Sequences and Limits

- A sequence of real numbers can be viewed as a set of numbers \(\{x_1, x_2, \ldots, x_k, \ldots\} \), which is often also denoted as \(\{x_k\} \) or \(\{x_k\}_{k=1}^{\infty} \).

- A sequence \(\{x_k\} \) is **increasing** if \(x_1 < x_2 < \cdots < x_k < \cdots \). If \(x_k \leq x_{k+1} \), then we say that the sequence is **nondecreasing**. Similarly, we can define **decreasing** and **nonincreasing** sequences. Nonincreasing and nondecreasing sequences are called **monotone sequences**.

- A number \(x^* \in R \) is called the **limit** of the sequence \(\{x_k\} \) if for any positive \(\epsilon \) there is a number \(K \) (which may depend on \(\epsilon \)) such that for all \(k > K \), \(|x_k - x^*| < \epsilon \). In this case, we write
 \[x^* = \lim_{k \to \infty} x_k \quad \text{or} \quad x_k \to x^* \]

- A sequence that has a limit is called a **convergent sequence**.
Sequences and Limits

- A sequence in R^n is a function whose domain is the set of natural numbers 1, 2, ..., k, ... and whose range is contained in R^n. We use the notation $\{x^{(1)}, x^{(2)}, \ldots\}$ or $\{x^{(k)}\}$ for sequences in R^n.

- For limits of sequences in R^n, we need to replace absolute values with vector norms. In other words, x^* is the limit of $\{x^{(k)}\}$ if for any positive ϵ there is a number K such that $k > K$, $\|x^{(k)} - x^*\| < \epsilon$.

- If a sequence $\{x^{(k)}\}$ is convergent, we write $x^* = \lim_{k \to \infty} x^{(k)}$ or $x^{(k)} \to x^*$.

Sequences and Limits

- Theorem 5.1: A convergent sequence has only one limit.
- A sequence \(\{x^{(k)}\} \) in \(\mathbb{R}^n \) is **bounded** if there exists a number \(B \geq 0 \) such that \(\|x^{(k)}\| \leq B \) for all \(k = 1, 2, \ldots \).
- Theorem 5.2: Every convergent sequence is bounded.
- For a sequence \(\{x_k\} \) in \(\mathbb{R} \), a number \(B \) is called an **upper bound** if \(x_k \leq B \) for all \(k = 1, 2, \ldots \). In this case, we say \(\{x_k\} \) is **bounded above**.
- A number \(B \) is called an **lower bound** if \(x_k \geq B \) for all \(k = 1, 2, \ldots \). In this case, we say \(\{x_k\} \) is **bounded below**.
Sequences and Limits

- Any sequence \(\{x_k\} \) in \(\mathbb{R} \) that has an upper bound has a **least upper bound** (also called the **supremum**), which is the smallest number \(B \) that is an upper bound of \(\{x_k\} \). Similarly, it has a **greatest lower bound** (also called **infimum**).

- If \(B \) is the least upper bound of the sequence \(\{x_k\} \), then \(x_k \leq B \) for all \(k \), and for any \(\epsilon > 0 \), there exists a number \(K \) such that \(x_K > B - \epsilon \)

- If \(B \) is the greatest lower bound of \(\{x_k\} \), then \(x_k \geq B \) for all \(k \), and for any \(\epsilon > 0 \), there exists a number \(K \) such that \(x_K < B + \epsilon \)

- Theorem 5.3: Every monotone bounded sequence in \(\mathbb{R} \) is convergent.
Sequences and Limits

- Given a sequence \(\{x^{(k)}\} \) and an increasing sequence of natural numbers \(\{m_k\} \), the sequence
 \[
 \{x^{(m_k)}\} = \{x^{(m_1)}, x^{(m_2)}, \ldots\}
 \]
 is called a **subsequence** of the sequence \(\{x^{(k)}\} \).

- Theorem 5.4: Consider a convergent sequence \(\{x^{(k)}\} \) with limit \(x^* \). Then any subsequence of \(\{x^{(k)}\} \) also converges to \(x^* \).

- It turns out that any bounded sequence contains a convergent subsequence (**Bolzano-Weierstrass Theorem**).
Sequences and Limits

- Consider a function $f : \mathbb{R}^n \to \mathbb{R}^m$ and a point $x_0 \in \mathbb{R}^n$. Suppose that there exists f^* such that for any convergent sequence $\{x^{(k)}\}$ with limit x_0, we have
 \[\lim_{k \to \infty} f(x^{(k)}) = f^* \]
 Then, we use the notation $\lim_{x \to x_0} f(x)$ to represent f^*

- It turns out that f is continuous at x_0 if and only if for any convergent sequence $\{x^{(k)}\}$ with limit x_0, we have
 \[\lim_{k \to \infty} f(x^{(k)}) = f \left(\lim_{k \to \infty} x^{(k)} \right) = f(x_0) \]

- Therefore, using the notation introduced above, the function f is continuous at x_0 if and only if
 \[\lim_{x \to x_0} f(x) = f(x_0) \]
Sequences and Limits

- We say that a sequence \(\{A_k\} \) of \(m \times n \) matrices converges to the \(m \times n \) matrix \(A \) if \(\lim_{k \to \infty} \|A - A_k\| = 0 \).

- Lemma 5.1: Let \(A \in \mathbb{R}^{n \times n} \). Then, \(\lim_{k \to \infty} A^k = O \) if and only if the eigenvalues of \(A \) satisfy \(|\lambda_i(A)| < 1, i = 1, \ldots, n \).

- Lemma 5.2: The series of \(n \times n \) matrices
 \[
 I_n + A + A^2 + \cdots + A^k + \cdots
 \]
 converges if and only if \(\lim_{k \to \infty} A^k = O \). In this case the sum of the series equals \((I_n - A)^{-1} \).
A matrix-valued function $A : \mathbb{R}^r \rightarrow \mathbb{R}^{n \times n}$ is continuous at a point $\xi_0 \in \mathbb{R}^r$ if
\[\lim_{\|\xi - \xi_0\|} \|A(\xi) - A(\xi_0)\| = 0 \]

Lemma 5.3: Let $A : \mathbb{R}^r \rightarrow \mathbb{R}^{n \times n}$ be an $n \times n$ matrix-valued function that is continuous at ξ_0. If $A(\xi_0)^{-1}$ exists, then $A(\xi)^{-1}$ exists for ξ sufficiently close to ξ_0 and $A(\cdot)^{-1}$ is continuous at ξ_0.
Differential calculus is based on the idea of approximating an arbitrary function by an **affine function**.

A function $\mathcal{A} : R^n \rightarrow R^m$ is **affine** if there exists a **linear function** $\mathcal{L} : R^n \rightarrow R^m$ and a vector $y \in R^m$ such that

$$\mathcal{A}(x) = \mathcal{L}(x) + y$$

for every $x \in R^n$.

Consider a function $f : R^n \rightarrow R^m$ and a point $x_0 \in R^n$. We wish to find an affine function \mathcal{A} that approximates f near the point x_0.

First, it is natural to impose the condition

$$\mathcal{A}(x_0) = f(x_0)$$
\[A(x_0) = f(x_0) \]

Differentiability

- Because \(A(x) = L(x) + y \), we obtain \(y = f(x_0) - L(x_0) \)
- By the linearity of \(L \),
 \[L(x) + y = L(x) - L(x_0) + f(x_0) = L(x - x_0) + f(x_0) \]
- Hence, we may write
 \[A(x) = L(x - x_0) + f(x_0) \]
- Next, we require that \(A(x) \) approaches \(f(x) \) faster than \(x \) approaches \(x_0 \); that is,
 \[\lim_{x \to x_0, x \in \Omega} \frac{\| f(x) - A(x) \|}{\| x - x_0 \|} = 0 \]
- The conditions ensure that \(A \) approximates \(f \) near \(x_0 \) in the sense that the approximation error is “small” compared with the distance of the point from \(x_0 \).
In summary, a function $f : \Omega \to \mathbb{R}^m, \Omega \subset \mathbb{R}^n$, is said to be \textit{differentiable} at $x_0 \in \Omega$ if there is an affine function that approximates f near x_0; that is, there exists a linear function $\mathcal{L} : \mathbb{R}^n \to \mathbb{R}^m$ such that

$$
\lim_{x \to x_0, x \in \Omega} \frac{\|f(x) - (\mathcal{L}(x - x_0) + f(x_0))\|}{\|x - x_0\|} = 0
$$

The linear function \mathcal{L} is determined uniquely by f and x_0 and is called the \textit{derivative} of f at x_0.

The function is said to be \textit{differentiable} on Ω if f is differentiable at every point of its domain Ω.

$$
A(x) = \mathcal{L}(x - x_0) + f(x_0)
$$
Differentiability

- In \mathbb{R}, an affine function has the form $ax + b$, with $a, b \in \mathbb{R}$. Hence, a real-valued function $f(x)$ of a real variable x that is differentiable at x_0 can be approximated by a function $A(x) = ax + b$.

- Because $f(x_0) = A(x_0) = ax_0 + b$, we obtain $A(x) = ax + b = a(x - x_0) + f(x_0)$.

- The linear part of $A(x)$, denoted by $L(x)$ earlier, is just ax. The norm of a real number is its absolute value, so by the definition of differentiability

$$
\lim_{x \to x_0} \frac{|f(x) - (a(x - x_0) + f(x_0))|}{|x - x_0|} = 0
$$

\implies $\lim_{x \to x_0} \frac{|f(x) - f(x_0)|}{|x - x_0|} = a$
The number \(a \) is commonly denoted \(f'(x_0) \) and is called the derivative of \(f \) at \(x_0 \).

The affine function \(\mathcal{A} \) is therefore given by
\[
\mathcal{A}(x) = f(x_0) + f'(x_0)(x - x_0)
\]

The affine function is tangent to \(f \) at \(x_0 \).
The Derivative Matrix

- Any linear transformation from R^n to R^m, and in particular the derivative L of $f : R^n \rightarrow R^m$, can be represented by an $m \times n$ matrix.

- To find the matrix L of the derivative L, we use the natural basis $\{e_1, e_2, ..., e_n\}$ for R^n. Consider the vectors $x_j = x_0 + te_j, j = 1, 2, .., n$

By the definition of the derivative, we have

$$\lim_{t \to 0} \frac{f(x_j) - (tLe_j + f(x_0))}{t} = 0 \quad j = 1, 2, .., n$$

This means that

$$\lim_{t \to 0} \frac{f(x_j) - f(x_0)}{t} = Le_j$$

$$L(x_j - x_0) = L(x_0 + te_j - x_0)$$
$$= L(te_j) = L(te_j) = tLe_j$$
The Derivative Matrix

\[\lim_{t \to 0} \frac{f(x_j) - f(x_0)}{t} = L e_j \]

- But \(L e_j \) is the \(j \)th column of the matrix \(L \). The vector \(x_j \) differs from \(x_0 \) only in the \(j \)th coordinate, and in that coordinate the difference is just the number \(t \). Therefore, the left side is the partial derivative \(\frac{\partial f}{\partial x_j}(x_0) \)

- Because vector limits are computed by taking the limit of each coordinate function, it follows that if

\[f(x) = \begin{bmatrix} f_1(x) \\ \vdots \\ f_m(x) \end{bmatrix} \quad \left(f_i : \mathbb{R}^n \to \mathbb{R}, i = 1, \ldots, m \right) \]

then \(\frac{\partial f}{\partial x_j}(x_0) = \begin{bmatrix} \frac{\partial f_1}{\partial x_j}(x_0) \\ \vdots \\ \frac{\partial f_m}{\partial x_j}(x_0) \end{bmatrix} \) and the matrix \(L \) has the form

\[
\begin{bmatrix}
\frac{\partial f}{\partial x_1}(x_0) & \cdots & \frac{\partial f}{\partial x_n}(x_0)
\end{bmatrix}
= \begin{bmatrix}
\frac{\partial f_1}{\partial x_1}(x_0) & \cdots & \frac{\partial f_1}{\partial x_n}(x_0) \\
\vdots & & \vdots \\
\frac{\partial f_m}{\partial x_1}(x_0) & \cdots & \frac{\partial f_m}{\partial x_n}(x_0)
\end{bmatrix}
\]
The Derivative Matrix

- The matrix L is called the **Jacobian matrix**, or **derivative matrix**, of f at x_0, and is denoted $Df(x_0)$.
- For convenience, we often refer to $Df(x_0)$ simply as the derivative of f at x_0.

$$
\begin{bmatrix}
\frac{\partial f_1(x_0)}{\partial x_1} & \cdots & \frac{\partial f_1(x_0)}{\partial x_n} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_m(x_0)}{\partial x_1} & \cdots & \frac{\partial f_m(x_0)}{\partial x_n}
\end{bmatrix}
$$
The Derivative Matrix

Theorem 5.5: If a function \(f : \mathbb{R}^n \to \mathbb{R}^m \) is differentiable at \(x_0 \), then the derivative of \(f \) at \(x_0 \) is determined uniquely and is represented by an \(m \times n \) derivative matrix \(Df(x_0) \). The best affine approximation of \(f \) near \(x_0 \) is then given by

\[
A(x) = f(x_0) + Df(x_0)(x - x_0),
\]

in the sense that

\[
f(x) = A(x) + r(x)
\]

and \(\lim_{x \to x_0} \frac{\|r(x)\|}{\|x - x_0\|} = 0 \).

The columns of the derivative matrix \(Df(x_0) \) are vector partial derivatives. The vector \(\frac{\partial f}{\partial x_j}(x_0) \) is a tangent vector at \(x_0 \) to the curve \(f \) obtained by varying only the \(j \)th coordinate of \(x \).
The Derivative Matrix

- If \(f : \mathbb{R}^n \to \mathbb{R} \) is differentiable, then the function \(\nabla f \) defined by
 \[
 \nabla f(x) = \begin{bmatrix}
 \frac{\partial f}{\partial x_1}(x) \\
 \vdots \\
 \frac{\partial f}{\partial x_n}(x)
 \end{bmatrix}
 = Df(x)^T
 \]
 is called the **gradient** of \(f \).

- Given \(f : \mathbb{R}^n \to \mathbb{R} \), if \(\nabla f \) is differentiable, we say that \(f \) is **twice differentiable**, and we write the derivative of \(\nabla f \) as
 \[
 D^2 f = \begin{bmatrix}
 \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\
 \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\
 \vdots & \vdots & \ddots & \vdots \\
 \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2}
 \end{bmatrix}
 \]
 \(\frac{\partial^2 f}{\partial x_i \partial x_j} \) represents taking the partial derivative with respect to \(x_j \) first, then with respect to \(x_i \).
The Derivative Matrix

- The matrix $D^2 f(x)$ is called the **Hessian matrix** of f at x, and is often also denoted $F(x)$.

- A function $f : \Omega \to R^m, \Omega \subset R^n$, is said to be **continuously differentiable** on Ω if it is differentiable (on Ω), and $Df : \Omega \to R^{m \times n}$ is continuous; that is, the components of f have continuous partial derivatives. In this case, we write $f \in C^1$. If the components of f have continuous partial derivatives of order p, we write $f \in C^p$.

- The Hessian matrix of a function $f : R^n \to R$ at x is symmetric if f is twice continuously differentiable at x. This is a well-known result from calculus called **Clairaut's theorem** or **Schwarz's theorem**.
Consider the function \(f(\mathbf{x}) = \begin{cases} \frac{x_1 x_2 (x_1^2 - x_2^2)}{(x_1^2 + x_2^2)} & \text{if } \mathbf{x} \neq \mathbf{0} \\ 0 & \text{if } \mathbf{x} = \mathbf{0} \end{cases} \)

Compute its Hessian at the point \(\mathbf{0} = [0, 0]^T \)

Start with
\[
\frac{\partial^2 f}{\partial x_1^2} = \frac{\partial}{\partial x_1} \left(\frac{\partial f}{\partial x_1} \right)
\]

\[
\frac{\partial f}{\partial x_1}(\mathbf{x}) = \begin{cases} \frac{x_2(x_1^4 - x_2^4 + 4x_1^2x_2^2)}{(x_1^2 + x_2^2)^2} & \text{if } \mathbf{x} \neq \mathbf{0} \\ 0 & \text{if } \mathbf{x} = \mathbf{0} \end{cases}
\]

Note that
\[
\frac{\partial f}{\partial x_1}([x_1, 0]^T) = 0 \quad \frac{\partial^2 f}{\partial x_1^2}(\mathbf{0}) = 0
\]
\[
\frac{\partial f}{\partial x_1}([0, x_2]^T) = -x_2 \quad \frac{\partial f}{\partial x_2x_1}(\mathbf{0}) = -1
\]
Example

- We next compute
 \[
 \frac{\partial^2 f}{\partial x_2^2} = \frac{\partial}{\partial x_2} \left(\frac{\partial f}{\partial x_2} \right)
 \]
 \[
 \frac{\partial f}{\partial x_2}(\mathbf{x}) = \begin{cases}
 x_1(x_1^4 - x_2^4 - 4x_1^2x_2^2)/(x_1^2 + x_2^2)^2 & \text{if } \mathbf{x} \neq \mathbf{0} \\
 0 & \text{if } \mathbf{x} = \mathbf{0}
 \end{cases}
 \]

- \[
 \frac{\partial f}{\partial x_2}([0, x_2]^T) = 0 \\
 \frac{\partial f}{\partial x_2^2}(\mathbf{0}) = 0
 \]

- \[
 \frac{\partial f}{\partial x_2}([x_1, 0]^T) = x_1 \\
 \frac{\partial f}{\partial x_1 x_2}([x_1, 0]^T) = 1
 \]

- Therefore, the Hessian evaluated at the point \(\mathbf{0} = [0, 0]^T \) is
 \[
 \mathbf{F}(\mathbf{0}) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}
 \]
The **chain rule** for differentiating the composition \(g(f(t)) \), of a function \(f : R \to R^n \) and a function \(g : R^n \to R \).

Theorem 5.6: Let \(g : \mathcal{D} \to R \) be differentiable on an open set \(\mathcal{D} \subset R^n \), and let \(f : (a, b) \to \mathcal{D} \) be differentiable on \((a, b)\). Then, the composite function \(h : (a, b) \to R \) given by \(h(t) = g(f(t)) \) is differentiable on \((a, b)\), and

\[
h'(t) = Dg(f(t)) D f(t) = \bigtriangledown g(f(t))^T \begin{bmatrix} f'_1(t) \\ \vdots \\ f'_n(t) \end{bmatrix}
\]
Differentiation Rules

\[
\frac{d}{dx}(fg) = f'g + fg'
\]

- **Product rule**: Let \(f : \mathbb{R}^n \to \mathbb{R}^m \) and \(g : \mathbb{R}^n \to \mathbb{R}^m \) be two differentiable functions. Define the function \(h : \mathbb{R}^n \to \mathbb{R} \) by \(h(x) = f(x)^T g(x) \). Then \(h \) is also differentiable and

\[
Dh(x) = f(x)^T Dg(x) + g(x)^T Df(x)
\]

- Some useful formulas: Let \(A \in \mathbb{R}^{m \times n} \) and \(y \in \mathbb{R}^m \), the derivative with respect to \(x \)

\[
D(y^T A x) = y^T A
\]

\[
D(x^T A x) = x^T (A + A^T), \quad \text{if} \ m = n
\]

- If \(y \in \mathbb{R}^n \), then \(D(y^T x) = y^T \)

- If \(Q \) is a symmetric matrix, then \(D(x^T Q x) = 2x^T Q \). In particular,

\[
D(x^T x) = 2x^T
\]
Level Sets and Gradients

- The **level set** of a function \(f : \mathbb{R}^n \to \mathbb{R} \) at level \(c \) is the set of points \(S = \{ x : f(x) = c \} \). For \(f : \mathbb{R}^2 \to \mathbb{R} \), we are usually interested in \(S \) when it is a curve. For \(f : \mathbb{R}^3 \to \mathbb{R} \), the sets \(S \) most often considered are surfaces.

- Example: Consider \(f(x) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2 \), \(x = [x_1, x_2]^T \). It is called **Rosenbrock’s function**.
Level Sets and Gradients

- A point x_0 is on the level set S at level c means that $f(x_0) = c$. Suppose that there is a curve γ lying in S and parameterized by a continuously differentiable function $g : R \rightarrow R^n$. Suppose also that $g(t_0) = x_0$ and $Dg(t_0) = v \neq 0$, so that v is a tangent vector to γ at x_0.

- Applying the chain rule to the function $h(t) = f(g(t))$

$\begin{align*}
 h'(t_0) &= Df(g(t_0))Dg(t_0) = Df(x_0)v \\
 \text{Since } \gamma \text{ lies on } S, \text{ we have } h(t) &= f(g(t)) = c \\
 \text{That is, } h \text{ is constant. Thus, } h'(t_0) &= 0 = Df(x_0)v = \nabla f(x_0)^Tv
\end{align*}$
Level Sets and Gradients

- Theorem 5.7: The vector $\nabla f(x_0)$ is orthogonal to the tangent vector to an arbitrary smooth curve passing through x_0 on the level set determined by $f(x) = f(x_0)$.

- It is natural to say that $\nabla f(x_0)$ is \textit{orthogonal} or \textit{normal} to the level set S corresponding to x_0, and to take as the tangent plane (or line) to S at x_0 the set of all points x satisfying $\nabla f(x_0)^T(x - x_0) = 0$, if $\nabla f(x_0) \neq 0$.
Level Sets and Gradients

- $\nabla f(x_0)$ is the direction of \textit{maximum rate of increase} of f at x_0.
- The direction of maximum rate of increase of a real-valued differentiable function at a point is orthogonal to the level set of the function through that point.
- An example about $f : R^2 \rightarrow R$
 - The curve on the surface running from bottom to top has the property that its projection onto the (x_1, x_2)-plane is always orthogonal to the level curves and is called a \textit{path of steepest ascent}.
Level Sets and Gradients

- The **graph** of \(f : \mathbb{R}^n \to \mathbb{R} \) is the set \(\{ [x^T, f(x)]^T : x \in \mathbb{R}^n \} \subset \mathbb{R}^{n+1} \). The notion of the gradient of a function has an alternative useful interpretation in terms of the tangent hyperplane to its graph.

- Let \(x_0 \in \mathbb{R}^n \) and \(z_0 = f(x_0) \). The point \([x_0^T, z_0]^T \in \mathbb{R}^{n+1} \) is a point on the graph of \(f \). If \(f \) is differentiable at \(\xi \), then the graph admits a nonvertical tangent hyperplane at \(\xi = [x^T, z_0]^T \). The hyperplane through \(\xi \) is the set of all points \([x_1, \ldots, x_n, z]^T \in \mathbb{R}^{n+1} \) satisfying the equation

\[
 u_1(x_1 - x_{01}) + \cdots + u_n(x_n - x_{0n}) + v(z - z_0) = 0
\]

where the vector \([u_1, \ldots, u_n, v] \in \mathbb{R}^{n+1} \) is normal to the hyperplane.

\[
\langle (u_1, \ldots, u_n, v), (x_1 - x_{01}, \ldots, x_n - x_{0n}, z - z_0) \rangle
\]

is normal to \((u_1, \ldots, u_n, v) \), which is a vector on the hyperplane.

\[
x_0 = (x_{01}, \ldots, x_{0n})
\]
Level Sets and Gradients

\[u_1(x_1 - x_{01}) + \cdots + u_n(x_n - x_{0n}) + v(z - z_0) = 0 \]

- Assuming that this hyperplane is nonvertical (that is, \(v \neq 0 \)), let

 \[d_i = -\frac{u_i}{v} \]

 Thus, we can rewrite the hyperplane equation as

 \[z = d_1(x_1 - x_{01}) + \cdots + d_n(x_n - x_{0n}) + z_0 \]

- We can think of the right side as a function \(z : \mathbb{R}^n \to \mathbb{R} \). Observe that for the hyperplane to be tangent to the graph of \(f \), the functions \(f \) and \(z \) must have the same partial derivatives at the point \(x_0 \). Hence, if \(f \) is differential at \(x_0 \), its tangent hyperplane can be written in terms of its gradient, as given by the equation

 \[z - z_0 = Df(x_0)(x - x_0) = (x - x_0)^T \nabla f(x_0) \]

 \[Df(x_0) = \frac{z - z_0}{x - x_0} \]
Theorem 5.8 **Taylor’s Theorem**: Assume that a function \(f : \mathbb{R} \to \mathbb{R} \) is \(m \) times continuously differentiable (i.e. \(f \in C^m \)) on an interval \([a, b]\). Denote \(h = b - a \). Then,

\[
f(b) = f(a) + \frac{h}{1!} f^{(1)}(a) + \frac{h^2}{2!} f^{(2)}(a) + \cdots + \frac{h^{m-1}}{(m-1)!} f^{(m-1)}(a) + R_m
\]

(called Taylor’s formula) where \(f^{(i)} \) is the \(i \)th derivative of \(f \), and

\[
R_m = \frac{h^m(1-\theta)^{m-1}}{(m-1)!} f^{(m)}(a + \theta h) = \frac{h^m}{m!} f^{(m)}(a + \theta' h) \quad \theta, \theta' \in (0, 1)
\]
Taylor Series

- An important property of Taylor’s theorem arises from the forms of the remainder R_m.
- We introduce the order symbols, O and o.
- Let g be a real-valued function defined in some neighborhood of $0 \in \mathbb{R}^n$, with $g(x) \neq 0$ if $x \neq 0$. Let $f : \Omega \to \mathbb{R}^m$ be defined in a domain $\Omega \subset \mathbb{R}^n$ that includes 0. Then, we write
 1. $f(x) = O(g(x))$ to mean that the quotient $\|f(x)\|/|g(x)|$ is bounded near 0; that is, these exist numbers $K > 0$ and $\delta > 0$ such that if $\|x\| < \delta$, $x \in \Omega$, then $\|f(x)\|/|g(x)| \leq K$ or $\|f(x)\| \leq Kg(x)$
 2. $f(x) = o(g(x))$ to mean that

$$
\lim_{x \to 0, x \in \Omega} \frac{\|f(x)\|}{|g(x)|} = 0
$$
Taylor Series

- The symbol $O(g(x))$ [read “big-oh” of $g(x)$] is used to represent a function that is bounded by a scaled version of g in a neighborhood of 0.

- Examples:
 - $x = O(x)$
 - $\left[\frac{x^3}{2x^2 + 3x^4} \right] = O(x^2)$
 - $\cos x = O(1)$
 - $\sin x = O(x)$
Taylor Series

- On the other hand, \(o(g(x)) \) [read “little-oh” of \(g(x) \)] represents a function that goes to zero “faster” than \(g(x) \) in the sense that \(\lim_{x \to 0, x \in \Omega} \| o(g(x)) \| / |g(x)| = 0 \)

- Examples:
 - \(x^2 = o(x) \)
 - \[
 \begin{bmatrix}
 x^3 \\
 2x^2 + 3x^4
 \end{bmatrix}
 = o(x)
 \]
 - \(x^3 = o(x^2) \)
 - \(x = o(1) \)
Taylor Series

- Note that if \(f(x) = o(g(x)) \), then \(f(x) = O(g(x)) \) (but the converse is not necessarily true). Also, if \(f(x) = O(\|x\|^p) \), then \(f(x) = o(\|x\|^{p-\epsilon}) \) for any \(\epsilon > 0 \).

- Suppose that \(f \in C^m \). Recall that the remainder term in Taylor’s theorem has the form

\[
R_m = \frac{h^m}{m!} f^{(m)}(a + \theta h) \quad \theta \in (0, 1)
\]

Substituting this into Taylor’s formula, we get

\[
f(b) = f(a) + \frac{h}{1!} f^{(1)}(a) + \frac{h^2}{2!} f^{(2)}(a) + \cdots + \frac{h^{m-1}}{(m-1)!} f^{(m-1)}(a) + \frac{h^m}{m!} f^{(m)}(a + \theta h)
\]

By the continuity of \(f^{(m)} \), we have \(f^{(m)}(a + \theta h) \rightarrow f^{(m)}(a) \) as \(h \rightarrow 0 \) that is, \(f^{(m)}(a + \theta h) = f^{(m)}(a) + o(1) \). Therefore,

\[
R_m = \frac{h^m}{m!} f^{(m)}(a + \theta h) = \frac{h^m}{m!} f^{(m)}(a) + o(h^m) \quad h^m o(1) = o(h^m)
\]
Taylor Series

- We may then write Taylor’s formula as

$$f(b) = f(a) + \frac{h}{1!} f^{(1)}(a) + \frac{h^2}{2!} f^{(2)}(a) + \cdots + \frac{h^{m-1}}{(m-1)!} f^{(m-1)}(a) + \frac{h^m}{m!} f^{(m)}(a) + o(h^m)$$

- If, in addition, we assume that $f \in C^{m+1}$, we may replace the term $o(h^m)$ above by $O(h^{m+1})$

$$f(b) = f(a) + \frac{h}{1!} f^{(1)}(a) + \frac{h^2}{2!} f^{(2)}(a) + \cdots + \frac{h^{m-1}}{(m-1)!} f^{(m-1)}(a) + \frac{h^m}{m!} f^{(m)}(a) + O(h^{m+1})$$
Theorem 5.9 *Mean value theorem*: If a function $f : \mathbb{R}^n \to \mathbb{R}^m$ is differentiable on an open set $\Omega \subset \mathbb{R}^n$, then for any pair of points $x, y \in \Omega$, there exists a matrix M such that

$$f(x) - f(y) = M(x - y)$$

The mean value theorem follows from Taylor’s theorem (for the case where $m = 1$) applied to each component of f. M is a matrix whose rows are the rows of Df evaluated at points that lie one the line segment joining x and y.

若函數$f(x)$在$[a,b]$區間上連續並可維分，則在該區間內必存在一點c，使

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$