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Abstract

We conduct video scene detection with the aids elf-lvased context, especially for
travel videos captured by amateur photographeijsumeys. Correlations between
personal videos and predefined travel schedulegshwdre used to retrieve related
data from general-purpose image/video search esgane discovered. Because scene
boundaries are clearly defined in travel scheduessegment videos into scenes by
checking the discovered cross-media correlation. make different modalities
comparable, keyframes extracted from videos andyesaetrieved from web are
represented by visual word histograms, and thel@nolof correlation determination
is then transformed as an approximate sequencehm@tproblem. We prioritize
different visual words according to statistics efrieved data, and evaluate similarity
between images based on the weighting scheme. Stersatically determine scene
boundaries after finding cross-media correlationg vintroduce an energy
minimization framework to jointly consider visuéémporal, and context information.
Experimental results verify the effectiveness @& froposed idea, and show that it's
promising to utilize cross-media correlation andvibased context in media analysis.

Keyword: video scene detection; web-based context; appraieisequence matching;
maximum-sum segment; energy minimization

1. Introduction

Going travel has been one of the most importanvides in recent years. People
treasure their travel experience, and get usedptuce what they see or what they
hear in journeys. With the popularity of low-costdahigh-efficiency appliances,

travelers can capture buildings, landmarks, or &svert will, and generate large
amounts of digital multimedia data. Massive datar¢fore, draw urgent demands for
efficient access and management functions.

Among various types of travel media, large voluroigideos captured in journeys
especially burden data access, and therefore d@awmost challenging research issues.
In this article, we focus on segmenting travel eslento semantics-related scenes.
Video shots that were captured in the same scemut &re claimed as in the same



video scene. Although scene change detection hdealywbeen studied in news [15],
sports, movie, and TV programs [13][14], travelaod have much more severe visual
conditions that make conventional scene detectemrtiques fail. For example,
content in the same scenic spot is not always Mssanilar, which violates the
assumption that visually similar shots are group#d the same scene. Moreover,
travelers who don’t specialize in photography mayehlarge hand shake or bad
lighting consideration, which cause motion blubad exposure in captured videos.

Because of the challenges described above, simpyzng visual content in
videos may be insufficient to detect semanticsteelascenes. Fortunately, context
information such as photos captured in the samengguand pre-arranged text-based
travel schedules, which are is tightly relatedhis journey, can provide insights to
facilitate cross-media analysis and managemenfl]inwe proposed this idea and
conduct travel video scene detection by consultimgs-media correlations between
videos and photos captured in the same journeya¥¥amed that travelers take both
digital camcorders and cameras in journeys, arairetely capture travel experience
in videos and photos. Cross-media correlation betvteem is discovered after they
are transformed into the same representation.

The assumption of simultaneous existence of vigemsphotos corresponding to
the same journey is not always true. Nowadays, fiteerweb we may be able to find
any information related to a specific query, whioy be shared by somebody we
don’t know. Based on the ideas in [1] and [2], v@@& cetrieve data that are related to
the visited scenic spots, find cross-media conaabetween web-based context and
our own travel videos, and then segment our owrosdnto semantics-related scenes.
In our previous work [10], we assumed that trawelemly have the captured videos
and a pre-arranged text schedule, which statesdieic spots to be visited and the
temporal order of visiting. The temporal order okises captured in videos is the
same as that in the travel schedule. Name entfigssited scenic spots are extracted
from the schedule, and are used to search relateges from web-based image
search engines. A sequence of keyframes extraaiadthe user’s travel video and a
sequence of images retrieved from the web are thatthed to determine their
correspondence. After some post-processing, aishdéimed to be in the scene of
“Eiffel tower,” for example, if its keyframes comgpond to images retrieved from the
text query “Eiffel tower.” Thanks to somebodies wétware their images relevant to
our visited scenic spots, the developed systemsgaxira leverage from the largest
database (the web) to conduct video scene detdddjn

Although we have verified the idea of utilizing wbhsed context to analyze our
personal data, data retrieved from the web are neigy, and many factors influence
the detection performance. We sum up related iss&sedollows, which were



originally described in the discussion section ][ and propose new techniques to
address them as contributions of the current atticl

1) Visual quality of travel videos. Features extracted from keyframes with bad
visual quality constitute visual word histograms leks reliability, and
therefore performance of sequence matching is dedra

2) Popularity of visited scenic spots. If the visited scenic spots are not popular,
few related photos can be retrieved from the taoyxed results of image
search engines.

3) Retrieval performance of search engines:. Although it's hard to measure
retrieval performance of different search engiresuracy of keyword-based
image/video retrieval directly affect the reliabjli of correlation
determination.

In this work, we propose an adaptive weighting soheto emphasize
discriminative features and thus define a morabddi distance metric. This technique
addresses the issues 1 and 3 above. For issue flyrtver enhance the preprocess
step by a state-of-the-art blur detection modute,trsat more blurred keyframes
extracted from the travel videos can be discardespecially for issue 2, we
investigate how volume of web-based data affeatsfital performance. Moreover,
we further include videos retrieved from Youtubed anvestigate how different types
of web-based context affect the proposed systenthelast but not the least, to make
scene boundary determination process more systenveéi model it as a binary
labeling problem and find the optimal solution bymaph cut algorithm [12]. This
formulation eliminates the heuristic rules defimed10].

The remainder of this paper is organized as folloBesction 2 gives literature
survey on video scene detection. An overview of gh@posed system framework is
described in Section 3. Section 4 provides detaflthe developed components,
including preprocessing, the adaptive weightingesad, the algorithm for finding
correspondence between media, and the algorithrde@mrmining scene boundaries.
We provide evaluation results in Section 5, followsy the concluding remarks in
Section 6.

2. Related Works
To make literature survey focused, we start sungyrom home video, which is a
superset of travel video. The difference betweenegd home videos and travel
videos is described in the end of Section 2.1.i8&e@&.2 provides surveys on video
scene detection.

2.1. Home Video Analysis



Because there is no benchmark and evaluation nfetrfiome video analysis, studies
in this field are diverse and rise from differerdrgpectives. Although there is no
conventional rules in capturing home videos, Gatleeez et al. [16] cluster video
shots based on visual similarity, duration and terapadjacency, and accordingly
find hierarchical structure of videos. On the badimotion information, Pan and Ngo
[17] decompose videos into snippets, which are theed to index home videos. For
the purpose of automatic editing, temporal striectand music information are
extracted, and subsets of video shots are seldotegknerate highlights [18] or
MTV-style summaries [19]. Recently, Peng et al.][28ke media aesthetics and
editing theory into account, and develop a new hmug@anputer interface to facilitate
home video skimming. In [21], a system called Hypédchcock is developed to
semi-automatically edit videos and equip hyperlmkperties. From the perspective
of intention analysis, [22] and [23] model useremtion for video repurposing and
browsing.

While there is rich literature considering motiarmdavisual characteristics in home
videos, fewer studies have been proposed to handfeecific sub-category of home
videos, and elaborately exploit related domain Kedge. The work by Cheng et al.
[24] provides an example on this direction, in whibey take knowledge of wedding
customs and develop segmentation and event recmgmiodules. While wedding
videos convey one of the treasured moments in igas,| amounts of such data are
largely less than that captured in journeys. Altfloa few studies were proposed on
travel videos, most of them, unfortunately, leaué unique and useful characteristics
in such media.

Different from other home videos, travel videos éapecial characteristics that
may be conducive or cumbersome to practical teclendpvelopment: 1) According
to a pre-arranged travel schedule, travelers vsienic spots and capture
photos/videos sequentially. 2) Content captureth@tsame scenic spot would have
significantly different appearances, which destrogaventional methods for image
clustering or video scene detection. 3) Scenic sspoé visited sequentially, and
various media are taken alternately or simultanigousthe same temporal order.
Different media may thus be correlated. With thewabcharacteristics, we design a
system that specially analyzes travel videos.

2.2. Video Scene Detection

For video scene detection, Yeung and Yeo [14] pepclassical work called scene
transition graph to describe relationships betweeleo shots, and achieve scene
detection by analyzing links in the graph. For nesyiHanjalic et al. [25] investigate

context between video shots based on keyframe&geptred by DC images, and



determine boundaries of logical story units suchdadogue and action scenes.
Sundaram and Chang [26] take film-making rules pagchology of audition into
account to build a computational scene model, whidimics characteristics of
human’s short-term and long-term memory. Rasheedl @hah [13] develop a
two-pass algorithm based on motion, shot lengthld aealor properties, to find
semantics-related scenes in movies and TV showse kxently, Chasanis et al. [6]
estimate appropriate number of keyframes for eadhovshot based on a spectral
clustering approach, and then determine scene bosdby sequence alignment
techniques. Due to significance of video sceneatiete, integrated framework such
as [28] and systematic evaluation method such @sh&ve been proposed for years.
In addition, the TRECVID benchmark [29] also issti@s “story segmentation” task,
while it focuses only on news and TV programs.

2.3. With the L everage of Other Context

Its a consensus that simultaneously analyzing &mng multiple modalities
achieves more promising performance. However, femias have been conducted to
investigate relationships between media that asms®ly irrelevant at first, but
actually are subtly related after careful considena Takeuchi and Sugimoto [31]
propose an interesting home video summarizatiotesyshat infers user’s preference
from his auxiliary photo collections, rather thaorh the video itself. Users may be
interested in capturing the same things in the satyée, which inspires the
user-adaptive cross-media summarization systemgwaal. [2] search semantically
and visually similar images from the web and mineatations from them to annotate
our own images. This work further inspires us @wthe web as the richest database.
More recently, Vallet et al. [32] exploit exterrma&sources to facilitate identification
of query semantics, and thus improve video rettipeaformance. Wang et al. [33]
utilize diverse set of data with different propestito boost video classification
accuracy. Classifiers trained from different datarses are elaborately fused to
categorize wild web videos. In our work, thanksthie subtle correlations between
web-based context and our personal data, a systedeveloped to automatically
analyze our personal data. The major differencevdset our work and [2] is that their
image database is actually well defined, but we ld/@uffer from many noises
retrieved from the web.

3. System Framework

Assume that we have a video captured in a jourmey @ text-based schedule
corresponding to this journey. According to naméties stored in the schedule, we
search related images or videos from the web, winakt be shared by someone else



who visited the scenic spots as in our travel vidé€&orrelations between the retrieved
data and our travel videos are then discovereckterohine scene boundaries in our
travel video. Determining correlation between d#f@ modalities is formulated as a
sequence matching problem, while one sequencearsformed from web-based
context and another sequence is transformed framwn travel video.

Figure 1 shows the proposed system framework. Fervideo, we first detect
video shots and extract appropriate number of keyés for each video shot by the
global k-means algorithm [3]. Keyframes with degrdd/isual quality due to motion
blur or over/under exposure are filtered out byualily assessment module. Feature
points such as scale-invariant feature transfort®T5[4] are extracted from each
keyframe, and then quantized into visual words tfb]capture concepts in visual
appearance. Statistics of visual words are colieete a visual word histogram to
represent each keyframe. Finally, the video issfi@med into a sequence of visual
word histograms, with the temporal order same siing.

For the travel schedule, name entities of visitedn& spots in the text-based
schedule are first extracted. Related images adeélogi shared on the web are then
retrieved by a query-by-keyword scheme from imagggch engines, such as Yahoo!,
Google, and Flickr, and from video search engirsessh as Youtube and viemo.
Images or keyframes extracted from retrieved vidaes temporally sorted in the
order of visiting, and are respectively transformetb a sequence of visual word
histograms, with the same procedure as that feekradeo keyframes.

With the processes described above, we are abbietermine correspondence
between media with the same representation. Natethiere are many noises in our
travel videos, and a portion of retrieved dataastruly related to visited scenic spots.
Therefore, we propose a distance metric with anptada weighting scheme to
evaluate similarity between our own data and th@anfthe web. The maximum-sum
segment algorithm [8] is then applied to condugirapimate sequence matching for
two sequences. With the discovered correspondéegérames that are matched with
data retrieved by the same name entity are clabméélong to the same video scene.
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Figure 1. The proposed system framework.

4. Video Scene Detection

4.1 Video Preprocessing

We first find shot boundaries based on color histogdifference between adjacent
frames. Each video frame is described by a norm@liE@SV color histogram, in
which 8 bins are for hue, and 4 bins are for séturaand value, respectively. To
efficiently represent each video shot, we adoptapproach proposed in [6], which
automatically determines the most appropriate nunabekeyframes based on the
global k-means algorithm [3]. Global k-means is &cremental deterministic
clustering algorithm that iteratively performs k-ans clustering while increasing k
by one at each step. The clustering process preag#d clustering results converge.
By this algorithm, we overcome the initializationoplem of conventional k-means
algorithm, and adaptively determine appropriate Ineimof clusters for each shot.
Frames in a video shot are clustered into groups tlae frame closest to the centroid
of each group is selected as a keyframe.

After extracting keyframes, we would like to filteut keyframes with severe blur
or keyframes with insipid content, which may damaige matching process later.
Figures 2(a) and 2(b) show blurred keyframes, irciwhigh frequency information is
lost often due to handshaking. In this work, wepdoPBD (cumulative probability
of blur detection) [7] to estimate extent of bl&ach keyframe is first divided into



64 x 64 blocks, and edge information is extracted fromhehtock. For an edge
block, the probability of blur detection is modekesl
w(e; B
wJN(B (li) >' @)
where w(e;) is the width of the edge; in this block, andw;yg(e;) is the “just
noticeable blur’ (JNB) edge width that depends asal contrast and is measured by
psychological experiments. This metric evaluatesdimulative probability of image
blocks that have blur extent lower than “just neable blur”:
CPBD = P(Py,, < Pyyg) = S Rer=livs ppy). (2)

— Ppyr=0

Pblur =1 —exp(—‘

If many blocks in the keyframe are blurred, manyh&m have blur extent larger
than JNB, and thus the correspond@®BD value is smaller. For example, t6€BD
values are smaller for Figures 2(a) and 2(b). Withcamera and object motion,
Figure 2(d) has the largeSPBD value. Although there is no camera motion in Fegur
2(c), parts of blocks with object motion are detelcas blur, and thus ti@&PBD value
is in-between. In this work, we filter out keyfrasnith CPBD values lower than 0.2.
Details of parameter settings please refer to [7].

(c) CPBD = 0.53 (d)CPBD = 0.73

Figure 2. Examples of blur detection for keyframes.

After filtering out blurred keyframes, we have &present data by features that
resist to significant visual variations caused lagl Iphotography skills and different
settings of various capture devices. In this wavk, characterize images by bag of
visual words, in which “images” generally denoteg/fkemes extracted from our own
data or photos retrieved from the web. We applydifierence-of-Gaussian (DoG)
detector to detect feature points in keyframes a@hdtos, and use the SIFT
(Scale-Invariant Feature Transform) descriptor ésctibe each feature point as a
128-dimensional vector [4]. SIFT-based feature aectare then clustered by a



k-means algorithm, and feature points quantized tihé same cluster are claimed to
belong to the same visual word. For a keyframeh &8¢ T-based feature point is
categorized as a visual word, and the distribubbwisual words in a keyframe is

described as a normalized visual word histogram.fédly transform the sequence

of keyframes into a sequence of normalized visuabvhistograms.

In addition to filter out blurred keyframe, we wddlke to discard the ones that are
“meaningless.” Figures 3(a) and 3(b) shows two nmegess keyframes. Figure 3(a)
was captured because the photographer wanted dahelcamera tightly in walking,
and his hand accidentally occluded the lens. Reahall we focus on travel videos
captured by amateur photographers, and such plapiogrerrors are not rare. Figure
3(b) shows another extremely bad case in whichvib& was aslant occupied by
someone else’s clothing. The bottom row of FigushBws the corresponding visual
word histogram of the images in the top row. Beedasge portion of feature points
in Figures 3(a) and 3(b) present the same conteshtase quantized into the same
visual words, only some specific bins of the hisamg have large values. To detect
keyframes largely occupied by nonsense content,ewauate each keyframe’s
entropy based on its corresponding visual wordgistm:

Hy == pylogp;, 3)
where p; denotes value of thijth bin of the visual word histogram, arN is the
number of visual words used to represent imagegir&mes that have entropy values
lower than a threshold are discarded. To sum ug, dtection and insipid image
detection not only reduces consumption time of rd@t@ng cross-media correlations

in the following sections, but also eliminates urgfhce of bad-quality images.
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Figure 3. Examples of insipid keyframe detectiomp Trow: original keyframes;
bottom row: the corresponding visual word histoggam

4.2 Query Web-based Context by Keyword
It's reasonable to assume that travelers have defined travel schedule before



traveling. The schedule describes where to visit e order of visiting. Travelers
sequentially visit and capture videos, and thusténgporal order of video content is
the same as the visited scenic spots. The trawoviis therefore temporally
correlated to the text-based travel schedule. Becaoundaries between scenic spots
in the travel schedule are well defined, we wouite ko exploit the information to
facilitate video scene detection. To find correspente between these modalities, we
have to transform the text-based schedule intpresentation same as the video.

Information shared on the web serves as the lamggstbase in the world and
provides clues for transforming text-based schedum¢o visual appearance. We
imagine that somebodies visited the same places,aand they captured and shared
data on the web. If we are able to retrieve theda dnd find correlations between
theirs and ours, we may segment our travel vidatstive help from somebodies we
don’'t know. To implement this idea, we first extramme entities of scenic spots
defined in the schedule, which are then used asvdels to query related
images/videos on the web. Two types of web-bassulrees are investigated: images
retrieved by general-purpose image search enginels as Yahoo!, Google, and
Flickr, and videos retrieved by the largest vidaarsg platform, i.e. Youtube. Note
that image search in Yahoo! and Google is diffefesrn that in Flickr. The former
indexes images by surrounding text, while Flickileres images by tags especially
provided by users. We include varied web-based esxtbstto investigate how
resources presented in different modalities andeketd from different platforms
affect the proposed idea.

Assume that there ar®& scenic spots to be visited, and the name entities
corresponding to these scenic spots @res...kv ), which are temporally sorted, i.e.
ki was visited beforée:; if 1 < j. Each entity is used as a keyword to search cklate
data from the web. Although name entity extractias been studied for years,
detailed name entity extraction techniques are heéyhe scope of this paper. In this
work, we assume that text-based schedules arede&hed, and names of scenic
spots are extracted manually, without losing ngveltithe proposed ideas.

For the images searched from Yahoo!, Google, amckri-land keyframes of
videos searched from Youtube (by the same methadribed in Section 4.1), we
describe them as normalized visual word histograsell. We again transform the
sequence of retrieved data into a sequence of tiaedavisual word histograms.
Let’s denote the sequence &s= (z1x;...x,,), in which ; denotes the visual word
histogram of the:th retrieved photo/keyframe. For each keyword, e&ieve the
top-rankedq photos from an image search engine, or extgakeyframes from the
top-ranked videos from Youtube, i.em =V xq¢ . Two subsequences
Sk, = (@129...2¢,) and Sy, = (Ty41X442..-2,) correspond to two scenic spots, and



the images inS;, represent the scenic spot visited befShg. In the case thaby,
represents photos retrieved from search engintesuglh there is an implicit temporal
order betweenS;, and Sj, (corresponding to scenic spots and k- in the travel
schedule), there is no such relation between imegde same subsequence, e.g. no
special temporal order exists between and x, in Si,. In the case thaty,
represents keyframes extracted from retrieved wdgw temporal order frorn®; to

x, IS not necessarily the same as the visiting ordeour own travel videos.
Therefore, the web-context sequende= (x1x;...z,) is just “semi-temporally
ordered.”

4.3 Distance Metric
We now have two visual word histogram sequencds= (z12s...z,) and
Y = (y,y,...y,), which respectively corresponds to web-based gbntnd
keyframes extracted from our travel video. Befaserespondence determination, we
need to define a distance metric for measuringiagfamages; and y;. In our
previous work [10], histogram intersection is usedalculate similarity between two
images, i.e.

S(i,5) = Lo, min(hq[k], hy[k]), 4)
where h;[k] denotes value of théth bin of the visual word histogram af;, and N
is the number of visual words to represent an imétgevever, this method equally
treats visual words in similarity measurement. Friiva perspective of document
analysis, we know that some words play more impértales in presenting main
concepts of a document. By analogizing an image @gscument constituted by visual
words, we argue that different visual words shdwgdappropriately weighted so that
similarity between images can be well described.

Conceptually, images retrieved based on the samedtd should present content
directly related to the scenic spot, if the imagesideo search engines have perfect
retrieval performance. However, none of the curreearch engines has perfect
performance, and the amount of related data owéiedepends on popularity of this
scenic spot. The retrieved data, therefore, oftemsist of noise. Figure 4 shows
search results from Google, based on the keywosdLih train station”. Only the
images with bold borders are directly related te stenic spot.

The set of images retrieved from search enginastiperfect. However, it doesn’t
mean that the retrieved set is not trustworthy latRaevious research found that,
though there are noises in the retrieved resulbst of the top 10~20 images returned
by Google are relevant to queries, when querieganeral terms likbuilding, tiger,
andsea [27]. Statistics from the top retrieved results #mes meaningful. Based on
the trust that these famous search engines woulthpir best efforts on accuracy of



top-ranked retrieved results, we investigate chiarestics of the top retrieved results
and devise a weighting scheme. In contrast to [@]ch removes irrelevant images
with the helps from contemporary text-based seawyines, we try to prioritize
different visual words and develop a better distaneetric to reduce the influence
brought by noisy data.
The degree of discrimination of a visual word degsean two factors:
® For the images that contain a specific visual waénds visual word is more
important for them if its average occurrence fremuyeas higher.
® A visual word is more discriminative if it occasally presents in some
images’ visual word histograms. The visual word nieey absent in noisy
images, and appears in truly related images. Orother hand, if a visual
word appears in all retrieved images, it providessl| information for
distinguishing truth data from noisy data.
By combining two factors described above, we deteenthe weight of thetth
visual word from the retrieved data corresponding scenic spot by

Z?—l h‘j [k] ‘Zk|
s L _)
= ><( 71) (5)
where Z,. denotes the set of images that contain &tte visual word,|Z;| denotes

the number of such images, andis the number of images retrieved for a specific
scenic spot. The parameteris set as a small value to avoid zero denomindioe.
first term in eqn. (5) denotes the average courthefith visual word inZ;. More
frequently thekth visual word appears i@, larger this term is. The second term
denotes degree of discrimination of this visual dvdf all retrieved images contain
the kth visual word,|Z;| = q. This means that if a visual word appears in more
retrieved images, it is less useful to discrimirditeerent images. Note that the design
of egn. (5) follows the idea of term frequency nmphtng inverse document
frequency, which is widely used to detect importaatds in text documents.

Because characteristics of data retrieved by diffekeywords may be different,
weights of visual words for different scenic spate calculated adaptively. Finally,
the similarity between the retrieved image and the keyframey; extracted from
our travel video is calculated as

Ny y,;) = S we x min(hy[k], by [k]). (6)
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4.4 Maximum-Sum Segment
Finding correlations between our travel videos mmalges retrieved from the web has
been transformed into a sequence matching probl@emerally, the dynamic
programming strategy can be used to conduct appaiei sequence matching, such
as finding the longest common subsequence (LCS) Hdwever, images retrieved
by keywords are just “semi-temporally ordered.”h8ltigh images related to different
keywords are temporally sorted, that related tostme keyword don’t necessarily
follow the same rule. This characteristic destringssequential property necessary for
the LCS algorithm. In addition, there may be mamnglévant images in the retrieved
data, which makes correlation determination moedlehging (see Figure 4).

Let's consider two visual word histogram sequenc&s= (zix;...z,,) and
Y = (y,y,...y,), which respectively corresponds to the retrievethges and
keyframes. The sequencE is semi-temporally ordered, i.€X = (Sk,Sk,---Sky-),
where Sy, = (x,;x,11...) consists of images retrieved from the keywardWith this
characteristic, we formulate the correlation deteation process as a variation of the
maximum-sum segment problem [8]. To find the optim@respondence between
keyframes and a specific image sék, , we have to find a segment
Y (pi. i) = (yYp,--Y,,) from Y such that the segment(p;, ¢;) of the longest length
contains similar content as that i, wherep, =1,....n—1, ¢ =2,...,n, and
p: < ¢. In addition, the segment (p;,q;) corresponding toS;, should be ranked
before the segment (p;, ¢;) corresponding toSy, if i < j.

The conventional maximum-sum segment problem isrgiby a nonempty
sequence of real numbers, and the goal is to iaccbntiguous subsequence that has



the largest total sum. To find the segmeénip;,q;) corresponding to the scene
S, = (xx121...), we first transform the sequencé = (y,y,..-y,,) into a real
number sequenc& = (212;...z,) as follows. Based on the weighted visual word
histogram intersection (eqn. (6)) betwegn and ., denoted by!(y;, z.), we first
calculate the similarity; betweeny, and x, in Sy,
z; = 1(y;, ®,-) and o = argmax, I(y;, x,), (7)
where, a =1, 1+ 1,....,1+|Si,| —1. The value|S,| denotes the number of
retrieved images for this scene. To obtain a semperi real numbers, in which
positive numbers denote similarity between a key&aand an image is higher than
the average level, and negative numbers denotéasityibetween them is under the
average level, we remove mean of the similarityusege, i.e.
G =2 50,5 (8)
Recall that scenic spots were visited sequenteatig the content in travel video
should present the visited places in the same olttkenot likely that the keyframes at
the beginning of the travel video (e.gi;, ¥,, and y¥;) match with the images
retrieved by the keyword representing the lastetsscenic spot (e.ge,,, -1, and
z.,-2). By considering the temporal characteristic, wen'td search for the
maximum-sum segment from the whole sequence, Bte¢ad search from an interval
in which image matches reasonably exist.
Corresponding to the scerfé.,, we would like to find an intervdp;. ¢ in Z,
L, <p; < ¢ <U, such thatZ(p;, ¢;) = (zp,...24) is the maximum-sum segment of
Z(Li,Uy), ie. Yo%z, is maximal in all cases i (L;, U;). The valuesL; and U;
respectively denotes the lower and upper boundsdarching the maximum-sum
segment, and as a consequence they are used timagornkat the maximum-sum
segment corresponding t6;, should appear before that correspondingSto if
1 < j. To this end, we set the search interval as:
=2) and U; = min(n,n x £2), 9)
The valueV is the number of visited scenic spots. Note thatgearch intervals
for successive scenic spots are overlapped. Betegders may not equally capture
content of the same length for different scenictspthe search interval for each
scenic spot is designed to be three times larger tie proportion it corresponds to.
Given the search interval(L;,U;) = (zr,,20,41: - 2u,), the maximum-sum
segment is determined by the algorithm shown iruféigs. Let([j] denote the
cumulative sum ofZ(L;, U;), defined byC[j] =3, ..o, % for L; <a <U; and
7 < U,. In the cumulation process, if the cumulative signpositive atj — 1 but
negative atj, we find a candidate segment frofnto ;. For this candidate segment,

we store the largest cumulative sum.r k|, and store the left bounda§[k] and

L; = max(0,n x




the right boundaryl{[k| of a subsegment that causdéd[k|. After finding all
candidate segments, we take the subsegment trsgscthe overall maximum sum.

In each iteration in the loop, there is one additior accumulation, ang
comparisons are needed to simultaneously find idex that causes the maximum
sum and the value of maximum sum. Suppose theHeofytZ(L;,U;) is N, the
value of ;7 is at most N, and the total complexity of the loop is
O(N x (14 7)) ~ O(N?) in the worst case. Finding the subsegment thatesathe
overall maximum sum take®(XK) if K candidates are found. Note that< N.
Overall, if V' scenic spots were visited, finding all maximum-ssegments for the
whole video takeD(V x (N% + K)) =~ O(VN?), whereV is much smaller than
N. In this paper we just introduce the idea of udimg algorithm to find optimal
correspondence, without considering elaborate statecture or other special design
to reduce computational complexity. Elegant aldponitdesign for related issues
please refer to [8].

Input: A sequence of real numbe& L;,U;) = (zp,21,+1---2u,)
Output: Indices of the maximum-sum segmémt ¢;) in Z(L;,U;)
=1L
C(L; —1) =0;
for j — L; to U; do

C(j) < z; + max(C(j — 1),0); //Cumulate real numbers

if C(j) <0 then

U[k] < argmaxy<,<; C'(a); //Find the idx that causes the maximum sum

LIk < ¢
M{E]  max;<,<; C(a);  //Store the maximum sum
C(j) <0 /IReset the cumulation process
Ce—g+1
k—Fk+1
end if
end for
k* = arg max;, M{[k];
pi = LK,
g = U[K"];

Figure 5. The maximum-sum segment algorithm.

4.5 Video Scene Boundary Deter mination
After determining correspondence, keyframes insiétlected maximum-sum segment
are assigned a scene label according to the comdsp images. For example, if we
find that keyframesy,, , ¥, 11 ---» ¥, correspond to data retrieved based on the name
entity of S, these keyframes are assigned as in:ithescenic spot.

Note that lengths of maximum-sum segments correipgnto different scenic
spots may be varied. Moreover, because the seatehvals for successive scenic



spots are overlapped (see eqn. (9)) and noisy isnageved by different keywords
may be similar, the maximum-sum segments correspgrtd different scenic spots
may be overlapped. To handle this problem, we ésglbe@xamine maximum-sum
segments for any two successive scenic spots.d-@ulustrates four possible cases.

® The case in Figure 6(a)

Figure 6(a) shows the simplest case, in which twvaximum-sum segments for
successive scenic spots are not overlapped. Keg&ayp, ..., y,, are assigned as in
the ith scenic spot, and keyframes, . ,....y,,,, are assigned as in thé+ 1)-th
scenic spot. For those keyframes in-betwgerand p;.1, we have to determine each
keyframe in either theth scene or théi + 1)th scene. In our previous work [10], we
simply determine by linear interpolation based loa tatio of numbers of keyframes
in the ith maximum-sum segment to that in tfet+ 1)th maximum-sum segment,
which is a blind process without consideration asuel similarity and locality
characteristics.

We can view this as a binary label problem and esatvby an optimization
formulation [36][37]. Gu et al. [36] jointly consd local temporal continuity and
global distribution of time and content to condacene detection. Wang et al. [37]
consider both content coherence and temporallyezotity formulating this task as a
chain segmentation problem. In this work we devedp energy minimization
formulation similar to [36], but further considdret influence of web-based context.
This method eliminates the limitation that parameetmodels have limited
performance to describe various complex scenes [37]

Now the goal is to find a labeling that assignshdeeyframey,., ¢ <k <p,1;, a
label fi, where the labeling is considered to be consistéthtthe observed data and
should conform to smoothness of neighborhood. Tdrendl energy minimization
problem is considered as

E(f) = 2(17,</c<;,g7;+l Dk(fk) + z{k,kJrl} Vk7k+l(fka f/c+l), (10)
where Dy (fx) denotes the cost of assigning the label fr, fr ={0,1}. The
label f. =0 means thaty, is labeled as in théth scene, and’, =1 means that

y,. is labeled as in thé + 1)th scene. The valu®i(fx) is calleddata cost, which
will be defined later. The sefk,k+ 1} denotes pairs of keyframes that are
temporally adjacent to each other, eyg. and y,,,. The valueVgxi1(fx. fri1)
denotes the penalty of assigning adjacent keyfragmesind ¥, the labelsf; and
fx+1, respectively, and is calledmoothness cost. Although finding the optimal
solution of this formulation is NP-hard, fast apgmate algorithms have been
developed [12].

The idea of defining the data cost is that if afi@ye vy, is more similar to the



ones in theith scene, the data codDi(fx =0) is smaller, and contrarily
Dy(fx =1) is larger. Two sets of data are considered tondefhe data cost of
labeling y,: intra-domain cost and inter-domain cost. The anttomain cost is
derived from the distance between and other keyframes that have been assigned,
€. Yy, -y Yg, ANA Y, ., ..., Y, . The inter-domain cost is derived from the
distance betweery, and images respectively retrieved by the keywoegsesenting

the 7th scene and thé& + 1)th scene. The retrieved images are respectivelgtddn

by x;i, ..., z;», and ;1 11, ..., Tit1.;, asSuming that; images are retrieved for
both scenes. By considering intra- and inter-donfastors, the overall data cost
D" (f, = 0) for Figure 6(a) is defined as

D (fi = 0) = aDj(fi = 0) + (1 — @) D(fi = 0). (11)
The intra-domain cosD(f, = 0) is
Di(fi=0)=1- WILH Zpigqui I(y;. yu), (12)

where I(y;,y,) is the weighted histogram intersection definecegm. (6). The
data cost of assigning,. as in theith scene is inversely proportional to the average
similarity between it and the keyframes ith scene. The intra-domain cost
Di(fx = 1) of assigningy,. as in the(i + 1)th scene is defined similarly.
The inter-domain cosD; (fr = 0) is defined as
Di(fy=0)=1- Tll Z1§jgni Iz yp). (13)
The parametery controls the relative importance for intra- anttirdomain costs.
Because the keyframg, is captured by the same setting as other keyframes
impose higher confidence on intra-domain cost,tand seto: = 0.7 in this work.
For smoothness cost, more simitgy and y, ., are, higher penalty is imposed if
they are assigned different labels. Therefore,fdusor is defined as
Ve (e frin) = Bk = foe)* T (Wi, Y, (14)
where 3 is a parameter controlling the weight of weighhéstogram intersection
between two adjacent keyframes, and is set asii® {iis work.
In travel videos, a temporal characteristic cano als considered in the
optimization process. The keyframe that is closehé :th scene tends to be assigned
to the ¢th scene. Therefore, this factor, calteshporal cost, is considered by

T(fp = 0) = £9tL and T (f, = 1) = B il (15)

o qitl T
Finally, in our work the energy term that shouldn@imized is modified as
E(a)(f) - ZQi<k<Pi+1 Dl(ca) (fk) + Zq7-</g<p,i+1 T}E(l) (fk) + Z{k’k+1} ‘/k’,,k,—&-l(f/m fk-i—l)

(16)
The computational complexity of calculating thedeeé costs is analyzed as



follows. If the number of images in the search oagfp; to ¢;, or piy1 t0 ¢iy1) IS
Ny, and the number of bins in visual word histogramsV,, the complexity for
calculating the intra-domain cost 8(2 x Ny x (2N;)), where 2N, accounts for the
comparison and weighting multiplication in egn. . (&) the number of retrieved
images is N3, the complexity for calculating the inter-domastis O(N; x (2Ny)).
For the smoothness cost, if the number of undetmthiimages isK, the
corresponding complexity i€) (K x (2N,)). For the temporal cost, the corresponding
complexity is simplyO(2K). Overall, the computational complexity of calcingt
energy for an undetermined keyframe is dominatedhleynumber of visual words
(Vo).

® Other cases
If two maximum-sum segments are overlapped as guarEi 6(b), the keyframes
from y,, . to y, are reexamined, and the energy term is defined as

E<b)(f) - Zpi+1§k§qi Dl(cb)(f}\) + Zpiﬂﬁki% TlEb)(fk) + Z{k,k+1} ‘/k,k—l—l(fk: fk—&—l) )

17)
where the boundary conditions of data cost and d¢eatpcost should be

appropriately modified as follows. The overall datest D,(Cb)(fk = () for Figure 6(b)
is defined as

DY (fr = 0) = aDji(fi = 0) + (1 — @) Di(fi = 0), (18)
where

D’,“(fk - O) =1- Pi+1*11)7;+1 ZmSJ’SpiH ](yj’ yk)’ (19)

Di(fe=0)=1- Tll Zlgjgni (@i 5, y,). (20)

The overall data cosD,iw(fk = 1) for assigningy, as in the(i + 1)th scene is
defined similarly.

The temporal cost for Figure 6(b) is defined as

T;Eb)(fk =0) = kpiitl o4 T;Eb)(fk =1) = gkt 1)

i —DPi+1+1 qi—Dpi+1+1"

In the cases of Figure 6(c) and Figure 6(d), theptaral cost and smoothness cost
are not well defined, and only the inter-domainadadst can be used. For Figure 6(c),
the keyframes to be reexamined are frgm,  to y,, and the energy term to be
minimized is

EOf) = X0, <vza Di(fi). (22)

For Figure 6(d), the keyframes to be reexaminedfram®@ y, to y, ., and the

energy term to be minimized is

E(d)(f) - Zp,‘Sk,S(IH,l D/i(fk) (23)



These two troublesome cases are caused by sigriBoaounts of noisy images in
the retrieved data or user’s travel videos.
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Figure 6. lllustrations of different situations mesults of maximum-sum segment
determination.

5. Evaluation

5.1. Evaluation Dataset and Performance Metric

The evaluation dataset includes seven videos aaptun different amateur
photographers’ journeys, and seven text-basedltsaedules. Length of each video
ranges from five to sixteen minutes, and each videmcoded as in MPEG-1 format
with resolution 480 x 272. Figure 7 shows some snapshots of scenes in edeb. v
Table 1 shows information of scenes, keyframes, landth of each travel video.
There are totally 30 different visited scenic spotthe evaluation dataset.

According to travel schedules, we respectivelyieed 40 top-ranked photos from
Google, Yahoo!, and Flickr image search enginesefieh scenic spot. Data from
three sources are experimented separately to igaesthow the proposed method
works on photos retrieved by different search sgéesaBecause resolutions of the
retrieved photos are varied, we normalize them 0 x 300 for efficiency of
feature extraction and visual word construction.
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Figure 7. Some snapshots of the evaluated videos.
Table 1. Information of the evaluation dataset.

# visited scenes length # keyframes
Video 1 6 12:58 227
Video 2 4 15:07 153
Video 3 5 08:29 98
Video 4 4 11:03 176
Video 5 3 16:29 136
Video 6 2 05:34 67
Video 7 6 15:18 227

To evaluate performance of scene detection, weidensverlaps between detected
video scenes and ground truths, in terms of pyfA}y Given the ground truth of
scenes S = {(s1,At1),...,(sng, Atn,)} and the results of scene detection
S* ={(sf,At]), ... (sn,, Ath,) }, a purity valuep is defined as

2 * * 2 *
_ Ng 7(5:) <o T (Siasj) No T(Sj) Ng T (Siﬂsj)
p= (Zz’—l T Zj:l 7—2<5i) X Zj:l T Zz’:l 7_2(5;) ’ (24)
where 7(s;,57) is the length of overlap between and s}, 7(s;) is the length of
the scenes;, and 7’ is the total length of all scenes. In this equatithe first term
indicates the fraction of the current evaluatechecend the second term indicates
how much a given scene is split into smaller scefles purity value ranges from 0 to



1, and a larger purity value means a better rebuthis work, length of a scene, for
example 7(s;), is represented by the number of shots in thisesce

5.2. Perfor mance Comparison

5.2.1 Performance with Weighting Scheme

We first evaluate whether the proposed weightirfges®e better examines similarity
between noisy data sets. In Table 2, the numbeteirows with “W-" denote the
purity values of scene detection with the weightdidtance metric. The best
performance for each dataset is emphasized with flack. We see that except for the
first dataset, the best performance can be obtdigeding the weighting scheme. It's
not surprising that varied performance can be aehidor different datasets due to
significant content variations and characteristitsisited scenic spots. The last row
shows the improvement from the non-weighting schémnine weighting scheme in
the best case. We see significant improvement &asgts 2, 3, 4, 5, and 7, and
averagely we obtain 20% improvement for the whel@eation data. The weighting
scheme fails for the first dataset. Because pavisied scenes is only known by the
natives and is not popular, it's hard to accuratetyieve related images from search
engines and derive appropriate weightings for ckffie visual words.

An interesting observation is that we mostly obt#e best scene detection
performance by consulting images retrieved from @gk®or Yahoo, which may
inspire us a way to evaluate a general-purposeamsagrch engine. On the other hand,
from the Flickr-retrieved images we obtain the wagrsrformance. This may due to
that we only retrieve related images based oneagch rather than full text. Because
of human subjectivity or noisy data, images witk #ame tag may not be visually
coherent [34], which makes visual analysis futile.

Table 2. Performance of scene detection with wemjivs. nonweighted visual word
histogram intersection.

datal | data2 | data3 | datad4 | data5 | data6 | data7 | Avg.

Google| 0.77 0.56/ 0.49| 0.73 0.49| 0.86 041, 0.62

W-Google 0.6 0.98 06| 053] 0.62| 086 0.47| 067

Yahoo| 0.57| 051/ 0.54| 0.56| 0.67| 058 057 057

W-Yahoo 05| 0.94| 0.68 06| 0.78 051 071 0.67

Flickr 043 049, 0.36| 0.55 06| 0.58| 055 051

W-Flickr 0.48| 0.56, 0.43| 0.73 0.49| 0.58 0.5 0.54

improvement -0.28| 0.75| 0.26| 0.33] 0.16 0 0.25 0.21




5.2.2 Performance with Blur Detection

By adopting the method in [7], we examine blur extef keyframes extracted from
our videos and images retrieved from three seangimes, and thus filter out blurred
images. Table 3 shows that with blurred image riilgg performances of scene
detection in different settings improve from 2%b86. With the results in Table 2 and
Table 3, all experiments in the following contexé a&onducted with the proposed
weighting scheme and appropriate blur filtering.

Table 3. Performance of scene detection with anllont blur detection.

Google Yahoo Flickr
w/o blur detection 0.67 0.67 0.54
w. blur detection | 0.70 0.70 0.59

5.2.3 Performance of Different Boundary DetermimatMethods

Boundaries between scenes in the previous two stibse are determined by the
energy minimization framework described in Sectdbh. Here we provide detailed
performance comparison to verify superiority of tiewly-proposed method. Three
methods are compared: the naive method, the mathid®], and the method newly
proposed in this article. In the naive method, sgpphak scenic spots were visited,
we sort keyframes according to their temporal oated equally divided them into
groups. Keyframes in the same group are assignéd tag same video scene. Note
that in any of the three methods, keyframes exthdtom the same shot may be
assigned to different scenes. To eliminate thigaswnable assignment, we determine
the scene label of keyframes extracted from theesatrot by majority voting.
Therefore, keyframes in the same shot has the sapree label, which implies that
each shot has a corresponding scene label. Therdfor final results of boundary
determination are shots with associated scene slala#ld the purity values are
calculated at shot level.

Figure 8 shows average purity values for three outhThe naive approach has
the worst performance because no visual correlasoconsidered. Actually, its
performance depends on user's capturing habitshdf traveler equally captures
content in every scenic spot, the naive approaghadiaieve satisfactory performance.
The newly-proposed method has significant improvenwer our previous work
[10]. Over 0.1 purity improvement can be obtainkdé discover correlation based
on data retrieved by Google or Yahoo, while abou50purity improvement is
obtained for the Flickr case. We believe that sk surpasses the previous one [10]
from the following perspectives:



® Keyframes of ill visual quality are filtered out lay advanced method [7] to
avoid their bad influence on sequence matching:t{&@e4.1)

® Keyframes of nonsense content are filtered outdnsitlering visual content
entropy to avoid their bad influence on sequencteinag. (Section 4.1)

® Visual words are prioritized by an adaptive weighgtscheme so that this new
distance metric more appropriately captures siiylabetween images.
(Section 4.3)

® Scene boundaries are refined by an energy minimizanethod, which
jointly considers content coherence, temporal owity, and web-based
context. (Section 4.5)

Method in [10]
O New method

Naive Google Yahoo Flickr

Figure 8. Average purity values of three metholds:rtaive method, the method in
[10], and the newly-proposed method.

5.2.4 Performance with Web-based Video Context
We have verified that web-based context providegplion but useful clues for
segmenting our own videos. In this subsection, wéhér experiment whether the
idea can be applied when other web-based contegtsaamsidered. To this end, we
search three top-ranked web-based videos from Yeutly the name entities
extracted from the travel schedules as widichniques of keyframe extraction, blur
filtering, and visual word histogram representatioa applied to the retrieved videos.
Table 4 compare purity values obtained with diffiiereontexts. We surprisingly
see that scene detection referring to keyframem fitoutube videos has great
performance. Comparing Youtube keyframes with irsagetrieved from image
search engines, entropy of keyframes in the sam@sspot is slightly smaller than
that of images. On the other hand, keyframes idemiht scenic spots often
significantly differs in visual appearance. Althdugearch results of Youtube are not



very satisfactory in terms of human’s subjectivitgharacteristics of low
intra-variation and high inter-variation benefiegmenting video into scenes.

Table 4. Performance of scene detection with castesm different sources.
Google Yahoo Flickr Youtube
Purity | 0.70 0.70 0.59 0.72

5.2.5 Performance of Methods Using Different Fesdur

To verify superiority of utilizing web-context andavel video characteristics, we
compare our work with a clustering method that aers similarity between
keyframes by solely visual content, or by both &lsand temporal information. The
affinity propagation (AP) algorithm [35] is adoptdd cluster keyframes into a
targeted number of groups, which is set accordintpé corresponding text schedule.
The AP algorithm takes similarity between pairskef/frames as input, randomly
chooses an initial subset of keyframes as exampkand iteratively exchanges
messages between examplars and other data potiltsanvergence. Two types of
messages are considered: responsibility and auaifafihe responsibility message
r(m,n) indicates how well point» serves as the examplar for point. The
availability a(m,n) indicates how well pointn chooses poinf as its examplar.
Jointly considering these two messages indicatesliely points m and n should
be clustered together.

The visual similarityZ,(k;, k;) between keyframe#&, and k; is defined as the
weighted visual histogram intersection (eqn. (6f)e temporal similarity between
them is defined ad;(k;, k;) = exp(—|j —i|), wherei and j are in the unit of
frame numbers. They are linearly combined to jgimtbnsider visual and temporal
information: 7,(k;, k;) = v1.(ki, k;) + (1 — v)[,(ki, k;), where the parametey is
set as 0.9 empirically, indicating that visual d$arty is more important in defining
similarity.

After clustering by the AP algorithm, a post-prageg is applied to ensure that
keyframes extracted from the same shot are in #meescluster, and temporally
adjacent keyframes should be in the same clusterekample, if the text schedule
indicates that scenic spots were visited in theeload A to D, but scene labels of a
sequence of keyframes are AAACDBBBCCDD, the fouwatid the fifth keyframes
should be reassigned as A or B according to theiilagity to scenes A and B,
maintaining correct temporal order in the meanwhile

Table 5 shows performance comparison between fimtyafapproach with visual
similarity (V), with both visual and temporal similty (V+T), and the best cases of
our approach. We see that for all datasets ouroapjpr achieves much better



performance. By comparing AP(V) with AP(V+T), we uftd that temporal
information provides little improvement over theeoonly using visual information.
On the other hand, our approach that jointly cosrsidvisual, temporal, and
web-context-based similarity has great performamggovement. As we described in
Section 1, it's not necessary that visually simgéots belong to the same scene,
especially for travel videos.

Table 5. Comparison of purity values based on dffeapproaches.

datal | data2 | data3 | datad4 | data5 | data6 | data7 | Avg.

AP(V) 0.46| 062, 043, 062 049 054 047 0.52

AP(V+T) 0.43| 090, 042, 069 053] 054 0.35] 0.55

Our| 0.77, 098, 0.68, 0.73| 0.78] 086 0.71, 0.79

6. Conclusion

We have presented a novel video scene detectiohochdéhat exploits web-based
context to segment personal video collections, @afhe for travel videos captured in
journeys. In addition to analyze personal videos, retrieve web-based context by
keyword search on general-purpose image and videocls engines, and then
discover temporal and visual correlation betweesmho facilitate scene detection.
Keyframes extracted from videos and the retrievedges are represented by visual
word histograms. A weighting scheme is designeddaptively prioritize different
visual words, with which similarity between imagean be characterized well.
Correlation between media is then determined bg@proximate sequence matching
algorithm, i.e. the maximum-sum segment algorithwWith the cross-media
correlation, an energy minimization framework idracluced to determine scene
boundaries in keyframe sequences. Experimentaltsegerify effectiveness of the
proposed method and superiority over previous wokke discuss performance
variations derived from different types of web-khsentext. In the future, this idea
may be extended to conduct various kinds of mullimecontent analysis, such as
face clustering or identification with the aidssmicial context, or personalized media
management with the help of web-based context.
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