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Abstract—We present a video copy detection system that
detects video copy segments based on the task settings and
dataset in TRECVID 2010. Contributions of this work are two-
fold. First, we extract feature-based trajectories from videos,
and then model trajectories by a bag of word model. This
representation effectively describes information of object
movement, and is robust to various visual transformations.
Second, to find locally optimal matching between the query
video and videos in database, we conduct approximate
sequence matching by first finding the longest common
subsequence, followed by localizing the max-sum segment. We
compare our method with a watershed-based approach and
demonstrate the effectiveness and robustness of the proposed
method.

Keywords-video copy detection; bag of trajectory; the
maximum-sum segment algorithm; approximate sequence
matching

I. INTRODUCTION

Tremendous amounts of videos have been created, edited,
and shared on the internet. Recently, the video sharing site
YouTube [1] has become the second largest search engine
due to its extremely easy video sharing and search
functionalities. Everyone can produce their own videos and
disseminate them quickly via such kind of Web 2.0 platform.
Although users can easily distribute and retrieve videos from
the web, convenience of video sharing deteriorates the
problem of copyright infringement and video counterfeits.
Therefore, videos of similar content flood on the web, and
we can easily obtain many copies with little variations,
which may be illegally edited by unknown users.

Recently, various video copy detection systems [2] have
been designed to detect videos with duplicate content. With
effective video copy detection, video copies can be clustered
together to facilitate efficient browsing. On the other hand,
detecting similar videos forms the foundation of video
retrieval systems. From the perspective of copyright
protection, finding video copies can be used to monitor
dissemination situations and examine whether a copyright
protected video is illegally edited or used. Because the
importance of video copy detection is well recognized
around the research community, a task force has been

established in TRECVID [3] since year 2008, in which a
common video database is built to prompt development of
various techniques.

Different video copies of the same content often have
variations caused by various transformations, such as change
of gamma, strong re-encoding, flip, and pattern insertion. To
robustly detect video copies with these transformations,
many works extract global descriptors like color histogram,
and local descriptors like SIFT features [4], to represent
video frames. Spatiotemporal relationships between video
frames are considered to find duplicate video segments [15].

Motivated by the work proposed in [5], we extract
motion trajectories from video shots and encode trajectories
by a bag of word model. After appropriate weightings on
different bag of words, video shots are transformed into
feature vectors, by which shot-based video matching is
conducted. Different from the dataset used in [5], we follow
the content-based copy detection task in TRECVID 2010, in
which a video query may be significantly shorter than the
targeted videos, and the video query may be concatenated
with irrelevant video segments of arbitrary lengths at the
beginning or at the end. Therefore, we introduce the
maximum-sum segment algorithm to find locally optimal
matching between video sequences.

Contributions of this paper are summarized as follows.
 We extend the idea of bag of word to model motion

trajectories in video shots. We improve the work
proposed in [5] by introducing faster feature
extraction/matching, and investigating the
effectiveness of the method in a more realistic
situation described in TRECVID 2010.

 We applying the maximum-sum algorithm to find
locally optimal matching between two video
sequences. This algorithm is originally designed to
solve constrained sequence matching problem in
bioinformatics. With this algorithm, we are able to
well handle the characteristics of TRECVID 2010
benchmark, and provide superior detection
performance in this challenging dataset.

The rest of this paper is organized as follows. Section II
provides a literature survey and a brief introduction of
content-based copy detection in TRECVID. Section III gives



the system overview. In Section IV, we describe the idea of
bag of trajectory, and transform videos into a series of
feature vectors. Video copy detection based on approximate
sequence matching is described in Section V. Section VI
provides the experimental results based on TRECVID
datasets, followed by the concluding remarks in Section VII.

II. RELATED WORK

A. Literature Survey
With the development of Muscle benchmark [12] in year

2007, researchers have the common platform to compare
their research results on video copy detection, and therefore
it inspires many studies. Law-To et al. [2] gives a
comparative study on video copy detection proposed in early
years (~2007). Chiu et al. [13] transform video copy
detection as a partial matching problem in a probabilistic
model. They are devoted to develop a framework robust
against spatial and temporal variations, and report relatively
fewer experimental results. Yeh and Cheng [14] view video
copy detection as a sequence matching problem, which is the
most popular viewpoint in this research. As large amounts of
sequence matching should be performed, they propose a two-
level filtration approach to accelerate the matching process.
Douze et al. [15] match individual frames and then verify
their spatio-temporal consistency. Local feature indexing
method is proposed to make video copy detection robust to
video transformations and efficient in terms of memory
usage and computation time. Wu et al. [5] propose the idea
of representing videos by motion trajectories. The bag of
word model is used to characterize basic trajectory elements.
Finally, the watershed algorithm is used to find partial
matching between the query video and videos in the database.

Motivated by the work proposed in [5], we develop an
efficient way to construct trajectories. Based on the bag of
trajectory representation, we propose an approximate
sequence matching method that first finds the longest
common subsequence between two sequences and then finds
the maximum-sum segment to localize the best matching.
Performance comparison is conducted in the experiment
section.

B. TRECVID Benchmark
Starting from year 2008, TRECVID [3] pays attention to

video copy detection, or more generally content-based copy
detection, due to potential applications of copyright control,
business intelligence, advertisement tracking, etc. In
TRECVID 2010, there are totally about 12000 videos with
totally 400 hours in the reference dataset. Video content in
this task is mainly from TV shows or news.

A query video is a segment of video derived from a video
in the database, by means of various transformations. It
would be concatenated with irrelevant video segments that
are actually not in the database. Visual transformations that
may be applied to derive a query video include: simulated
camcording, picture in picture, insertions of pattern, change
of gamma, strong reencoding, decrease in quality, post
production, or mix of three transformations described above.

From the experience in years 2008 and 2009, multimodal
queries often achieve better copy detection performance, and
thus audio+video queries are adopted in TRECVID 2010. An
audio query is also derived from the sound track of a video in
the database, by means of acoustic transformations such as
bandwidth limitation, subband quantization noise, variable
mixing with unrelated audio content.

In this paper, we still focus on video only queries, but
specially investigate how to accurately find copy segments
by the queries derived from various transformations and
mixed with irrelevant content. Settings of TRECVID 2010
content-based copy detection task will be used in
experiments.

III. SYSTEM OVERVIEW

Figure 1 shows the flowchart of the proposed video copy
detection method. For both videos in the database and the
query video, we transform them into an efficient
representation, and then conduct approximate matching
between two sequences to achieve video copy detection.
Videos are first segmented into shots, and appropriate
numbers of keyframes are extracted from each video shot
according to a dynamic clustering scheme. Starting from
each keyframe, trajectories based on distinct features are
constructed. Moving directions of trajectories are coded as
an orientation histogram that efficiently represents how
objects move in each video shot and serves as the novel
representation different from conventional color-based or
texture-based representation.

Because evolutions of trajectories may fluctuate due to
transformations such as shift, cropping, and strong re-
encoding, we exploit the bag of word model to describe
orientation histograms. This representation is then called bag
of trajectory (BoT), in which a BoT word conceptually
represents a type of trajectory evolution that commonly
appears in the training corpus. With this representation, we
view videos as documents described by BoT words.
Motivated by techniques from natural language processing,
we give different weightings to different BoT words based
on their local and global statistical information. Finally, we
transform each video into a sequence consisting of BoT
feature vectors.

To compare a query video with a video in the database,
we construct a similarity matrix, in which the (i, j)-th entry
indicates the similarity between the ith shot in the query
video and the jth shot in the targeted video. Based on this
matrix, we find the best match between the query video and
a targeted video by a dynamic programming strategy,
followed by finding the maximum-sum segment [6] in the
matching. As described above, a query video in TRECVID
2010 may arbitrarily contain irrelevant content at the
beginning or at the end. We therefore have to determine a
locally optimal matching between videos. Given a query
video, we compare it with each video in the database, and
evaluate the found matched segments. The video copy
detection results are finally returned by ranking the matched
segments.
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Figure 1. Flowchart of video copy detection.

IV. BOT REPRESENTATION

Based on examining color histogram difference between
consecutive frames, we first segment a video into video shots.
The HSV (hue, saturation, value) color space is used, and the
HSV color histogram for each frame consists of sixteen
dimensions, with eight dimensions for hue and four
dimensions for saturation and value, respectively.

For each video shot, we would like to further segment it
into smaller units, called subshot, so that object movement in
the same subshot is consistent. To adaptively determine
keyframes for each shot, we adopt the global k-means
algorithm [7] to cluster videos frames and find the most
appropriate number of clusters. The frame that is closest to
its clustering centroid is selected as the keyframe. The video
segment from a keyframe to its temporally adjacent
keyframe forms a subshot. This procedure is illustrated in
Figure 2.

We are able to apply the optical flow algorithm to
estimate object motion in each subshot. However, high
computation cost and tremendous amounts of videos make
this approach infeasible. We instead extract distinct feature
points at the start of each subshot, and then just track these
features to construct motion trajectories. Because the features
points are often located on the corners of objects, how they
move appropriately describe how objects move.

In this work, we extract the SURF [8] (Speech Up Robust
Features) feature points from keyframes, followed by feature
tracking with the KLT [9] (Kanade-Lucas-Tomasi) algorithm.
SURF features can be efficiently detected and are invariant
to scaling, rotation, and some degree of illumination changes
and viewpoint changes. Based on these features, time cost
for motion estimation is largely reduced.

For a subshot, a large number of trajectories with
different lengths (frame number) may be extracted. To
efficiently represent a trajectory, we collect statistics of
moving directions between two consecutive frames. Moving
direction is categorized into five classes and each of which is
denoted by a number from 0 to 4: moving toward up-right
(denoted by 1), moving toward up-left (denoted by 2),

moving toward left-bottom (denoted by 3), moving toward
right-bottom (denoted by 4), and no movement (denoted by
0). We calculate the probability of each moving direction and
form a 5-dimensional vector to describe a trajectory. For
example, if moving directions of a trajectory of four frames
are (4, 1, 2, 2), it is transformed as the vector (0:0.0, 1:0.25,
2:0.5, 3:0.0, 4:0.25), in which (m:n) indicates the probability
of moving toward direction m is n. With this representation,
trajectories of various lengths are described in the same way.

Motivated by the bag of word model that is originally
proposed in natural language processing, we try to view
trajectories as the basic elements to describe videos [5]. We
conceptually map a video into a document, and map
trajectories into visual words for constituting the document
[10]. Given the training corpus, we extract trajectories from
each subshot and transform them into 5-dim orientation
histograms. Feature vectors collected from the training
corpus are then clustered by the k-means algorithm. Feature
vectors that are grouped into the same cluster are claimed to
represent the same bag of trajectory (BoT) word. A BoT
word conceptually represents a set of trajectories that are
similar in moving evolution. A video shot that consists of
many trajectories, therefore, is transformed into a BoT word
histogram , in which denotes
the number of trajectories corresponding to the th BoT word

. The value is the number of different BoT words, i.e.
number of clusters.

Different BoT words have different influences on
describing documents. From the study of natural language
processing, we can measure the importance of a BoT word
by TF-IDF (term frequency –inverse document frequency):

, (1)

where denotes the number of BoT words (number of
trajectories) in the document (video) , denotes the
number of documents that contain , and denotes the
number of document in the training corpus. If occurs
frequently in the document but rarely occurs in other
documents, it’s a more important BoT word to describe the
document .
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Figure 2. Procedure of constructing BoT representation.
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After the processes described above, we transform each
video shot as a -dim vector , in
which denotes the weighting corresponding to the th
BoT word . Figure 2 shows an example of transforming the
second video shot into a TF-IDF vector.

V. VIDEO COPY DETECTION

A. Finding Video Copy Candidates
With the procedure illustrated in Figure 2, we represent a

video as a sequence of tf-idf feature vectors. Therefore, the
problem of video matching has been transformed into
comparing sequences of feature vectors. Given a query video
in the representation of that consists
of shots, we would like to compare it with a video in the
database with the representation of .
We assume that the number of shots in the video in corpus is
always larger than that in the query video, i.e. . By
comparing any two video shots in and , we can
construct an similarity matrix , in which the -
th entry is defined as

, (2)
where denotes the cosine similarity between two

vectors.
Figure 3 shows examples of similarity matrices between

two videos, in which pixels with higher intensity mean larger
similarity values between two shots. The matrix in Figure
3(a) is constructed by comparing a query video with the
video that is really a video copy to the query. We can see a
diagonally straight line in this matrix. Figure 3(b) shows a
matrix constructed by comparing a query video with the
video that is really a video copy, but the query video is
suffered from gamma change. Although we still can roughly
recognize the diagonally straight line in this matrix, finding
correspondence between these two videos is much more
challenging than that in Figure 3(a). Figure 3(c) shows the
matrix constructed by comparing a query video with the
video that doesn’t contain video copy at all. Noise-like
patterns can be seen in this case.

As we describe in Section 2, queries in the TRECVID
2010 content-based copy detection task may contain
irrelevant video segments at the beginning or at the end.
Therefore, we have to be able to find partial matching
between the query and any video in the database. Based on
the similarity matrix, the wanted partial matching
corresponds to a block that has the maximum sum of
intensity values. A straightforward method to solve this
problem is to view the similarity matrix as an image, and
adopt an image segmentation algorithm such as watershed [5]

to find the partial matching. However, due to visual
transformation or interference caused by noise, the blocking
effect is often not clear, as shown in Figure 3(b).

To improve reliability of video copy detection, we
propose an approach that first finds globally optimal
matching between two videos, and then localize the best
matching in the found candidates. Based on the similarity
matrix constructed from two sequences of feature vectors,
we can formulate approximate sequence matching as finding
the longest common subsequence (LCS) between them. The
longest common subsequence between two subsequences

and is described as follows.

(3)

where denotes the th prefix of , i.e.
. The notation denotes

sum of similarity of the longest common subsequence
between and . The notation means that the
similarity value between the th shot of the query video and
the th shot of the targeted video is larger than a threshold.
This recursive structure facilitates usage of the dynamic
programming strategy to find the global optimal solution.

In the conventional LCS algorithm, the LCS between
and is found by backtracking from the most right-

bottom entry of the similarity matrix . Note that
represents the globally optimal matching

between two sequences. However, we know that the query
video may be partially copied from a video in the database,
and thus finding globally optimal matching between two
sequences that are actually partially overlapped would lead
to misleading situations. In this work, we find all possible
global matchings by backtracking from ,

, …, , respectively. By each
backtracking, we are able to find a path that indicates a
possible correspondence between the query and the video in
database. All these paths are viewed as candidates that may
consist of video copy segments. According to our
experiments, the real video copy segment would be
embedded in at least one of these possible matchings. In the
next subsection, we develop a process to examine these
candidates, and find the locally optimal matching that
indicates the real video copy segments.

B. Localize Video Copy Segments
For a path determined by the LCS

algorithm, we would like to determine a segment in it that
conveys the optimal local matching between videos. Note
that the length of this path is always equal to the length of
the query video due to , and any entry in this path
indicates an entry in the similarity matrix, i.e. the similarity
value between two video shots. This problem can be
formulated a variation of the maximum-sum segment
problem [6]. The goal is to find a segment

from such that the segment
of the longest length conveys the largest average



similarity value, where , , and
.

To find the segment corresponding to the video
copy segment, we first transform the sequence

into a real number sequence
as follows. The mean similarity of this

path is calculated:
. (4)

After mean removing, we obtain
. (5)

Note that the sequence may contain both negative and
positive real numbers.

We would like to find an interval in ,
, such that is the

maximum-sum segment of , i.e. is maximal in all
possible substrings in .

The aforementioned problem can be viewed as a range
maximum-sum segment query (RMSQ) problem [6], which
is able to be solved by a linear time algorithm. In this work,
we apply the algorithm proposed by Chen and Chao [6] to
find the segment in , which conceptually indicates the most
similar segment between the query video and the video in
database, along the current LCS (the current matching
situation).

With the processes above, we can find a maximum-sum
segment for each possible matching (each LCS). Assume
that the maximum-sum segments , , …,

are respectively found from the sequence
matchings backtracking from , , …,

. We determine the best local matching
between the query video and the video in database by finding
the maximum-sum segment that has the largest
average similarity :

, (6)
. (7)

With this decision, we finally find the optimal local
matching between the query video and a video in the
database. We respectively find best local matching between
the query video and all videos in database, and then rank the
retrieval results by average similarity values of
corresponding maximum-sum segments.

Figure 4 shows the overall scheme for video copy
detection. Given the query video that would consist of only a
segment of video copy, we first compare it with every video
in the database and respectively construct a similarity matrix.
Based on a similarity matrix, we find all possible matchings
between two videos, and then find the maximum-sum
segment in each matching. The best local matching
corresponds to the maximum-sum segment that has the
largest average similarity value. After obtaining the best
local matchings between the query video and all videos in
database, the retrieval results are ranked according to
average similarity values.
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Video 1

Video 2

…

Video X

Similarity matrix
construction

Similarity matrix
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…
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Figure 4. Scheme for video copy detection.
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Figure 5. Samples of query videos with different
transformations.

VI. PERFORMANCE EVALUATION

To evaluate the proposed video copy detection method,
we generate query videos according to the transformations
defined in TRECVID 2010, including change of gamma,
insertions of pattern, picture in picture, cropping, and shift.
We randomly select nine videos from the TRECVID 2010
database, randomly select a segment from each video,
followed by applying a transformation on it. In this work,
Corel Digital Studio [11] is used to implement these
transformations. At the beginning and the end of the
transformed video segment, we concatenate it with irrelevant
video segments (not in the TRECVID dataset) of arbitrary
lengths. By respectively applying five transformations to
nine videos, we finally generate 45 query videos that have
partial video copies. Figure 5 gives examples of query videos
generated from the same video but with different
transformations.

There are totally 3173 videos in the database. Length of
each video ranges from 3.6 minutes to 4.1 minutes, and
totally more than 200 hours of videos are in the database.

A. Performance Variations with Different Numbers of BoT
Words
We evaluate the influence of the number of BoT words

on detection accuracy. Recall that a BoT word represents a
kind of trajectory. In this experiment, we respectively
evaluate detection performance based on feature vectors
derived from 50, 100, 150, 200, and 250 BoT words, with
the 45 query videos. Figure 6 shows the performance
variations. The vertical axis shows the percentage of queries
that successfully retrieve the correct video copy in the top k



retrieved results. From Figure 6, we clearly see that
representing videos with the dictionary consisting of 100
BoT words achieves the best performance, and thus we use
this setting in the following experiments. With this setting,
about 70% of queries can successfully retrieve the correct
video copy in the top 3 results.
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Figure 6. Performance variations with different numbers of
BoT words in different ranking situations.

B. Performance Variations for Different Types of Queries
Different transformations may differently deteriorate the

representation of BoT. Figure 7 shows the percentage of
queries with different transformations that retrieve correct
results in the top 1 and top 2 results. We obtain the best
performance in cropping. Cropping in this work is
implemented as removing the surrounding region but
remaining the center region of video frames. Because there
are fewer feature points (SURF features) in background,
removing surrounding region just slightly degrades detection
performance.

On the other hand, detection by queries with shift
achieves the worst performance. We implement shift
transformation by horizontally or vertically shifting the
query video. Because the contents in “shift out”region and
“shift in”region are missing, we scale the frame as the
original size (see Figure 5). The detected features would be
different or the locations of features would change, which
further change constructed trajectories and degrade detection
performance.

Overall, Figure 7 shows that the detection performance is
satisfactory by queries with different transformations,
especially when we consider the top 2 retrieved results.

C. Performance of Copy Segment Detection
In previous two experiments, we claim that it’s a correct

detection if the retrieved result really contains the video copy
segment. In this subsection, we further calculate precision
and recall to show how accurately we can achieve to find the
video copy segment.

and , (8)

where denotes the number of frames of the retrieved
video copy segments, denotes the number of frames that
are in the retrieved results and are really in the truth video
copy segment, and denotes the number of frames that are

in the truth video copy segment. Precision and recall for nine
queries derived from the same transformation are averaged,
respectively.

Figure 8 shows average precision and recall of different
query types. We compare our method with the one proposed
in [5], in which the watershed algorithm is used to find
locally optimal matching between the query video and the
videos in database. Although the results reported in [5] are
promising, we found that the watershed method is not robust
to transformations defined in TRECVID 2010. When we
apply queries with transformations, correspondence
embedded in similarity matrices is not clear, and thus the
watershed method that is originally designed to segment
images with clear object boundaries doesn’t work well.
Overall, our method achieves 0.79 in precision and 0.80 in
recall, while the method in [5] achieves 0.23 in precision and
0.55 in recall.
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Figure 7. Detection accuracies by queries derived from
different transformations.
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VII. CONCLUSION

We present a video copy detection system that represents
videos by a bag of word model and conduct detection by
approximate sequence matching. After extracting feature-
based trajectories in videos, we view each video shot as a
document constituted by bag of trajectory words. This



representation effectively describes the information of object
movement. We compare videos based on this representation,
and transform video copy detection as an approximate
sequence matching problem. In addition to finding the
longest common subsequence between two sequences, we
further find the locally optimal matching by the maximum-
sum segment algorithm. Different types of queries are
evaluated in experiments, based on the TRECVID 2010
benchmark, and the experimental results demonstrate the
effectiveness and superiority of the proposed method.

In the future, queries with more visual transformations
will be studied, and audio information will be considered as
well to conduct multimodal video copy detection.
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