After estimating reference motion beats, we detetual
motion beats and filter out outliers. The actuatioobeats may
appear close to reference beats. A beat candidatelaimed
as in the neighborhood (as an inlier) of a refezdveat-; if

Tj*(lggbig’f‘jJrC\’g. (12)

|Systems can be found in [12].

Although a more recent approach such as [34] cappbed
to analyze music beats, music accompanied witletsttance
often has strong beats, and the typical Scheineethod [25] is
used to detect music beats in our work. Energywgiani in each
frequency band is extracted, followed by envelop@athing
with a half-Hanning window. We again conduct hiihtbing

for peaks finding in each envelope, and then irtEgresults in
different frequency bands to estimate music beBé&zause
there are many detection noises, we refine theltréguthe

process described in Section Ill.D. A sinusoidaiction is
constructed based on the detected music beatth@ddminant
period and time shift of the sinusoid are estimatedetermine
reference music beats. The actual music beatsedestdd by

The valuea is a parameter controlling the range Okinging the ones that are closest to referencesbeat
neighborhood. Ifx is too large, outliers may be included in the

final process. Ifx is too small, we may filter out actual motion B Rhythm-Based Cross-Media Alignment

beats. We will test this parameter in the evalumesiection.

After removing outliers, we detect actual motiomiseby

B = {b; by = arg minpeargr,) b—r;il,j=1,.., N}, (13)
whereb] is the detected actual motion beat corresponding
reference beat;, and A (r;) is the neighborhood of; defined
in egn. (12). The candidate beat that is in thghi®rhood of-;
and is closest to; is detected as an actual motion beat. If
reference beat has no neighboring candidate beat,
corresponding actual motion beat exists at this emm

Based on rhythm information, we would like to detare
appropriate alignment between two modalities. Motieats
and music beats are respectively represented maaytvector,
denoted by Bt = {bo, b1, -sbpr 1} and
%mu ={bo,b1,....,bn 1}, where b;={0,1} and b, =1
indicates a beat at thith millisecond of the video (music).

Basically, this is an approximate sequence matqgbiaglem,
tvhich can be solved by widely-known algorithms suash
dlynamic time warping (DTW). However, given two hipa
sequences, e.g.B,, = 101010101011 and B, = 1001001,
the DTW algorithm equally treats charactéandl and finds
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the longest common subsequence betwggn and B,,.. In
dance videos, dancers only interpret parts of mbsats, and
the priorities of 0 and 1 should be different. Altlgh we can
design a variant of DTW to handle this problem,fawend that
the following simply alternative already achievedisfactory
performance.

To simplify description,
higher-quality music is longer than that of videitheut loss of
generality. We also note that motion beats onlyespond to
parts of music beats. With these characteristiesywuld like
to find a music segment that is appropriately t@ligned with
the video. The original background music of theewids then
replaced by the newly-aligned music segment.

We try different time shifts for the music beat sence to
find the best match between two sequences. To medsgree
of matching, we define the temporal distance betwtbeith

motion beatB,,:[i] and its closest music beat in the sequen

with the shiftA by

d(A, Z) = minog‘jgi\[fl ‘i — j|,VBm,“,[j -+ A] =1, (14)

where N is the length of the music beat sequence, and:Z’!n:ff\‘f/Q

V. MusICVIDEO GENERATION

A. Music Segmentation

To generate music videos, we first segment musicthen
select suitable video clips for each music segméit.
comparing audio frames, a self-similarity matrixc@nstructed

we assume duration of théo describe autocorrelation, and the entries imthan diagonal

with local maximum novelty values indicate boundari
between music segments. To calculate novelty values
convolute the self-similarity matrix with a radaymmetric
Gaussian taper [8]. Theoretically, if the size ofigsic segment
is L, the most appropriate size of the checkerboardekeds
2L 4 1. Although we do not know the size of music segment
we know that a reasonable music segment oftenarttie end
of eight beats. With the dominant peridddetermined by the
method in Section Il.C, we set the size of theckleeboard
&ernel asl67” + 1. The novelty values of thih audio frame is
then calculated as

Novelty(i)

M2 Z;Y:/iM/Q K(m,n) s(i+m,i+n), (19)

BmulJ + 4] denotes the value of thigh sample in the sequenceWthE]W = 16T + 1 and K denotes the checkerboard kernel.

with the shiftA.

Degree of match between two sequences with theAhgf
defined as the ratio of coherence to distance. ddterence
valueC(A) is defined as

Bomsli]

CA) =& vy 2tk (15)
which is larger if temporal distances between nmobeats and
their closest music beats are smaller.

The difference valué&(A) is calculated as
DAY = 4 215 Buuli] - d(A,i). (16)
These two factors are integrated as the final degre
matching:

DOM(A) = 5=,

Finally, we determine the most appropriate shiftby
A* — arg Hla*X(]Sk:SJV _M D()A/[(k)

17)

(18)

After finding the best shiftA*, the music segment

We adopt the hill climbing algorithm again for dgtiag
peaks from the sequence of novelty values. Theakspare
denoted a$ = (po.p1,..-, o~ ), Which is sorted in descending
order according to the corresponding novelty vaked p;
denotes the timestamp of tite peak. To keep representative
peaks inf and avoid too short music segments, we design
Algorithm 3. To define the threshold, we observe music
videos produced by professional editors, and s&t ttwice of
eight beats. The length of an eight beats can lelated as
eight times of the dominant period.

B. Video Clip Selection

For every music segment, we select a video cliphfthe
database that has the best degree of matchingAssiime that
a music segment of lengthis shorter than the video clip.
Therefore, from the video clip we would like to dira video
segment that best matches with the music segmbeatmethod

{bax;barit; - barsar 1} from B, is used to replace the o finding the best shifA* in Section 1V.B is again adopted to

original background music. For example, if the lstsft A* is

3.8 seconds, and the video clip’s length is 28cbids, then the

music segment from 3.8 to 31.9 seconds of the tegleousic
piece is used to replace the original backgrounsienu
According to egn. (18), we have at mo%t— A +1

find a video segment ranging frofxi* to A* + £,

To generate a music video that includes video setpraf
similar rhythm but from different dancers’ performeas, we
avoid that the same video segment is selected Ilog than one
music segment. Algorithm 4 is designed to accorhphigisic

possible shifts. Given a shift, the complexity for calculating \;igeq generation. Assume that there &g music segments

degree of matching (eqn. 17))
O(M*N + M?N) = O(M*N) becauseM instructions are
respectively needed to calculdtd§A) and D(A), and M N

comparisons are needed to calcul#td, i) in the worst case.
Because both sequencBs,: andB,,,, are temporally sorted,

to find the closest music beat to tile motion beatB,,;[i], we
just need to search neighborhood of thé A)-th point in the

IS

and there areV, videos in the database. For every music
segment, we calculattOMs (egn. (17)) between it and every
videos. The valu@®OAM[i][j] denotes thédOM between the
ith music segment and its most appropriate videonsag
deriving from thejth video. We use a boolean vectarto
record whether the videos have been selected byusicm
segment, and a boolean vecidg to record whether the music

sequencel,,, . Therefore, the number of comparison folsegments have selected videos. Algorithm 4 is desidased

determiningd(A, i) is much less thai/ N.

on the greedy strategy that maximizes the suf@f\{s for all
music segments.
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Algorithm 3: Boundary finding based on novelty

Input: novelty peaks P = {po.p1,....D~N }
Output:a set of boundaries B,

1 Bs+— @

2 Bs = Bs U '{p[l}

3for i =0 to IV

4 short «— False

5 for 3 =0 to sizeof(Bs) — 1
6 if |pi — Bs[J]] < s

7 short «— True

8 break

9 end for

10 if !short

11 By = Bs U {pi}

12 end for

Algorithm4: Music video generation
Input: DOMs between music segments and video segments
Output: a set of video segments S that constitute the music video
1S—o
2 Vi « an array with each entry inserted by False
3 M, < an array with each entry inserted by False
4 while i < Ny,
domldx — @
6 for j=1to Nn
7 if Ms[j] = False
8 domlIdx[j] = arg maxy<p<y, ke.a DOM[]][k],
A = {a|Vi[a] = True}
mlidz = arg maxi<k<ny, DOM[domlIdz[k]]

wh

9 end for

10 wvldz = domlIdz[mlIda)

11 M,[mIdz] « True, Vi[vidz] + True
12 S[mIdz] = vldz

13 1=1+1

14 end for

VI. EXPERIMENTS

A. Evaluation Dataset

Table 1 lists information of the three datasetsduge
evaluation. The first dataset is captured from fwemple’s
dances according to six different music pieced) witelatively
simple background (c.f. Figure 6(a)). They justfpen simple
periodic movement to be the reference dataset\aluating
ROM extraction. Videos in the first two datasetseveaptured
from dancers in the street dance club of our usityerEach of
them has taken at least two years of dancing tr@inihe
second dataset includes eleven different dancerpnances,
and was captured in a much cluttered environmerghawn in
Figure 6(b). According to five music pieces, thesmcers
perform in their preferable ways (hip-hop, poppilegking, or
freestyle) and dance for 30 to 40 seconds. Nundfeddferent
types of dances are listed in Table 2. Differeoitrfithe first two
datasets, the third dataset includes clips dowelddcbm the
web and is much more challenging (Figure 6(c)). thild

http://www.cs.ccu.edu.tw/~wtchu/projects/ROM/inderal.

Extracting rhythm information from these videosvisry
challenging. We see apparent and time-varied shadiow
Figure 6(a). In Figure 6(b), dancers may have diffescales of
motions, and motion may appear in anywhere ondhees. In
the third dataset, not all dancers move accurateusic beats,
and different dancers may have different danciagsstQuality
of videos in the third dataset is not as good as it others.
Moreover, sort of global motion caused by cameraingpcan
be seen in both the second and the third datasets.

To verify the motivation of background music regaent,
we exploit the package developed in [40] to assesdity of
background music in the second dataset, in terrfseecdverage
perceptual similarity measure (PSM) [40]. The PSKue
ranges from O to 1, and a higher value indicategela
correlation between the original one and the desgtackrsion.
From the experiments in [40], six audio signals duger
evaluating low bit-rate audio codecs by ITU and NBPRave
PSM values ranging from 0.88 to 1. In our case,aherage
PSM value of the background music is 0.68. By caimnpa
these two cases, we see that quality of backgronusic is

significantly downgraded, and thus replacing it hwit
higher-quality music would be valuable.
Table 1. Information of evaluation datasets.
1sidatase 2nc datase 3rd datase
# video clip: 30 50 13
Average 11 sec 35 sec 1 min 23 sec
length
Multiple No No Yes
dancer
Cluttered No Yes Yes
backgroun
Dancing | Simple periodic | Hip-Hop, Popping,| Hip-Hop, Popping,
types movement Locking, and Locking, and
Freestyle Freestyle
Dancers |Dancers from strgl Dancers from stregtProfessional dancers
dance clu dance clu
Source Capturing Capturing Downloaded frimg
wek

Figure 6. Snapshots of (a) the first, (l
datasets.

B. Performance of ROM Extraction
A detected motion beat is claimed as correctlyaetkif the

professional dancers dance in cluttered environsnand some temporal distance between it and a truth beatss fean two

of them dance for more than one minute. All vidéoghe

video frames, i.62/30 seconds in 30-fps videos. Ground truths

evaluation datasets are coded as MPEG-4 videos) Wit motion beats were manually defined frame by &aby the
320 x 240 resolution. These datasets and experimental sesult,.ond author who had taken dancing training farseWe

described in the following are available on our sith

calculate average accuracy of motion beat deteftiothe 30
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video clips in the first dataset, with various sefs of the @) )
following parameters: 1) the definition of neighbood N (s}) “ o

in eqn. (2); 2) the degree of smoothness contrddied in egn. 05 | 0s [‘-Ka

(4); 3) the threshold in Algorithm 2 for detecting turning °* %W 1 f’“ﬁm T e precson

points in trajectories; and 4) the parametén eqn. (12) for Z: (' 0314 = recal

filtering out outliers in motion beat candidates. o |4 e
Figure 7 shows performance in terms of precisiecall, and ‘

F-measure. From Figure 7(a), we see that the damtect o s 1w 15 20 2 o 10 20 2

performance varies slightly when the radius of hearhood is ”E‘:;el”') (é)

larger than three pixels. Similar effects can beeobed from oo . 08

other sub-plots of Figure 7. This means the progposethod  ° | ._-1“ v

has stable performance once parameters in an apd@Nge  os == & o __':',_,_,_,_,_,_,_,_,_

are set. In the following experiments, these faanameters are "”*‘A‘ﬁﬁ’ 04 e

chosenas =4, 0 =9, ¢ = 0.6, anda = 0.25. 03 o3 Fmeasure
Generally, the proposed method has higher recalh th Zi

precision. We estimate the fundamental period frtre 0 0

0.5 1 15 0 0.2 0.4 0.6

constructed sinusoid, and thus describe repeatadderistics
of the signal. More truth beats can be detect¢eifreference Figure 7. Performance of motion beat detectlomalms of precision, recall,
beats are better estimated, and therefore thd rataincreases. and For:easure under different parameter settings.
In the developed applications, we prefer to deteation beats ‘
as many as possible for providing finer ROM. If thasic well
matches strong motion beats, humans may be higttisfisd 06
with the manipulated videos. That is why the averagjue 0.5 05
in F-measure is enough for the following applicasio

Based on the second dataset, we compare motiors beat
detected by three different methods: (1) detectiased on

0.7

Bbaseline

B Guedes
D3 Our

motion magnitude difference (baseline), (2) detecbased on 02 - 7
luminance difference [15], and (3) our approach etiom 01 - %
trajectory analysis. Figure 8 shows the best F-oreagalues o0l %
achieved by the three methods are 0.13, 0.18, aff, 0 precision recall F-measure

Figure 8. Performance comparison of ROM extractwrthe second dataset.
(a) (c) (e) @

respectively. Guedes estimated motion magnituderbinance

L R e  uuhDEEDEEEEE  TETTLTELELLE ---

M Baseline
M Guedes
0.2 +

changes between frames [15], and then estimateditiménant ,

frequency from motion magnitude evolution. Howevarthe u

second dataset, dance videos were captured in wotied

environments and varied luminance changes hurt &=d |

approach. The proposed method analyzes motiorctosies moion

and thus can more reliably capture motion beats. peats N N 1 1
Figures 9(c), (e), and (g) show frames right atdbtected

motion beats, and Figures 9(b), (d), (f), and (Wve frames “ u u

in-between motion beats. We see that movementgtatigd ) - 0

motion beats are really stops of movements or ehgestures. Figure 9. A sequence of video frames and the qooreting motion beats.
We further evaluate the proposed method for videos

consisting of multiple dancers and lasting for mdran one 06

minute. Similar to the demand of stationary prapsrin digital

signal processing, the proposed method only wor&l for Rl et ettt

video clips with stationary motion beats. Therefoveleos

longer than one minute are appropriately segmentadvance,

and in each segment motion beats are stationagurd-il0 03 T

shows the average precision, recall, and F-medsutke third

dataset, respectively. Our method has slightly drighrecision,

but performs significantly better in recall. Foethideos in the 01 +

third dataset, Guedes’s approach does not haveadeantage

over the baseline approach. By comparing Figuréti® kigure

10, we confirm that extracting motion beats in waslevith

multiple dancers is much harder than that withIsigigncer. Figure 10. Performance comparison of ROM extrachiorihe third dataset.

precision recall F-measure
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C. Performance of Background Music Replacement

Performance of background music replacement is toabd
measured, because the judgement is subjectivehanground
truth is hard to be formulated. Moreover, not evangsic beat is
interpreted by dancers and different dancers magrpret
differently, which make quantitative measuremerieasible.
Therefore, we conduct subjective tests on the badis
replacement results for the second dataset.

Two sets of subjects were invited in the subjeativaluation:
twenty ordinary users who had varied musical kndgt&eand
were not familiar with street dance, and elevercdenfrom the
street dance club of our university who had takemcihg
training for years. The former set of subjects \agted to

10

poses, which is able to describe music beats wettking is
about arm twisting, kick, point, and elastic movetseLocking
is funky, and dancers often pay attention to momehimusic
beats appearance. Freestyle does not have majcnneows,
but focuses on how to precisely interpret music t@mo
represented by melody, vocal, etc. Overall, ourhoetointly
considers evolutions of motion magnitude and oaitoh, and
more accurately extracts rhythm of motion to faaié better
background music replacement.

For hip-hop, our approach does not have clear gujigr
over other methods. In general, hip-hop movemeatsonly
interpret music beats, but also interpret progbesseen music
beats. Our current method focuses on time insintaotion

verify whether the proposed method generally aasevbPeats and music beats, and a further study abmgress
satisfactory performance for ordinary users. Basisical and between beats is needed in the future. We achiews g
choreographic knowledge was introduced to themrbefioe Performance for popping and locking. Dancers witbhsstyles
test. The latter set of subjects was invited tongra finer Strike strong motion beats according to music beatsed by
rhythmic relationship between video and music. Wigasately Percussion instruments. We have much better pesfocen for

describe two experiments as follows.
Ordinary users’ evaluation:
The questionnaire for ordinary users is designed as

freestyle dances, which focus on artistic conceptimnveyed in
music content. Generally, different dance styldscafROM
extraction and background music replacement.

Q1: Do you think the videos with background music Figure 11 shows results of Q4. We clearly see that

replacement provide better viewing experience tharoriginal
videos? (Yes/No)

Q2: According to how the dancer moves with the lthybf
music (caused by drum, cymbal, etc.), evaluate blose the

Hip-Hop Popping Locking Freestyle | Overall
video with background music replacement is to thigimal (12) (13) (13) 12) (50)
: . : Q2 (base) | 3.29 3.13 3.08 3.00
video. The score ranges _from one to five, _and adng;cc_)re (0.43) 0.58) 0.63) 0.84) 3.12
means “rhythmic properties between music and mbtisn Q2 ([15)) | 3.37 3.05 3.05 2.89 3.08
. ; (0.44) (0.55) (0.65) (0.53) :
closer to the qngmal video. . . oz 857 395 30 355
Q3: According to how the dancer moves with the éonoof ©035 | 046, | (052 | 048 | 3%
music content (derived from melody, vocal, lyrits.§ evaluate Q3 (base) | 3.24 3.30 3.08 3.10 317
. . . . . (0.54 (0.53, (057 (0.74 :
the degree of satisfaction of the video with baokgd music B @s) | 332 %) > 98 301
replacement. The score ranges from one to five,aahijjher ©53 | 060 | (063 | 053 |3
H H i Q3 (Our) 3.33 3.41 3.40 3.61
score means higher satisfaction. (045, .59, .57 .52 3.44

Q4: Rank videos generated by the three methodgaétidd
VI.B. The value of rank ranges from one to thremiagral, and
a smaller value means higher preference.

We conduct background music replacement based dl RO 2 1 '

approach is the most preferable expect for hip-Hapces,

which confirms the trend shown in Table 2.

Table 2. Subjective performance of BGM replacenesaiuated by ordinary
users.

Average rank
25

extracted by motion magnitude difference (baseli@)ede’s L5 ] _
approach, and our approach, respectively. In stibgetests ' / BBaseline
pp : pp , resp y toge : %

D Guedes

we follow the DSIS (Double Stimulus Impairment $jal
scheme defined in ITU-R Recommendation BT.500-1ie T
original video was played first, followed by thesudt generated
based on one of the three approaches.

For the first question, 87.5% of videos with backgrd
music replacement are thought to provide bettewinig
experience. This result confirms that it is worth donduct
background music replacement.

Table 2 shows the results of Q2 and Q3 for diffedance
styles. The standard deviations of scores are teghoin
parentheses. Videos in the second dataset carviediinto
four sub-categories: hip-hop, popping, locking, direkstyle.
Hip-hop is a dance style focusing on grooving ardrpreting
drums in music. Popping consists of pop, wave, stogping

05 4

M@Our

0
Overall

Hip-Hop

Popping Locking Freestyle

Figure 11. Ordinary users’ preference on BGM regraent results for different
dance styles.
Dancers’ evaluation:

Because dancers have richer musical and choredgraph
knowledge, more detailed evaluation can be conduci®
observe detailed rhythm relationship between vialed music,
the second question Q2 was divided into two finergtions:

Q2-1: According to how the dancer moves with thenishant
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rhythm of musict, evaluate how close the video with Table3. Subjective performance of BGM replacenesatuated by dancers.
background music replacement is to the origina¢eid oE ;'ZH"" :‘;%p'”g :"lcg'"g :rjgswle Overal

Q2-2: According to how the dancer moves with the (base) | (0.06) | (0.10) | (0.40) | (0.26) | 318
characteristic rhythm of musicevaluate how close the video Q21 | 3.33 2.93 3.09 2.80 3.03

) ) ) = @s) | 040 | 023 | (0.10) | (0.10)
with background music replacement is to the origideo. Q21 | 3.63 3.03 3.36 3.60 a5

The question Q1 does not need to be measured agaeise (Ouy | (017 (012, | (016, | (026 :
this application is intuitive to dancers. Table @yides the gi‘sze) f’(fgg) ) ?(5?298) (2(')?239) 3.34
evaluation results from dancers for Q2-1, Q2-2, &3 Our Q22 | 341 3.33 3.09 2.97 319
method also has promising performance based onedanc 21252 045 091 024 OO
evaluation. The performance for Q2-1 is better ttzat for ©uw | 028 |61 |©ig |03y |35
Q2-2, which confirms that dominant rhythm is eaderbe %3 3(-)4117‘ 3(-)4206 36034‘ 2(-)5371 311
detected than characteristic rhythm. The results@8 are e T R T aa  r -
worse than Q2-1 and Q2-2. It is reasonable bec@&as ([15) | (055) | (0.38) | (0.24) | (0.06) i
relatedI to music emotion, which has not been censitl o | oae ooy oo | e |34
currently.

Figure 12 shows dancer’s preference on replaceresntts
for different dance styles. These results are aimti that in
ordinary user’s evaluation. However, for popping canking
result is worse than the baseline. Popping contatsf static
poses, which facilitate motion beat detection by Haseline Average

EBaseline

\
N
N\
: Ranki N
approach. In Table 3, for Q2-1 the baseline methctieves anking § DGuedes
better performance in popping, which correspondsthe § BOur
ranking result in Figure 12. Overall, our methods Hzetter §
performance for all dance styles except for poppifhge §
performance variation between ordinary users anccets D
reveals their knowledge gaps on music and chorpbgra Hip-Hop Popping Locking Freestyle Overall
D. Performance of Music Video Generation Figure 12. Dancer’s preference on BGM replacenmesilts for different dance
. . . . . styles.
Evaluating music segmentation is subjective, and th Table 4. The guideline for evaluating music segrigmm.
performance may differ from different music typesda Score Description
i i H o i The boundary is accurately located at the bestdrmyn
applications. In our wor_k, we provide an gvaluatgnndg asin 5 (music bear) between music segments.
Table 4 to reduce variations of subjective evatuatilf the . The boundary is located at a music beat, whichistte best
difference between the best boundary and a detbécteddary but is close to the best boundary. _ :
. . . . The boundary is not located at a music beat o to the
is smaller than twice of the dominant period, tretedted 3 best boundar
boundary is claimed to betose to the best boundary. For the 2 Although the boundary is located at a music betfar from
d dat t th is 3.104. ist roondari the best boundai
SeCOITI ataset, the average score IS 5. ) 1. U_n arnes 1 The boundary is not located at a music beat, asdat from
are given scores over three and are located atrbasis. the best boundary.

To verify that the proposed rhythm-based music @ide g pigsyssion
generation is attractive, we compare music videveated by
Algorithm 4 with that generated by randomly selegta video
segment to a music segment. Ten music videos aerated by
two approaches, respectively. The observers wekedato
evaluate whether the selected video segments ésblsufor
the background music, and give a score ranging &oeto five
(a higher score means higher satisfaction). Oveoall music
videos obtain 3.42 on average, while the musicosdgenerated
by random selection obtain 2.46 on average. Thees®
especially high if ROM in the selected video segimsna
multiple of that of the background music.

We describe limitation of our current work in tledléwing:
® In videos with substantial lighting changes, to dest
knowledge there is no robust method to extract onoti
trajectories. Much more advancement should be netk,
this issue cannot be addressed by our current paper
® Noisy trajectories influence performance, and ihathy we
do not achieve perfect ROM extraction (Figure 8nBers
often have violent and non-rigid movements, whickes
significant challenges in trajectory extraction.
® In contrast to music rhythm that has been studidaf
century, currently the extracted ROM is poorer. &ample,
different body parts may synchronize to differentels of
! The music beats produped b_y drum f.orm the domirfaythm of rr_lusi_c. They music rhythm [30]. A dancer may move the main truitk
e e s O 0 MUSIEPCES16 e base puise, but arms of legs move more it
) ) o finer metrical level. In this work we just extrache
The music be_ats produced by _cymbal and snare—ﬂlur_nthe characteristic dominant period from various motion. Extracting fotat
rhythm of music. They are relatively weaker thaa ttominant rhythm. Two

music pieces that have the same dominant rhythm hege different different metrical levels may be achieved if motsemsors
characteristic rhythm, depending on arrangemeniugfic.
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are attached to human body.

While the current work is limited by the aspectsntr@ned
above, we also point out a few extensions:
® The proposed rhythm-based analysis can be exteodedre
applications. For example, as we have developedyatov
transform videos and music into rhythm sequenceshave
designed a metric to evaluate cross-media sinyilasi¢ are
able to retrieve videos by giving a musical quaryetrieve
music by giving a video query. Rhythm-based crosslim
retrieval would be a new way to retrieve media thate
clear periodic or rhythmic content.
® Another plausible extension is surveillance videalgsis.

By analyzing periodic changes of motion from specif

objects or humans, events such as person walkimgfrg or

car entering through a gate can be detected.

Rhythmic patterns can be found in various mediahsas
motion in videos, beats in music, and emphasizestan
speech. For a specific domain, rhythm informatiaye clear
and can be explicitly extracted. However, for mettiat are
disordered, the proposed techniques may make rgeséhe
former perspective shows the feasibility of thepgmeed idea,
while the later perspective gives the limitation.

VILI.

We have presented associating rhythm of motion skigthm
of music to facilitate rhythm-based multimodal as&. We
devise a method to reliably extract rhythm of motiwom
motion trajectories. This approach well capturerfihuman
motion, especially periodic motion changes in daviceos.
Dance videos and music are respectively transforinéal
motion beat and music beat sequences, and aredatgyr
compared and aligned. We demonstrate effects dimmpased
cross-media alignment with the applications of lgacknd
music replacement and music video generation. Hjectve
evaluation shows promising performance of rhythnmetion
extraction. We also show that video with backgroumasic
replacement really provides better viewing expeaxéerwhile
the impacts of different dance styles may be varftbther
subjective evaluation verifies that rhythm inforfoatprovides
useful clues to generate rhythmic musical videos.

CONCLUSION
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