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Abstract 

We conduct video scene detection with the aids of web-based context, especially for 

travel videos captured by amateur photographers in journeys. Correlations between 

personal videos and predefined travel schedules, which are used to retrieve related 

data from general-purpose image/video search engines, are discovered. Because scene 

boundaries are clearly defined in travel schedules, we segment videos into scenes by 

checking the discovered cross-media correlation. To make different modalities 

comparable, keyframes extracted from videos and images retrieved from web are 

represented by visual word histograms, and the problem of correlation determination 

is then transformed as an approximate sequence matching problem. We prioritize 

different visual words according to statistics of retrieved data, and evaluate similarity 

between images based on the weighting scheme. To systematically determine scene 

boundaries after finding cross-media correlation, we introduce an energy 

minimization framework to jointly consider visual, temporal, and context information. 

Experimental results verify the effectiveness of the proposed idea, and show that it’s 

promising to utilize cross-media correlation and web-based context in media analysis.  
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1. Introduction 

Going travel has been one of the most important activities in recent years. People 

treasure their travel experience, and get used to capture what they see or what they 

hear in journeys. With the popularity of low-cost and high-efficiency appliances, 

travelers can capture buildings, landmarks, or events at will, and generate large 

amounts of digital multimedia data. Massive data, therefore, draw urgent demands for 

efficient access and management functions.  

Among various types of travel media, large volumes of videos captured in journeys 

especially burden data access, and therefore draw the most challenging research issues. 

In this article, we focus on segmenting travel videos into semantics-related scenes. 

Video shots that were captured in the same scenic spot are claimed as in the same 



video scene. Although scene change detection has widely been studied in news [15], 

sports, movie, and TV programs [13][14], travel videos have much more severe visual 

conditions that make conventional scene detection techniques fail. For example, 

content in the same scenic spot is not always visually similar, which violates the 

assumption that visually similar shots are grouped into the same scene. Moreover, 

travelers who don’t specialize in photography may have large hand shake or bad 

lighting consideration, which cause motion blur or bad exposure in captured videos.  

Because of the challenges described above, simply analyzing visual content in 

videos may be insufficient to detect semantics-related scenes. Fortunately, context 

information such as photos captured in the same journey and pre-arranged text-based 

travel schedules, which are is tightly related to this journey, can provide insights to 

facilitate cross-media analysis and management. In [1], we proposed this idea and 

conduct travel video scene detection by consulting cross-media correlations between 

videos and photos captured in the same journey. We assumed that travelers take both 

digital camcorders and cameras in journeys, and alternately capture travel experience 

in videos and photos. Cross-media correlation between them is discovered after they 

are transformed into the same representation.  

The assumption of simultaneous existence of videos and photos corresponding to 

the same journey is not always true. Nowadays, from the web we may be able to find 

any information related to a specific query, which may be shared by somebody we 

don’t know. Based on the ideas in [1] and [2], we can retrieve data that are related to 

the visited scenic spots, find cross-media correlation between web-based context and 

our own travel videos, and then segment our own videos into semantics-related scenes. 

In our previous work [10], we assumed that travelers only have the captured videos 

and a pre-arranged text schedule, which states the scenic spots to be visited and the 

temporal order of visiting. The temporal order of scenes captured in videos is the 

same as that in the travel schedule. Name entities of visited scenic spots are extracted 

from the schedule, and are used to search related images from web-based image 

search engines. A sequence of keyframes extracted from the user’s travel video and a 

sequence of images retrieved from the web are then matched to determine their 

correspondence. After some post-processing, a shot is claimed to be in the scene of 

“Eiffel tower,” for example, if its keyframes correspond to images retrieved from the 

text query “Eiffel tower.” Thanks to somebodies who share their images relevant to 

our visited scenic spots, the developed system gains extra leverage from the largest 

database (the web) to conduct video scene detection [10].  

Although we have verified the idea of utilizing web-based context to analyze our 

personal data, data retrieved from the web are very noisy, and many factors influence 

the detection performance. We sum up related issues as follows, which were 



originally described in the discussion section of [10], and propose new techniques to 

address them as contributions of the current article.  

1) Visual quality of travel videos: Features extracted from keyframes with bad 

visual quality constitute visual word histograms of less reliability, and 

therefore performance of sequence matching is degraded.  

2) Popularity of visited scenic spots: If the visited scenic spots are not popular, 

few related photos can be retrieved from the top-ranked results of image 

search engines.  

3) Retrieval performance of search engines: Although it’s hard to measure 

retrieval performance of different search engines, accuracy of keyword-based 

image/video retrieval directly affect the reliability of correlation 

determination.  

In this work, we propose an adaptive weighting scheme to emphasize 

discriminative features and thus define a more reliable distance metric. This technique 

addresses the issues 1 and 3 above. For issue 1, we further enhance the preprocess 

step by a state-of-the-art blur detection module, so that more blurred keyframes 

extracted from the travel videos can be discarded. Especially for issue 2, we 

investigate how volume of web-based data affects the final performance. Moreover, 

we further include videos retrieved from Youtube, and investigate how different types 

of web-based context affect the proposed system. At the last but not the least, to make 

scene boundary determination process more systematic, we model it as a binary 

labeling problem and find the optimal solution by a graph cut algorithm [12]. This 

formulation eliminates the heuristic rules defined in [10].  

The remainder of this paper is organized as follows. Section 2 gives literature 

survey on video scene detection. An overview of the proposed system framework is 

described in Section 3. Section 4 provides details of the developed components, 

including preprocessing, the adaptive weighting scheme, the algorithm for finding 

correspondence between media, and the algorithm for determining scene boundaries. 

We provide evaluation results in Section 5, followed by the concluding remarks in 

Section 6.  

 

2. Related Works 

To make literature survey focused, we start surveying from home video, which is a 

superset of travel video. The difference between general home videos and travel 

videos is described in the end of Section 2.1. Section 2.2 provides surveys on video 

scene detection.  

 

2.1. Home Video Analysis 



Because there is no benchmark and evaluation metric for home video analysis, studies 

in this field are diverse and rise from different perspectives. Although there is no 

conventional rules in capturing home videos, Gatica-Perez et al. [16] cluster video 

shots based on visual similarity, duration and temporal adjacency, and accordingly 

find hierarchical structure of videos. On the basis of motion information, Pan and Ngo 

[17] decompose videos into snippets, which are then used to index home videos. For 

the purpose of automatic editing, temporal structure and music information are 

extracted, and subsets of video shots are selected to generate highlights [18] or 

MTV-style summaries [19]. Recently, Peng et al. [20] take media aesthetics and 

editing theory into account, and develop a new human-computer interface to facilitate 

home video skimming. In [21], a system called Hyper-Hitchcock is developed to 

semi-automatically edit videos and equip hyperlink properties. From the perspective 

of intention analysis, [22] and [23] model user intention for video repurposing and 

browsing.  

While there is rich literature considering motion and visual characteristics in home 

videos, fewer studies have been proposed to handle a specific sub-category of home 

videos, and elaborately exploit related domain knowledge. The work by Cheng et al. 

[24] provides an example on this direction, in which they take knowledge of wedding 

customs and develop segmentation and event recognition modules. While wedding 

videos convey one of the treasured moments in our lives, amounts of such data are 

largely less than that captured in journeys. Although a few studies were proposed on 

travel videos, most of them, unfortunately, leave out unique and useful characteristics 

in such media.  

Different from other home videos, travel videos have special characteristics that 

may be conducive or cumbersome to practical technique development: 1) According 

to a pre-arranged travel schedule, travelers visit scenic spots and capture 

photos/videos sequentially. 2) Content captured at the same scenic spot would have 

significantly different appearances, which destroys conventional methods for image 

clustering or video scene detection. 3) Scenic spots are visited sequentially, and 

various media are taken alternately or simultaneously in the same temporal order. 

Different media may thus be correlated. With the above characteristics, we design a 

system that specially analyzes travel videos.  

 

2.2. Video Scene Detection 

For video scene detection, Yeung and Yeo [14] propose a classical work called scene 

transition graph to describe relationships between video shots, and achieve scene 

detection by analyzing links in the graph. For movies, Hanjalic et al. [25] investigate 

context between video shots based on keyframes represented by DC images, and 



determine boundaries of logical story units such as dialogue and action scenes. 

Sundaram and Chang [26] take film-making rules and psychology of audition into 

account to build a computational scene model, which mimics characteristics of 

human’s short-term and long-term memory. Rasheed and Shah [13] develop a 

two-pass algorithm based on motion, shot length, and color properties, to find 

semantics-related scenes in movies and TV shows. More recently, Chasanis et al. [6] 

estimate appropriate number of keyframes for each video shot based on a spectral 

clustering approach, and then determine scene boundaries by sequence alignment 

techniques. Due to significance of video scene detection, integrated framework such 

as [28] and systematic evaluation method such as [30] have been proposed for years. 

In addition, the TRECVID benchmark [29] also issues the “story segmentation” task, 

while it focuses only on news and TV programs.  

 

2.3. With the Leverage of Other Context 

It’s a consensus that simultaneously analyzing and fusing multiple modalities 

achieves more promising performance. However, few studies have been conducted to 

investigate relationships between media that are seemingly irrelevant at first, but 

actually are subtly related after careful consideration. Takeuchi and Sugimoto [31] 

propose an interesting home video summarization system that infers user’s preference 

from his auxiliary photo collections, rather than from the video itself. Users may be 

interested in capturing the same things in the same style, which inspires the 

user-adaptive cross-media summarization system. Wang et al. [2] search semantically 

and visually similar images from the web and mine annotations from them to annotate 

our own images. This work further inspires us to view the web as the richest database. 

More recently, Vallet et al. [32] exploit external resources to facilitate identification 

of query semantics, and thus improve video retrieval performance. Wang et al. [33] 

utilize diverse set of data with different properties to boost video classification 

accuracy. Classifiers trained from different data sources are elaborately fused to 

categorize wild web videos. In our work, thanks to the subtle correlations between 

web-based context and our personal data, a system is developed to automatically 

analyze our personal data. The major difference between our work and [2] is that their 

image database is actually well defined, but we would suffer from many noises 

retrieved from the web.  

 

3. System Framework 

Assume that we have a video captured in a journey and a text-based schedule 

corresponding to this journey. According to name entities stored in the schedule, we 

search related images or videos from the web, which may be shared by someone else 



who visited the scenic spots as in our travel videos. Correlations between the retrieved 

data and our travel videos are then discovered to determine scene boundaries in our 

travel video. Determining correlation between different modalities is formulated as a 

sequence matching problem, while one sequence is transformed from web-based 

context and another sequence is transformed from our own travel video.  

Figure 1 shows the proposed system framework. For the video, we first detect 

video shots and extract appropriate number of keyframes for each video shot by the 

global k-means algorithm [3]. Keyframes with degraded visual quality due to motion 

blur or over/under exposure are filtered out by a quality assessment module. Feature 

points such as scale-invariant feature transform (SIFT) [4] are extracted from each 

keyframe, and then quantized into visual words [5] to capture concepts in visual 

appearance. Statistics of visual words are collected as a visual word histogram to 

represent each keyframe. Finally, the video is transformed into a sequence of visual 

word histograms, with the temporal order same as visiting.  

For the travel schedule, name entities of visited scenic spots in the text-based 

schedule are first extracted. Related images and videos shared on the web are then 

retrieved by a query-by-keyword scheme from image search engines, such as Yahoo!, 

Google, and Flickr, and from video search engines, such as Youtube and viemo. 

Images or keyframes extracted from retrieved videos are temporally sorted in the 

order of visiting, and are respectively transformed into a sequence of visual word 

histograms, with the same procedure as that for travel video keyframes.  

With the processes described above, we are able to determine correspondence 

between media with the same representation. Note that there are many noises in our 

travel videos, and a portion of retrieved data is not truly related to visited scenic spots. 

Therefore, we propose a distance metric with an adaptive weighting scheme to 

evaluate similarity between our own data and that from the web. The maximum-sum 

segment algorithm [8] is then applied to conduct approximate sequence matching for 

two sequences. With the discovered correspondence, keyframes that are matched with 

data retrieved by the same name entity are claimed to belong to the same video scene.  



 
Figure 1. The proposed system framework. 

 

4. Video Scene Detection 

4.1 Video Preprocessing 

We first find shot boundaries based on color histogram difference between adjacent 

frames. Each video frame is described by a normalized HSV color histogram, in 

which 8 bins are for hue, and 4 bins are for saturation and value, respectively. To 

efficiently represent each video shot, we adopt the approach proposed in [6], which 

automatically determines the most appropriate number of keyframes based on the 

global k-means algorithm [3]. Global k-means is an incremental deterministic 

clustering algorithm that iteratively performs k-means clustering while increasing k 

by one at each step. The clustering process proceeds until clustering results converge. 

By this algorithm, we overcome the initialization problem of conventional k-means 

algorithm, and adaptively determine appropriate number of clusters for each shot. 

Frames in a video shot are clustered into groups, and the frame closest to the centroid 

of each group is selected as a keyframe.  

After extracting keyframes, we would like to filter out keyframes with severe blur 

or keyframes with insipid content, which may damage the matching process later. 

Figures 2(a) and 2(b) show blurred keyframes, in which high frequency information is 

lost often due to handshaking. In this work, we adopt CPBD (cumulative probability 

of blur detection) [7] to estimate extent of blur. Each keyframe is first divided into 

Travel video

Shot change 

detection

Keyframe

extraction

Travel schedule

Name entity 

extraction

Query images 

by keyword

Approximate sequence matching

Video scene boundary determination

Visual word 

representation

Visual word 

representation

Quality 

assessment

Query videos 

by keyword

Keyframe

extraction

Quality 

assessment

Quality 

assessment

Visual word 

representation

Video scene boundaries

Google, Yahoo, 

Flickr, …

Youtube, 

vimeo, …



 blocks, and edge information is extracted from each block. For an edge 

block, the probability of blur detection is modeled as  

,  (1) 

where  is the width of the edge  in this block, and  is the “just 

noticeable blur” (JNB) edge width that depends on local contrast and is measured by 

psychological experiments. This metric evaluates the cumulative probability of image 

blocks that have blur extent lower than “just noticeable blur”:  
.  (2) 

If many blocks in the keyframe are blurred, many of them have blur extent larger 

than JNB, and thus the corresponding CPBD value is smaller. For example, the CPBD 

values are smaller for Figures 2(a) and 2(b). Without camera and object motion, 

Figure 2(d) has the largest CPBD value. Although there is no camera motion in Figure 

2(c), parts of blocks with object motion are detected as blur, and thus the CPBD value 

is in-between. In this work, we filter out keyframes with CPBD values lower than 0.2. 

Details of parameter settings please refer to [7].  

 
Figure 2. Examples of blur detection for keyframes.  

 

After filtering out blurred keyframes, we have to represent data by features that 

resist to significant visual variations caused by bad photography skills and different 

settings of various capture devices. In this work, we characterize images by bag of 

visual words, in which “images” generally denote keyframes extracted from our own 

data or photos retrieved from the web. We apply the difference-of-Gaussian (DoG) 

detector to detect feature points in keyframes and photos, and use the SIFT 

(Scale-Invariant Feature Transform) descriptor to describe each feature point as a 

128-dimensional vector [4]. SIFT-based feature vectors are then clustered by a 

(a) CPBD = 0.16 (b) CPBD = 0.10

(d) CPBD = 0.73(c) CPBD = 0.53



k-means algorithm, and feature points quantized into the same cluster are claimed to 

belong to the same visual word. For a keyframe, each SIFT-based feature point is 

categorized as a visual word, and the distribution of visual words in a keyframe is 

described as a normalized visual word histogram. We finally transform the sequence 

of keyframes into a sequence of normalized visual word histograms.  

In addition to filter out blurred keyframe, we would like to discard the ones that are 

“meaningless.” Figures 3(a) and 3(b) shows two meaningless keyframes. Figure 3(a) 

was captured because the photographer wanted to hold the camera tightly in walking, 

and his hand accidentally occluded the lens. Recall that we focus on travel videos 

captured by amateur photographers, and such photography errors are not rare. Figure 

3(b) shows another extremely bad case in which the view was aslant occupied by 

someone else’s clothing. The bottom row of Figure 3 shows the corresponding visual 

word histogram of the images in the top row. Because large portion of feature points 

in Figures 3(a) and 3(b) present the same content and are quantized into the same 

visual words, only some specific bins of the histogram have large values. To detect 

keyframes largely occupied by nonsense content, we evaluate each keyframe’s 

entropy based on its corresponding visual word histogram:  
,  (3) 

where  denotes value of the th bin of the visual word histogram, and  is the 

number of visual words used to represent images. Keyframes that have entropy values 

lower than a threshold are discarded. To sum up, blur detection and insipid image 

detection not only reduces consumption time of determining cross-media correlations 

in the following sections, but also eliminates influence of bad-quality images.  

 

Figure 3. Examples of insipid keyframe detection. Top row: original keyframes; 

bottom row: the corresponding visual word histograms.  

 

4.2 Query Web-based Context by Keyword 

It’s reasonable to assume that travelers have a predefined travel schedule before 
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traveling. The schedule describes where to visit and the order of visiting. Travelers 

sequentially visit and capture videos, and thus the temporal order of video content is 

the same as the visited scenic spots. The travel video is therefore temporally 

correlated to the text-based travel schedule. Because boundaries between scenic spots 

in the travel schedule are well defined, we would like to exploit the information to 

facilitate video scene detection. To find correspondence between these modalities, we 

have to transform the text-based schedule into a representation same as the video.  

Information shared on the web serves as the largest database in the world and 

provides clues for transforming text-based schedules into visual appearance. We 

imagine that somebodies visited the same places as us, and they captured and shared 

data on the web. If we are able to retrieve these data and find correlations between 

theirs and ours, we may segment our travel videos with the help from somebodies we 

don’t know. To implement this idea, we first extract name entities of scenic spots 

defined in the schedule, which are then used as keywords to query related 

images/videos on the web. Two types of web-based resources are investigated: images 

retrieved by general-purpose image search engines such as Yahoo!, Google, and 

Flickr, and videos retrieved by the largest video sharing platform, i.e. Youtube. Note 

that image search in Yahoo! and Google is different from that in Flickr. The former 

indexes images by surrounding text, while Flickr indexes images by tags especially 

provided by users. We include varied web-based contexts to investigate how 

resources presented in different modalities and retrieved from different platforms 

affect the proposed idea.  

Assume that there are  scenic spots to be visited, and the name entities 

corresponding to these scenic spots are , which are temporally sorted, i.e. 

 was visited before  if . Each entity is used as a keyword to search related 

data from the web. Although name entity extraction has been studied for years, 

detailed name entity extraction techniques are beyond the scope of this paper. In this 

work, we assume that text-based schedules are well defined, and names of scenic 

spots are extracted manually, without losing novelty of the proposed ideas.  

For the images searched from Yahoo!, Google, and Flickr, and keyframes of 

videos searched from Youtube (by the same method described in Section 4.1), we 

describe them as normalized visual word histograms as well. We again transform the 

sequence of retrieved data into a sequence of normalized visual word histograms. 

Let’s denote the sequence as , in which  denotes the visual word 

histogram of the th retrieved photo/keyframe. For each keyword, we retrieve the 

top-ranked  photos from an image search engine, or extract  keyframes from the 

top-ranked videos from Youtube, i.e. . Two subsequences 

 and  correspond to two scenic spots, and 



the images in  represent the scenic spot visited before . In the case that  

represents photos retrieved from search engines, although there is an implicit temporal 

order between  and  (corresponding to scenic spots  and  in the travel 

schedule), there is no such relation between images in the same subsequence, e.g. no 

special temporal order exists between  and  in . In the case that  

represents keyframes extracted from retrieved videos, the temporal order from  to 

 is not necessarily the same as the visiting order in our own travel videos. 

Therefore, the web-context sequence  is just “semi-temporally 

ordered.” 

 

4.3 Distance Metric 

We now have two visual word histogram sequences,  and 

, which respectively corresponds to web-based context and 

keyframes extracted from our travel video. Before correspondence determination, we 

need to define a distance metric for measuring a pair of images  and . In our 

previous work [10], histogram intersection is used to calculate similarity between two 

images, i.e. 

,  (4) 

where  denotes value of the th bin of the visual word histogram of , and  

is the number of visual words to represent an image. However, this method equally 

treats visual words in similarity measurement. From the perspective of document 

analysis, we know that some words play more important roles in presenting main 

concepts of a document. By analogizing an image as a document constituted by visual 

words, we argue that different visual words should be appropriately weighted so that 

similarity between images can be well described.  

Conceptually, images retrieved based on the same keyword should present content 

directly related to the scenic spot, if the image or video search engines have perfect 

retrieval performance. However, none of the current search engines has perfect 

performance, and the amount of related data on the web depends on popularity of this 

scenic spot. The retrieved data, therefore, often consist of noise. Figure 4 shows 

search results from Google, based on the keyword “Ta-Lin train station”. Only the 

images with bold borders are directly related to this scenic spot.  

The set of images retrieved from search engines is not perfect. However, it doesn’t 

mean that the retrieved set is not trustworthy at all. Previous research found that, 

though there are noises in the retrieved results, most of the top 10~20 images returned 

by Google are relevant to queries, when queries are general terms like building, tiger, 

and sea [27]. Statistics from the top retrieved results are thus meaningful. Based on 

the trust that these famous search engines would put their best efforts on accuracy of 



top-ranked retrieved results, we investigate characteristics of the top retrieved results 

and devise a weighting scheme. In contrast to [27], which removes irrelevant images 

with the helps from contemporary text-based search engines, we try to prioritize 

different visual words and develop a better distance metric to reduce the influence 

brought by noisy data.  

The degree of discrimination of a visual word depends on two factors:  

� For the images that contain a specific visual word, this visual word is more 

important for them if its average occurrence frequency is higher.  

� A visual word is more discriminative if it occasionally presents in some 

images’ visual word histograms. The visual word may be absent in noisy 

images, and appears in truly related images. On the other hand, if a visual 

word appears in all retrieved images, it provides less information for 

distinguishing truth data from noisy data.  

By combining two factors described above, we determine the weight of the th 

visual word from the retrieved data corresponding to a scenic spot by  

,  (5) 

where  denotes the set of images that contain the th visual word,  denotes 

the number of such images, and  is the number of images retrieved for a specific 

scenic spot. The parameter  is set as a small value to avoid zero denominator. The 

first term in eqn. (5) denotes the average count of the th visual word in . More 

frequently the th visual word appears in , larger this term is. The second term 

denotes degree of discrimination of this visual word. If all retrieved images contain 

the th visual word, . This means that if a visual word appears in more 

retrieved images, it is less useful to discriminate different images. Note that the design 

of eqn. (5) follows the idea of term frequency multiplying inverse document 

frequency, which is widely used to detect important words in text documents.  

Because characteristics of data retrieved by different keywords may be different, 

weights of visual words for different scenic spots are calculated adaptively. Finally, 

the similarity between the retrieved image  and the keyframe  extracted from 

our travel video is calculated as 

.  (6) 

 



 
Figure 4. Image search results of “Ta-Lin train station.” Only the images with bold 

borders are directly related to this place.  

 

4.4 Maximum-Sum Segment 

Finding correlations between our travel videos and images retrieved from the web has 

been transformed into a sequence matching problem. Generally, the dynamic 

programming strategy can be used to conduct approximate sequence matching, such 

as finding the longest common subsequence (LCS) [11]. However, images retrieved 

by keywords are just “semi-temporally ordered.” Although images related to different 

keywords are temporally sorted, that related to the same keyword don’t necessarily 

follow the same rule. This characteristic destroys the sequential property necessary for 

the LCS algorithm. In addition, there may be many irrelevant images in the retrieved 

data, which makes correlation determination more challenging (see Figure 4).  

Let’s consider two visual word histogram sequences,  and 

, which respectively corresponds to the retrieved images and 

keyframes. The sequence  is semi-temporally ordered, i.e. , 

where  consists of images retrieved from the keyword . With this 

characteristic, we formulate the correlation determination process as a variation of the 

maximum-sum segment problem [8]. To find the optimal correspondence between 

keyframes and a specific image set , we have to find a segment 

 from  such that the segment  of the longest length 

contains similar content as that in , where , , and 

.  In addition, the segment  corresponding to  should be ranked 

before the segment  corresponding to  if .  

The conventional maximum-sum segment problem is given by a nonempty 

sequence of real numbers, and the goal is to find the contiguous subsequence that has 



the largest total sum. To find the segment  corresponding to the scene 

, we first transform the sequence  into a real 

number sequence  as follows. Based on the weighted visual word 

histogram intersection (eqn. (6)) between  and , denoted by , we first 

calculate the similarity  between  and  in :  

 and , (7) 

where, . The value  denotes the number of 

retrieved images for this scene. To obtain a sequence of real numbers, in which 

positive numbers denote similarity between a keyframe and an image is higher than 

the average level, and negative numbers denote similarity between them is under the 

average level, we remove mean of the similarity sequence, i.e.  

.  (8) 

Recall that scenic spots were visited sequentially and the content in travel video 

should present the visited places in the same order. It’s not likely that the keyframes at 

the beginning of the travel video (e.g. , , and ) match with the images 

retrieved by the keyword representing the last visited scenic spot (e.g. , , and 

). By considering the temporal characteristic, we don’t search for the 

maximum-sum segment from the whole sequence, but instead search from an interval 

in which image matches reasonably exist.  

Corresponding to the scene , we would like to find an interval  in , 

, such that  is the maximum-sum segment of 

, i.e.  is maximal in all cases in . The values  and  

respectively denotes the lower and upper bounds for searching the maximum-sum 

segment, and as a consequence they are used to constrain that the maximum-sum 

segment corresponding to  should appear before that corresponding to  if 

. To this end, we set the search interval as:  

 and .  (9) 

The value  is the number of visited scenic spots. Note that the search intervals 

for successive scenic spots are overlapped. Because travelers may not equally capture 

content of the same length for different scenic spots, the search interval for each 

scenic spot is designed to be three times larger than the proportion it corresponds to.  

Given the search interval , the maximum-sum 

segment is determined by the algorithm shown in Figure 5. Let  denote the 

cumulative sum of , defined by  for  and 

. In the cumulation process, if the cumulative sum is positive at  but 

negative at , we find a candidate segment from  to . For this candidate segment, 

we store the largest cumulative sum in , and store the left boundary  and 



the right boundary  of a subsegment that causes . After finding all 

candidate segments, we take the subsegment that causes the overall maximum sum.  

In each iteration in the loop, there is one addition for accumulation, and  

comparisons are needed to simultaneously find the index that causes the maximum 

sum and the value of maximum sum. Suppose the length of  is , the 

value of  is at most , and the total complexity of the loop is 

 in the worst case. Finding the subsegment that causes the 

overall maximum sum takes  if  candidates are found. Note that . 

Overall, if  scenic spots were visited, finding all maximum-sum segments for the 

whole video takes , where  is much smaller than 

. In this paper we just introduce the idea of using this algorithm to find optimal 

correspondence, without considering elaborate data structure or other special design 

to reduce computational complexity. Elegant algorithm design for related issues 

please refer to [8].  

 

Input: A sequence of real numbers  
Output: Indices of the maximum-sum segment  in  

; 
; 

for  to  do  
 ; //Cumulate real numbers 
 if  then 

; //Find the idx that causes the maximum sum 
; 

;   //Store the maximum sum 
;               //Reset the cumulation process 
;  
 

 end if 
end for 

;  
; 
; 

Figure 5. The maximum-sum segment algorithm.  

 

4.5 Video Scene Boundary Determination  

After determining correspondence, keyframes in the selected maximum-sum segment 

are assigned a scene label according to the corresponding images. For example, if we 

find that keyframes  correspond to data retrieved based on the name 

entity of , these keyframes are assigned as in the th scenic spot.  

Note that lengths of maximum-sum segments corresponding to different scenic 

spots may be varied. Moreover, because the search intervals for successive scenic 



spots are overlapped (see eqn. (9)) and noisy images retrieved by different keywords 

may be similar, the maximum-sum segments corresponding to different scenic spots 

may be overlapped. To handle this problem, we especially examine maximum-sum 

segments for any two successive scenic spots. Figure 6 illustrates four possible cases.  

 

� The case in Figure 6(a) 

Figure 6(a) shows the simplest case, in which two maximum-sum segments for 

successive scenic spots are not overlapped. Keyframes  are assigned as in 

the th scenic spot, and keyframes  are assigned as in the -th 

scenic spot. For those keyframes in-between  and , we have to determine each 

keyframe in either the th scene or the th scene. In our previous work [10], we 

simply determine by linear interpolation based on the ratio of numbers of keyframes 

in the th maximum-sum segment to that in the th maximum-sum segment, 

which is a blind process without consideration of visual similarity and locality 

characteristics.  

We can view this as a binary label problem and solve it by an optimization 

formulation [36][37]. Gu et al. [36] jointly consider local temporal continuity and 

global distribution of time and content to conduct scene detection. Wang et al. [37] 

consider both content coherence and temporally context by formulating this task as a 

chain segmentation problem. In this work we develop an energy minimization 

formulation similar to [36], but further consider the influence of web-based context. 

This method eliminates the limitation that parametric models have limited 

performance to describe various complex scenes [37].  

Now the goal is to find a labeling that assigns each keyframe , , a 

label , where the labeling is considered to be consistent with the observed data and 

should conform to smoothness of neighborhood. The formal energy minimization 

problem is considered as  

,  (10) 

where  denotes the cost of assigning  the label , . The 

label  means that  is labeled as in the th scene, and  means that 

 is labeled as in the th scene. The value  is called data cost, which 

will be defined later. The set  denotes pairs of keyframes that are 

temporally adjacent to each other, e.g.  and . The value 

denotes the penalty of assigning adjacent keyframes  and  the labels  and 

, respectively, and is called smoothness cost. Although finding the optimal 

solution of this formulation is NP-hard, fast approximate algorithms have been 

developed [12].  

The idea of defining the data cost is that if a keyframe  is more similar to the 



ones in the th scene, the data cost  is smaller, and contrarily 

 is larger. Two sets of data are considered to define the data cost of 

labeling : intra-domain cost and inter-domain cost. The intra-domain cost is 

derived from the distance between  and other keyframes that have been assigned, 

i.e. , …,  and , …, . The inter-domain cost is derived from the 

distance between  and images respectively retrieved by the keywords representing 

the th scene and the th scene. The retrieved images are respectively denoted 

by , …,  and , …, , assuming that  images are retrieved for 

both scenes. By considering intra- and inter-domain factors, the overall data cost 

 for Figure 6(a) is defined as 

.  (11) 

The intra-domain cost  is 

,  (12) 

where  is the weighted histogram intersection defined in eqn. (6). The 

data cost of assigning  as in the th scene is inversely proportional to the average 

similarity between it and the keyframes in th scene. The intra-domain cost 

 of assigning  as in the th scene is defined similarly.  

The inter-domain cost  is defined as  

.  (13) 

The parameter  controls the relative importance for intra- and inter-domain costs. 

Because the keyframe  is captured by the same setting as other keyframes, we 

impose higher confidence on intra-domain cost, and thus set  in this work.  

For smoothness cost, more similar  and  are, higher penalty is imposed if 

they are assigned different labels. Therefore, this factor is defined as 

,  (14) 

where  is a parameter controlling the weight of weighted histogram intersection 

between two adjacent keyframes, and is set as 0.01 in this work.  

In travel videos, a temporal characteristic can also be considered in the 

optimization process. The keyframe that is closer to the th scene tends to be assigned 

to the th scene. Therefore, this factor, called temporal cost, is considered by  

 and .  (15) 

Finally, in our work the energy term that should be minimized is modified as  

. 

 (16) 

The computational complexity of calculating these three costs is analyzed as 



follows. If the number of images in the search region (  to , or  to ) is 

, and the number of bins in visual word histograms is , the complexity for 

calculating the intra-domain cost is , where  accounts for the 

comparison and weighting multiplication in eqn. (6). If the number of retrieved 

images is , the complexity for calculating the inter-domain cost is . 

For the smoothness cost, if the number of undetermined images is , the 

corresponding complexity is . For the temporal cost, the corresponding 

complexity is simply . Overall, the computational complexity of calculating 

energy for an undetermined keyframe is dominated by the number of visual words 

( ).  

 

� Other cases 

If two maximum-sum segments are overlapped as in Figure 6(b), the keyframes 

from  to  are reexamined, and the energy term is defined as  

, 

 (17) 

where the boundary conditions of data cost and temporal cost should be 

appropriately modified as follows. The overall data cost  for Figure 6(b) 
is defined as 

,  (18) 
where 

,  (19) 

.  (20) 

The overall data cost  for assigning  as in the th scene is 
defined similarly.  

The temporal cost for Figure 6(b) is defined as  

 and .  (21) 

In the cases of Figure 6(c) and Figure 6(d), the temporal cost and smoothness cost 

are not well defined, and only the inter-domain data cost can be used. For Figure 6(c), 

the keyframes to be reexamined are from  to , and the energy term to be 

minimized is  

.  (22) 

For Figure 6(d), the keyframes to be reexamined are from  to , and the 

energy term to be minimized is  

.  (23) 



These two troublesome cases are caused by significant amounts of noisy images in 

the retrieved data or user’s travel videos.  

 
Figure 6. Illustrations of different situations in results of maximum-sum segment 

determination. 

 

5. Evaluation  

5.1. Evaluation Dataset and Performance Metric 

The evaluation dataset includes seven videos captured in different amateur 

photographers’ journeys, and seven text-based travel schedules. Length of each video 

ranges from five to sixteen minutes, and each video is encoded as in MPEG-1 format 

with resolution . Figure 7 shows some snapshots of scenes in each video. 

Table 1 shows information of scenes, keyframes, and length of each travel video. 

There are totally 30 different visited scenic spots in the evaluation dataset.  

According to travel schedules, we respectively retrieve 40 top-ranked photos from 

Google, Yahoo!, and Flickr image search engines for each scenic spot. Data from 

three sources are experimented separately to investigate how the proposed method 

works on photos retrieved by different search scenarios. Because resolutions of the 

retrieved photos are varied, we normalize them into  for efficiency of 

feature extraction and visual word construction. 

keyframes

photos retrieved for 
the ith scenic spot

photos retrieved for 
the (i+1)th scenic spot

(a)

(b)

(c)

(d)



 

Figure 7. Some snapshots of the evaluated videos.  

Table 1. Information of the evaluation dataset. 

 # visited scenes length # keyframes 

Video 1 6 12:58 227 

Video 2 4 15:07 153 

Video 3 5 08:29 98 

Video 4 4 11:03 176 

Video 5 3 16:29 136 

Video 6 2 05:34 67 

Video 7 6 15:18 227 

 

To evaluate performance of scene detection, we consider overlaps between detected 

video scenes and ground truths, in terms of purity [9]. Given the ground truth of 

scenes  and the results of scene detection 

, a purity value  is defined as  

,  (24) 

where  is the length of overlap between  and ,  is the length of 

the scene , and  is the total length of all scenes. In this equation, the first term 

indicates the fraction of the current evaluated scene, and the second term indicates 

how much a given scene is split into smaller scenes. The purity value ranges from 0 to 

Video 1

Video 2

Video 3

Video 4

Video 5

Video 6

Video 7



1, and a larger purity value means a better result. In this work, length of a scene, for 

example , is represented by the number of shots in this scene.  

 

5.2. Performance Comparison 

5.2.1 Performance with Weighting Scheme 

We first evaluate whether the proposed weighting scheme better examines similarity 

between noisy data sets. In Table 2, the numbers in the rows with “W-” denote the 

purity values of scene detection with the weighted distance metric. The best 

performance for each dataset is emphasized with bold face. We see that except for the 

first dataset, the best performance can be obtained by using the weighting scheme. It’s 

not surprising that varied performance can be achieved for different datasets due to 

significant content variations and characteristics of visited scenic spots. The last row 

shows the improvement from the non-weighting scheme to the weighting scheme in 

the best case. We see significant improvement for datasets 2, 3, 4, 5, and 7, and 

averagely we obtain 20% improvement for the whole evaluation data. The weighting 

scheme fails for the first dataset. Because part of visited scenes is only known by the 

natives and is not popular, it’s hard to accurately retrieve related images from search 

engines and derive appropriate weightings for different visual words.  

An interesting observation is that we mostly obtain the best scene detection 

performance by consulting images retrieved from Google or Yahoo, which may 

inspire us a way to evaluate a general-purpose image search engine. On the other hand, 

from the Flickr-retrieved images we obtain the worst performance. This may due to 

that we only retrieve related images based on tag search rather than full text. Because 

of human subjectivity or noisy data, images with the same tag may not be visually 

coherent [34], which makes visual analysis futile.  

 

Table 2. Performance of scene detection with weighted vs. nonweighted visual word 

histogram intersection.  

 data1 data2 data3 data4 data5 data6 data7 Avg. 

Google 0.77    0.56 0.49 0.73    0.49 0.86    0.41 0.62 

W-Google 0.6 0.98    0.6 0.53 0.62 0.86    0.47 0.67    

Yahoo 0.57 0.51 0.54 0.56 0.67 0.58 0.57 0.57 

W-Yahoo 0.5 0.94 0.68    0.6 0.78    0.51 0.71    0.67    

Flickr 0.43 0.49 0.36 0.55 0.6 0.58 0.55 0.51 

W-Flickr 0.48 0.56 0.43 0.73    0.49 0.58 0.5 0.54 

improvement -0.28 0.75 0.26 0.33 0.16 0 0.25 0.21 

 



5.2.2 Performance with Blur Detection 

By adopting the method in [7], we examine blur extent of keyframes extracted from 

our videos and images retrieved from three search engines, and thus filter out blurred 

images. Table 3 shows that with blurred image filtering, performances of scene 

detection in different settings improve from 2% to 5%. With the results in Table 2 and 

Table 3, all experiments in the following context are conducted with the proposed 

weighting scheme and appropriate blur filtering.  

 

Table 3. Performance of scene detection with and without blur detection.  

 Google Yahoo Flickr 

w/o blur detection 0.67 0.67 0.54 

w. blur detection 0.70 0.70 0.59 

 

5.2.3 Performance of Different Boundary Determination Methods 

Boundaries between scenes in the previous two subsections are determined by the 

energy minimization framework described in Section 4.5. Here we provide detailed 

performance comparison to verify superiority of the newly-proposed method. Three 

methods are compared: the naïve method, the method in [10], and the method newly 

proposed in this article. In the naïve method, suppose that k scenic spots were visited, 

we sort keyframes according to their temporal order and equally divided them into k 

groups. Keyframes in the same group are assigned as in the same video scene. Note 

that in any of the three methods, keyframes extracted from the same shot may be 

assigned to different scenes. To eliminate this unreasonable assignment, we determine 

the scene label of keyframes extracted from the same shot by majority voting. 

Therefore, keyframes in the same shot has the same scene label, which implies that 

each shot has a corresponding scene label. Therefore, the final results of boundary 

determination are shots with associated scene labels, and the purity values are 

calculated at shot level.  

Figure 8 shows average purity values for three methods. The naïve approach has 

the worst performance because no visual correlation is considered. Actually, its 

performance depends on user’s capturing habits. If the traveler equally captures 

content in every scenic spot, the naïve approach may achieve satisfactory performance. 

The newly-proposed method has significant improvement over our previous work 

[10]. Over 0.1 purity improvement can be obtained if we discover correlation based 

on data retrieved by Google or Yahoo, while about 0.05 purity improvement is 

obtained for the Flickr case. We believe that this work surpasses the previous one [10] 

from the following perspectives:  



� Keyframes of ill visual quality are filtered out by an advanced method [7] to 

avoid their bad influence on sequence matching. (Section 4.1) 

� Keyframes of nonsense content are filtered out by considering visual content 

entropy to avoid their bad influence on sequence matching. (Section 4.1) 

� Visual words are prioritized by an adaptive weighting scheme so that this new 

distance metric more appropriately captures similarity between images. 

(Section 4.3) 

� Scene boundaries are refined by an energy minimization method, which 

jointly considers content coherence, temporal continuity, and web-based 

context. (Section 4.5) 

 

 

Figure 8. Average purity values of three methods: the naïve method, the method in 

[10], and the newly-proposed method.  

 

5.2.4 Performance with Web-based Video Context 

We have verified that web-based context provides implicit but useful clues for 

segmenting our own videos. In this subsection, we further experiment whether the 

idea can be applied when other web-based contexts are considered. To this end, we 

search three top-ranked web-based videos from Youtube, by the name entities 

extracted from the travel schedules as well. Techniques of keyframe extraction, blur 

filtering, and visual word histogram representation are applied to the retrieved videos.  

Table 4 compare purity values obtained with different contexts. We surprisingly 

see that scene detection referring to keyframes from Youtube videos has great 

performance. Comparing Youtube keyframes with images retrieved from image 

search engines, entropy of keyframes in the same scenic spot is slightly smaller than 

that of images. On the other hand, keyframes in different scenic spots often 

significantly differs in visual appearance. Although search results of Youtube are not 
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very satisfactory in terms of human’s subjectivity, characteristics of low 

intra-variation and high inter-variation benefits segmenting video into scenes.  

 

Table 4. Performance of scene detection with contexts from different sources.  

 Google Yahoo Flickr Youtube 

Purity 0.70 0.70 0.59 0.72 

 

5.2.5 Performance of Methods Using Different Features 

To verify superiority of utilizing web-context and travel video characteristics, we 

compare our work with a clustering method that considers similarity between 

keyframes by solely visual content, or by both visual and temporal information. The 

affinity propagation (AP) algorithm [35] is adopted to cluster keyframes into a 

targeted number of groups, which is set according to the corresponding text schedule. 

The AP algorithm takes similarity between pairs of keyframes as input, randomly 

chooses an initial subset of keyframes as examplars, and iteratively exchanges 

messages between examplars and other data points until convergence. Two types of 

messages are considered: responsibility and availability. The responsibility message 

 indicates how well point  serves as the examplar for point . The 

availability  indicates how well point  chooses point  as its examplar. 

Jointly considering these two messages indicates how likely points  and  should 

be clustered together.  

The visual similarity  between keyframes  and  is defined as the 

weighted visual histogram intersection (eqn. (6)). The temporal similarity between 

them is defined as , where  and  are in the unit of 

frame numbers. They are linearly combined to jointly consider visual and temporal 

information: , where the parameter  is 

set as 0.9 empirically, indicating that visual similarity is more important in defining 

similarity.  

After clustering by the AP algorithm, a post-processing is applied to ensure that 

keyframes extracted from the same shot are in the same cluster, and temporally 

adjacent keyframes should be in the same cluster. For example, if the text schedule 

indicates that scenic spots were visited in the order of A to D, but scene labels of a 

sequence of keyframes are AAACDBBBCCDD, the fourth and the fifth keyframes 

should be reassigned as A or B according to their similarity to scenes A and B, 

maintaining correct temporal order in the meanwhile.  

Table 5 shows performance comparison between the affinity approach with visual 

similarity (V), with both visual and temporal similarity (V+T), and the best cases of 

our approach. We see that for all datasets our approach achieves much better 



performance. By comparing AP(V) with AP(V+T), we found that temporal 

information provides little improvement over the one only using visual information. 

On the other hand, our approach that jointly considers visual, temporal, and 

web-context-based similarity has great performance improvement. As we described in 

Section 1, it’s not necessary that visually similar shots belong to the same scene, 

especially for travel videos.  

 

Table 5. Comparison of purity values based on different approaches.  

 data1 data2 data3 data4 data5 data6 data7 Avg. 

AP(V) 0.46 0.62 0.43 0.62 0.49 0.54 0.47 0.52 

AP(V+T) 0.43 0.90 0.42 0.69 0.53 0.54 0.35 0.55 

Our 0.77 0.98 0.68 0.73 0.78 0.86 0.71 0.79 

 

6. Conclusion 

We have presented a novel video scene detection method that exploits web-based 

context to segment personal video collections, especially for travel videos captured in 

journeys. In addition to analyze personal videos, we retrieve web-based context by 

keyword search on general-purpose image and video search engines, and then 

discover temporal and visual correlation between them to facilitate scene detection. 

Keyframes extracted from videos and the retrieved images are represented by visual 

word histograms. A weighting scheme is designed to adaptively prioritize different 

visual words, with which similarity between images can be characterized well. 

Correlation between media is then determined by an approximate sequence matching 

algorithm, i.e. the maximum-sum segment algorithm. With the cross-media 

correlation, an energy minimization framework is introduced to determine scene 

boundaries in keyframe sequences. Experimental results verify effectiveness of the 

proposed method and superiority over previous works. We discuss performance 

variations derived from different types of web-based context. In the future, this idea 

may be extended to conduct various kinds of multimedia content analysis, such as 

face clustering or identification with the aids of social context, or personalized media 

management with the help of web-based context.  
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