
Chapter 23 Algorithms for Constrained
Optimization

An Introduction to Optimization
Spring, 2015

1

Wei-Ta Chu

Projections
� The optimization algorithms described in Part II have the

general form �(���) = �(�) + 	�
(�), where
(�) is typically a
function of ��(�(�)). The value of �(�) is not constrained to lie
inside any particular set.

� Consider the optimization problem
���
���		� ��������	��			� ∈ Ω
� Modify the algorithm we already know to take constraints into

account.

2

Projections

3

� If �(�) + 	�
(�) is in Ω, then we set form �(���) =�(�) + 	�
(�) as usual.

� If, on the other hand, �(�) + 	�
(�) is not in Ω, then we
“project” it back into Ω before setting �(���).

� Consider the case where the constraint set Ω ∈ �� is given
by Ω = {�: ! ≤ #! ≤ �! , � = 1, … , �}

� In this case, Ω is a “box” in ��; for this reason, this form
of Ω is called a box constraint.

Projections

4

� Given a point � ∈ ��, define (= ∏[�] ∈ ��	by

,! = min �! , max ! , #! = 2 �!							��	#! > �!#!		��	 ! ≤ #! ≤ �! !						��		#! < !
� The point ∏[�] is called the projection of � onto Ω. Note

that ∏[�] is actually the “closest” point in Ω to �. Using
the projection operator∏, we can modify the previous
unconstrained algorithm as follows: �(���) = ∏[�(�) + 	�
(�)]

� Note that the iterates �(�) now all lie inside Ω. We call the
algorithm above a projection algorithm.

Projections

5

� In the more general case, we can define the projection
onto Ω:

∏ � = argmin
7∈8

7 − �

� In this case, ∏[�] is again the “closest” point in Ω to �.
This projection operator is well-defined only for certain
types of constraint sets: for example, closed convex sets.

� For some sets Ω, the “arg min” above is not well-defined.
If the projection ∏ is well-defined, we can simply apply
the projection algorithm

�(���) = ∏[�(�) + 	�

(�)]

Projections

6

� Consider the projection method applied specifically to the
gradient algorithm. Recall that the vector −��(�) points
in the direction of maximum rate of decrease of � at �.
This was the basis for gradient methods for unconstrained
optimization, which have the form �(���) = �(�) −	���(�(�)), where 	� is the step size. The choice of the
step size depends on the particular gradient algorithm. For
example, recall that in the steepest descent algorithm, 	� = arg min:;< �(�(�) − 	��(�(�))).

Projections

7

� The projected version of the gradient algorithm has the
form �(���) = ∏[� � − 	���(�

�)]

� We refer to the above as the projected gradient algorithm.

Example

8

� Consider the problem
���
���	 12 �>?��������	��	 � @ = 1
where ? = ?> > 0. Suppose that we apply a fixed-step-size
projected gradient algorithm to this problem.

� a. Derive a formula for the update equation for the
algorithm. You may assume that the argument in the
projection operator to obtain �(�) is never zero.

Example

9

� The projection operator in this case simply maps any
vector to the closest point on the unit circle. Therefore, the
projection operator is given by ∏ � = �/ � , provided
that � ≠ D. The update equation is

�(���) = E� �(�) − 	?�(�) = E� F − 	? �(�)

where E� = 1/ F − 	? �(�) (i.e., it is whatever constant
scaling is needed to make �(���) have unit norm).

Example

10

� b. It is possible for the algorithm not to converge to an
optimal solution even if the step size 	 > 0 is taken to be
arbitrarily small?

� If we start with �(<) being an eigenvector of ?, then �(�) = �(<) for all G. Therefore, if the corresponding
eigenvalue is not the smallest, then clearly the algorithm is
stuck at a point that is not optimal.

Example

11

� c. Show that for 0 < 	 < 1/HIJK (where HIJK is the
largest eigenvalue of ?), the fixed-step-size projected
gradient algorithm (with step size) converges to an
optimal solution, provided that �(<) is not orthogonal to
the eigenvectors of ? corresponding to the smallest
eigenvalue. (Assume that the eigenvalues are distinct.)

Example

12

� We have �(���) = E� F − 	? �(�)
= E� F − 	? ,�� L� + ⋯ + ,�� L�= E�(,�(�) F − 	? L� + ⋯ + ,�(�) F − 	? L�)

� But F − 	? L! = 1 − 	H! L!, where H! is the
eigenvalue corresponding to L!. Hence, ���� = E�(,�(�) 1 − 	H� L� + ⋯ + ,�(�) 1 − 	H� L�)

which means that ,!(���) = E�,! � (1 − 	H!).

Example

13

� In other words, ,!(�) = E � ,! < 1 − 	H! �, where E(�) = ∏ E��N�!O< . We rewrite �(�) as

�(�) = P ,!(�)L!�
!O� = ,�(�) L� + P ,!(�)

,�(�) L!�
!O@

� Assuming that ,�(<) ≠ 0, we obtain ,!(�)
,�(�) = ,! < 1 − 	H! �

,�< 1 − 	H� � = ,!(<)
,�(<) 1 − 	H!1 − 	H�

�

Example

14

� Using the fact that
�N:QR�N:QS < 1 (because the H! > H� for � > 1	and 	 < 1/HIJK), we deduce that

TR(U)
TS(U) → 0,

which implies that �(�) → L�, as required.

Projected Gradient Methods with Linear Constraints

15

� Consider optimization problems of the form
���
���		� ��������	��			W� = X
where �: �� → �, W ∈ �I×�,
 < �, rank W =
, X ∈ �I
� We assume throughout that � ∈ Z�.

� The specific structure of the constraint set allows us to
compute the projection operator ∏ using the orthogonal
projector. Specifically, ∏[�] can be defined using the
orthogonal projector matrix [given by

[= F� − W
> WW> N�W

Projected Gradient Methods with Linear Constraints

16

� Two important properties of the orthogonal projector [
that we use in this section are
� [= [>
� [@ = [

� Lemma 23.1. Let L ∈ �� . Then, [L = D if and only if L ∈ ℛ(W>). In other words, ̂ [= ℛ(W>). Moreover, WL = D if and only if L ∈ ℛ([); that is, ̂ W = ℛ([).

Projected Gradient Methods with Linear Constraints

17

� Recall that in unconstrained optimization, the first-order
necessary condition for a point �∗ to be a local minimizer
is �� �∗ = 0.

� In optimization problems with equality constraints, the
Lagrange condition plays the role of the first-order
necessary condition.

� When the constraint set takes the form {�: W� = X}, the
Lagrange condition can be written as [�� �∗ = 0.

Projected Gradient Methods with Linear Constraints

18

� Proposition 23.1. Let �∗ ∈ �� be a feasible point. Then [�� �∗ = D if and only if �∗ satisfies the Lagrange
condition.

� Proof. By Lemma 23.1, [�� �∗ = D if and only if we
have �� �∗ ∈ ℛ W> . This is equivalent to the condition
that there exists `∗ ∈ �I such that �� �∗ + W>`∗ = D,
which together with the feasibility equation W� = X,
constitutes the Lagrange condition.

Projected Gradient Methods with Linear Constraints

19

� Recall that the projected gradient algorithm has the form #(���) = ∏[�(�) − 	���(�
(�))]

� For the case where the constraints are linear, it turns out
that we can express the projection ∏ in terms of the
matrix [as follows:

∏ � � − 	��� � � = �(�) − 	�[��(�
(�))

assuming that �� ∈ Ω.

Projected Gradient Methods with Linear Constraints

20

� In our constrained optimization problem, the vector − ��(�) is not necessarily a feasible direction. In other
words, if �(�) is a feasible point and we apply the
algorithm �(���) = �(�) − 	���(�(�)), then �(���) need
not be feasible. This problem can be overcome by
replacing −��(�(�)) by a vector that points in a feasible
direction.

� Note that the set of feasible directions is simply the
nullspacê (W) of the matrix W. Therefore, we should
first project the vector −��(�) onto ̂ (W). This
projection is equivalent to multiplication by the matrix [.

Projected Gradient Methods with Linear Constraints

21

� In summary, in the projection gradient algorithm, we
update �(�) according to the equation �(���) = �(�) − 	�[��(�(�))

Projected Gradient Methods with Linear Constraints

22

� Proposition 23.2. In a projected gradient algorithm, if �(<)
is feasible, then each �(�) is feasible; that is, for each G ≥ 0, W�(�) = X.

� Proof. We proceed by induction. The result holds for G = 0 by assumption. Suppose now that W�(�) = X. We
now show that W�(���) = X. Observe that [�� �(�) ∈^(W). Therefore, W�(���) = W �(�) − 	�[�� �(�)= W�(�) − 	�W[�� �(�)= X

Projected Gradient Methods with Linear Constraints

23

� The projected gradient algorithm updates �(�) in the
direction of −[��(�(�)). This vector points in the
direction of maximum rate of decrease of � at �(�) along
the surface defined by W� = X, as described in the
following argument.

� Let � be any feasible point and
 a feasible direction such
that
 = 1. The rate of increase of � at � in the
direction
 is �� � ,
 . Next, we note that because
 is
a feasible direction, it lies in ̂(W) and hence by Lemma
23.1, we have
 ∈ ℛ [= ℛ([>). So, there exists L such
that
 = [L.

Projected Gradient Methods with Linear Constraints

24

� Hence, �� � ,
 = �� � , [>L = [�� � , L
� By the Cauchy-Schwarz inequality, [�� � , L ≤ [��(�) L
with equality if and only if he direction of L is parallel with
the direction of [��(�). Therefore, the vector −[��(�)
points in the direction of maximum rate of decrease of � at �
among all feasible directions.

Projected Gradient Methods with Linear Constraints

25

� Suppose that we have a starting point �(<), which we
assume is feasible; that is, W�(<) = X. Consider the point � = �(<) − 	[��(�(<)), where 	 ∈ �. As usual, the
scalar 	 is called the step size.

� By the discussion above, � is also a feasible point. Using a
Taylor series expansion of � about �(<) and the fact that [= [@ = [>[, we get � �(<) − 	[�� �(<)

= � �(<) − 	�� �(<) >[�� �(<) + � 	= � �(<) − 	 [�� �(<) @ + �()

Projected Gradient Methods with Linear Constraints

26

� Thus, if [�� �(<) ≠ 0, that is, �(<) does not satisfy the
Lagrange condition, then we can choose an 	 sufficiently
small such that � � < �(�(<)), which means that � = �(<) − 	[��(�(<)) is an improvement over �(<).
This is the basis for the projected gradient algorithm �(���) = �(�) − 	�[��(�(�)), where the initial point �(<)
satisfies W�(<) = X and 	� is some step size.

Projected Gradient Methods with Linear Constraints

27

� A well-known variant: projected steepest descent
algorithm, where 	� is given by 	� = arg min:;< �(�(�) − 	[��(�(�)))

� Theorem 23.1. If {�(�)} is the sequence of points
generated by the projected steepest descent algorithm and
if [�� �(<) ≠ 0, then � � ��� < �(�(�)).

Projected Gradient Methods with Linear Constraints

28

� If for some G, we have [�� �(�) = D, then by
Proposition 23.1 the point �(�) satisfies the Lagrange
condition. This condition can be used as a stopping
criterion for the algorithm. Note that if this case, �(���) = �(�).

� For the case where � is a convex function, the condition [�� �(�) = D is, in fact, equivalent to �(�) being a
global minimizer of � over the constraint set �: W� = X .

Projected Gradient Methods with Linear Constraints

29

� Proposition 23.3. The point �∗ ∈ �� is a global minimizer
of a convex function � over �: W� = X if and only if [�� �∗ = D.

� Proof. We first write b � = W� − X. Then, the
constraints can be written as b � = D, and the problem is
of the form considered in earlier chapters.

� Note that cb � = W. Hence, �∗ ∈ �� is a global
minimizer of � if and only if the Lagrange condition holds
(see Theorem 22.8). By Proposition 23.1, this is true if and
only if [�� �∗ = D, and this completes the proof.

Lagrangian Algorithm for Equality Constraints

30

� The basic idea is to use gradient algorithms to update
simultaneously the decision variable and Lagrange
multiplier vector.

� Consider the following problem
���
���		� ��������	��		b � = D
� where b: �� → �I. Recall that for this problem the

Lagrangian function is given by �, ` = � � + `>b(�)
� Assume that �, b ∈ Z@; as usual, denote the Hessian of the

Lagrangian by d(�, `)

Lagrangian Algorithm for Equality Constraints

31

� The Lagrangian algorithm for this problem is given by �(���) = �(�) − 	� �� �(�) + cb �(�) >`(�))`(���) = `(�) + E�b(�(�))
� Notice that the update equation for �(�) is a gradient

algorithm for minimizing the Lagrangian with respect to
its � argument, and the update equation for `(�) is a
gradient algorithm for maximizing the Lagrangian with
respect to its ̀ argument.

� Because only the gradient is used, the method is also
called the first-order Lagrangian algorithm.

Lagrangian Algorithm for Equality Constraints

32

� Lemma 23.2. For the Lagrangian algorithm for updating �(�) and ̀ (�), the pair (�∗, `∗) is a fixed point if and only
if it satisfies the Lagrange condition.

� Below, we use (�∗, `∗) to denote a pair satisfying the
Lagrange condition. Assume that d �∗, `∗ > 0. Also
assume that �∗ is a regular point. With these assumptions,
we are now ready to state and prove that the algorithm is
locally convergent. For simplicity, we will take 	� and E�
to be fixed constants (not depending on G), denoted 	 and E, respectively.

Lagrangian Algorithm for Equality Constraints

33

� Theorem 23.2. For the Lagrangian algorithm for updating �(�) and ̀ (�), provided that 	 and E are sufficiently small,
there is a neighborhood of (�∗, `∗) such that if the pair (�(<), `(<)) is in this neighborhood, then the algorithm
converges to (�∗, `∗) with at least a linear order of
convergence.

Lagrangian Algorithm for Inequality Constraints

34

� Consider the following optimization problem with
inequality constraints:
���
���		� ��������	��			e � ≤ D

where e: �� → �f.

� Recall that for this problem the Lagraingian function is
given by �, g = � � + g>e(�)

� As before, assume that �, e ∈ Z@; as usual, denote the
Hessian of the Lagrangian by d �, g

Lagrangian Algorithm for Inequality Constraints

35

� The Lagrangian algorithm for this problem is given by �(���) = �(�) − 	� �� �(�) + ce �(�) >g(�)
g(���) = g(�) + E�e �(�) �

where ⋅ � = max	{⋅, 0} (applied componentwise).

� Notice that, as before, the update equation for �(�) is a
gradient algorithm for minimizing the Lagrangian with
respect to its � argument. The update equation for g(�) is
a projected gradient algorithm for maximizing the
Lagrangian with respect to its g argument. The reason for
the projection is that the KKT multiplier vector is required
to be nonnegative to satisfy the KKT condition.

Lagrangian Algorithm for Inequality Constraints

36

� Lemma 23.3. For the Lagrangian algorithm for updating �(�) and g(�), the pair (�∗, g∗) is a fixed point if and only
if it satisfies the KKT condition.

� As before, we use the notation (�∗, g∗) to denote a pair
satisfying the KKT condition. Assume that i �∗, g∗ > 0.
Also assume that �∗ is a regular point. With these
assumptions, we are now ready to state and prove that the
algorithm is locally convergent.

Lagrangian Algorithm for Inequality Constraints

37

� As before, we will take 	� and E� to be fixed constants
(not depending on G), denoted 	 and E, respectively. Out
analysis examines the behavior of the algorithm in two
phases. In the first phase, the “nonactive” multipliers
decrease to zero in finite time and remain at zero thereafter.
In the second phase, the �(�) iterates and the “active”
multipliers converge jointly to their respective solutions,
with at least a linear order of convergence.

Lagrangian Algorithm for Inequality Constraints

38

� Theorem 23.3. For the Lagrangian algorithm for updating �(�) and g(�), provided that 	 and E are sufficiently small,
there is a neighborhood of (�∗, g∗) such that if the pair (�(<), g(<)) is in this neighborhood, then (1) the nonactive
multipliers reduce to zero in finite time and remain at zero
thereafter and (2) the algorithm converges to (�∗, g∗) with
at least a linear order of convergence.

Penalty Methods

39

