Chapter 3 Transformations

An Introduction to Optimization
Spring, 2015

Wei-Ta Chu
A function $\mathcal{L} : \mathbb{R}^n \rightarrow \mathbb{R}^m$ is called a linear transformation if

1. $\mathcal{L}(a\mathbf{x}) = a\mathcal{L}(\mathbf{x})$ for every $\mathbf{x} \in \mathbb{R}^n$ and $a \in \mathbb{R}$
2. $\mathcal{L}(\mathbf{x} + \mathbf{y}) = \mathcal{L}(\mathbf{x}) + \mathcal{L}(\mathbf{y})$ for every $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$

If we fix the bases for \mathbb{R}^n and \mathbb{R}^m, then the linear transformation can be represented by a matrix.

Theorem 3.1: Suppose that $\mathbf{x} \in \mathbb{R}^n$ is a given vector, and \mathbf{x}' is the representation of \mathbf{x} with respect to the given basis for \mathbb{R}^n. If $\mathbf{y} = \mathcal{L}(\mathbf{x})$ and \mathbf{y}' is the representation of \mathbf{y} with respect to the given basis for \mathbb{R}^m, then $\mathbf{y}' = A\mathbf{x}'$, where $A \in \mathbb{R}^{m \times n}$ and is called the matrix representation of \mathcal{L}.

Special case: with respect to natural bases for \mathbb{R}^n and \mathbb{R}^m

$$\mathbf{y} = \mathcal{L}(\mathbf{x}) = A\mathbf{x}$$
Linear Transformations

- Let \(\{e_1, e_2, ..., e_n\} \) and \(\{e'_1, e'_2, ..., e'_n\} \) be two bases for \(\mathbb{R}^n \). Define the matrix

\[
T = [e'_1, e'_2, ..., e'_n]^{-1}[e_1, e_2, ..., e_n]
\]

\[
[e_1, e_2, ..., e_n] = [e'_1, e'_2, ..., e'_n]T
\]

that is, the \(i \)th column of \(T \) is the vector of coordinates of \(e_i \) with respect to the basis \(\{e'_1, e'_2, ..., e'_n\} \).

- Given a vector, let \(x \) be the coordinates of the vector with respect to \(\{e_1, e_2, ..., e_n\} \) and \(x' \) be the coordinates of the same vector with respect to \(\{e'_1, e'_2, ..., e'_n\} \). Then, \(x' = Tx \).
Example (Finding a Transition Matrix)

Consider bases $B = \{\mathbf{u}_1, \mathbf{u}_2\}$ and $B' = \{\mathbf{u}_1', \mathbf{u}_2'\}$ for \mathbb{R}^2, where

$\mathbf{u}_1 = (1, 0), \mathbf{u}_2 = (0, 1);$

$\mathbf{u}_1' = (1, 1), \mathbf{u}_2' = (2, 1).$

Find the transition matrix from B' to B.

Find $[\mathbf{v}]_B$ if $[\mathbf{v}]_{B'} = [-3 \ 5]^T$.

Solution:

First we must find the coordinate matrices for the new basis vectors \mathbf{u}_1' and \mathbf{u}_2' relative to the old basis B.

By inspection $\mathbf{u}_1' = \mathbf{u}_1 + \mathbf{u}_2$ so that

$[\mathbf{u}_1']_B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $[\mathbf{u}_2']_B = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$

Thus, the transition matrix from B' to B is

$P = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$
Example (Finding a Transition Matrix)

\[P = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} \]

- Using the transition matrix yields

\[[\mathbf{v}]_B = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} -3 \\ 5 \end{bmatrix} = \begin{bmatrix} 7 \\ 2 \end{bmatrix} \]

- As a check, we should be able to recover the vector \(\mathbf{v} \) either from \([\mathbf{v}]_B\) or \([\mathbf{v}]_{B'}\).

\[-3\mathbf{u}_1' + 5\mathbf{u}_2' = 7\mathbf{u}_1 + 2\mathbf{u}_2 = \mathbf{v} = (7,2)\]
Example (A Different Viewpoint)

\[u_1 = (1, 0), \quad u_2 = (0, 1); \quad u_1' = (1, 1), \quad u_2' = (2, 1) \]

- In the previous example, we found the transition matrix from the basis \(B' \) to the basis \(B \). However, we can just as well ask for the transition matrix from \(B \) to \(B' \).
- We simply change our point of view and regard \(B' \) as the old basis and \(B \) as the new basis.
- As usual, the columns of the transition matrix will be the coordinates of the new basis vectors relative to the old basis.

\[u_1 = -u_1' + u_2'; \quad u_2 = 2u_1' - u_2' \]

\[
[u_1]_{B'} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} \quad [u_2]_{B'} = \begin{bmatrix} 2 \\ -1 \end{bmatrix} \quad Q = \begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix}
\]
Remarks

\[P = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} \quad Q = \begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix} \]

- If we multiply the transition matrix from \(B' \) to \(B \) and the transition matrix from \(B \) to \(B' \), we find

\[PQ = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I \]

\[Q = P^{-1} \]
Consider a linear transformation \(\mathcal{L} : R^n \to R^n \) and let \(A \) be its representation with respect to \(\{e_1, e_2, \ldots, e_n\} \) and \(B \) its representation with respect to \(\{e'_1, e'_2, \ldots, e'_n\} \).

Let \(y = Ax \) and \(y' = Bx' \). Therefore,

\[
y' =Ty =TAx = Bx' = BTx
\]

and hence \(TA = BT \), or \(A = T^{-1}BT \).

Two \(n \times n \) matrices \(A \) and \(B \) are similar if there exists a nonsingular matrix \(T \) such that \(A = T^{-1}BT \).

In conclusion, similar matrices correspond to the same linear transformation with respect to different bases.
Let A be an $n \times n$ square matrix. A scalar λ and a nonzero vector v satisfying the equation $Av = \lambda v$ are said to be, respectively, an \textit{eigenvalue} and an \textit{eigenvector} of A.

The matrix $\lambda I - A$ must be singular; that is, $\det(\lambda I - A) = 0$.

This leads to an nth-order polynomial equation

$$\det(\lambda I - A) = \lambda^n + a_{n-1}\lambda^{n-1} + \cdots + a_1\lambda + a_0 = 0$$

The polynomial $\det(\lambda I - A)$ is called the \textit{characteristic polynomial}, and the equation is called the \textit{characteristic equation}.
Suppose that the characteristic equation \(\det(\lambda I - A) = 0 \) has \(n \) distinct roots \(\lambda_1, \lambda_2, \ldots, \lambda_n \). Then, there exist \(n \) linearly independent vectors \(v_1, v_2, \ldots, v_n \) such that
\[
A v_i = \lambda_i v_i \quad i = 1, 2, \ldots, n
\]

Consider a basis formed by a linearly independent set of eigenvectors \(\{v_1, v_2, \ldots, v_n\} \). With respect to this basis, the matrix \(A \) is diagonal.

Let \(T = [v_1, v_2, \ldots, v_n]^{-1} \)
\[
T A T^{-1} = T A [v_1, v_2, \ldots, v_n] = T [A v_1, A v_2, \ldots, A v_n] = T [\lambda_1 v_1, \lambda_2 v_2, \ldots, \lambda_n v_n] = T T^{-1} \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}
\]
Eigenvalues and Eigenvectors

- A matrix A is symmetric if $A = A^T$.
- Theorem 3.2: All eigenvalues of a real symmetric matrix are real.
- Theorem 3.3: Any real symmetric $n \times n$ matrix has a set of n eigenvectors that are mutually orthogonal. (i.e., this matrix can be orthogonally diagonalized)
- If A is symmetric, then a set of its eigenvectors forms an orthogonal basis for \mathbb{R}^n. If the basis $\{v_1, v_2, ..., v_n\}$ is normalized so that each element has norm of unity, then defining the matrix $T = [v_1, v_2, ..., v_n]$ we have $T^T T = I$, or $T^T = T^{-1}$
- A matrix whose transpose is its inverse is said to be an orthogonal matrix.
Example

- Find an orthogonal matrix P that diagonalizes
 \[A = \begin{bmatrix} 4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4 \end{bmatrix} \]

- Solution:
 - The characteristic equation of A is
 \[\det(\lambda I - A) = \det \begin{bmatrix} \lambda - 4 & -2 & -2 \\ -2 & \lambda - 4 & -2 \\ -2 & -2 & \lambda - 4 \end{bmatrix} = (\lambda - 2)^2(\lambda - 8) = 0 \]
 - The basis of the eigenspace corresponding to $\lambda = 2$ is $\mathbf{u}_1 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$ and $\mathbf{u}_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$
 - Applying the Gram-Schmidt process to $\{\mathbf{u}_1, \mathbf{u}_2\}$ yields the following orthonormal eigenvectors:
 \[\mathbf{v}_1 = \begin{bmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{bmatrix} \text{ and } \mathbf{v}_2 = \begin{bmatrix} -1/\sqrt{6} \\ -1/\sqrt{6} \\ 2/\sqrt{6} \end{bmatrix} \]
Example

- The basis of the eigenspace corresponding to $\lambda = 8$ is $u_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$
- Applying the Gram-Schmidt process to $\{u_3\}$ yields:

$$v_3 = \begin{bmatrix} 1/\sqrt{3} \\ 1/\sqrt{3} \\ 1/\sqrt{3} \end{bmatrix}$$

- Thus,

$$P = [v_1 \quad v_2 \quad v_3] = \begin{bmatrix} -1/\sqrt{2} & -1/\sqrt{6} & 1/\sqrt{3} \\ 1/\sqrt{2} & -1/\sqrt{6} & 1/\sqrt{3} \\ 0 & 2/\sqrt{6} & 1/\sqrt{3} \end{bmatrix}$$

orthogonally diagonalizes A.

13
Orthogonal Projections

- If \mathcal{V} is a subspace of \mathbb{R}^n, then the **orthogonal complement** of \mathcal{V}, denoted by \mathcal{V}^\perp, consists of all vectors that are orthogonal to every vector in \mathcal{V}, i.e., $\mathcal{V}^\perp = \{x : v^T x = 0 \text{ for all } v \in \mathcal{V}\}$

- The orthogonal complement of \mathcal{V} is also a subspace.

- Together, \mathcal{V} and \mathcal{V}^\perp span \mathbb{R}^n in the sense that every vector $x \in \mathbb{R}^n$ can be represented uniquely as $x = x_1 + x_2$, where $x_1 \in \mathcal{V}$ and $x_2 \in \mathcal{V}^\perp$

- The representation above is the **orthogonal decomposition** of x

- We say that x_1 and x_2 are **orthogonal projections** of x onto the subspaces \mathcal{V} and \mathcal{V}^\perp, respectively. We write $\mathbb{R}^n = \mathcal{V} \oplus \mathcal{V}^\perp$ and say that \mathbb{R}^n is a **direct sum** of \mathcal{V} and \mathcal{V}^\perp. We say that a linear transformation P is an **orthogonal projector** onto \mathcal{V} if for all $x \in \mathbb{R}^n$ we have $Px \in \mathcal{V}$ and $x - Px \in \mathcal{V}^\perp$
Orthogonal Projections

- **Theorem 3.4**: Let $A \in \mathbb{R}^{m \times n}$, the range or image of A can be denoted

 \[\mathcal{R}(A) \triangleq \{ A x : x \in \mathbb{R}^n \} \quad \text{Column space} \]

- The nullspace or kernel of A can be denoted

 \[\mathcal{N}(A) \triangleq \{ x \in \mathbb{R}^n : A x = 0 \} \]

- $\mathcal{R}(A)$ and $\mathcal{N}(A)$ are subspaces.

 - $\mathcal{R}(A)^\perp = \mathcal{N}(A^T)$ and $\mathcal{N}(A)^\perp = \mathcal{R}(A^T)$ (four fundamental spaces in Linear Algebra) \text{ Row space}

- If P is an orthogonal projector onto \mathcal{V}, then $P x = x$ for all $x \in \mathcal{V}$, and $\mathcal{R}(P) = \mathcal{V}$

- **Theorem 3.5**: A matrix P is an orthogonal projector if and only if $P^2 = P = P^T$
Quadratic Forms

\[a_1x_1^2 + a_2x_2^2 + a_3x_1x_2 \rightarrow \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} a_1 & a_3/2 \\ a_3/2 & a_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \]

\[a_1x_1^2 + a_2x_2^2 + a_3x_3^2 + a_4x_1x_2 + a_5x_1x_3 + a_6x_2x_3 \rightarrow \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} a_1 & a_4/2 & a_5/2 \\ a_4/2 & a_2 & a_6/2 \\ a_5/2 & a_6/2 & a_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \]

- A quadratic form \(f : \mathbb{R}^n \rightarrow \mathbb{R}^n \) is a function \(f(x) = x^T Q x \), where \(Q \) is an \(n \times n \) real matrix. There is no loss of generality in assuming \(Q \) to be symmetric: \(Q = Q^T \)

\[2x^2 + 6xy - 7y^2 = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 2 & 5 \\ 1 & -7 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \]
For if the matrix Q is not symmetric, we can always replace it with the symmetric

$Q_0 = Q_0^T = \frac{1}{2}(Q + Q^T)$

$x^T Q x = x^T Q_0 x = x^T \left(\frac{1}{2} Q + \frac{1}{2} Q^T \right) x$

A quadratic form $x^T Q x$ is said to be **positive definite** if $x^T Q x > 0$ for all nonzero vectors x. It is **positive semidefinite** if $x^T Q x \geq 0$ for all x. Similarly, we define the quadratic form to be **negative definite**, or **negative semidefinite**, if $x^T Q x < 0$ or $x^T Q x \leq 0$
The **principal minors** for a matrix Q are $\det(Q)$ itself and the determinants of matrices obtained by successively removing an ith row and an ith column.

The **leading principal minors** are $\det(Q)$ and the minors obtained by successive removing the last row and the last column.

$$
\Delta_1 = q_{11} \quad \Delta_2 = \det \begin{bmatrix} q_{11} & q_{12} \\ q_{21} & q_{22} \end{bmatrix} \\
\Delta_3 = \det \begin{bmatrix} q_{11} & q_{12} & q_{13} \\ q_{21} & q_{22} & q_{23} \\ q_{31} & q_{32} & q_{33} \end{bmatrix} \quad \cdots \quad \Delta_n = \det(Q)
$$
Theorem 3.6 Sylvester’s Criterion: A quadratic form $x^T Q x$, $Q = Q^T$, is positive definite if and only if the leading principal minors of Q are positive.

Note that if Q is not symmetric, Sylvester’s criterion cannot be used.

A *necessary* condition for a real quadratic form to be positive semidefinite is that the leading principal minors be nonnegative. However, it is *not a sufficient* condition. In fact, a real quadratic form is positive semidefinite if and only if all *principal minors* are nonnegative.
A symmetric matrix Q is said to be *positive definite* if the quadratic form $x^T Q x$ is positive definite.

If Q is positive definite, we write $Q > 0$.

Positive semidefinite, negative definite, negative semidefinite properties are defined similarly.

The symmetric matrix Q is *indefinite* if it is neither positive semidefinite nor negative semidefinite.

Theorem 3.7: A symmetric matrix Q is positive definite (or positive semidefinite) if and only if all eigenvalues of Q are positive (or nonnegative).
Matrix Norms

- The norm of a matrix A, denoted by $\|A\|$, is any function that satisfies the following conditions:
 - $\|A\| > 0$ if $A \neq O$, and $\|O\| = 0$, where O is a matrix with all entries equal to zero.
 - $\|cA\| = |c|\|A\|$, for any $c \in R$
 - $\|A + B\| \leq \|A\| + \|B\|
- An example of a matrix norm is the **Frobenius norm**, defined as
 $$\|A\|_F = \left(\sum_{i=1}^{m} \sum_{j=1}^{n} (a_{ij})^2 \right)^{1/2}$$
- Note that the Frobenius norm is equivalent to the Euclidean norm on R^{mn}.
- For our purpose, we consider only matrix norms satisfying the addition condition: $\|AB\| \leq \|A\|\|B\|$
Matrix Norms

- In many problems, both matrices and vectors appear simultaneously. Therefore, it is convenient to construct the matrix norm in such a way that it will be related to vector norms.

- To this end we consider a special class of matrix norms, called *induced norms*.

Let $\| \cdot \|_{(n)}$ and $\| \cdot \|_{(m)}$ be vector norms on \mathbb{R}^n and \mathbb{R}^m, respectively. We say that the matrix norm is *induced* by, or is *compatible* with, the given vector norms if for any matrix $A \in \mathbb{R}^{m \times n}$ and any vector $x \in \mathbb{R}^n$, the following inequality is satisfied:

$$\| Ax \|_{(m)} \leq \| A \| \| x \|_{(n)}$$
Matrix Norms

We can define an induced matrix norm as

$$\|A\| = \max_{\|x\| = 1} \|Ax\|$$

that is, $\|A\|$ is the maximum of the norms of the vectors Ax where the vector x runs over the set of all vectors with unit norm. We may omit the subscripts in the following.

For each matrix A the maximum $\max_{\|x\| = 1} \|Ax\|$ is attainable; that is, a vector x_0 exists such that $\|x_0\| = 1$ and $\|Ax_0\| = \|A\|$.
Theorem 3.8: Let
\[\| \mathbf{x} \| = \left(\sum_{k=1}^{n} |x_k|^2 \right)^{1/2} = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle} \]
the matrix norm induced by this vector norm is
\[\| \mathbf{A} \| = \sqrt{\lambda_1} \]
where \(\lambda_1 \) is the largest eigenvalue of the matrix \(\mathbf{A}^T \mathbf{A} \).

Rayleigh’s Inequality: If an \(n \times n \) matrix \(\mathbf{P} \) is real symmetric positive definite, then
\[\lambda_{\min}(\mathbf{P}) \| \mathbf{x} \|^2 \leq \mathbf{x}^T \mathbf{P} \mathbf{x} \leq \lambda_{\max}(\mathbf{P}) \| \mathbf{x} \|^2 \]
where \(\lambda_{\min}(\mathbf{P}) \) denotes the smallest eigenvalue of \(\mathbf{P} \), and \(\lambda_{\max}(\mathbf{P}) \) denotes the largest eigenvalue of \(\mathbf{P} \).
Consider the matrix and let the norm in \mathbb{R}^2 be given by

$$\|x\| = \sqrt{x_1^2 + x_2^2}$$

Then, $A^TA = \begin{bmatrix} 5 & 4 \\ 4 & 5 \end{bmatrix}$

and $\det(\lambda I_2 - A^TA) = \lambda^2 - 10\lambda + 9 = (\lambda - 1)(\lambda - 9)$

Thus, $\|A\| = \sqrt{9} = 3$

The eigenvector of A^TA corresponding to $\lambda_1 = 9$ is $x_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

Note that $\|Ax_1\| = \|A\|$

$$\|Ax_1\| = \left\| \frac{1}{\sqrt{2}} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\| = \frac{1}{\sqrt{2}} \left\| \begin{bmatrix} 3 \\ 3 \end{bmatrix} \right\| = 3$$

Because $A = A^T$ in this example, we have $\|A\| = \max_{1 \leq i \leq n} |\lambda_i(A)|$.

However, in general $\|A\| \neq \max_{1 \leq i \leq n} |\lambda_i(A)|$. Indeed, we have $\|A\| \geq \max_{1 \leq i \leq n} |\lambda_i(A)|$.

$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$
Example

\[A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \quad A^T A = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \]

\[\det[\lambda I_2 - A^T A] = \det \begin{bmatrix} \lambda & 0 \\ 0 & \lambda - 1 \end{bmatrix} = \lambda(\lambda - 1) \]

- Note that 0 is the only eigenvalue of \(A \). Thus, for \(i = 1, 2 \),
 \[\| A \| = 1 > |\lambda_i(A)| = 0 \]