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ABSTRACT vector representation, the transformed vectors have
fewer variations, and thus less memory is needed fo
A novel indexing approach called product quantati  data storage.
is used to index high-dimensional feature vectarg] Given two high-dimensional vectors, we can firstly
with this representation, video frames or videonsewfts guantize these vectors to their corresponding oieisy
are effectively matched so that video copy deteci®  and then the Euclidean distance between two high-
achieved. To accurately identify locations of videgpy dimensional vectors can be estimated. However, the
segments, the temporal Hough transform is utiliZeal.  difference between the estimated distance andehk r
evaluate the proposed system, we first verify the one depends on quantization errors, which are yighl
superiority of product quantization over convensibn related to the number of subspaces. In order imats
vector quantization based on synthesized datatleerd  accurate distance, finer subspaces are neededeFigu
compare our work with other video copy detection illustrates this concept. The Euclidean distandevéen
methods based on the TRECVID 2010 dataset.v; andv;is more accurately estimated dyandc; than
Experimental results show our promising performance that bye; andcz, where the former are centroids of the
smaller six subspaces, and the latter are centaditise
Keywords Product Quantization; Video Copy Detection; larger three subspaces. However, dividing a high-

Bag of Word Model dimensional vector space into a large number of
subspaces is a troublesome issue. Because quemtizat
1. INTRODUCTION amounts to assigning a vector to a centroid, wel hee

. _ . _ calculate Euclidean distance between vectors and
Calculating ~ Euclidean distance between  high- centorids, which is prohibitive if the number ohtmids
dimensional vectors is commonly used in many js large. Moreover, memory used to store centroids

applications, such as object recognition, human composed of numerous floating-point values is often
detection, and content-based image retrieval. affordable.

Calculating Euclidean distances seems fast. However To tackle with the aforementioned issue, the idea o
when numerous data are processed, -calculatingproduct quantization [4] was proposed. For PQ,gi-hi
Euclidean distances for pairs of data may taket@flo  dimensional vector is firstly segmented into seviena-
time. Another issue is the curse of dimensionalig. dimensional subvectors, and the vector space
dimension of vectors increases, using simple Eeald  constructed by corresponding subvectors is decoeapos
distance is not sufficient to discriminate vect@E  into low-dimensional subspaces. Finally, Cartesian
different characteristics. In this work, we attempt  product is used to combine these subspaces, asdathu
adopt the idea of “product quantization” (PQ) [4] t |arge number of subspaces can be obtained to Esyires
reduce the time needed to calculate Euclideanrdista  the original vector space. Complexity of quantizatis
between high-dimensional vectors. significantly reduced. It also reduces the influeo¢ the
Because PQ is highly correlated to conventional curse of dimensionality because it separately dgest

vector quantization (VQ), we first introduce VQ and |ower-dimentional subvectors into corresponding
then the kernel idea of PQ. For VQ, the vector sgac  subspaces.

first divided into a fixed number of subspaces, andh In this paper, we investigate how to utilize praduc
subspace is represented by the centroid of veittdiss ~ quantization in video copy detection. The primary
subspace. The VQ process maps an original vedor in contributions of this paper are:

one of these centroids. As compared to the original



® We compare PQ with conventional VQ by terms of memory usage and computation time. More
experiments, and demonstrate the effectiveness ofrecently, Douze et al. [10] further propose a cochyat

PQ. discriminative video representation based on prbduc
® \We propose a framework based on PQ to find video quantization. Three levels of quantization are used

copies in a large video database. index feature descriptors. After measuring sintyari
® We devise a mechanism to combine different between video frames, video copy segments are

features and achieve the best performance. determined by a temporal alignment process.

The remainder of this paper is organized as follows  Inspired by [10], we utilize product quantizatiom t
Related works are surveyed in Section 2. In Se@ion video copy detection. The difference between ourkwo
we introduce and analyze product quantization by and [10] are threefold. First, we simplify the indwey
experiments. In Section 4, we use product quamiizat structure proposed in [10] in order to speed up the
for video copy detection. Experimental results are detection process. Second, the effectiveness afugto
presented in Section 5. Finally, we conclude tlapgr quantization is verified by experiments. Third, in
in Section 6. addition to local features, we further considertigphand
color information to describe video frames, andisea
mechanism to select appropriate feature for vidgwyc
detection.

O :a vector

A :acentroid in one of the
three subspaces.

[J: a centroid in one of the
six subspaces.

3. PRODUCT QUANTIZATION
—— i therealdistance In many multimedia applications, numerous feature
vectors are extracted, and the feature dimensioftés

high. To efficiently represent these feature vegta
usual manner is quantizing these vectors by a wecto
quantizer. However, constructing a vector quantizer
takes much time, and we need huge memory space to

= = = :the estimated distance

Figure 1. Difference between the estimated distamce
the real one under different clustering settings.

2. RELATED WORK

Video copy detection refers to determine whetheneso
videos in a database contain some content sinail#iet
query video, while the targeted video differs frohe
query video by some video editing operations oualis
transformation. Video copy detection is usuallydufar
infringement detection and multimedia retrieval. thVi
the development of Muscle benchmark [5] in year7200

store this quantizer if number of quantization iivéds is
large. Curse of dimensionality also influences
performance of vector quantization. For exampl@6@-
dimensional GIST descriptor is usually used in scen
recognition [1], object recognition, or image copy
detection [2]. In [2], a codebook consisting of Q00
entries is constructed by clustering over 15 mill®IST
descriptors. Such kind of process has tremendoos ti
cost, but unfortunately many researches demongtrate
satisfactory performance can be obtained only laithe

researchers have a common platform to compare theienough number of quantization intervals.

research results on video copy detection, and fibrerét

inspires many studies. Law-To et al. [6] gives a 3.1Overview of Product Quantization

comparative study on video copy detection propased
early years (~2007). Chiu et al. [7] transform wd®py
detection as a partial matching problem

Product quantization (PQ) [4] can efficiently adslr¢he

in a aforementioned problems. Unlike VQ using the whole

probabilistic model. They are devoted to develop a vector to learn a quantizer, PQ splits the origiredtor

framework robust against spatial and temporal tiana,
and report relatively fewer experimental resultehY

into many subvectors and quantizes each subvegtar b
corresponding quantizer. The set of quantizers that

and Cheng [8] view video copy detection as a seppien quantizes subvectors are called subquantizers, are
matching problem. As large amounts of sequencecombined together to form a product quantizer. Assu

matching should be performed, they propose a twekle
filtration approach to accelerate the matching pssc
Wu et al. [3] propose the idea of representing asdey

motion trajectories. The bag of word model is used

characterize basic trajectory elements. Finallye th
watershed algorithm is used to find partial matghin
between the query video and videos in the database.

Douze et al. [9] match individual frames and thenify
their spatio-temporal consistency. Local

detection robust to video transformations and igfficin

feature
indexing method is proposed to make video copy

that a D -dimensional vectorz = (x1,23,....2p) is

equally split intop non-overlapping subvectors. The

vectorz with product quantization is then expressed as:
sv1 (@) svp(x)

e N e e,

L1y s Tms s TD—m+15 -+, TD

Product Quantization sq1 (5?)1(213))7 o qu(SUp(m)), (1)

where m=D/p is the dimension of each

subvectorsv; () is the jth subvector split from the

vectorz, andsg; is a subquantizer associated with the

jth subvector.




To construct a product quantizer, we first collact usually correlated, and they are better quantizgdgu

large number of D -dimensional feature vectors the same subquantizer.

X ={x;} and then split each vector; into p Subvector’'s dimension:Dimensions of subvectors
subvectors {sv;(x;)}, j =1,2,....p). For the set of are chosen to avoid the curse of dimensionalityrtter
subvectors coming from the first range, i.e. 1O reduce influence of the curse of dimensionalitg,

X = {sv;(x;)|j = 1,¥i}, the k-means algorithm is need as much as possible to reduce subvectors’
applied to clusteft; to construct the codebodk for dimensions. For the ease of processing, it's betier
the first subquantizer. The same process is applied to have each subvector with the same dimension.

other sets of subvectors separately, and codebooks 1he number of subclusters in subquantizersTo
Cy,Cs,...,C, are obtained fomsqs, sgs, ..., sq, . The generate a codebook for each subquantizer, it is no

Cartesian product of “small” codebooks
C1,0C5,C5,...,Cp for subvectors forms a
codebookC for the original vectors. The codebo6k
for product quantization can be expressed as:

centroids fromCy, s, Cs, ..., C,. Therefore, the total
number of codeword$< for product quantization is
multiplication of the number of codewords in each

necessary that the number of subclusters for difter
“big” subquantizers should be the same. The number of
subclusters is determined by the importance of the
subvector to the original vector, i.e. more impotta
C=CxCyx-xC, ) more subclusters. From now on, we assume that each
subvector has equal importance to the original arect
Therefore, we set the number of subclusters fdemift
subquantizers as the same valueConsequently, the
total number of centroids for product quantizatian
be expressed as: (see also eqn. (3))

A codeword inC' is formed by concatenating the

subquantizer. This is given by K = kP (4)
— P . o
_ K =T ki, ) _(3) The number of subquantizers: The number of
where £; is the number of codewords in theth subquantiers would make a significant impact on

subquantizer. From now on, in order to clearly performance of product quantization. Assuming an
distinguish between’” and k;, we use the phrase extreme case in which= D, each component of the
‘number of clusters” to denot&’, and the phrase original vector is quantized, and PQ would become

“number of subclu_ster§” to denote. scalar quantization which may completely lose
Product quantization has three advantages: characteristics of the original vector. On the cary, in
® Significantly reducing the time required for leangi the case of = 1, PQ is not different from VQ, and it

a big quantizer: If there ad§ quantization levels, has no improvement on performance.
the complexity of conventional VQ i©(K D),
while complexity of PQ isO(maxi<;<,k;D). 3.3 Performance Verification
Product quantization is expected to require much
less time than vector quantization. We verify the superiority of PQ over VQ in this #en.
Reducing the influence of the curse of We evaluate how different parameter settings affect
dimensionality: If we directly use the high- performance. The se parameters are: the dimendion o
dimensional vector to learn a quantizer, it's often vectors (#dim), the number of vectors (#vector)] dre
impeded by the curse of dimensionality. Because number of clusters for PQ or VQK(). The time for
product quantization splits a high-dimensional generating codebooks and the corresponding
vector into distinct subvectors, dimensions of quantization errors are measured. In particular,
subvectors are reduced significantly. Therefore, th quantization errors are average of the mean squared
influence of curse of dimensionality greatly redsice  errors calculated between a vector and its corregipg
Reducing the memory space required for storing thecentroid. All experiments were performed on a P& wi
codebook: If there arg< quantization levels, 2.40GHZ CPU and 1.97GB RAM. The vectors used in
memory space required to store the codebook is atxperiments are random unit vectors. In the first
mostmaxi <<, k; D floating points. The codebook experiment, we fix dimension of vectors, and eviua
of the same size for vector quantization needs tohow number of vectors and number of clusters afgt
store X D floating points. and VQ. In the second experiment, we fix number of
clusters and number of vectors, and vary dimension

3.2 Analysis of Product Quantization vectors. We setp =4 and D = 1000 in the first

experiment, and set= 4, K = 1296, and the number

Product quantization can be analyzed from fouretspe  of vector as 50000 in the second experiment.

The way to split vectors: The way to split the Figure 2 illustrates time consumption for genegtin

original vectorz into subvectors is not greatly restricted. a codebook based on different numbers of vectods an
Generally, the original vector is split such thay awo different numbers of clusters. We found that PQesak
subvectors are independent. On the other handmuch less time than VQ to generate a codebook. For
consecutive components in the same subvector ardnstance, when the number of vectors is 60000 had t



number of cluster is 1296, the time required for 100000
generating a codebook is about 100 seconds forrelQ a
about 20000 seconds by VQ. The time spent by VQ is
several hundred times longer than that spent by PQ.
Table 1 lists average quantization errors caused by
PQ and VQ under the corresponding settings of Eigur 1000
Quantization errors decrease as the number ofechust

10000 4owe

(s)own

increases, and quantization errors generated bwariRQ L T
by VQ are similar. We know that as the number of 100 / e
vectors and the number of clusters increase, the ti 1
consumption increases as well. Therefore, we cdeclu o
that PQ is preferable.
B IS et LR " .
e gt ® Figure 3. The time required for generating a cod&bo
oo for PQ and VQ based on vectors of different dimemsi
s ¢ D The dimensions of vectors range from 500 to 2006, t
2 PQ, K=625 number of vectors is 50000, and the number of efast

100 7—4‘ VO k=629 is 1296.
== PQ, K=1296
/// VQ, K=1296
[ Table 2. Average quantization errors under the

corresponding settings of Figure 2.

#dim
1 o W 500 1000 1500 2000

ro00 20000 3°°°:Vw;°°°° spono. - fooan PQ 0.2457 0.2477 0.2484 0.2488
VQ 0.2362 0.2398 0.2409 0.2415
Figure 2. The time required for generating a cod&bo
for PQ and VQ. The dimension of vectors is 100@, th 4. VIDEO COPY DETECTION
number of vectors range from 10000 to 60000, aerd th
number of clusters are 256, 625, and 1296, resé¢ti  Given a query video, which may be transformed or

o edited from some database videos, we want to tell
Table 1. Average quantization errors under the whether there is a clip in a database video thattha

corresponding settings of Figure 1. same or similar content as the query video. Inwlsk,

m 10000 20000 30000 40000 50000 60000  we follow the settings of TRECVID 2010, which defin
PQ, K=256  0.2480 02481 0.2483 02483 0.2483 0.2483 eight video transformations including simulated
VQ,K=256  0.2407 0.2440 0.2451 0.2456 0.2460 0.2461 camcording (T1), picture in picture (T2), insersoof
PQ,K=625  0.2477 0.2478 0.2479 0.2480 0.2480 0.2481 T3 ion (T4). ch ¢ 5
VQ, K=625  0.2304 0.2387 0.2414 0.2429 0.2436 0.2442 pattern ( : ) compression (T4), change of gamm3, (
PQ,K=1296 0.2474 0.2476 0.2476 0.2476 0.2477 0.2478 decrease in quality such as blur and frame drop{di6g,
VQ,K=1206 02121 0.2294 0.2350 0.2380 0.2398 _0.2409 post production such as crop, shift, and flip (Tahd

. : . . . randomly choosing and mixing three transformations
Figure 3 illustrates the time required for genegti (T8)

codebooks for different dimensions of vectors. Witien
dimension of vectors is 2000, the time required for
generating the codebook is about 200 seconds for P
and about 30000 seconds for VQ. The differencek
between the two techniques is by a factor of sdzverad
hundreds. By jointly reading Table 2 that lists raee
quantization errors, we again realize that PQ spend
much less time than VQ, and in the meanwhile
guantization errors caused by PQ and by VQ ardasimi
From Figure 3, we see that vectors’ dimension #sfec
the time required to learn a quantizer. For inganc
when the vectors’ dimension is 500, the time regflto
generate the codebook is about 30 seconds for PQ
When the vectors’ dimension is 2000, the time nesgli

to generate the codebook is about 200 secondsJor P

Figure 4 illustrates the proposed framework for
video copy detection. For database videos, we mimlfo
ample a frame per second as a keyframe, and fachn e
eyframe we extract two types of visual features
escribing keypoints and color/spatial informatidie
then use product quantization to index frame feastdior
improving search efficiency. For the query videg w
also select keyframes and extract frame features
accordingly, but these features are not indexed by
product quantization. In the frame search procedues
estimate distances between keyframes in the quéepv
and that in database videos, under the framework of
product quantization. Based on the estimated dis@n
we determine keyframes from database videos tleat ar
similar to each query keyframe and in the meanwhile
obtain similarity between matched keyframes. Fnall



we find a sequence of frames in the database vidhabs descriptors assigned to it, we obtain a vector

match with a sequence of frames in the query videa ' =3y, — ¢l (6)
temporal Hough transform approach. Finally, a VLAD for a keyframe is obtained by
~——— Kevt A ( ) concatenating:!, 1, ..., #* in order.
Database eylrame | Feature extraction
videos extraction >
— 7 ~ ~ - The VLAD is L2-normalized into a unit vector. As
4 the dimension of VLAD is\{ times the dimension of
Query ) SIFT descriptors, the choice @ff is significant to
. Indexing frame X K K
video features (PQ) generating VLADs. We sef/ as 64 in this work
L

according to the advice of [14].
® Color Layout

To extract color layout, we split each frame into
Rw x Rg regions. An RGB color histogram is
constructed for each region, and histograms frdita le
top to right-down regions are concatenated as g lon
vector, with L2 normalization. Because VLAD doeg no
Temporal Frames Seamh}__ consider coI.or infgrmation, we e>§pect that_ .the. 8€co

copy alignment feature provides different information to facilgatideo

copy detection.

——=»  Query video
——>» Database video

Figure 4. The proposed framework for video copy

detection. 4.2 Indexing Database Videos

4.1 Frame Features Two levels of descriptions are used to represent a
database video: the segment descriptor and theefram

Two features are extracted to represent keyfrafiest, descriptor. Because number of keyframes extracted f

we use the Hessian detector [12] to detect regiins database videos is huge, it's more efficient tosamber a
interest and describe them by the 128-dimensiolial S sequence of keyframes, called segment, in database
descriptors [13]. A keyframe is then represented byvideos. Each segment is described by a segment
aggregating these descriptors based on a localitydescriptor, which is constructed by product quamgiz
criterion. The second feature is color layout, Whic features in this segment and is represented agle o

jointly represents color and spatial information. guantization indices. Similarly, each keyframe in a
® Vector of Locally Aggregated Descriptors (VLAD)  segment is quantized by the same product quantiner,
Given a set of SIFT descripto{$/: ¥a, -, Yn} is represented as a tuple of quantization indioelset a

from a keyframe, we transform them into a vector of frame descriptor.

locally aggregated descriptors (VLAD) [14]. Thepte @ Segment descriptor and segment feature

of generating a VLAD are described as follows: Suppose we have extractéfl frame features

1) The k-means algorithm is used to cluster SIFT {f,, f,,....,f+} from database videos, with the
descriptors extracted from database videos Mito  representation of VLAD or color layout. Based oas

groups. This process generates a codeléowlith features, the codebodkyg = C) x Cy x -+ x C,, for

M centrioids{ci, ¢z, ..., car}. product quantization is generated by the process
2) Each SIFT descriptoy, is assigned to its nearest described in Section 3.

centorid in the codebook. The nearest centroid A fixed-length segmentS(ts : t.) in a database

c;- is determined by video includes keyframes in a short time periodereh

= argmini << ||¥; — ¢, (5) ts andt. denote the timestamps of the starting point and

where|| - || is the Euclidean distance. end point of this segment, respectively. In thighkyeve

3) For the SIFT descriptors that are in the same frameequally divide a database video into non-overlagpin
and are assigned to the same centroid, we sum théecond segments. To calculate the segment descripto
dimension-wise differences between them and theirfor S(ts : £.), the average frame descriptor is first
nearest centroids. The difference vector between acalculated:

SIFT descriptory; and its nearest centroid- is f= S Fr )
calculated as After that, we search the closest centroid frorrheac
Y = (Yi,1: Y20 Yi,128), subquantizer’'s codebook for a subvector of the ayeer
Ci= = (Ci= 1, Cix 2, -5 Civ 128), frame descriptoff and simply use the indices of these
ly; —cvla = (g1~ Cir,1,¥i2 — Ci=.2, - ¥s128 — G 128), closest centroids to represent the segment. Thaesdg

where |y, — ci+[a denotes the dimension-wise descriptor sq(t, : f.) associated withS(t, : t.) is
distance. By summing the dimension-wise therefore obtained by
distances between a centroid and the SIFT



sq(ts s te) = (ddxy, idzy, ..., idzp),
andidz; = {sq;(sv;(F)), (8)
where sv;(f) denotes thei th subvector of f ,

sq;(svi(f)) means that théth subquantizer quantizes

sv;(f), and the notationsg;(sv;(f)) denotes that
quantization index ofg; (sv;(f)). Because we only use
quantization indices to represent a segment, weatle
search efficiency and reduce the required storpgees

After finding the nearest centroid to each subvecto
of f, we define a segment feature vectptt; : t.) as
concatenation of these centroids,
sf(ts : te) = (Cidwy; Cidass s Cidw,) ,  WHEre Ciga,
denotes the centroid corresponding to intd&x. Note
that these centroids may be clustered from cotiastof
VLAD or color layout features.
® Frame descriptor and frame feature

With the similar concept, a frame descriptor is
generated by product quantizing frame features into
quantization indices. The main concept is that
concatenating the nearest centroids of subvectotgdw
generate an approximate vector for this frame. The
frame descriptor representatien associated with the
frame f, is obtained by

e, = (idzy,idzy, ..., idxy),
andidz; = {(sq;(svi(f)). 9)

After finding the nearest centroid to each subvecto
of a frame, we modify a frame feature vector as
concatenation of these centroids.
centroids may be clustered from collections of VLAD
color layout features. The updated frame features a
approximate to that described in Section 4.1. le th
following, we use the modified frame features for
distance calculation.

i.e.

4.3Frame Search

With the representation mentioned above, from detab
videos we search frames having content similahao in
query keyframes. For a query frame descrigtpwe
search similar frames from all frames in databadeos
as follows.
1) Then, nearest centroids to each subveetalq),
1 <4 <p, are first found. Let's denote the set of
nearest centroids fay by {N, N2, ..., N}, where
Ni={{c}), (ch), ., {c},)}. Assume that a database
video is divided intoZ segments, s, ..., sz, and

Note that these

guery frameg with that of segmens;,

m(q, s;5) = 2201 INs N, (10)
where m(q, s;) indicates the number of identical
guantization indices betwegnands;. If this value

is larger than the value of,, this segment is claimed
to be matched witl.

After finding all matched segments, we then
calculate the Euclidean distance (based on VLAD or
color layout) between and the matched segments
{s;}. Only the segments that have the smalgst
distances t@ are selected for the final procedure.

We compareq with frames{f,} in a selected
segment based on the Euclidean distance calculated
by frame features. The frames{ifi;, } that have the

n, smallest distances i@ are selected, and these
frames are claimed to match wigh

3)

4.4 Temporal Alignment

After the process mentioned above, we would like to
determine whether a segment of the query videoheatc
with any segment of a database video. First, tamdr
level similarity between a query keyfrangge and a
database keyframg, is defined as the inner product
between them, if they are matched. Otherwise, aiityl
between them is set as 0. That is,

sim(g,, £.) = {q e

0, otherwise.

After defining frame-level similarity, we attempi t
find a clip in a database video that has similaiteot to
the query video. In our work, we exploit the tergdor
Hough transform [9] to evaluate sequence matching.
The temporal Hough transform is a voting technitinze
accumulates frame-level similarities between frame
matches with similar temporal shifts. Figure 5sthates
the temporal Hough transform.

Assume tha€} is the set of keyframes in the query
video, andB is the set of keyframes in the database
videor. The histogram value of temporal shiftvith
respect to the database videis

h(r,6) =3 e .pen $imig, b), (12)
in which the temporal shift = ¢, - t,, wheret; andt,
are timestamps of the framesndgq, respectively. The
value h(r,8) > 0 if there is at least a frame match
between the query video and the database vid&de
then find the peak value of the histogram, which

if f,is matched with g, (11)

segment descriptor for each segment and framecorrespond to the most probable time sfiifbetween

descriptors for frames in each segment are gemkrate
by the process described in Section 4.2. Forsjthe

the query video and its corresponding video copy
segment in the database video. The first framehén t

segment, one nearest centroid is found for eachdatabase video with time shift indicates start of the

subvector irs;, and the set of nearest centroids for
this segment is denoted by
Nj = {{c]), (), ... (c})}. Note that quantization
indices of these centroids are used in the follgwin
processes.

video copy segment, and the last frame with tinif gh

indicates end of the video copy segment. For each
database video, we can find a segment similar ¢o th
query video, and only that have segments with the
corresponding Hough histogram values larger than a

2) We compare the sets of nearest centroids of the



threshold are claimed to convey a video copy to theany region of the ground truth. NDCR is defined as
query video. NDCR = Puyyss + 3% Rra, (13)
t where3 = Cra/(Crrss x Ry), andChrrss andCra
are the costs for a miss and a false alarm,farid the
. // priori target rate. The valuByrss and Rp4 are the
database videos . o .
conditional probabilities of a miss and a falserrala
r=1 >t respectively. These parameters are set accorditigeto
/\ . \\ advice from TRECVID 2010. In TRECVID 2010, there
>t are two profiles to compute NDCR: the “no falseriafa
profile, and the “balanced” profile. The “no falakarm”

@ profile heavily punishes false alarms, while the
“balanced” profile does not. Many researches uge th

query video

r=2 t

h(r) best NDCRs of the “balanced” profile to evaluate
‘ performance. The smaller NDCR is, the better the
performance is.
r=1 T T T T T T T T T T 1.2 pem=e=emmeememmeeemeeeeeceeeceeeeeceeeee-
S=1,—1,
1 b
r=2 ! T i ! T T T 1 T ! _\
S=1t, —t, 08 pommmmme M A NI
Figure 5. Top: frame matches between a query video  §os \ - THwwp
and two database videos. Bottom: the corresponding \ T = Color
histograms in the temporal Hough space. The number 04 Combine
frame matches between the query video and tHe 2 02
database video is more than that between the query

video and the ° database video. However, high 0
temporal shift consistency indicates that the first
database video conveys a video copy segment to thé-igure 6. The best NDCRs of the “balanced” profide

T1 T2 T3 T4 T5 T6 7 T8

guery video. (a) VLAD; (b) Color layout; and (c) Combination.
Table 3. The values of parameters in this work. 5.2 Performance
Features M=64, Ry = Ry =4
Descriptors | p =16, K =16 Figure 6 shows the best NDCRs for different feature
Frame search n, =16 , n.=4 , n;=2048 (VLAD and color layout) under eight different video
n, = 512 ‘ transformations. From this figure we see that VLAD
particularly robust to gamma change (T5), whichsdoe
5. EXPERIMENTS not greatly alter local feature points. VLAD andaro
layout have the largest performance variations Tfdr
5.1 Evaluation dataset and performance metric (strong reencoding). The reason is that color idistion

does not change under strong encoding, while attifa

This work is evaluated based on the dataset in theMay cause many noisy keypoints for VLAD. _

content-based copy detection task of TRECVID 2010 _ Two features have different strengths to resist
[16]. There are 3167 videos, with totally 190 hours d|ﬁerent_ transformapons. Thereforg, we devise a
Each query video is generated from a part of abdsta mechanism to combine results obtained based on two
video, with sort of video transformations, and is features to achieve the best performance. From the

arbitrarily concatenated with irrelevant video eligt the ~ detection results based on ]VLAOD aratio is cakada
start or at the end. We randomly selected ten datb Ryrap = ,;E::OS (14)

videos to generate query videos, and each of tem i\yherers is the database video that has the most similar
applied with one of eight video transformationsitaied content to the query, with time shiif, and 7% is the

in TREC_:VID 2,010', Thereforg, there are totally ejght database video that has the second most simildermn
query videos in this evaluation. Values of paramsete to the query, with time shiff. The ratioRyrap

introduced in Section 3 and 4 are listed in Table 3 indicates that, relative to the second most simildeo

Normalized detection cqst rgtlo (NDCR) is used to copy segment, how the most similar video copy segme
measure performance, which integrates the cost of

. " corresponds to the query video. Similarly, we cora
missing and false positives. Here, NDCR does n ta b guery vi imrarty, w pu

. : the ratio B¢y for color layout. For query video, we
how long the intersection between the detected eagm separatelv search video copies based on VLAD and
and the ground truth into account. Therefore, arned P y P

. . e . color layout. The feature that draws larger raisoased
segment is considered a true positive if it oveslajith Y 9 s




to determine the copy detection result. Overall,
performance of the combination mechanism is better
than that of single features. (1]

Based on the best NDCRs of the “balanced” profile,
we compare our results with that in [11]. Chu etuakd 2]
trajectories constructed by tracking SURF keypotots
describe object movement in videos. The bag of
trajectory (BOT) model is then used to represetées. 8]
This work also adopts local feature points and tisus
suitable for performance comparison. Figure 7 shows[]
comparison in terms of the best NDCRs of the
“balanced” profile. Overall, we have obtained bette
performance than [11] for all transformation typ&he [5]
method in [11] returns more false alarms and irsgea
NDCR greatly. This experiment verifies that by
integrating multiple features our work achieves [l
promising performance.

(7]

(8]

(9]

T1 T2 T3 T4 T5 T6 T7 T8

[10]
Figure 7. Performance comparison between our work
and [11], based on the best NDCRs of the “balance”
profile. [11]

6. CONCLUSION

We have presented a video copy detection systeadbas
on product quantization. First, locally aggregated
descriptors (VLAD) and color layout are extracted t
represent video keyframes. They are high-dimensiona [13]
feature vectors, and we use the idea of product
quantization to efficiently index them. Pairs of

(12]

(14]
keyframes (respectively from the query video awdnfa
database video) that are quantized into similasgabes
are then found. Finally, the temporal Hough tramsfcs [15]

utilized to find the most probably time shift betmethe
query video and a database video. The experimental
results verify that combining VLAD and color layout
achieves promising performance. In the future, more [16]
experiments will be designed to emphasize the
effectiveness of product quantization, and moreusbb
features will be studied.
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