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� The steepest descent method uses only first derivatives in 
selecting a suitable search direction. 

� Newton’s method (sometimes called Newton-Raphson method) 
uses first and second derivatives and indeed performs better. 

� Given a starting point, construct a quadratic approximation to 
the objective function that matches the first and second 
derivative values at that point. We then minimize the 
approximate (quadratic function) instead of the original 
objective function. The minimizer of the approximate function 
is used as the starting point in the next step and repeat the 
procedure iteratively. 



Introduction

3

� We can obtain a quadratic approximation to the twice 
continuously differentiable function                   using the 
Taylor series expansion of    about the current point       , 
neglecting terms of order three and higher. 

Where, for simplicity, we use the notation 

� Applying the FONC to     yields

� If                  , then     achieves a 
minimum at 
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� Use Newton’s method to minimize the Powell function: 

Use as the starting point                           . Perform three 
iterations. 

� Note that                    . We have 
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� Iteration 1. 
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� Iteration 2. 
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� Iteration 3. 
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� Observe that the   th iteration of Newton’s method can be 
written in two steps as
� 1. Solve                                  for 

� 2. Set 

� Step 1 requires the solution of an           system of linear 
equations. Thus, an efficient method for solving systems of 
linear equations is essential when using Newton’s method. 

� As in the one-variable case, Newton’s method can be viewed as 
a technique for iteratively solving the equation

where            and                   . In this case          is the Jacobian
matrix of    at    ; that is,         is the          matrix whose        
entry is                   , 



Analysis of Newton’s Method
� As in the one-variable case there is no guarantee that Newton’s 

algorithm heads in the direction of decreasing values of the 
objective function if              is not positive definite (recall 
Figure 7.7)

� Even if                  , Newton’s method may not be a descent 
method; that is, it is possible that 
� This may occur if our starting point is far away from the solution

� Despite these drawbacks, Newton’s method has superior 
convergence properties when the starting point is near the 
solution. 
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Newton’s method works well if                 everywhere. 
However, if                 for some    , Newton’s method may fail 
to converge to the minimizer. 



Analysis of Newton’s Method
� The convergence analysis of Newton’s method when     is a 

quadratic function is straightforward. Newton’s method reaches 
the point      such that in just one step starting from 
any initial point      . 

� Suppose that             is invertible and 
Then,                                       and 

� Hence, given any initial point        , by Newton’s algorithm

� Therefore, for the quadratic case the order of convergence of 
Newton’s algorithm is      for any initial point 
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Analysis of Newton’s Method
� Theorem 9.1: Suppose that            and              is a point such 

that                    and           is invertible. Then, for all        
sufficiently close to     , Newton’s method is well defined for all 

and converge to      with an order of convergence at least 2. 

� Proof: The Taylor series expansion of        about        yields

Because by assumption             and           is invertible, there 
exist constants          ,           and           such that if        , 

, we have 

and by Lemma 5.3,             exists and satisfies 
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Analysis of Newton’s Method

� The first inequality holds because the remainder term in the 
Taylor series expansion contains third derivatives of     that are 
continuous and hence bounded on 

� Suppose that                                      . Then, substituting
in the inequality above and using the assumption that
we get   
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Analysis of Newton’s Method
� Subtracting       from both sides of Newton’s algorithm and 

taking norms yields 

� Applying the inequalities above involving the constants     and  

� Suppose that        is such that 

Then
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Analysis of Newton’s Method
� By induction, we obtain

Hence,                                    and therefore the sequence          
converges to     . The order of convergence is at least 2 because 

. That is, 
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Analysis of Newton’s Method
� Theorem 9.2: Let          be the sequence generated by Newton’s 

method for minimizing a given objective function         . If the 
Hessian                    and                               , then the search 
direction 

from        to            is a descent direction for    in the sense that 
there exists an           such that for all 
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Analysis of Newton’s Method
� Proof: Let                                  , then using the chain rule, we 

obtain

Hence, 

because                       and             . 
Thus, there exists an           so that for all               , 
This implies that for all 
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Analysis of Newton’s Method
� Theorem 9.2 motivates the following modification of Newton’s 

method

where 
that is, at each iteration, we perform a line search in the 
direction 

� A drawback of Newton’s method is that evaluation of             
for large     can be computationally expensive. Furthermore, we 
have to solve the set of    linear equations                              . In 
Chapters 10 and 11 we discuss this issue. 

� The Hessian matrix may not be positive definite. In the next we 
describe a simple modification to overcome this problem. 
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Levenberg-Marquardt Modification
� If the Hessian matrix             is not positive definite, then the 

search direction                                 may not point in a descent 
direction. 

� Levenberg-Marquardt modification: 

� Consider a symmetric matrix     , which may not be positive 
definite. Let                be the eigenvalues of      with 
corresponding eigenvectors               . The eigenvalues are real, 
but may not all be positive. 

� Consider the matrix                    , where          . Note that the 
eigenvalues of      are                          . 

18



Levenberg-Marquardt Modification
� Indeed, 

which shows that for all                 ,      is also an eigenvector of 
with eigenvalue . 

� If     is sufficiently large, then all the eigenvalues of      are 
positive and       is positive definite. 

� Accordingly, if the parameter      in the Levenberg-Marquardt 
modification of Newton’s algorithm is sufficiently large, then 
the search direction                                             always points 
in a descent direction. 
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Levenberg-Marquardt Modification
� If we further introduce a step size 

then we are guaranteed that the descent property holds. 

� By letting            , the Levenberg-Marquardt modification 
approaches the behavior of the pure Newton’s method. 

� By letting              , this algorithm approaches a pure gradient 
method with small step size. 

� In practice, we may start with a small value of      and increase 
it slowly until we find that the iteration is descent: 
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Newton’s Method for Nonlinear Least Squares
� Consider                                   , where                    , 

are given functions. This particular problem is called a 
nonlinear least-squares problem.  

� Suppose that we are given       measurements of a process at
points in time. Let              denote the measurement times and 

the measurements values. Note that            and
We wish to fit a sinusoid to the measurement data.  
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Newton’s Method for Nonlinear Least Squares
� The equation of the sinusoid is

with appropriate choices of the parameters            . 

� To formulate the data-fitting problem, we construct the 
objective function 

representing the sum of the squared errors between the 
measurement values and the function values at the 
corresponding points in time. 

� Let                      represent the vector of decision variables. We 
obtain the least-squares problem with 
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Newton’s Method for Nonlinear Least Squares
� Defining                        , we write the objective function as  

. To apply Newton’s method, we need to 
compute the gradient and the Hessian of    . 

� The   th component of            is 

� Denote the Jacobian matrix of    by 

� Thus, the gradient of     can be represented as 
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Newton’s Method for Nonlinear Least Squares
� We compute the Hessian matrix of    . The         th component 

of the Hessian is given by  

� Letting          be the matrix whose         th component is 

� We write the Hessian matrix as 
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Newton’s Method for Nonlinear Least Squares
� Therefore, Newton’s method applied to the nonlinear least-

squares problem is given by 

� In some applications, the matrix          involving the second 
derivatives of the function      can be ignored because its 
components are negligibly small. 

� In this case Newton’s algorithm reduces to what is commonly 
called the Gauss-Newton method:  

Note that the Gauss-Newton method does not require 
calculation of the second derivatives of 

25



Example

� The Jacobian matrix         in this problem is a            matrix 
with elements given by 

� We apply the Gauss-Newton algorithm to find the sinusoid of 
best fit. 

� The parameters of this sinusoid are 
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Newton’s Method for Nonlinear Least Squares
� A potential problem with the Gauss-Newton method is that the 

matrix                   may not be positive definite. 

� This problem can be overcome using a Levenberg-Marquardt 
modification: 

� This is referred to in the literature as the Levenberg-Marquardt 
algorithm because the original modification was developed 
specifically for the nonlinear least-squares problem. 

� An alternative interpretation of the Levenberg-Marquardt 
algorithm is to view the term        as an approximation to 
in the Newton’s algorithm. 

27


