Chapter 7 One-Dimensional Search Methods

An Introduction to Optimization
Spring, 2015
Wei-Ta Chu
Golden Section Search

- Determine the minimizer of a function $f : \mathbb{R} \rightarrow \mathbb{R}$ over a closed interval, say $[a_0, b_0]$. The only assumption is that the objective function is unimodal, which means that it has only one local minimizer.

- The method is based on evaluating the objective function at different points in the interval. We choose these points in such a way that an approximation to the minimizer may be achieved in as few evaluations as possible.

- Narrow the range progressively until the minimizer is “boxed in” with sufficient accuracy.
Golden Section Search

- We have to evaluate f at two intermediate points. We choose the intermediate points in such a way that the reduction in the range is symmetric.

$$a_1 - a_0 = b_0 - b_1 = \rho(b_0 - a_0) \quad \rho < \frac{1}{2}$$

- If $f(a_1) < f(b_1)$, then the minimizer must lie in the range $[a_0, b_1]$
- If $f(a_1) \geq f(b_1)$, then the minimizer is located in the range $[a_1, b_0]$
Golden Section Search

- We would like to minimize the number of objective function evaluations.

- Suppose \(f(a_1) < f(b_1) \). Then, we know that \(x^* \in [a_0, b_1] \). Because \(a_1 \) is already in the uncertainty interval and \(f(a_1) \) is already known, we can make \(a_1 \) coincide with \(b_2 \). Thus, only one new evaluation of \(f \) at \(a_2 \) would be necessary.
Golden Section Search

Without loss of generality, imagine that the original range \([a_0, b_0]\) is of unit length. Then,

\[
\rho(b_1 - a_0) = b_1 - b_2
\]

Because \(b_1 - a_0 = 1 - \rho\) and \(b_1 - b_2 = 1 - 2\rho\)

\[
\rho(1 - \rho) = 1 - 2\rho
\]

\[
\rho^2 - 3\rho + 1 = 0 \quad \Rightarrow \quad \rho_1 = \frac{3+\sqrt{5}}{2} \quad \rho_2 = \frac{3-\sqrt{5}}{2}
\]

Because we require \(\rho < \frac{1}{2}\), we take \(\rho = \frac{3-\sqrt{5}}{2} \approx 0.382\)

Observe that

\[
1 - \rho = \frac{\sqrt{5}-1}{2} \quad \Rightarrow \quad \frac{\rho}{1-\rho} = \frac{3-\sqrt{5}}{\sqrt{5}-1} = \frac{\sqrt{5}-1}{2} = \frac{1-\rho}{1}
\]

Dividing a range in the ratio of \(\rho\) to \(1 - \rho\) has the effect that the ratio of the shorter segment to the longer equals to the ratio of the longer to the sum of the two. This rule is called golden section.
Golden Section Search

- The uncertainty range is reduced by the ratio $1 - \rho \approx 0.61803$ at every stage. Hence, N steps of reduction using the golden section method reduces the range by the factor

$$(1 - \rho)^N \approx (0.61803)^N$$
Example

- Use the golden section search to find the value of x that minimizes $f(x) = x^4 - 14x^3 + 60x^2 - 70x$ in the range $[0,2]$. Locate this value of x to within a range of 0.3.

- After N stage the range $[0,2]$ is reduced by $(0.61803)^N$. So we choose N so that $(0.61803)^N \leq 0.3/2$. $N=4$ will do.

- Iteration 1. We evaluate f at two intermediate points a_1 and b_1. We have $a_1 = a_0 + \rho(b_0 - a_0) = 0.7639$ and $\rho = \frac{3-\sqrt{5}}{2}$

 $b_1 = a_0 + (1 - \rho)(b_0 - a_0) = 1.236$

 $f(a_1) = -24.36$

 $f(b_1) = -18.96$

 $f(a_1) < f(b_1)$, so the uncertainty interval is reduced to $[a_0, b_1] = [0, 1.236]$
Example

- Iteration 2. We choose b_2 to coincide with a_1, and f need only be evaluated at one new point,

 $$a_2 = a_0 + \rho (b_1 - a_0) = 0.4721$$

 $$f(a_2) = -21.10$$

 $$f(b_2) = f(a_1) = -24.36$$

 Now, $f(b_2) < f(a_2)$, so the uncertainty interval is reduced to

 $[a_2, b_1] = [0.4721, 1.236]$
Example

- Iteration 3. We set $a_3 = b_2$ and compute b_3
 $$b_3 = a_2 + (1 - \rho)(b_1 - a_2) = 0.9443$$
 We have
 $$f(a_3) = f(b_2) = -24.36$$
 $$f(b_3) = -23.59$$
 So $f(b_3) > f(a_3)$. Hence, the uncertainty interval is further reduced to $[a_2, b_3] = [0.4721, 0.9443]$

- Iteration 4. We set $b_4 = a_3$ and $a_4 = a_2 + \rho(b_3 - a_2) = 0.6525$
 We have
 $$f(a_4) = -23.84$$
 $$f(b_4) = f(a_3) = -24.36$$
 $f(a_4) > f(b_4)$. Thus, the value of x that minimizes f is located in the interval $[a_4, b_3] = [0.6525, 0.9443]$. Note that $b_3 - a_4 = 0.292 < 0.3$
Suppose now that we are allowed to vary the value ρ from stage to stage.

As in the golden section search, our goal is to select successive values of ρ_k, $0 \leq \rho_k \leq 1/2$, such that only one new function evaluation is required at each stage.

$$\rho_{k+1}(1 - \rho_k) = 1 - 2\rho_k$$

After some manipulations, we obtain

$$\rho_{k+1} = 1 - \frac{\rho_k}{1 - \rho_k}$$
Fibonacci Search

\[\rho_{k+1} = 1 - \frac{\rho_k}{1 - \rho_k} \]

- Suppose that we are given a sequence \(\rho_1, \rho_2, \ldots \) satisfying the conditions above and we use this sequence in our search algorithm. Then, after \(N \) iterations, the uncertainty range is reduced by a factor of

\[
(1 - \rho_1)(1 - \rho_2) \cdots (1 - \rho_N)
\]

- What sequence \(\rho_1, \rho_2, \ldots \) minimizes the reduction factor above?

- This is a constrained optimization problem

\[
\text{minimize } (1 - \rho_1)(1 - \rho_2) \cdots (1 - \rho_N) \\
\text{subject to } \rho_{k+1} = 1 - \frac{\rho_k}{1 - \rho_k}, \ k = 1, \ldots, N - 1 \\
0 \leq \rho_k \leq 1/2, \ k = 1, \ldots, N
\]
Fibonacci Search

- The **Fibonacci sequence** F_1, F_2, F_3, \ldots is defined as follows. Let $F_{-1} = 0$ and $F_0 = 1$. Then, for $k \geq 0$

$$F_{k+1} = F_k + F_{k-1}$$

- Some values of elements in the Fibonacci sequence

<table>
<thead>
<tr>
<th>F_1</th>
<th>F_2</th>
<th>F_3</th>
<th>F_4</th>
<th>F_5</th>
<th>F_6</th>
<th>F_7</th>
<th>F_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>21</td>
<td>34</td>
</tr>
</tbody>
</table>

- It turns out the solution to the optimization problem above is

$$\rho_1 = 1 - \frac{F_N}{F_{N+1}}$$

$$\rho_2 = 1 - \frac{F_{N-1}}{F_N}$$

$$\vdots$$

$$\rho_k = 1 - \frac{F_{N-k+1}}{F_{N-k+2}}$$

$$\vdots$$

$$\rho_N = 1 - \frac{F_1}{F_2}$$
The resulting algorithm is called the **Fibonacci search method**.

In this method, the uncertainty range is reduced by the factor

\[
(1 - \rho_1)(1 - \rho_2) \cdots (1 - \rho_N) = \frac{F_N}{F_{N+1}} \frac{F_{N-1}}{F_N} \cdots \frac{F_1}{F_2} = \frac{F_1}{F_{N+1}} = \frac{1}{F_{N+1}}
\]

The reduction factor is less than that of the golden section method.

There is an anomaly in the final iteration, because

\[
\rho_N = 1 - \frac{F_1}{F_2} = \frac{1}{2}
\]

Recall that we need two intermediate points at each stage, one comes from a previous iteration and another is a new evaluation point. However, with \(\rho_N = \frac{1}{2} \), the two intermediate points coincide in the middle of the uncertainty interval, and thus we cannot further reduce the uncertainty range.
Fibonacci Search

- To get around this problem, we perform the new evaluation for the last iteration using \(\rho_N = \frac{1}{2} - \epsilon \), where \(\epsilon \) is a small number.

- The new evaluation point is just to the left or right of the midpoint of the uncertainty interval.

- As a result of the modification, the reduction in the uncertainty range at the last iteration may be either
 \[
 1 - \rho_N = \frac{1}{2}
 \]
 or
 \[
 1 - (\rho_N - \epsilon) = \frac{1}{2} + \epsilon = \frac{1 + 2\epsilon}{2}
 \]
 depending on which of the two points has the smaller objective function value. Therefore, in the worst case, the reduction factor in the uncertainty range for the Fibonacci method is
 \[
 \frac{1 + 2\epsilon}{F_{N+1}}
 \]
Example

- Consider the function \(f(x) = x^4 - 14x^3 + 60x^2 - 70x \). Use the Fibonacci search method to find the value of \(x \) that minimizes \(f \) over the range \([0,2]\). Locate this value of \(x \) to within the range 0.3.

- After \(N \) steps the range is reduced by \((1 + 2\epsilon)/F_{N+1} \) in the worst case. We need to choose \(N \) such that
 \[
 \frac{1 + 2\epsilon}{F_{N+1}} \leq \frac{\text{final range}}{\text{initial range}} = \frac{0.3}{2} = 0.15
 \]

- Thus, we need \(F_{N+1} \geq \frac{1+2\epsilon}{0.15} \)

- If we choose \(\epsilon \leq 0.1 \), then \(N = 4 \) will do.
Example

- Iteration 1. We start with

 \[1 - \rho_1 = \frac{F_4}{F_5} = \frac{5}{8} \]

 We then compute

 \[a_1 = a_0 + \rho_1 (b_0 - a_0) = \frac{3}{4} \]

 \[b_1 = a_0 + (1 - \rho_1)(b_0 - a_0) = \frac{5}{4} \]

 \[f(a_1) = -24.34 \]

 \[f(b_1) = -18.65 \]

 \[f(a_1) < f(b_1) \]

- The range is reduced to \([a_0, b_1] = [0, \frac{5}{4}]\)
Example

Iteration 2. We have

\[1 - \rho_2 = \frac{F_3}{F_4} = \frac{3}{5}\]

\[a_2 = a_0 + \rho_2(b_1 - a_0) = \frac{1}{2}\]

\[b_2 = a_1 = \frac{3}{4}\]

\[f(a_2) = -21.69\]

\[f(b_2) = f(a_1) = -24.34\]

\[f(a_2) > f(b_2)\]

so the range is reduced to \([a_2, b_1] = [\frac{1}{2}, \frac{5}{4}]\)
Example

- Iteration 3. We compute

\[1 - \rho_3 = \frac{F_2}{F_3} = \frac{2}{3} \]

\[a_3 = b_2 = \frac{3}{4} \]

\[b_3 = a_2 + (1 - \rho_3)(b_1 - a_2) = 1 \]

\[f(a_3) = f(b_2) = -24.34 \]

\[f(b_3) = -23 \]

\[f(a_3) < f(b_3) \]

The range is reduced to \([a_2, b_3] = [\frac{1}{2}, 1] \)
Example

- Iteration 4. We choose $\epsilon = 0.05$. We have
 \[1 - \rho_4 = \frac{F_1}{F_2} = \frac{1}{2}\]
 \[a_4 = a_2 + (\rho_4 - \epsilon)(b_3 - a_2) = 0.725\]
 \[b_4 = a_3 = \frac{3}{4}\]
 \[f(a_4) = -24.27\]
 \[f(b_4) = f(a_3) = -24.34\]
 \[f(a_4) > f(b_4)\]

 The range is reduced to $[a_4, b_3] = [0.725, 1]$

- Note that $b_3 - a_4 = 0.275 < 0.3$
Newton’s Method

- In the problem of minimizing a function f of a single variable x
- Assume that at each measurement point $x^{(k)}$ we can calculate $f(x^{(k)})$, $f'(x^{(k)})$, and $f''(x^{(k)})$.
- We can fit a quadratic function through $x^{(k)}$ that matches its first and second derivatives with that of the function f.

$$q(x) = f(x^{(k)}) + f'(x^{(k)})(x - x^{(k)}) + \frac{1}{2}f''(x^{(k)})(x - x^{(k)})^2$$

- Note that $q(x^{(k)}) = f(x^{(k)})$, $q'(x^{(k)}) = f'(x^{(k)})$, and $q''(x^{(k)}) = f''(x^{(k)})$
- Instead of minimizing f, we minimize its approximation q. The first order necessary condition for a minimizer of q yields

$$0 = q'(x) = f'(x^{(k)}) + f''(x^{(k)})(x - x^{(k)})$$

setting $x = x^{(k+1)}$, we obtain

$$x^{(k+1)} = x^{(k)} - \frac{f'(x^{(k)})}{f''(x^{(k)})}$$
Example

Using Newton’s method, find the minimizer of \(f(x) = \frac{1}{2}x^2 - \sin x \)

The initial value is \(x^{(0)} = 0.5 \). The required accuracy is \(\epsilon = 10^{-5} \) in the sense that we stop when \(|x^{(k+1)} - x^{(k)}| < \epsilon \).

We compute \(f'(x) = x - \cos x \) \quad \(f''(x) = 1 + \sin x \)

Hence,

\[
x^{(1)} = 0.5 - \frac{0.5 - \cos 0.5}{1 + \sin 0.5} = 0.5 - \frac{-0.3775}{1.479} = 0.7552
\]

Proceeding in a similar manner, we obtain

\[
x^{(2)} = x^{(1)} - \frac{f'(x^{(1)})}{f''(x^{(1)})} = x^{(1)} - \frac{0.02710}{1.685} = 0.7391
\]

\[
x^{(3)} = x^{(2)} - \frac{f'(x^{(2)})}{f''(x^{(2)})} = x^{(2)} - \frac{9.461 \times 10^{-5}}{1.673} = 0.7390
\]

\[
x^{(4)} = x^{(3)} - \frac{f'(x^{(3)})}{f''(x^{(3)})} = x^{(3)} - \frac{1.17 \times 10^{-9}}{1.673} = 0.7390 \quad |x^{(4)} - x^{(3)}| < \epsilon = 10^{-5}
\]

\[
f'(x^{(4)}) = -8.6 \times 10^{-6} \approx 0 \quad f''(x^{(4)}) = 1.763 > 0
\]

We can assume that \(x^* \approx x^{(4)} \) is a strict minimizer.

Corollary 6.1
Newton’s Method

- Newton’s method works well if $f''(x) > 0$ everywhere. However, if $f''(x) < 0$ for some x, Newton’s method may fail to converge to the minimizer.

- Newton’s method can also be viewed as a way to drive the first derivative of f to zero. If we set $g(x) = f'(x)$, then we obtain

$$x^{(k+1)} = x^{(k)} - \frac{g(x^{(k)})}{g'(x^{(k)})}$$
Example

- We apply Newton’s method to improve a first approximation, \(x^{(0)} = 12 \), to the root of the equation \(g(x) = x^3 - 12.2x^2 + 7.45x + 42 = 0 \)

- We have \(g'(x) = 3x^2 - 24.4x + 7.45 \)

- Performing two iterations yields

\[
x^{(1)} = 12 - \frac{102.6}{146.65} = 11.33
\]

\[
x^{(2)} = 11.33 - \frac{14.73}{116.11} = 11.21
\]
Newton’s Method

- Newton’s method for solving equations of the form \(g(x) = 0 \) is also referred to as **Newton’s method of tangents**.

- If we draw a tangent to \(g(x) \) at the given point \(x^{(k)} \), then the tangent line intersects the \(x \)-axis at the point \(x^{(k+1)} \), which we expect to be closer to the root \(x^* \) of \(g(x) = 0 \).

- Note that the slope of \(g(x) \) at \(x^{(k)} \) is

\[
g'(x^{(k)}) = \frac{g(x^{(k)})}{x^{(k)} - x^{(k+1)}}
\]

\[
x^{(k+1)} = x^{(k)} - \frac{g(x^{(k)})}{g'(x^{(k)})}
\]
Newton’s Method

- Newton’s method of tangents may fail if the first approximation to the root is such that the ratio $g(x^{(0)})/g'(x^{(0)})$ is not small enough.
- Thus, an initial approximation to the root is very important.
Secant Method

- Newton’s method for minimizing f uses second derivatives of f
 \[x^{(k+1)} = x^{(k)} - \frac{f'(x^{(k)})}{f''(x^{(k)})} \]

- If the second derivative is not available, we may attempt to approximate it using first derivative information. We may approximate $f''(x^{(k)})$ with
 \[f''(x^{(k)}) = \frac{f'(x^{(k)}) - f'(x^{(k-1)})}{x^{(k)} - x^{(k-1)}} \]

- Using the foregoing approximation of the second derivative, we obtain the algorithm
 \[x^{(k+1)} = x^{(k)} - \frac{x^{(k)} - x^{(k-1)}}{f'(x^{(k)}) - f'(x^{(k-1))} f'(x^{(k)})} f'(x^{(k)}) \]
 called the secant method.
Secant Method

Note that the algorithm requires two initial points to start it, which we denote x^{-1} and x^0. The secant algorithm can be represented in the following equivalent form:

$$x^{(k+1)} = x^{(k)} - \frac{x^{(k)} - x^{(k-1)}}{f'(x^{(k)}) - f'(x^{(k-1)})}f'(x^{(k)})$$

Like Newton’s method, the secant method does not directly involve values of $f(x^{(k)})$. Instead, it tries to drive the derivative f' to zero.

In fact, as we did for Newton’s method, we can interpret the secant method as an algorithm for solving equations of the form $g(x) = 0$.

\[\text{\textcopyright 2023} \]
Secant Method

- The secant algorithm for finding a root of the equation \(g(x) = 0 \) takes the form
 \[
 x^{(k+1)} = x^{(k)} - \frac{x^{(k)} - x^{(k-1)}}{g(x^{(k)}) - g(x^{(k-1)})} g(x^{(k)}),
 \]
 or equivalently,
 \[
 x^{(k+1)} = \frac{g(x^{(k)})x^{(k-1)} - g(x^{(k-1)})x^{(k)}}{g(x^{(k)}) - g(x^{(k-1)})}
 \]

- In this figure, unlike Newton’s method, the secant method uses the “secant” between the \((k - 1)\)th and \(k\)th points to determine the \((k + 1)\)th point.
Example

- We apply the secant method to find the root of the equation
 \[g(x) = x^3 - 12.2x^2 + 7.45x + 42 = 0 \]

- We perform two iterations, with starting points \(x^{(-1)} = 13 \) and \(x^{(0)} = 12 \). We obtain
 \[x^{(1)} = 11.40 \]
 \[x^{(2)} = 11.25 \]
Example

- Suppose that the voltage across a resistor in a circuit decays according to the model \(V(t) = e^{-Rt} \), where \(V(t) \) is the voltage at time \(t \) and \(R \) is the resistance value.

- Given measurements \(V_1, ..., V_n \) of the voltage at times \(t_1, ..., t_n \), respectively, we wish to find the best estimate of \(R \). By the best estimate we mean the value of \(R \) that minimizes the total squared error between the measured voltages and the voltages predicted by the model.

- We derive an algorithm to find the best estimate of \(R \) using the secant method. The objective function is

\[
 f(R) = \sum_{i=1}^{n} (V_i - e^{-Rt_i})^2
\]
Example

\[f(R) = \sum_{i=1}^{n} (V_i - e^{-R t_i})^2 \]

- Hence, we have

\[f'(R) = 2 \sum_{i=1}^{n} (V_i - e^{-R t_i}) e^{-R t_i} t_i \]

- The secant algorithm for the problem is

\[
R_{k+1} = R_k - \frac{R_k - R_{k-1}}{\sum_{i=1}^{n} (V_i - e^{-R_k t_i}) e^{-R_k t_i} t_i - (V_i - e^{-R_{k-1} t_i}) e^{-R_{k-1} t_i} t_i} \times \sum_{i=1}^{n} (V_i - e^{-R_k t_i}) e^{-R_k t_i} t_i
\]
Remarks on Line Search Methods

- Iterative algorithms for solving such optimization problems involve a **line search** at every iteration.
- Let \(f : \mathbb{R}^n \to \mathbb{R} \) be a function that we wish to minimize. Iterative algorithms for finding a minimizer of \(f \) are of the form
 \[
 x^{(k+1)} = x^{(k)} + \alpha_k d^{(k)}
 \]
 where \(x^{(0)} \) is a given initial point and \(\alpha_k \geq 0 \) is chosen to minimized \(\phi_k(\alpha) = f(x^{(k)} + \alpha d^{(k)}) \). The vector \(d^{(k)} \) is called the **search direction**.

The secant method

\[
 x^{(k+1)} = x^{(k)} - \frac{x^{(k)} - x^{(k-1)}}{f'(x^{(k)}) - f'(x^{(k-1)})} f'(x^{(k)})
\]
Remarks on Line Search Methods

- Note that choice of α_k involves a one-dimensional minimization. This choice ensures that under appropriate conditions, $f(x^{(k+1)}) < f(x^{(k)})$.

- We may, for example, use the secant method to find α_k. In this case, we need the derivative of ϕ_k

$$
\phi_k'(\alpha) = d^{(k)}T \nabla f(x^{(k)} + \alpha d^{(k)})
$$

- This is obtained by the chain rule. Therefore, applying the secant method for the line search requires the gradient ∇f, the initial search point $x^{(k)}$, and the search direction $d^{(k)}$.

Remarks on Line Search Methods

- Line search algorithms used in practice are much more involved than the one-dimensional search methods.
 - Determining the value of α_k that exactly minimizes ϕ_k may be computationally demanding; even worse, the minimizer of ϕ_k may not even exist.
 - Practical experience suggests that it is better to allocate more computation time on iterating the optimization algorithm rather than performing exact line searches.