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ABSTRACT 
 
A novel indexing approach called product quantization 
is used to index high-dimensional feature vectors, and 
with this representation, video frames or video segments 
are effectively matched so that video copy detection is 
achieved. To accurately identify locations of video copy 
segments, the temporal Hough transform is utilized. To 
evaluate the proposed system, we first verify the 
superiority of product quantization over conventional 
vector quantization based on synthesized data, and then 
compare our work with other video copy detection 
methods based on the TRECVID 2010 dataset. 
Experimental results show our promising performance.  
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1. INTRODUCTION 
 
Calculating Euclidean distance between high-
dimensional vectors is commonly used in many 
applications, such as object recognition, human 
detection, and content-based image retrieval. 
Calculating Euclidean distances seems fast. However, 
when numerous data are processed, calculating 
Euclidean distances for pairs of data may take a lot of 
time. Another issue is the curse of dimensionality. As 
dimension of vectors increases, using simple Euclidean 
distance is not sufficient to discriminate vectors of 
different characteristics. In this work, we attempt to 
adopt the idea of “product quantization” (PQ) [4] to 
reduce the time needed to calculate Euclidean distances 
between high-dimensional vectors.  

Because PQ is highly correlated to conventional 
vector quantization (VQ), we first introduce VQ and 
then the kernel idea of PQ. For VQ, the vector space is 
first divided into a fixed number of subspaces, and each 
subspace is represented by the centroid of vectors in this 
subspace. The VQ process maps an original vector into 
one of these centroids. As compared to the original 

vector representation, the transformed vectors have 
fewer variations, and thus less memory is needed for 
data storage.  

Given two high-dimensional vectors, we can firstly 
quantize these vectors to their corresponding centroids, 
and then the Euclidean distance between two high-
dimensional vectors can be estimated. However, the 
difference between the estimated distance and the real 
one depends on quantization errors, which are highly 
related to the number of subspaces. In order to estimate 
accurate distance, finer subspaces are needed. Figure 1 
illustrates this concept. The Euclidean distance between 

 and  is more accurately estimated by  and  than 
that by  and , where the former are centroids of the 
smaller six subspaces, and the latter are centroids of the 
larger three subspaces. However, dividing a high-
dimensional vector space into a large number of 
subspaces is a troublesome issue. Because quantization 
amounts to assigning a vector to a centroid, we need to 
calculate Euclidean distance between vectors and 
centorids, which is prohibitive if the number of centroids 
is large. Moreover, memory used to store centroids 
composed of numerous floating-point values is often not 
affordable.  

To tackle with the aforementioned issue, the idea of 
product quantization [4] was proposed. For PQ, a high-
dimensional vector is firstly segmented into several low-
dimensional subvectors, and the vector space 
constructed by corresponding subvectors is decomposed 
into low-dimensional subspaces. Finally, Cartesian 
product is used to combine these subspaces, and thus a 
large number of subspaces can be obtained to represent 
the original vector space. Complexity of quantization is 
significantly reduced. It also reduces the influence of the 
curse of dimensionality because it separately quantizes 
lower-dimentional subvectors into corresponding 
subspaces.  

In this paper, we investigate how to utilize product 
quantization in video copy detection. The primary 
contributions of this paper are: 



� We compare PQ with conventional VQ by 
experiments, and demonstrate the effectiveness of 
PQ. 

� We propose a framework based on PQ to find video 
copies in a large video database.  

� We devise a mechanism to combine different 
features and achieve the best performance.  
The remainder of this paper is organized as follows. 

Related works are surveyed in Section 2. In Section 3, 
we introduce and analyze product quantization by 
experiments. In Section 4, we use product quantization 
for video copy detection. Experimental results are 
presented in Section 5. Finally, we conclude this paper 
in Section 6.  

: a centroid in one of the 
six subspaces.

: a centroid in one of the 
three subspaces.

: a vector

: the real distance

: the estimated distance

 
Figure 1. Difference between the estimated distance and 
the real one under different clustering settings. 
 

2. RELATED WORK 
 
Video copy detection refers to determine whether some 
videos in a database contain some content similar to the 
query video, while the targeted video differs from the 
query video by some video editing operations or visual 
transformation. Video copy detection is usually used for 
infringement detection and multimedia retrieval. With 
the development of Muscle benchmark [5] in year 2007, 
researchers have a common platform to compare their 
research results on video copy detection, and therefore it 
inspires many studies. Law-To et al. [6] gives a 
comparative study on video copy detection proposed in 
early years (~2007). Chiu et al. [7] transform video copy 
detection as a partial matching problem in a 
probabilistic model. They are devoted to develop a 
framework robust against spatial and temporal variations, 
and report relatively fewer experimental results. Yeh 
and Cheng [8] view video copy detection as a sequence 
matching problem. As large amounts of sequence 
matching should be performed, they propose a two-level 
filtration approach to accelerate the matching process. 
Wu et al. [3] propose the idea of representing videos by 
motion trajectories. The bag of word model is used to 
characterize basic trajectory elements. Finally, the 
watershed algorithm is used to find partial matching 
between the query video and videos in the database. 
Douze et al. [9] match individual frames and then verify 
their spatio-temporal consistency. Local feature 
indexing method is proposed to make video copy 
detection robust to video transformations and efficient in 

terms of memory usage and computation time. More 
recently, Douze et al. [10] further propose a compact yet 
discriminative video representation based on product 
quantization. Three levels of quantization are used to 
index feature descriptors. After measuring similarity 
between video frames, video copy segments are 
determined by a temporal alignment process.  

Inspired by [10], we utilize product quantization to 
video copy detection. The difference between our work 
and [10] are threefold. First, we simplify the indexing 
structure proposed in [10] in order to speed up the 
detection process. Second, the effectiveness of product 
quantization is verified by experiments. Third, in 
addition to local features, we further consider spatial and 
color information to describe video frames, and devise a 
mechanism to select appropriate feature for video copy 
detection.  

 
3. PRODUCT QUANTIZATION 

 
In many multimedia applications, numerous feature 
vectors are extracted, and the feature dimension is often 
high. To efficiently represent these feature vectors, a 
usual manner is quantizing these vectors by a vector 
quantizer. However, constructing a vector quantizer 
takes much time, and we need huge memory space to 
store this quantizer if number of quantization intervals is 
large. Curse of dimensionality also influences 
performance of vector quantization. For example, a 960-
dimensional GIST descriptor is usually used in scene 
recognition [1], object recognition, or image copy 
detection [2]. In [2], a codebook consisting of 20000 
entries is constructed by clustering over 15 million GIST 
descriptors. Such kind of process has tremendous time 
cost, but unfortunately many researches demonstrate that 
satisfactory performance can be obtained only with large 
enough number of quantization intervals.  
 
3.1 Overview of Product Quantization 
 
Product quantization (PQ) [4] can efficiently address the 
aforementioned problems. Unlike VQ using the whole 
vector to learn a quantizer, PQ splits the original vector 
into many subvectors and quantizes each subvector by a 
corresponding quantizer. The set of quantizers that 
quantizes subvectors are called subquantizers, are 
combined together to form a product quantizer. Assume 
that a -dimensional vector  is 
equally split into  non-overlapping subvectors. The 
vector  with product quantization is then expressed as: 

,  (1) 
where  is the dimension of each 
subvector,  is the th subvector split from the 
vector , and  is a subquantizer associated with the 
th subvector.  



To construct a product quantizer, we first collect a 
large number of -dimensional feature vectors 

 and then split each vector  into  
subvectors ( , ). For the set of 
subvectors coming from the first range, i.e. 

, the k-means algorithm is 
applied to cluster  to construct the codebook  for 
the first subquantizer . The same process is applied to 
other sets of subvectors separately, and codebooks 

 are obtained for . The 
Cartesian product of “small” codebooks 

 for subvectors forms a “big” 
codebook  for the original vectors. The codebook  
for product quantization can be expressed as:  

.  (2) 
A codeword in  is formed by concatenating the  

centroids from . Therefore, the total 
number of codewords  for product quantization is 
multiplication of the number of codewords in each 
subquantizer. This is given by 

,  (3) 
where  is the number of codewords in the th 
subquantizer. From now on, in order to clearly 
distinguish between  and , we use the phrase 
“number of clusters” to denote , and the phrase 
“number of subclusters” to denote .  

Product quantization has three advantages:  
� Significantly reducing the time required for learning 

a big quantizer: If there are  quantization levels, 
the complexity of conventional VQ is , 
while complexity of PQ is . 
Product quantization is expected to require much 
less time than vector quantization.  

� Reducing the influence of the curse of 
dimensionality: If we directly use the high-
dimensional vector to learn a quantizer, it’s often 
impeded by the curse of dimensionality. Because 
product quantization splits a high-dimensional 
vector into distinct subvectors, dimensions of 
subvectors are reduced significantly. Therefore, the 
influence of curse of dimensionality greatly reduces. 

� Reducing the memory space required for storing the 
codebook: If there are  quantization levels, 
memory space required to store the codebook is at 
most  floating points. The codebook 
of the same size for vector quantization needs to 
store  floating points.  

 
3.2 Analysis of Product Quantization 
 
Product quantization can be analyzed from four aspects:  

The way to split vectors: The way to split the 
original vector  into subvectors is not greatly restricted. 
Generally, the original vector is split such that any two 
subvectors are independent. On the other hand, 
consecutive components in the same subvector are 

usually correlated, and they are better quantized using 
the same subquantizer.  

Subvector’s dimension: Dimensions of subvectors 
are chosen to avoid the curse of dimensionality. In order 
to reduce influence of the curse of dimensionality, we 
need as much as possible to reduce subvectors’ 
dimensions. For the ease of processing, it’s better to 
have each subvector with the same dimension. 

The number of subclusters in subquantizers: To 
generate a codebook for each subquantizer, it is not 
necessary that the number of subclusters for different 
subquantizers should be the same. The number of 
subclusters is determined by the importance of the 
subvector to the original vector, i.e. more important, 
more subclusters. From now on, we assume that each 
subvector has equal importance to the original vector. 
Therefore, we set the number of subclusters for different 
subquantizers as the same value . Consequently, the 
total number of centroids for product quantization can 
be expressed as: (see also eqn. (3)) 

.  (4) 
The number of subquantizers: The number of 

subquantiers would make a significant impact on 
performance of product quantization. Assuming an 
extreme case in which , each component of the 
original vector is quantized, and PQ would become 
scalar quantization which may completely lose 
characteristics of the original vector. On the contrary, in 
the case of , PQ is not different from VQ, and it 
has no improvement on performance. 
 
3.3 Performance Verification 
 
We verify the superiority of PQ over VQ in this section. 
We evaluate how different parameter settings affect 
performance. The se parameters are: the dimension of 
vectors (#dim), the number of vectors (#vector), and the 
number of clusters for PQ or VQ (). The time for 
generating codebooks and the corresponding 
quantization errors are measured. In particular, 
quantization errors are average of the mean squared 
errors calculated between a vector and its corresponding 
centroid. All experiments were performed on a PC with 
2.40GHZ CPU and 1.97GB RAM. The vectors used in 
experiments are random unit vectors. In the first 
experiment, we fix dimension of vectors, and evaluate 
how number of vectors and number of clusters affect PQ 
and VQ. In the second experiment, we fix number of 
clusters and number of vectors, and vary dimension of 
vectors. We set  and  in the first 
experiment, and set , , and the number 
of vector as 50000 in the second experiment.  

Figure 2 illustrates time consumption for generating 
a codebook based on different numbers of vectors and 
different numbers of clusters. We found that PQ takes 
much less time than VQ to generate a codebook. For 
instance, when the number of vectors is 60000 and the 



number of cluster is 1296, the time required for 
generating a codebook is about 100 seconds for PQ and 
about 20000 seconds by VQ. The time spent by VQ is 
several hundred times longer than that spent by PQ.  

Table 1 lists average quantization errors caused by 
PQ and VQ under the corresponding settings of Figure 1. 
Quantization errors decrease as the number of clusters 
increases, and quantization errors generated by PQ and 
by VQ are similar. We know that as the number of 
vectors and the number of clusters increase, the time 
consumption increases as well. Therefore, we conclude 
that PQ is preferable.  
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Figure 2. The time required for generating a codebook 
for PQ and VQ. The dimension of vectors is 1000, the 
number of vectors range from 10000 to 60000, and the 
number of clusters are 256, 625, and 1296, respectively. 
 
Table 1. Average quantization errors under the 
corresponding settings of Figure 1.  

#vector 
 #cluster 

10000 20000 30000 40000 50000 60000 

PQ, K=256 0.2480 0.2481 0.2483 0.2483 0.2483 0.2483 
VQ, K=256 0.2407 0.2440 0.2451 0.2456 0.2460 0.2461 
PQ, K=625 0.2477 0.2478 0.2479 0.2480 0.2480 0.2481 
VQ, K=625 0.2304 0.2387 0.2414 0.2429 0.2436 0.2442 
PQ, K=1296 0.2474 0.2476 0.2476 0.2476 0.2477 0.2478 
VQ, K=1296 0.2121 0.2294 0.2350 0.2380 0.2398 0.2409 

 
Figure 3 illustrates the time required for generating 

codebooks for different dimensions of vectors. When the 
dimension of vectors is 2000, the time required for 
generating the codebook is about 200 seconds for PQ 
and about 30000 seconds for VQ. The difference 
between the two techniques is by a factor of several 
hundreds. By jointly reading Table 2 that lists average 
quantization errors, we again realize that PQ spends 
much less time than VQ, and in the meanwhile 
quantization errors caused by PQ and by VQ are similar. 
From Figure 3, we see that vectors’ dimension affects 
the time required to learn a quantizer. For instance, 
when the vectors’ dimension is 500, the time required to 
generate the codebook is about 30 seconds for PQ. 
When the vectors’ dimension is 2000, the time required 
to generate the codebook is about 200 seconds for PQ.  
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Figure 3. The time required for generating a codebook 
for PQ and VQ based on vectors of different dimensions. 
The dimensions of vectors range from 500 to 2000, the 
number of vectors is 50000, and the number of clusters 
is 1296.  
 
Table 2. Average quantization errors under the 
corresponding settings of Figure 2.  

        #dim 
Method 

500 1000 1500 2000 

PQ 0.2457 0.2477 0.2484 0.2488 
VQ 0.2362 0.2398 0.2409 0.2415 

 
4. VIDEO COPY DETECTION 

 
Given a query video, which may be transformed or 
edited from some database videos, we want to tell 
whether there is a clip in a database video that has the 
same or similar content as the query video. In this work, 
we follow the settings of TRECVID 2010, which define 
eight video transformations including simulated 
camcording (T1), picture in picture (T2), insertions of 
pattern (T3), compression (T4), change of gamma (T5), 
decrease in quality such as blur and frame dropping (T6), 
post production such as crop, shift, and flip (T7), and 
randomly choosing and mixing three transformations 
(T8).  

Figure 4 illustrates the proposed framework for 
video copy detection. For database videos, we uniformly 
sample a frame per second as a keyframe, and from each 
keyframe we extract two types of visual features 
describing keypoints and color/spatial information. We 
then use product quantization to index frame features for 
improving search efficiency. For the query video, we 
also select keyframes and extract frame features 
accordingly, but these features are not indexed by 
product quantization. In the frame search procedure, we 
estimate distances between keyframes in the query video 
and that in database videos, under the framework of 
product quantization. Based on the estimated distances, 
we determine keyframes from database videos that are 
similar to each query keyframe and in the meanwhile 
obtain similarity between matched keyframes. Finally, 



we find a sequence of frames in the database videos that 
match with a sequence of frames in the query video by a 
temporal Hough transform approach.  
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Figure 4. The proposed framework for video copy 
detection.  
 
4.1 Frame Features 
 
Two features are extracted to represent keyframes. First, 
we use the Hessian detector [12] to detect regions of 
interest and describe them by the 128-dimensional SIFT 
descriptors [13]. A keyframe is then represented by 
aggregating these descriptors based on a locality 
criterion. The second feature is color layout, which 
jointly represents color and spatial information.  
� Vector of Locally Aggregated Descriptors (VLAD) 

Given a set of SIFT descriptors  
from a keyframe, we transform them into a vector of 
locally aggregated descriptors (VLAD) [14]. The steps 
of generating a VLAD are described as follows: 
1) The k-means algorithm is used to cluster SIFT 

descriptors extracted from database videos into  
groups. This process generates a codebook  with 

 centrioids .  
2) Each SIFT descriptor  is assigned to its nearest 

centorid in the codebook . The nearest centroid 
 is determined by  

,  (5) 
where  is the Euclidean distance.  

3) For the SIFT descriptors that are in the same frame 
and are assigned to the same centroid, we sum the 
dimension-wise differences between them and their 
nearest centroids. The difference vector between a 
SIFT descriptor  and its nearest centroid  is 
calculated as  

, 
, 

, 
where  denotes the dimension-wise 
distance. By summing the dimension-wise 
distances between a centroid and the SIFT 

descriptors assigned to it, we obtain a vector 
.  (6) 

Finally, a VLAD for a keyframe is obtained by 
concatenating , , …,  in order.  

 
The VLAD is L2-normalized into a unit vector. As 

the dimension of VLAD is  times the dimension of 
SIFT descriptors, the choice of  is significant to 
generating VLADs. We set  as 64 in this work 
according to the advice of [14].  
� Color Layout 

To extract color layout, we split each frame into 
 regions. An RGB color histogram is 

constructed for each region, and histograms from left-
top to right-down regions are concatenated as a long 
vector, with L2 normalization. Because VLAD does not 
consider color information, we expect that the second 
feature provides different information to facilitate video 
copy detection.  
 
4.2 Indexing Database Videos 
 
Two levels of descriptions are used to represent a 
database video: the segment descriptor and the frame 
descriptor. Because number of keyframes extracted from 
database videos is huge, it’s more efficient to consider a 
sequence of keyframes, called segment, in database 
videos. Each segment is described by a segment 
descriptor, which is constructed by product quantizing 
features in this segment and is represented as a tuple of 
quantization indices. Similarly, each keyframe in a 
segment is quantized by the same product quantizer, and 
is represented as a tuple of quantization indices to be a 
frame descriptor.  
� Segment descriptor and segment feature 

Suppose we have extracted frame features 
 from database videos, with the 

representation of VLAD or color layout. Based on these 
features, the codebook  for 
product quantization is generated by the process 
described in Section 3. 

A fixed-length segment  in a database 
video includes keyframes in a short time period, where 

 and  denote the timestamps of the starting point and 
end point of this segment, respectively. In this work, we 
equally divide a database video into non-overlapping 4-
second segments. To calculate the segment descriptor 
for  , the average frame descriptor is first 
calculated:  

.  (7) 
After that, we search the closest centroid from each 

subquantizer’s codebook for a subvector of the average 
frame descriptor  and simply use the indices of these 
closest centroids to represent the segment. The segment 
descriptor  associated with  is 
therefore obtained by 



,  
and , (8) 

where  denotes the th subvector of , 
 means that the th subquantizer quantizes 

, and the notation  denotes that 
quantization index of . Because we only use 
quantization indices to represent a segment, we elevate 
search efficiency and reduce the required storage space.  

After finding the nearest centroid to each subvector 
of , we define a segment feature vector  as 
concatenation of these centroids, i.e. 

 , where  
denotes the centroid corresponding to index . Note 
that these centroids may be clustered from collections of 
VLAD or color layout features.  
� Frame descriptor and frame feature 

With the similar concept, a frame descriptor is 
generated by product quantizing frame features into 
quantization indices. The main concept is that 
concatenating the nearest centroids of subvectors would 
generate an approximate vector for this frame. The 
frame descriptor representation  associated with the 
frame  is obtained by  

,  
and . (9) 

After finding the nearest centroid to each subvector 
of a frame, we modify a frame feature vector as 
concatenation of these centroids. Note that these 
centroids may be clustered from collections of VLAD or 
color layout features. The updated frame features are 
approximate to that described in Section 4.1. In the 
following, we use the modified frame features for 
distance calculation.  

 
4.3 Frame Search 
 
With the representation mentioned above, from database 
videos we search frames having content similar to that in 
query keyframes. For a query frame descriptor , we 
search similar frames from all frames in database videos 
as follows. 
1) The  nearest centroids to each subvector , 

, are first found. Let’s denote the set of 
nearest centroids for  by , where 

. Assume that a database 
video is divided into  segments , and 
segment descriptor for each segment and frame 
descriptors for frames in each segment are generated 
by the process described in Section 4.2. For the th 
segment, one nearest centroid is found for each 
subvector in , and the set of nearest centroids for 
this segment is denoted by 

. Note that quantization 
indices of these centroids are used in the following 
processes.  

2) We compare the sets of nearest centroids of the 

query frame  with that of segment ,  
,  (10) 

where  indicates the number of identical 
quantization indices between  and . If this value 
is larger than the value of , this segment is claimed 
to be matched with .  
After finding all matched segments, we then 
calculate the Euclidean distance (based on VLAD or 
color layout) between  and the matched segments 

. Only the segments that have the smallest  
distances to  are selected for the final procedure.  

3) We compare  with frames  in a selected 
segment based on the Euclidean distance calculated 
by frame features. The frames in  that have the 

 smallest distances to  are selected, and these 
frames are claimed to match with .  

 
4.4 Temporal Alignment 
 
After the process mentioned above, we would like to 
determine whether a segment of the query video matches 
with any segment of a database video. First, the frame-
level similarity between a query keyframe  and a 
database keyframe  is defined as the inner product 
between them, if they are matched. Otherwise, similarity 
between them is set as 0. That is,  

 (11) 

After defining frame-level similarity, we attempt to 
find a clip in a database video that has similar content to 
the query video. In our work, we exploit the temporal 
Hough transform [9] to evaluate sequence matching. 
The temporal Hough transform is a voting technique that 
accumulates frame-level similarities between frame 
matches with similar temporal shifts. Figure 5 illustrates 
the temporal Hough transform.  

Assume that  is the set of keyframes in the query 
video, and  is the set of keyframes in the database 
video . The histogram value of temporal shift  with 
respect to the database video  is 

,  (12) 
in which the temporal shift , where  and  
are timestamps of the frames  and , respectively. The 
value  if there is at least a frame match 
between the query video and the database video . We 
then find the peak value of the histogram, which 
correspond to the most probable time shift  between 
the query video and its corresponding video copy 
segment in the database video. The first frame in the 
database video with time shift  indicates start of the 
video copy segment, and the last frame with time shift  
indicates end of the video copy segment. For each 
database video, we can find a segment similar to the 
query video, and only that have segments with the 
corresponding Hough histogram values larger than a 



threshold are claimed to convey a video copy to the 
query video.  

r=1

r=2

r=2

query video

database videos
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Figure 5. Top: frame matches between a query video 
and two database videos. Bottom: the corresponding 
histograms in the temporal Hough space. The number of 
frame matches between the query video and the 2nd 
database video is more than that between the query 
video and the 1st database video. However, high 
temporal shift consistency indicates that the first 
database video conveys a video copy segment to the 
query video.  
 
Table 3. The values of parameters in this work.  
Features ,  
Descriptors ,  
Frame search , , , 

 
 

5. EXPERIMENTS 
 
5.1 Evaluation dataset and performance metric 
 
This work is evaluated based on the dataset in the 
content-based copy detection task of TRECVID 2010 
[16]. There are 3167 videos, with totally 190 hours. 
Each query video is generated from a part of a database 
video, with sort of video transformations, and is 
arbitrarily concatenated with irrelevant video clips at the 
start or at the end. We randomly selected ten database 
videos to generate query videos, and each of them is 
applied with one of eight video transformations defined 
in TRECVID 2010. Therefore, there are totally eighty 
query videos in this evaluation. Values of parameters 
introduced in Section 3 and 4 are listed in Table 3.  

Normalized detection cost ratio (NDCR) is used to 
measure performance, which integrates the cost of 
missing and false positives. Here, NDCR does not take 
how long the intersection between the detected segment 
and the ground truth into account. Therefore, a returned 
segment is considered a true positive if it overlaps with 

any region of the ground truth. NDCR is defined as 
,  (13) 

where , and  and  
are the costs for a miss and a false alarm, and  is the 
priori target rate. The value  and  are the 
conditional probabilities of a miss and a false alarm, 
respectively. These parameters are set according to the 
advice from TRECVID 2010. In TRECVID 2010, there 
are two profiles to compute NDCR: the “no false alarm” 
profile, and the “balanced” profile. The “no false alarm” 
profile heavily punishes false alarms, while the 
“balanced” profile does not. Many researches use the 
best NDCRs of the “balanced” profile to evaluate 
performance. The smaller NDCR is, the better the 
performance is.  
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Figure 6. The best NDCRs of the “balanced” profile for 
(a) VLAD; (b) Color layout; and (c) Combination.  
 
5.2 Performance 
 
Figure 6 shows the best NDCRs for different features 
(VLAD and color layout) under eight different video 
transformations. From this figure we see that VLAD is 
particularly robust to gamma change (T5), which does 
not greatly alter local feature points. VLAD and color 
layout have the largest performance variations for T4 
(strong reencoding). The reason is that color distribution 
does not change under strong encoding, while artifacts 
may cause many noisy keypoints for VLAD.  

Two features have different strengths to resist 
different transformations. Therefore, we devise a 
mechanism to combine results obtained based on two 
features to achieve the best performance. From the 
detection results based on VLAD, a ratio is calculated:  

,  (14) 

where  is the database video that has the most similar 
content to the query, with time shift , and   is the 
database video that has the second most similar content 
to the query, with time shift . The ratio  
indicates that, relative to the second most similar video 
copy segment, how the most similar video copy segment 
corresponds to the query video. Similarly, we compute 
the ratio  for color layout. For query video, we 
separately search video copies based on VLAD and 
color layout. The feature that draws larger ratios is used 



to determine the copy detection result. Overall, 
performance of the combination mechanism is better 
than that of single features.  

Based on the best NDCRs of the “balanced” profile, 
we compare our results with that in [11]. Chu et al. used 
trajectories constructed by tracking SURF keypoints to 
describe object movement in videos. The bag of 
trajectory (BOT) model is then used to represent videos. 
This work also adopts local feature points and thus is 
suitable for performance comparison. Figure 7 shows 
comparison in terms of the best NDCRs of the 
“balanced” profile. Overall, we have obtained better 
performance than [11] for all transformation types. The 
method in [11] returns more false alarms and increases 
NDCR greatly. This experiment verifies that by 
integrating multiple features our work achieves 
promising performance. 
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Figure 7. Performance comparison between our work 
and [11], based on the best NDCRs of the “balance” 
profile. 
 

6. CONCLUSION 
 
We have presented a video copy detection system based 
on product quantization. First, locally aggregated 
descriptors (VLAD) and color layout are extracted to 
represent video keyframes. They are high-dimensional 
feature vectors, and we use the idea of product 
quantization to efficiently index them. Pairs of 
keyframes (respectively from the query video and from a 
database video) that are quantized into similar subspaces 
are then found. Finally, the temporal Hough transform is 
utilized to find the most probably time shift between the 
query video and a database video. The experimental 
results verify that combining VLAD and color layout 
achieves promising performance. In the future, more 
experiments will be designed to emphasize the 
effectiveness of product quantization, and more robust 
features will be studied.  
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