
PRODUCT QUANTIZATION FOR VIDEO COPY DETECTION

1Wei-Ta Chu (朱威達), 1Tzu-Min Yang (楊子旻), 2Jen-Yu Yu (游人諭)

1Dept. of Computer Science and Information Engineering,
National Chung Cheng University, Chiayi, Taiwan

E-mail: wtchu@cs.ccu.edu.tw, faad10@hotmail.com
2Information and Communication Research Labs,

Industrial Technology Research Institute, Hsinchu, Taiwan
E-mail: KevinYu@itri.org.tw

ABSTRACT

A novel indexing approach called product quantization
is used to index high-dimensional feature vectors, and
with this representation, video frames or video segments
are effectively matched so that video copy detection is
achieved. To accurately identify locations of video copy
segments, the temporal Hough transform is utilized. To
evaluate the proposed system, we first verify the
superiority of product quantization over conventional
vector quantization based on synthesized data, and then
compare our work with other video copy detection
methods based on the TRECVID 2010 dataset.
Experimental results show our promising performance.

Keywords Product Quantization; Video Copy Detection;
Bag of Word Model

1. INTRODUCTION

Calculating Euclidean distance between high-
dimensional vectors is commonly used in many
applications, such as object recognition, human
detection, and content-based image retrieval.
Calculating Euclidean distances seems fast. However,
when numerous data are processed, calculating
Euclidean distances for pairs of data may take a lot of
time. Another issue is the curse of dimensionality. As
dimension of vectors increases, using simple Euclidean
distance is not sufficient to discriminate vectors of
different characteristics. In this work, we attempt to
adopt the idea of “product quantization” (PQ) [4] to
reduce the time needed to calculate Euclidean distances
between high-dimensional vectors.

Because PQ is highly correlated to conventional
vector quantization (VQ), we first introduce VQ and
then the kernel idea of PQ. For VQ, the vector space is
first divided into a fixed number of subspaces, and each
subspace is represented by the centroid of vectors in this
subspace. The VQ process maps an original vector into
one of these centroids. As compared to the original

vector representation, the transformed vectors have
fewer variations, and thus less memory is needed for
data storage.

Given two high-dimensional vectors, we can firstly
quantize these vectors to their corresponding centroids,
and then the Euclidean distance between two high-
dimensional vectors can be estimated. However, the
difference between the estimated distance and the real
one depends on quantization errors, which are highly
related to the number of subspaces. In order to estimate
accurate distance, finer subspaces are needed. Figure 1
illustrates this concept. The Euclidean distance between

 and is more accurately estimated by and than
that by and , where the former are centroids of the
smaller six subspaces, and the latter are centroids of the
larger three subspaces. However, dividing a high-
dimensional vector space into a large number of
subspaces is a troublesome issue. Because quantization
amounts to assigning a vector to a centroid, we need to
calculate Euclidean distance between vectors and
centorids, which is prohibitive if the number of centroids
is large. Moreover, memory used to store centroids
composed of numerous floating-point values is often not
affordable.

To tackle with the aforementioned issue, the idea of
product quantization [4] was proposed. For PQ, a high-
dimensional vector is firstly segmented into several low-
dimensional subvectors, and the vector space
constructed by corresponding subvectors is decomposed
into low-dimensional subspaces. Finally, Cartesian
product is used to combine these subspaces, and thus a
large number of subspaces can be obtained to represent
the original vector space. Complexity of quantization is
significantly reduced. It also reduces the influence of the
curse of dimensionality because it separately quantizes
lower-dimentional subvectors into corresponding
subspaces.

In this paper, we investigate how to utilize product
quantization in video copy detection. The primary
contributions of this paper are:

� We compare PQ with conventional VQ by
experiments, and demonstrate the effectiveness of
PQ.

� We propose a framework based on PQ to find video
copies in a large video database.

� We devise a mechanism to combine different
features and achieve the best performance.
The remainder of this paper is organized as follows.

Related works are surveyed in Section 2. In Section 3,
we introduce and analyze product quantization by
experiments. In Section 4, we use product quantization
for video copy detection. Experimental results are
presented in Section 5. Finally, we conclude this paper
in Section 6.

: a centroid in one of the
six subspaces.

: a centroid in one of the
three subspaces.

: a vector

: the real distance

: the estimated distance

Figure 1. Difference between the estimated distance and
the real one under different clustering settings.

2. RELATED WORK

Video copy detection refers to determine whether some
videos in a database contain some content similar to the
query video, while the targeted video differs from the
query video by some video editing operations or visual
transformation. Video copy detection is usually used for
infringement detection and multimedia retrieval. With
the development of Muscle benchmark [5] in year 2007,
researchers have a common platform to compare their
research results on video copy detection, and therefore it
inspires many studies. Law-To et al. [6] gives a
comparative study on video copy detection proposed in
early years (~2007). Chiu et al. [7] transform video copy
detection as a partial matching problem in a
probabilistic model. They are devoted to develop a
framework robust against spatial and temporal variations,
and report relatively fewer experimental results. Yeh
and Cheng [8] view video copy detection as a sequence
matching problem. As large amounts of sequence
matching should be performed, they propose a two-level
filtration approach to accelerate the matching process.
Wu et al. [3] propose the idea of representing videos by
motion trajectories. The bag of word model is used to
characterize basic trajectory elements. Finally, the
watershed algorithm is used to find partial matching
between the query video and videos in the database.
Douze et al. [9] match individual frames and then verify
their spatio-temporal consistency. Local feature
indexing method is proposed to make video copy
detection robust to video transformations and efficient in

terms of memory usage and computation time. More
recently, Douze et al. [10] further propose a compact yet
discriminative video representation based on product
quantization. Three levels of quantization are used to
index feature descriptors. After measuring similarity
between video frames, video copy segments are
determined by a temporal alignment process.

Inspired by [10], we utilize product quantization to
video copy detection. The difference between our work
and [10] are threefold. First, we simplify the indexing
structure proposed in [10] in order to speed up the
detection process. Second, the effectiveness of product
quantization is verified by experiments. Third, in
addition to local features, we further consider spatial and
color information to describe video frames, and devise a
mechanism to select appropriate feature for video copy
detection.

3. PRODUCT QUANTIZATION

In many multimedia applications, numerous feature
vectors are extracted, and the feature dimension is often
high. To efficiently represent these feature vectors, a
usual manner is quantizing these vectors by a vector
quantizer. However, constructing a vector quantizer
takes much time, and we need huge memory space to
store this quantizer if number of quantization intervals is
large. Curse of dimensionality also influences
performance of vector quantization. For example, a 960-
dimensional GIST descriptor is usually used in scene
recognition [1], object recognition, or image copy
detection [2]. In [2], a codebook consisting of 20000
entries is constructed by clustering over 15 million GIST
descriptors. Such kind of process has tremendous time
cost, but unfortunately many researches demonstrate that
satisfactory performance can be obtained only with large
enough number of quantization intervals.

3.1 Overview of Product Quantization

Product quantization (PQ) [4] can efficiently address the
aforementioned problems. Unlike VQ using the whole
vector to learn a quantizer, PQ splits the original vector
into many subvectors and quantizes each subvector by a
corresponding quantizer. The set of quantizers that
quantizes subvectors are called subquantizers, are
combined together to form a product quantizer. Assume
that a -dimensional vector is
equally split into non-overlapping subvectors. The
vector with product quantization is then expressed as:

, (1)
where is the dimension of each
subvector, is the th subvector split from the
vector , and is a subquantizer associated with the
th subvector.

To construct a product quantizer, we first collect a
large number of -dimensional feature vectors

 and then split each vector into
subvectors (,). For the set of
subvectors coming from the first range, i.e.

, the k-means algorithm is
applied to cluster to construct the codebook for
the first subquantizer . The same process is applied to
other sets of subvectors separately, and codebooks

 are obtained for . The
Cartesian product of “small” codebooks

 for subvectors forms a “big”
codebook for the original vectors. The codebook
for product quantization can be expressed as:

. (2)
A codeword in is formed by concatenating the

centroids from . Therefore, the total
number of codewords for product quantization is
multiplication of the number of codewords in each
subquantizer. This is given by

, (3)
where is the number of codewords in the th
subquantizer. From now on, in order to clearly
distinguish between and , we use the phrase
“number of clusters” to denote , and the phrase
“number of subclusters” to denote .

Product quantization has three advantages:
� Significantly reducing the time required for learning

a big quantizer: If there are quantization levels,
the complexity of conventional VQ is ,
while complexity of PQ is .
Product quantization is expected to require much
less time than vector quantization.

� Reducing the influence of the curse of
dimensionality: If we directly use the high-
dimensional vector to learn a quantizer, it’s often
impeded by the curse of dimensionality. Because
product quantization splits a high-dimensional
vector into distinct subvectors, dimensions of
subvectors are reduced significantly. Therefore, the
influence of curse of dimensionality greatly reduces.

� Reducing the memory space required for storing the
codebook: If there are quantization levels,
memory space required to store the codebook is at
most floating points. The codebook
of the same size for vector quantization needs to
store floating points.

3.2 Analysis of Product Quantization

Product quantization can be analyzed from four aspects:

The way to split vectors: The way to split the
original vector into subvectors is not greatly restricted.
Generally, the original vector is split such that any two
subvectors are independent. On the other hand,
consecutive components in the same subvector are

usually correlated, and they are better quantized using
the same subquantizer.

Subvector’s dimension: Dimensions of subvectors
are chosen to avoid the curse of dimensionality. In order
to reduce influence of the curse of dimensionality, we
need as much as possible to reduce subvectors’
dimensions. For the ease of processing, it’s better to
have each subvector with the same dimension.

The number of subclusters in subquantizers: To
generate a codebook for each subquantizer, it is not
necessary that the number of subclusters for different
subquantizers should be the same. The number of
subclusters is determined by the importance of the
subvector to the original vector, i.e. more important,
more subclusters. From now on, we assume that each
subvector has equal importance to the original vector.
Therefore, we set the number of subclusters for different
subquantizers as the same value . Consequently, the
total number of centroids for product quantization can
be expressed as: (see also eqn. (3))

. (4)
The number of subquantizers: The number of

subquantiers would make a significant impact on
performance of product quantization. Assuming an
extreme case in which , each component of the
original vector is quantized, and PQ would become
scalar quantization which may completely lose
characteristics of the original vector. On the contrary, in
the case of , PQ is not different from VQ, and it
has no improvement on performance.

3.3 Performance Verification

We verify the superiority of PQ over VQ in this section.
We evaluate how different parameter settings affect
performance. The se parameters are: the dimension of
vectors (#dim), the number of vectors (#vector), and the
number of clusters for PQ or VQ (). The time for
generating codebooks and the corresponding
quantization errors are measured. In particular,
quantization errors are average of the mean squared
errors calculated between a vector and its corresponding
centroid. All experiments were performed on a PC with
2.40GHZ CPU and 1.97GB RAM. The vectors used in
experiments are random unit vectors. In the first
experiment, we fix dimension of vectors, and evaluate
how number of vectors and number of clusters affect PQ
and VQ. In the second experiment, we fix number of
clusters and number of vectors, and vary dimension of
vectors. We set and in the first
experiment, and set , , and the number
of vector as 50000 in the second experiment.

Figure 2 illustrates time consumption for generating
a codebook based on different numbers of vectors and
different numbers of clusters. We found that PQ takes
much less time than VQ to generate a codebook. For
instance, when the number of vectors is 60000 and the

number of cluster is 1296, the time required for
generating a codebook is about 100 seconds for PQ and
about 20000 seconds by VQ. The time spent by VQ is
several hundred times longer than that spent by PQ.

Table 1 lists average quantization errors caused by
PQ and VQ under the corresponding settings of Figure 1.
Quantization errors decrease as the number of clusters
increases, and quantization errors generated by PQ and
by VQ are similar. We know that as the number of
vectors and the number of clusters increase, the time
consumption increases as well. Therefore, we conclude
that PQ is preferable.

1

10

100

1000

10000

100000

10000 20000 30000 40000 50000 60000

tim
e

(s
)

#vector

PQ,k=256

VQ,k=256

PQ,k=625

VQ,k=625

PQ,k=1296

VQ,k=1296

PQ, K=256

VQ, K=256

PQ, K=625

VQ, K=625

PQ, K=1296

VQ, K=1296

tim
e(s)

Figure 2. The time required for generating a codebook
for PQ and VQ. The dimension of vectors is 1000, the
number of vectors range from 10000 to 60000, and the
number of clusters are 256, 625, and 1296, respectively.

Table 1. Average quantization errors under the
corresponding settings of Figure 1.

#vector
 #cluster

10000 20000 30000 40000 50000 60000

PQ, K=256 0.2480 0.2481 0.2483 0.2483 0.2483 0.2483
VQ, K=256 0.2407 0.2440 0.2451 0.2456 0.2460 0.2461
PQ, K=625 0.2477 0.2478 0.2479 0.2480 0.2480 0.2481
VQ, K=625 0.2304 0.2387 0.2414 0.2429 0.2436 0.2442
PQ, K=1296 0.2474 0.2476 0.2476 0.2476 0.2477 0.2478
VQ, K=1296 0.2121 0.2294 0.2350 0.2380 0.2398 0.2409

Figure 3 illustrates the time required for generating

codebooks for different dimensions of vectors. When the
dimension of vectors is 2000, the time required for
generating the codebook is about 200 seconds for PQ
and about 30000 seconds for VQ. The difference
between the two techniques is by a factor of several
hundreds. By jointly reading Table 2 that lists average
quantization errors, we again realize that PQ spends
much less time than VQ, and in the meanwhile
quantization errors caused by PQ and by VQ are similar.
From Figure 3, we see that vectors’ dimension affects
the time required to learn a quantizer. For instance,
when the vectors’ dimension is 500, the time required to
generate the codebook is about 30 seconds for PQ.
When the vectors’ dimension is 2000, the time required
to generate the codebook is about 200 seconds for PQ.

1

10

100

1000

10000

100000

500 1000 1500 2000

tim
e(

s)

#dim

PQ

VQ

tim
e

(s)

Figure 3. The time required for generating a codebook
for PQ and VQ based on vectors of different dimensions.
The dimensions of vectors range from 500 to 2000, the
number of vectors is 50000, and the number of clusters
is 1296.

Table 2. Average quantization errors under the
corresponding settings of Figure 2.

 #dim
Method

500 1000 1500 2000

PQ 0.2457 0.2477 0.2484 0.2488
VQ 0.2362 0.2398 0.2409 0.2415

4. VIDEO COPY DETECTION

Given a query video, which may be transformed or
edited from some database videos, we want to tell
whether there is a clip in a database video that has the
same or similar content as the query video. In this work,
we follow the settings of TRECVID 2010, which define
eight video transformations including simulated
camcording (T1), picture in picture (T2), insertions of
pattern (T3), compression (T4), change of gamma (T5),
decrease in quality such as blur and frame dropping (T6),
post production such as crop, shift, and flip (T7), and
randomly choosing and mixing three transformations
(T8).

Figure 4 illustrates the proposed framework for
video copy detection. For database videos, we uniformly
sample a frame per second as a keyframe, and from each
keyframe we extract two types of visual features
describing keypoints and color/spatial information. We
then use product quantization to index frame features for
improving search efficiency. For the query video, we
also select keyframes and extract frame features
accordingly, but these features are not indexed by
product quantization. In the frame search procedure, we
estimate distances between keyframes in the query video
and that in database videos, under the framework of
product quantization. Based on the estimated distances,
we determine keyframes from database videos that are
similar to each query keyframe and in the meanwhile
obtain similarity between matched keyframes. Finally,

we find a sequence of frames in the database videos that
match with a sequence of frames in the query video by a
temporal Hough transform approach.

Index
Database

Query video

Database video

Frames Search

Keyframe
extraction

Feature extraction

Indexing frame
features (PQ)

Temporal
alignment

Database
videos

Query
video

Video
copy

Figure 4. The proposed framework for video copy
detection.

4.1 Frame Features

Two features are extracted to represent keyframes. First,
we use the Hessian detector [12] to detect regions of
interest and describe them by the 128-dimensional SIFT
descriptors [13]. A keyframe is then represented by
aggregating these descriptors based on a locality
criterion. The second feature is color layout, which
jointly represents color and spatial information.
� Vector of Locally Aggregated Descriptors (VLAD)

Given a set of SIFT descriptors
from a keyframe, we transform them into a vector of
locally aggregated descriptors (VLAD) [14]. The steps
of generating a VLAD are described as follows:
1) The k-means algorithm is used to cluster SIFT

descriptors extracted from database videos into
groups. This process generates a codebook with

 centrioids .
2) Each SIFT descriptor is assigned to its nearest

centorid in the codebook . The nearest centroid
 is determined by

, (5)
where is the Euclidean distance.

3) For the SIFT descriptors that are in the same frame
and are assigned to the same centroid, we sum the
dimension-wise differences between them and their
nearest centroids. The difference vector between a
SIFT descriptor and its nearest centroid is
calculated as

,
,

,
where denotes the dimension-wise
distance. By summing the dimension-wise
distances between a centroid and the SIFT

descriptors assigned to it, we obtain a vector
. (6)

Finally, a VLAD for a keyframe is obtained by
concatenating , , …, in order.

The VLAD is L2-normalized into a unit vector. As

the dimension of VLAD is times the dimension of
SIFT descriptors, the choice of is significant to
generating VLADs. We set as 64 in this work
according to the advice of [14].
� Color Layout

To extract color layout, we split each frame into
 regions. An RGB color histogram is

constructed for each region, and histograms from left-
top to right-down regions are concatenated as a long
vector, with L2 normalization. Because VLAD does not
consider color information, we expect that the second
feature provides different information to facilitate video
copy detection.

4.2 Indexing Database Videos

Two levels of descriptions are used to represent a
database video: the segment descriptor and the frame
descriptor. Because number of keyframes extracted from
database videos is huge, it’s more efficient to consider a
sequence of keyframes, called segment, in database
videos. Each segment is described by a segment
descriptor, which is constructed by product quantizing
features in this segment and is represented as a tuple of
quantization indices. Similarly, each keyframe in a
segment is quantized by the same product quantizer, and
is represented as a tuple of quantization indices to be a
frame descriptor.
� Segment descriptor and segment feature

Suppose we have extracted frame features
 from database videos, with the

representation of VLAD or color layout. Based on these
features, the codebook for
product quantization is generated by the process
described in Section 3.

A fixed-length segment in a database
video includes keyframes in a short time period, where

 and denote the timestamps of the starting point and
end point of this segment, respectively. In this work, we
equally divide a database video into non-overlapping 4-
second segments. To calculate the segment descriptor
for , the average frame descriptor is first
calculated:

. (7)
After that, we search the closest centroid from each

subquantizer’s codebook for a subvector of the average
frame descriptor and simply use the indices of these
closest centroids to represent the segment. The segment
descriptor associated with is
therefore obtained by

,
and , (8)

where denotes the th subvector of ,
 means that the th subquantizer quantizes

, and the notation denotes that
quantization index of . Because we only use
quantization indices to represent a segment, we elevate
search efficiency and reduce the required storage space.

After finding the nearest centroid to each subvector
of , we define a segment feature vector as
concatenation of these centroids, i.e.

 , where
denotes the centroid corresponding to index . Note
that these centroids may be clustered from collections of
VLAD or color layout features.
� Frame descriptor and frame feature

With the similar concept, a frame descriptor is
generated by product quantizing frame features into
quantization indices. The main concept is that
concatenating the nearest centroids of subvectors would
generate an approximate vector for this frame. The
frame descriptor representation associated with the
frame is obtained by

,
and . (9)

After finding the nearest centroid to each subvector
of a frame, we modify a frame feature vector as
concatenation of these centroids. Note that these
centroids may be clustered from collections of VLAD or
color layout features. The updated frame features are
approximate to that described in Section 4.1. In the
following, we use the modified frame features for
distance calculation.

4.3 Frame Search

With the representation mentioned above, from database
videos we search frames having content similar to that in
query keyframes. For a query frame descriptor , we
search similar frames from all frames in database videos
as follows.
1) The nearest centroids to each subvector ,

, are first found. Let’s denote the set of
nearest centroids for by , where

. Assume that a database
video is divided into segments , and
segment descriptor for each segment and frame
descriptors for frames in each segment are generated
by the process described in Section 4.2. For the th
segment, one nearest centroid is found for each
subvector in , and the set of nearest centroids for
this segment is denoted by

. Note that quantization
indices of these centroids are used in the following
processes.

2) We compare the sets of nearest centroids of the

query frame with that of segment ,
, (10)

where indicates the number of identical
quantization indices between and . If this value
is larger than the value of , this segment is claimed
to be matched with .
After finding all matched segments, we then
calculate the Euclidean distance (based on VLAD or
color layout) between and the matched segments

. Only the segments that have the smallest
distances to are selected for the final procedure.

3) We compare with frames in a selected
segment based on the Euclidean distance calculated
by frame features. The frames in that have the

 smallest distances to are selected, and these
frames are claimed to match with .

4.4 Temporal Alignment

After the process mentioned above, we would like to
determine whether a segment of the query video matches
with any segment of a database video. First, the frame-
level similarity between a query keyframe and a
database keyframe is defined as the inner product
between them, if they are matched. Otherwise, similarity
between them is set as 0. That is,

 (11)

After defining frame-level similarity, we attempt to
find a clip in a database video that has similar content to
the query video. In our work, we exploit the temporal
Hough transform [9] to evaluate sequence matching.
The temporal Hough transform is a voting technique that
accumulates frame-level similarities between frame
matches with similar temporal shifts. Figure 5 illustrates
the temporal Hough transform.

Assume that is the set of keyframes in the query
video, and is the set of keyframes in the database
video . The histogram value of temporal shift with
respect to the database video is

, (12)
in which the temporal shift , where and
are timestamps of the frames and , respectively. The
value if there is at least a frame match
between the query video and the database video . We
then find the peak value of the histogram, which
correspond to the most probable time shift between
the query video and its corresponding video copy
segment in the database video. The first frame in the
database video with time shift indicates start of the
video copy segment, and the last frame with time shift
indicates end of the video copy segment. For each
database video, we can find a segment similar to the
query video, and only that have segments with the
corresponding Hough histogram values larger than a

threshold are claimed to convey a video copy to the
query video.

r=1

r=2

r=2

query video

database videos

r=1

Figure 5. Top: frame matches between a query video
and two database videos. Bottom: the corresponding
histograms in the temporal Hough space. The number of
frame matches between the query video and the 2nd
database video is more than that between the query
video and the 1st database video. However, high
temporal shift consistency indicates that the first
database video conveys a video copy segment to the
query video.

Table 3. The values of parameters in this work.
Features ,
Descriptors ,
Frame search , , ,

5. EXPERIMENTS

5.1 Evaluation dataset and performance metric

This work is evaluated based on the dataset in the
content-based copy detection task of TRECVID 2010
[16]. There are 3167 videos, with totally 190 hours.
Each query video is generated from a part of a database
video, with sort of video transformations, and is
arbitrarily concatenated with irrelevant video clips at the
start or at the end. We randomly selected ten database
videos to generate query videos, and each of them is
applied with one of eight video transformations defined
in TRECVID 2010. Therefore, there are totally eighty
query videos in this evaluation. Values of parameters
introduced in Section 3 and 4 are listed in Table 3.

Normalized detection cost ratio (NDCR) is used to
measure performance, which integrates the cost of
missing and false positives. Here, NDCR does not take
how long the intersection between the detected segment
and the ground truth into account. Therefore, a returned
segment is considered a true positive if it overlaps with

any region of the ground truth. NDCR is defined as
, (13)

where , and and
are the costs for a miss and a false alarm, and is the
priori target rate. The value and are the
conditional probabilities of a miss and a false alarm,
respectively. These parameters are set according to the
advice from TRECVID 2010. In TRECVID 2010, there
are two profiles to compute NDCR: the “no false alarm”
profile, and the “balanced” profile. The “no false alarm”
profile heavily punishes false alarms, while the
“balanced” profile does not. Many researches use the
best NDCRs of the “balanced” profile to evaluate
performance. The smaller NDCR is, the better the
performance is.

0

0.2

0.4

0.6

0.8

1

1.2

T1 T2 T3 T4 T5 T6 T7 T8

N
D
C
R VLAD

Color

Combine

Figure 6. The best NDCRs of the “balanced” profile for
(a) VLAD; (b) Color layout; and (c) Combination.

5.2 Performance

Figure 6 shows the best NDCRs for different features
(VLAD and color layout) under eight different video
transformations. From this figure we see that VLAD is
particularly robust to gamma change (T5), which does
not greatly alter local feature points. VLAD and color
layout have the largest performance variations for T4
(strong reencoding). The reason is that color distribution
does not change under strong encoding, while artifacts
may cause many noisy keypoints for VLAD.

Two features have different strengths to resist
different transformations. Therefore, we devise a
mechanism to combine results obtained based on two
features to achieve the best performance. From the
detection results based on VLAD, a ratio is calculated:

, (14)

where is the database video that has the most similar
content to the query, with time shift , and is the
database video that has the second most similar content
to the query, with time shift . The ratio
indicates that, relative to the second most similar video
copy segment, how the most similar video copy segment
corresponds to the query video. Similarly, we compute
the ratio for color layout. For query video, we
separately search video copies based on VLAD and
color layout. The feature that draws larger ratios is used

to determine the copy detection result. Overall,
performance of the combination mechanism is better
than that of single features.

Based on the best NDCRs of the “balanced” profile,
we compare our results with that in [11]. Chu et al. used
trajectories constructed by tracking SURF keypoints to
describe object movement in videos. The bag of
trajectory (BOT) model is then used to represent videos.
This work also adopts local feature points and thus is
suitable for performance comparison. Figure 7 shows
comparison in terms of the best NDCRs of the
“balanced” profile. Overall, we have obtained better
performance than [11] for all transformation types. The
method in [11] returns more false alarms and increases
NDCR greatly. This experiment verifies that by
integrating multiple features our work achieves
promising performance.

0

0.2

0.4

0.6

0.8

1

1.2

T1 T2 T3 T4 T5 T6 T7 T8

N
D
C
R

our work

Chuang

Our

[11]

Figure 7. Performance comparison between our work
and [11], based on the best NDCRs of the “balance”
profile.

6. CONCLUSION

We have presented a video copy detection system based
on product quantization. First, locally aggregated
descriptors (VLAD) and color layout are extracted to
represent video keyframes. They are high-dimensional
feature vectors, and we use the idea of product
quantization to efficiently index them. Pairs of
keyframes (respectively from the query video and from a
database video) that are quantized into similar subspaces
are then found. Finally, the temporal Hough transform is
utilized to find the most probably time shift between the
query video and a database video. The experimental
results verify that combining VLAD and color layout
achieves promising performance. In the future, more
experiments will be designed to emphasize the
effectiveness of product quantization, and more robust
features will be studied.

ACKNOWLEDGEMENT

This work was partially supported by the National
Science Council of ROC under NSC 99-2221-E-194-
036 and NSC 100-2221-E-194-061.

REFERENCES

[1] A. Oliva and A. Torralba, “Modeling the Shape of the Scene: A

Holistic Representation of the Spatial Envelope,” International
Journal of Computer Vision, vol. 42, no. 3, pp. 145-175, 2001.

[2] A. Torralba, R. Fergus, and Y. Weiss, “Small Codes and Large
Databases for Recognition,” Proceeding of IEEE Conference
on Computer Vision and Pattern Recognition, 2008.

[3] X. Wu, Y. Zhang, Y. Wu, J. Guo, and J. Li, “Invariant Visual
Patterns for Video Copy Detection,” Proceedings of
International Conference on Pattern Recognition, 2008.

[4] H. Jegou, M. Douse, and C. Schmid, “Product Quantization for
Nearest Neighbor Search,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 33, no. 01, pp.117-128,
2011.

[5] J. Law-To, A. Joly, and N. Boujemaa. “Muscle-VCD-2007: A
Live Benchmark for Video Copy Detection,” http://www-
rocq.inria.fr/imedia/civr-bench, 2007.

[6] J. Law-To, L. Chen, A. Joly, I. Laptev, O. Buisson, V. Gouet-
Brunet, N. Boujemaa, and F. Stentiford, “Video Copy
Detection: A Comparative Study,” Proceedings of ACM
International Conference on Image and Video Retrieval, pp.
371-378, 2007.

[7] C.-Y. Chiu, C.-S. Chen, and L.-F. Chien, “A Framework for
Handling Spatiotemporal Variations in Video Copy Detection,”
IEEE Transactions on Circuits and Systems for Video
Technology, vol. 18, no. 3, pp. 412-417, 2008.

[8] M.-C. Yeh and K.-T. Cheng, “Video Copy Detection by Fast
Sequence Matching,” Proceedings of ACM International
Conference on Image and Video Retrieval, 2009.

[9] M. Douze, H. Jegou, and C. Schmid, “An Image-based
Approach to Video Copy Detection with Spatio-temporal Post-
filtering,” IEEE Transactions on Multimedia, vol. 12, no. 4, pp.
257-266, 2010.

[10] M. Douze, H. Jegou, C. Schmid, and P. Perez, “Compact Video
Description for Copy Detection with Precise Temporal
Alignment,” Proceedings of European conference on
Computer Vision, vol. 6311, pp. 522-535, 2010.

[11] W.-T. Chu, P.-C. Chuang, and J.-J. Yu, “Video Copy Detection
Based on Bag of Trajectory and Two-Level Approximate
Sequence Matching,” Proceedings of IPPR Conference on
Computer Vision, Graphics, and Image Processing Conference,
2010.

[12] K. Mikolajczyk and C. Schmid, “Scale and Affine Invariant
Interest Point Detectors,” International Journal of Computer
Vision, vol. 60, no. 1, pp. 63-86, 2004.

[13] D. Lowe, “Distinctive Image Features from Scale-Invariant
Keypoints,” International Journal of Computer Vision, vol. 60,
no. 2, pp. 91-110, 2004.

[14] H. Jegou, M. Douze, C. Schmid, and P. Perez, “Aggregating
Local Descriptors into a Compact Image Representation,”
Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition, pp.3304-3311, 2010.

[15] D. Nister and H. Stewenius, “Scalable Recognition with a
Vocabulary Tree,” Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition, vol. 2, pp.2161-
2168, 2006.

[16] TRECVID, http://www-
nlpir.nist.gov/projects/tv2010/tv2010.html#ccd

