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Projections

» The optimization algorithms described in Part Il have the
general formx** D) = x(0) + o, d®) | whered™ is typically a
function of V£ (x(®)). The value ok is not constrained to lie
Inside any particular set.

» Consider the optimization problem
minimize f(x)
subject to x € ()

» Modify the algorithm we already know to take constraints into
account.



Projections

y 1f x5 + a, d® s in Q, then we seform x(*+1) =
x%) + a,, d) as usual.

» If, on the other hand® + «a, d is not inf}, then we
“project” it back intoQ before settinge*+1).

» Consider the case where the constrainfIsetR™ is given

by
Q={x:ll~§xiSui, i=1,...,1’l}
» In this casefl is a “box” InR™; for this reason, this form
of Q Is called aox constraint.



Projections

» Given a pointx € R™, definey = [][x] € R" by
( Uj lf Xi > U;

y; = min{u;, max{l;, x;}} =<x; if [ <x; <y

X li lf Xi < li
» The point]][x] is called the projection of ontof). Note
that]][x] is actually the “closest” point ifl to x. Using
the projection operatdi, we can modify the previous
unconstrained algorithm as follows:
xED = MT[x% + a, d)]

» Note that the iterates™ now all lie inside). We call the
algorithm above arojection algorithm.




Projections

» In the more general case, we can define the profect

onto(}:
[1lx] = argmin||z — x|
Z€()

» In this case]][x] Is again the “closest” point € to x.
This projection operator is well-defined only far@ain
types of constraint sets: for example, closed crisets.

» For some setq, the “arg min” above is not well-defined.
If the projection]] is well-defined, we can simply apply
the projection algorithm

X+ = M[x® + a,, d0O]



Projections

» Consider the projection method applied specificadlyhe
gradient algorithm. Recall that the vectar f (x) points
In the direction of maximum rate of decreas¢ at x.
This was the basis for gradient methods for uncarmstd
optimization, which have the formf*+1 = x(*) —
a, VI (x), whereq,, is the step size. The choice of the
step size depends on the particular gradient algoriFor
example, recall that in the steepest descent &tgoyi
a;, = arg rcr(1>i{)1f(x(k) — aVf(xt))).



Projections

» The projected version of the gradient algorithm thas
form

a0 = [ — q Pf (2]
» We refer to the above as tpmjected gradient algorithm.



Example

» Consider the problem
1
minimize ExTQx
subject to ||x||? = 1
whereQ = QT > 0. Suppose that we applyfiaed-step-size

projected gradient algorithmto this problem.

» a. Derive a formula for the update equation for the
algorithm. You may assume that the argument in the
projection operator to obtair{®) is never zero.



Example

» The projection operator in this case simply maps an
vector to the closest point on the unit circle. reere, the

projection operator is given Qy[x] = x/||x||, provided
thatx + 0. The update equation is
x(k+1) — ﬁk(x(k) — an(k)) — ﬁk(l — aQ)x(k)
wherefy, = 1/||(I — a@)x™|| (i.e., it is whatever constant
scaling is needed to mak&*1 have unit norm).



Example

» b. Itis possible for the algorithm not to convetgan
optimal solution even if the step size> 0 is taken to be
arbitrarily small?

» If we start withx(®) being an eigenvector @, then
x®) = x(© for all k. Therefore, if the corresponding
eigenvalue is not the smallest, then clearly tgerethm is
stuck at a point that is not optimal.
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Example

» €. Show that fof < a < 1/1,,,,, (Wherei,, ., IS the
largest eigenvalue @), the fixed-step-size projected
gradient algorithm (with step sizg converges to an
optimal solution, provided that® is not orthogonal to
the eigenvectors d@ corresponding to the smallest
eigenvalue. (Assume that the eigenvalues are distin
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Example

» We have
x4 = B (I — a@)x®

= B — a@) (v, + -+ y v, )

= B0 U — aQ)vy + - + y V(I — aQ)vy)
» But(I — aQ)v; = (1 — al;)v;, wherej,; is the
eigenvalue corresponding tg. Hence,
A = B (1 (A = ad vy + 4y (1 = ady)vn)

which means th@tl.(k“) = ,Bkyi(k)(l —ak;).
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Example

» In other wordsy" = g®)y (1 — a1,)¥, where

BU =TT Br.. We rewritex(®) as
(k)
"y
x(F) = z ) }’l vl ( )<”1 + l(k) vi)
= 1= 2y1

» Assuming tha1v1° #+ 0, we obtain
yl( ) 1(0)(1 _ C(Al')k y(o) (1 _ C(/1 )
vy YO —ark YO\ -aky
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Example
» Using the fact thai—22L < 1 (because th; > A, for

1—6(/11

i >1anda < 1/4,,4,), We deduce that

(k)
y

i

ﬁ 0
k 1

which implies that®) — v, as required.
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Projected Gradient Methods with Linear Constraints

» Consider optimization problems of the form
minimize f(x)
subjectto Ax =Db
wheref:R™ - R,A € R™" m <n,rankA =m, b € R™
» We assume throughout thae C*.

» The specific structure of the constraint set allowdo
compute the projection operafdrusing theorthogonal
projector. Specifically,[[[x] can be defined using the
orthogonal projector matriR given by

P=1,—A"(4A") A4
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Projected Gradient Methods with Linear Constraints

» Two important properties of the orthogonal projedo
that we use In this section are
P=P"
P:=P
» Lemma 23.1. Lev € R". Then,Pv = 0 if and only If

v € R(AD). In other words)N (P) = R(A"). Moreover,
Av = 0 if and only ifv € R(P); that is,N'(4) = R(P).
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Projected Gradient Methods with Linear Constraints

» Recall that in unconstrained optimization, thetfosder
necessary condition for a pomt to be a local minimizer
IsVf(x*) =0.

» In optimization problems with equality constrairttse
Lagrange condition plays the role of the first-arde
necessary condition.

» When the constraint set takes the fdwmAx = b}, the
Lagrange condition can be writtenREf (x*) = 0.
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Projected Gradient Methods with Linear Constraints

» Proposition 23.1. Let™ € R™ be a feasible point. Then
PVf(x*) = 0if and only ifx* satisfies the Lagrange
condition.

» Proof. By Lemma 23.1PVf(x*) = 0 if and only if we
havelVf(x*) € R(A"). This is equivalent to the condition
that there existd* € R™ such thaV’f(x*) + ATA2* = 0,
which together with the feasibility equatidix = b,
constitutes the Lagrange condition.
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Projected Gradient Methods with Linear Constraints
» Recall that the projected gradient algorithm hasfanm
x (D = T[x® — a, Vf ()]

» For the case where the constraints are lineamnstout
that we can express the projectignn terms of the
matrix P as follows:

[1[x®) — a, Vf(x®))] = x® — q, PVf(x®)
assuming that” € Q.
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Projected Gradient Methods with Linear Constraints

» In our constrained optimization problem, the vector
— Vf(x) i1s not necessarily a feasible direction. In other
words, ifx(®) is a feasible point and we apply the
algorithmx®*+1) = x(8) — ¢, V£ (x(F)), thenx(*+D need
not be feasible. This problem can be overcome by
replacing—Vf(x(®) ) by a vector that points in a feasible
direction.

» Note that the set of feasible directions is sintply
nullspaceN (4) of the matrixA. Therefore, we should
first project the vectorVf(x) ontoN' (A4). This
projection is equivalent to multiplication by thexmx P.
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Projected Gradient Methods with Linear Constraints

» In summary, in the projection gradient algorithne, w
updatex(®) according to the equation
x(k'l'l) — x(k) — akPVf(x(k))
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Projected Gradient Methods with Linear Constraints

» Proposition 23.2. In a projected gradient algoritifrm(®)
is feasible, then eact® is feasible; that is, for each
k>0,Ax%™ = b.

» Proof. We proceed by induction. The result holds fo
k = 0 by assumption. Suppose now tat®) = b. We
now show thaflx(**1) = b. Observe thaPVf(x*)) €
N (A). Therefore,

AxE*tD) = A(x) — o PVf(x(0)))
= Ax") — g, APV f(x(?))
=b
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Projected Gradient Methods with Linear Constraints

» The projected gradient algorithm updat€® in the
direction of—PVf(x*)). This vector points in the
direction of maximum rate of decreasefaitx along
the surface defined 4x = b, as described in the
following argument.

» Letx be any feasible point antla feasible direction such
that||d|| = 1. The rate of increase ¢fatx in the
directiond is (Vf(x), d). Next, we note that becaudas
a feasible direction, it lies IV’ (4A) and hence by Lemma
23.1, we have € R(P) = R(P!). So, there exists such
thatd = Pv.
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Projected Gradient Methods with Linear Constraints

» Hence,
(Vf(x),d) =(Vf(x), PTv) = (PVf(x),v)
» By the Cauchy-Schwarz inequality,
(PVf(x),v) < [[PVF(Olllv]]
with equality if and only if he direction af is parallel with
the direction ofPVf(x). Therefore, the vecterPVf (x)

points in the direction of maximum rate of decreafsg atx
among all feasible directions.
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Projected Gradient Methods with Linear Constraints

» Suppose that we have a starting paiit, which we
assume is feasible; that #x(®) = b. Consider the point
x = x(O — gPVF(x(9), wherea € R. As usual, the
scalara Is called the step size.

» By the discussion above,is also a feasible point. Using a
Taylor series expansion gfaboutx(®) and the fact that
P = P? = PTP, we get
f(x® — aPVf(x®))
= f(x©) — aVf(x©) PVF(x®) + 0(a)

= f(x©) = a||PVF(x@)|* + o(a)
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Projected Gradient Methods with Linear Constraints

» Thus, ifPVf(x(®) = 0, that is,x(®) does not satisfy the
Lagrange condition, then we can choose aulfficiently

small such thaf (x) < f(x(®), which means that

x = x0 — aPVf(x(?) is an improvement over?.
This Is the basis for the projected gradient athari
xFHD) = x(B) — o, PV F(x()), where the initial point(®
satisfiesdx(®) = b anda, is some step size.
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Projected Gradient Methods with Linear Constraints

» A well-known variantprojected steepest descent
algorithm, wherea, is given by
aj = argmin f (x) — aPV £ (x(Y)
az

» Theorem 23.1. Ifx(®)} is the sequence of points
generated by the projected steepest descent algoamd

if PVf(x(®) = 0, thenf(x**D) < f(x®).
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Projected Gradient Methods with Linear Constraints

» If for somek, we havePVf(x(®)) = 0, then by

Proposition 23.1 the point®) satisfies the Lagrange
condition. This condition can be used as a stopping

criterion for the algorithm. Note that if this case
x(+1) — 4 (k)

» For the case whergis a convex function, the condition
PVf(x®)) = 0'is, in fact, equivalent ta® being a
global minimizer off over the constraint s¢k: Ax = b}.
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Projected Gradient Methods with Linear Constraints

» Proposition 23.3. The point" € R"™ is a global minimizer
of a convex functiorf over{x: Ax = b} if and only if
PVf(x*) = 0.

» Proof. We first writeh(x) = Ax — b. Then, the
constraints can be written A$x) = 0, and the problem is
of the form considered in earlier chapters.

» Note thatDh(x) = A. Hencex* € R™ is a global
minimizer of f if and only if the Lagrange condition holds
(see Theorem 22.8). By Proposition 23.1, thisus tf and
only if PVf(x*) = 0, and this completes the proof.
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Lagrangian Algorithm for Equality Constraints

» The basic idea is to use gradient algorithms taatgd
simultaneously the decision variable and Lagrange
multiplier vector.

» Consider the following problem
minimize f(x)
subject to h(x) =0
» whereh: R"™ - R™. Recall that for this problem the
Lagrangian function is given by
[(x,A) = f(x) + ATh(x)

» Assume thaf, h € C#; as usual, denote the Hessian of the
Lagrangian byL(x, A)
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Lagrangian Algorithm for Equality Constraints

» The Lagrangian algorithm for this problem is given b
x4 = 50 — g (7f(x®) + Dh(x®)" 209))
AR = 200 4 B, h(x(F))

» Notice that the update equation i3 is a gradient
algorithm for minimizing the Lagrangian with respéxt
its x argument, and the update equationfd? is a

gradient algorithm for maximizing the Lagrangiantwit
respect to it argument.

» Because only the gradient is used, the methodas al
called thefirst-order Lagrangian algorithm.
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Lagrangian Algorithm for Equality Constraints

» Lemma 23.2. For the Lagrangian algorithm for updatin
x%) andA®)| the pair £*, 1*) is a fixed point if and only
If it satisfies the Lagrange condition.

» Below, we us€x®, A™) to denote a pair satisfying the
Lagrange condition. Assume thiatx*, A*) > 0. Also
assume that* is aregular point. With these assumptions,
we are now ready to state and prove that the afgons
locally convergent. For simplicity, we will talkeg, andp,
to be fixed constants (not dependingkndenotedr and
S, respectively.
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Lagrangian Algorithm for Equality Constraints

» Theorem 23.2. For the Lagrangian algorithm for uipndat
x) andA® | provided thatr andpg are sufficiently small,
there Is a neighborhood @t*, 1) such that if the pair
(x(©, 109 is in this neighborhood, then the algorithm
converges tgx*, A*) with at least a linear order of
convergence.
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Lagrangian Algorithm for Inequality Constraints

» Consider the following optimization problem with
Inequality constraints:
minimize f(x)
subjectto g(x) <0
whereg: R™ — RP.
» Recall that for this problem the Lagraingian funatis
given by
[(x,p) = f(x) + ' g(x)
» As before, assume thfitg € C#; as usual, denote the
Hessian of the Lagrangian Byx, u)
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Lagrangian Algorithm for Inequality Constraints

» The Lagrangian algorithm for this problem is given b
XK+ = 5 _ o (Vf(xac)) n Dg(xac))Tu(k))
”(k+1) — [”(k) + ﬁkg(x(k))]_l_

where[:];. = max{:, 0} (applied componentwise).

» Notice that, as before, the update equationfbris a
gradient algorithm for minimizing the Lagrangian hwit
respect to itar argument. The update equation féF is
a projected gradient algorithm for maximizing the
Lagrangian with respect to itsargument. The reason for
the projection is that the KKT multiplier vectorrsquired
to be nonnegative to satisfy the KKT condition.
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Lagrangian Algorithm for Inequality Constraints

» Lemma 23.3. For the Lagrangian algorithm for updatin
x%) andu™, the pair(x*, u*) is a fixed point if and only
If it satisfies the KKT condition.

» As before, we use the notatign”™, u*) to denote a pair
satisfying the KKT condition. Assume thiagx™, u*) > 0.
Also assume that" is a regular point. With these
assumptions, we are now ready to state and prayehé
algorithm is locally convergent.
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Lagrangian Algorithm for Inequality Constraints

» As before, we will taker;, andf;, to be fixed constants
(not depending oRk), denotedr andf, respectively. Out
analysis examines the behavior of the algorithrrvim
phases. In the first phase, the “nonactive” muéigl
decrease to zero in finite time and remain at dezoeafter.
In the second phase, th€® iterates and the “active”
multipliers converge jointly to their respectivdidmns,
with at least a linear order of convergence.
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Lagrangian Algorithm for Inequality Constraints

» Theorem 23.3. For the Lagrangian algorithm for uipndgat
x) andu®™ | provided thatr andg are sufficiently small,
there Is a neighborhood Ot*, u*) such that if the pair
(x(@, u(®) is in this neighborhood, then (1) the nonactive
multipliers reduce to zero In finite time and remat zero
thereafter and (2) the algorithm converge&xtg ™) with
at least a linear order of convergence.
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Penalty Methods
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