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Projections
� The optimization algorithms described in Part II have the 

general form �(���) = �(�) + 	�
(�), where 
(�) is typically a 
function of ��(�(�)). The value of �(�) is not constrained to lie 
inside any particular set. 

� Consider the optimization problem 
���
���		� ��������	��			� ∈ Ω
� Modify the algorithm we already know to take constraints into 

account. 

2



Projections

3

� If �(�) + 	�
(�) is in Ω, then we set form �(���) =�(�) + 	�
(�) as usual. 

� If, on the other hand, �(�) + 	�
(�) is not in Ω, then we 
“project” it back into Ω before setting �(���). 

� Consider the case where the constraint set Ω ∈ �� is given 
by Ω = {�:  ! ≤ #! ≤ �! , � = 1, … , �}

� In this case, Ω is a “box” in ��; for this reason, this form 
of Ω is called a box constraint. 
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� Given a point � ∈ ��, define ( = ∏[�] ∈ ��	by 

,! = min �! , max  ! , #! = 2 �!							��	#! > �!#!		��	 ! ≤ #! ≤ �! !						��		#! <  !
� The point ∏[�] is called the projection of � onto Ω. Note 

that ∏[�] is actually the “closest” point in Ω to �. Using 
the projection operator∏, we can modify the previous 
unconstrained algorithm as follows: �(���) = ∏[�(�) + 	�
(�)]

� Note that the iterates �(�) now all lie inside Ω. We call the 
algorithm above a projection algorithm. 
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� In the more general case, we can define the projection 
onto Ω: 

∏ � = argmin
7∈8

7 − �

� In this case, ∏[�] is again the “closest” point in Ω to �. 
This projection operator is well-defined only for certain 
types of constraint sets: for example, closed convex sets. 

� For some sets Ω, the “arg min” above is not well-defined. 
If the projection ∏ is well-defined, we can simply apply 
the projection algorithm 

�(���) = ∏[�(�) + 	�

(�)]
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� Consider the projection method applied specifically to the 
gradient algorithm. Recall that the vector −��(�) points 
in the direction of maximum rate of decrease of � at �. 
This was the basis for gradient methods for unconstrained 
optimization, which have the form �(���) = �(�) −	���(�(�)), where 	� is the step size. The choice of the 
step size depends on the particular gradient algorithm. For 
example, recall that in the steepest descent algorithm, 	� = arg min:;< �(�(�) − 	��(�(�))). 



Projections

7

� The projected version of the gradient algorithm has the 
form �(���) = ∏[� � − 	���(�

� )]

� We refer to the above as the projected gradient algorithm. 
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� Consider the problem 
���
���	 12 �>?��������	��	 � @ = 1
where ? = ?> > 0. Suppose that we apply a fixed-step-size 
projected gradient algorithm to this problem. 

� a. Derive a formula for the update equation for the 
algorithm. You may assume that the argument in the 
projection operator to obtain �(�) is never zero. 
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� The projection operator in this case simply maps any 
vector to the closest point on the unit circle. Therefore, the 
projection operator is given by ∏ � = �/ � , provided 
that � ≠ D. The update equation is 

�(���) = E� �(�) − 	?�(�) = E� F − 	? �(�)

where E� = 1/ F − 	? �(�) (i.e., it is whatever constant 
scaling is needed to make �(���) have unit norm).
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� b. It is possible for the algorithm not to converge to an 
optimal solution even if the step size 	 > 0 is taken to be 
arbitrarily small? 

� If we start with �(<) being an eigenvector of ?, then �(�) = �(<) for all G. Therefore, if the corresponding 
eigenvalue is not the smallest, then clearly the algorithm is 
stuck at a point that is not optimal. 
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� c. Show that for 0 < 	 < 1/HIJK (where HIJK is the 
largest eigenvalue of ?), the fixed-step-size projected 
gradient algorithm (with step size 	) converges to an 
optimal solution, provided that �(<) is not orthogonal to 
the eigenvectors of ? corresponding to the smallest 
eigenvalue. (Assume that the eigenvalues are distinct.)
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� We have �(���) = E� F − 	? �(�)
= E� F − 	? ,�� L� + ⋯ + ,�� L�= E�(,�(�) F − 	? L� + ⋯ + ,�(�) F − 	? L�)

� But F − 	? L! = 1 − 	H! L!, where H! is the 
eigenvalue corresponding to L!. Hence, ���� = E�(,�(�) 1 − 	H� L� + ⋯ + ,�(�) 1 − 	H� L�)

which means that ,!(���) = E�,! � (1 − 	H!). 
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� In other words, ,!(�) = E � ,! < 1 − 	H! �, where E(�) = ∏ E��N�!O< . We rewrite �(�) as 

�(�) = P ,!(�)L!�
!O� = ,�(�) L� + P ,!(�)

,�(�) L!�
!O@

� Assuming that ,�(<) ≠ 0, we obtain ,!(�)
,�(�) = ,! < 1 − 	H! �

,�< 1 − 	H� � = ,!(<)
,�(<) 1 − 	H!1 − 	H�

�
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� Using the fact that 
�N:QR�N:QS < 1 (because the H! > H� for � > 1	and 	 < 1/HIJK), we deduce that 

TR(U)
TS(U) → 0, 

which implies that �(�) → L�, as required. 
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� Consider optimization problems of the form 
���
���		� ��������	��			W� = X
where �: �� → �, W ∈ �I×�, 
 < �, rank W = 
, X ∈ �I
� We assume throughout that � ∈ Z�. 

� The specific structure of the constraint set allows us to 
compute the projection operator ∏ using the orthogonal 
projector. Specifically, ∏[�] can be defined using the 
orthogonal projector matrix [ given by 

[ = F� − W
> WW> N�W
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� Two important properties of the orthogonal projector [
that we use in this section are
� [ = [>
� [@ = [

� Lemma 23.1. Let L ∈ �� . Then, [L = D if and only if L ∈ ℛ(W>). In other words, ̂ [ = ℛ(W>). Moreover, WL = D if and only if L ∈ ℛ([); that is, ̂ W = ℛ([). 
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� Recall that in unconstrained optimization, the first-order 
necessary condition for a point �∗ to be a local minimizer 
is �� �∗ = 0. 

� In optimization problems with equality constraints, the 
Lagrange condition plays the role of the first-order 
necessary condition. 

� When the constraint set takes the form {�: W� = X}, the 
Lagrange condition can be written as [�� �∗ = 0. 
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� Proposition 23.1. Let �∗ ∈ �� be a feasible point. Then [�� �∗ = D if and only if �∗ satisfies the Lagrange 
condition. 

� Proof. By Lemma 23.1, [�� �∗ = D if and only if we 
have �� �∗ ∈ ℛ W> . This is equivalent to the condition 
that there exists `∗ ∈ �I such that �� �∗ + W>`∗ = D, 
which together with the feasibility equation W� = X, 
constitutes the Lagrange condition. 
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� Recall that the projected gradient algorithm has the form #(���) = ∏[�(�) − 	���(�
(�))]

� For the case where the constraints are linear, it turns out 
that we can express the projection ∏ in terms of the 
matrix [ as follows:

∏ � � − 	��� � � = �(�) − 	�[��(�
(�))

assuming that �� ∈ Ω. 
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� In our constrained optimization problem, the vector − ��(�) is not necessarily a feasible direction. In other 
words, if �(�) is a feasible point and we apply the 
algorithm �(���) = �(�) − 	���(�(�)), then �(���) need 
not be feasible. This problem can be overcome by 
replacing −��(�(�)	) by a vector that points in a feasible 
direction.  

� Note that the set of feasible directions is simply the 
nullspacê (W) of the matrix W. Therefore, we should 
first project the vector −��(�) onto ̂ (W). This 
projection is equivalent to multiplication by the matrix [.
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� In summary, in the projection gradient algorithm, we 
update �(�) according to the equation �(���) = �(�) − 	�[��(�(�))
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� Proposition 23.2. In a projected gradient algorithm, if �(<)
is feasible, then each �(�) is feasible; that is, for each G ≥ 0, W�(�) = X.

� Proof. We proceed by induction. The result holds for G = 0 by assumption. Suppose now that W�(�) = X. We 
now show that W�(���) = X. Observe that [�� �(�) ∈^(W). Therefore, W�(���) = W �(�) − 	�[�� �(�)= W�(�) − 	�W[�� �(�)= X
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� The projected gradient algorithm updates �(�) in the 
direction of −[��(�(�)). This vector points in the 
direction of maximum rate of decrease of � at �(�) along 
the surface defined by W� = X, as described in the 
following argument. 

� Let � be any feasible point and 
 a feasible direction such 
that 
 = 1. The rate of increase of � at � in the 
direction 
 is �� � , 
 . Next, we note that because 
 is 
a feasible direction, it lies in ̂(W) and hence by Lemma 
23.1, we have 
 ∈ ℛ [ = ℛ([>). So, there exists L such 
that 
 = [L. 
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� Hence, �� � , 
 = �� � , [>L = [�� � , L
� By the Cauchy-Schwarz inequality, [�� � , L ≤ [��(�) L
with equality if and only if he direction of L is parallel with 
the direction of [��(�). Therefore, the vector −[��(�)
points in the direction of maximum rate of decrease of � at �
among all feasible directions. 
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� Suppose that we have a starting point �(<), which we 
assume is feasible; that is, W�(<) = X. Consider the point � = �(<) − 	[��(�(<)), where 	 ∈ �. As usual, the 
scalar 	 is called the step size. 

� By the discussion above, � is also a feasible point. Using a 
Taylor series expansion of � about �(<) and the fact that [ = [@ = [>[, we get � �(<) − 	[�� �(<)

= � �(<) − 	�� �(<) >[�� �(<) + � 	= � �(<) − 	 [�� �(<) @ + �(	)
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� Thus, if [�� �(<) ≠ 0, that is, �(<) does not satisfy the 
Lagrange condition, then we can choose an 	 sufficiently 
small such that � � < �(�(<)), which means that � = �(<) − 	[��(�(<)) is an improvement over �(<). 
This is the basis for the projected gradient algorithm �(���) = �(�) − 	�[��(�(�)), where the initial point �(<)
satisfies W�(<) = X and 	� is some step size. 
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� A well-known variant: projected steepest descent 
algorithm, where 	� is given by 	� = arg min:;< �(�(�) − 	[��(�(�)))

� Theorem 23.1. If {�(�)} is the sequence of points 
generated by the projected steepest descent algorithm and 
if [�� �(<) ≠ 0, then � � ��� < �(�(�)). 
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� If for some G, we have [�� �(�) = D, then by 
Proposition 23.1 the point �(�) satisfies the Lagrange 
condition. This condition can be used as a stopping 
criterion for the algorithm. Note that if this case, �(���) = �(�).

� For the case where � is a convex function, the condition [�� �(�) = D is, in fact, equivalent to �(�) being a 
global minimizer of � over the constraint set �: W� = X . 
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� Proposition 23.3. The point �∗ ∈ �� is a global minimizer 
of a convex function � over �: W� = X if and only if [�� �∗ = D. 

� Proof. We first write b � = W� − X. Then, the 
constraints can be written as b � = D, and the problem is 
of the form considered in earlier chapters. 

� Note that cb � = W. Hence, �∗ ∈ �� is a global 
minimizer of � if and only if the Lagrange condition holds 
(see Theorem 22.8). By Proposition 23.1, this is true if and 
only if [�� �∗ = D, and this completes the proof. 
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� The basic idea is to use gradient algorithms to update 
simultaneously the decision variable and Lagrange 
multiplier vector. 

� Consider the following problem
���
���		� ��������	��		b � = D
� where b: �� → �I. Recall that for this problem the 

Lagrangian function is given by  �, ` = � � + `>b(�)
� Assume that �, b ∈ Z@; as usual, denote the Hessian of the 

Lagrangian by d(�, `)
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� The Lagrangian algorithm for this problem is given by �(���) = �(�) − 	� �� �(�) + cb �(�) >`(�))`(���) = `(�) + E�b(�(�))
� Notice that the update equation for �(�) is a gradient 

algorithm for minimizing the Lagrangian with respect to 
its � argument, and the update equation for `(�) is a 
gradient algorithm for maximizing the Lagrangian with 
respect to its ̀ argument. 

� Because only the gradient is used, the method is also 
called the first-order Lagrangian algorithm. 
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� Lemma 23.2. For the Lagrangian algorithm for updating �(�) and ̀ (�), the pair (�∗, `∗) is a fixed point if and only 
if it satisfies the Lagrange condition. 

� Below, we use (�∗, `∗) to denote a pair satisfying the 
Lagrange condition. Assume that d �∗, `∗ > 0. Also 
assume that �∗ is a regular point. With these assumptions, 
we are now ready to state and prove that the algorithm is 
locally convergent. For simplicity, we will take 	� and E�
to be fixed constants (not depending on G), denoted 	 and E, respectively. 
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� Theorem 23.2. For the Lagrangian algorithm for updating �(�) and ̀ (�), provided that 	 and E are sufficiently small, 
there is a neighborhood of (�∗, `∗) such that if the pair (�(<), `(<)) is in this neighborhood, then the algorithm 
converges to (�∗, `∗) with at least a linear order of 
convergence. 
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� Consider the following optimization problem with 
inequality constraints: 
���
���		� ��������	��			e � ≤ D

where e: �� → �f. 

� Recall that for this problem the Lagraingian function is 
given by  �, g = � � + g>e(�)

� As before, assume that �, e ∈ Z@; as usual, denote the 
Hessian of the Lagrangian by d �, g
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� The Lagrangian algorithm for this problem is given by �(���) = �(�) − 	� �� �(�) + ce �(�) >g(�)
g(���) = g(�) + E�e �(�) �

where ⋅ � = max	{⋅, 0} (applied componentwise). 

� Notice that, as before, the update equation for �(�) is a 
gradient algorithm for minimizing the Lagrangian with 
respect to its � argument. The update equation for g(�) is 
a projected gradient algorithm for maximizing the 
Lagrangian with respect to its g argument. The reason for 
the projection is that the KKT multiplier vector is required 
to be nonnegative to satisfy the KKT condition. 
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� Lemma 23.3. For the Lagrangian algorithm for updating �(�) and g(�), the pair (�∗, g∗) is a fixed point if and only 
if it satisfies the KKT condition. 

� As before, we use the notation (�∗, g∗) to denote a pair 
satisfying the KKT condition. Assume that i �∗, g∗ > 0. 
Also assume that �∗ is a regular point. With these 
assumptions, we are now ready to state and prove that the 
algorithm is locally convergent. 
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� As before, we will take 	� and E� to be fixed constants 
(not depending on G), denoted 	 and E, respectively. Out 
analysis examines the behavior of the algorithm in two 
phases. In the first phase, the “nonactive” multipliers 
decrease to zero in finite time and remain at zero thereafter. 
In the second phase, the �(�) iterates and the “active” 
multipliers converge jointly to their respective solutions, 
with at least a linear order of convergence. 
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� Theorem 23.3. For the Lagrangian algorithm for updating �(�) and g(�), provided that 	 and E are sufficiently small, 
there is a neighborhood of (�∗, g∗) such that if the pair (�(<), g(<)) is in this neighborhood, then (1) the nonactive
multipliers reduce to zero in finite time and remain at zero 
thereafter and (2) the algorithm converges to (�∗, g∗) with 
at least a linear order of convergence. 



Penalty Methods

39


