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Solving Linear Equations Using Row Operations

4

An elementary row operation on a given matrix is an algebraic
manipulation of the matrix that corresponds to one of the
following

1. Interchanging any two rows of the matrix

2. Multiplying one of its rows by a real nonzerawmher.

3. Adding a scalar multiple of one row to anotrmw.r

An elementary row operation on a matrix is equivalent to

premultiplying the matrix by a correspondidgmentary
matrix.

Definition 16.1: We calle aslementary matrix of the first
kindif E Is obtained from the identity matrix by
interchanging any two of its row. Note that= £



Solving Linear Equations Using Row Operations

4

Definition 16.2: We calle adlementary matrix of the second
kindif E Is obtained from the identity matrik by
multiplying one of its rows by a real numbeg ¢

Definition 16.3: We calle adlementary matrix of the third
kindif E is obtained from the identity matrix by adding
3 times one row to another row of

Definition 16.4: Anelementary row operation on a given
matrix is a premultiplication of the given matrix by a
corresponding elementary matrix of the respective kind.



Solving Linear Equations Using Row Operations

» Because elementary matrices are invertible, we can define the
corresponding inverse elementary row operations. Consider a
system ofn, linear equationsin  unknowns., z,, with
right-hand side9,.....,b, . In matrix form this system may be

written asAx = b , where

" -
x=|: b= |: A € R
_{’CTL_ _bn_
» If Aisinvertible, thene = A~ '» . We now show that can

be computed effectively using elementary row operations.



Solving Linear Equations Using Row Operations

» Theorem 16.1: LeA ¢ R be a given matrix. Then, is
nonsingular (invertible) if and only if there exist elementary
matricese;.i =1,....t such that

E, - -EsEA=1

» We first form an augmented matii®, I  , and then apply
elementary row operations so that is transformedrinto
that is, we obtain

E, .- -EyE\|[A I =[I,B

It then follows thatB=E,---E,E, = A™!



Solving Linear Equations Using Row Operations

» LetA'=E,..-E,E, ,thus,---E.E,Ax=E,---E,E b
and hencex = E;--- E;E b

» For an augmented matri4,s] . Then, perform a sequence of
row elementary operations on this augmented matrix until we
obtain([r,» . From the above we have thatif is a solution to
Az = b, then it is also a solution Az = Eb  , Where
E =E,--- E,E, represents a sequence of elementary row
operations. BecauseA =1 , &b , it followsathab
IS the solutiontAxz =b 4 € R iInvertible.



Solving Linear Equations Using Row Operations

» Suppose now that ¢ R whete: n ,amd(A) =m .
Then,A Is not a square matrix. Clearly, in this case the system
of equationsax = b has infinitely many solutions. Without loss
of generality, we can assume that the first columns of are
linearly independent. Then, if we perform a sequence of
elementary row operations on the augmented miatrix as
before, we obtaifr, Db ,where  ismar (n —m) matrix.

» Let x ¢ R” be asolutionterz =b  and weite [z%, 2L|7 ,
wherexzz ¢ R* gz, e R»™ | ThEnp]z =b , which we can
rewrite aSxzz + Dxp=b Qs =b— Dz . Note that for an
arbitraryz, ¢ R"™ | ik =b— Dxz; ,then the resulting

vectore = [xZ. 2717 Is a solutionaa: = b
R D)



Solving Linear Equations Using Row Operations

» In particular,s’  0o7]” isasolutiontx=b . We often refer to
the basic solutiors’,07]”  aparticular solution to Az — b
» Note that|-(Dzp)", z5]" is a solutiondg — o . Any solution

to Az = b has the form

~

o= ol * | ="

for somex,, ¢ R



The Canonical Augmented Matrix
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Consider the system of simultaneous linear equatans b
rank(A) = m. Using a sequence of elementary row operations
and reordering the variables if necessary, we transform the
systemAz = b Into the followirggnonical form:
T TY1m+1Tm+1 + T Y1ndn = Y10
T2 TY2om+1Tm+1 + 0+ Y2uTn = Y20

Tm TYmm+1Tm+1 T T YmnTn = Ym0
This can be represented in matrix notation as
[Ima Ym,n—m]w =Yy



The Canonical Augmented Matrix

» Definition 16.5: Asystemdxz =b IS said to beanonical
form if among then variables there are  variables with the
property that each appears in only one equation, and its
coefficient in that equation is unity.

» A system is in canonical form if by some reordering of the
equations and the variables it takes the farmy ., .Jz = y,
If a system of equationgz = b IS not in canonical form, we
can transform the system into canonical form by a sequence of
elementary row operations. The system in canonical form has
the same solution as the original system and is called the
canonical representation of the system with respect to the
basisa,, ..., a,,

10



The Canonical Augmented Matrix

» There are, in general, many canonical representations of a
given system, depending on which columnsiof  we transform
Into the columns of,, . We call the augmented matrix
L. Y ma—m, Yo Of the canonical representation of a given
system theanonical augmented matrix of the system with
respect to the basis, ....a,, . Of course, there may be many
canonical augmented matrices of a given system, depending on
which columns ofA are chosen as basic columns.

11



The Canonical Augmented Matrix

» The variables corresponding to basic columns in a canonical
representation of a given system are the basic variables,
whereas the other variables are the nonbasic variables. For
L, Y n-mlx =1y, , the variables:,...,z,,  are the basic
variables and the other variables are the nonbasic variables.

» Note that in general the basic variables need not be thexfirst
variables. However, for convenience and without loss of
generality, the basic variables are assumed so.

» Having done so, the corresponding basic solution is
L1 = Y10

Im = Ym0 €r —= [%0]

Lm4+1 — 0

x, =0
12



The Canonical Augmented Matrix

» Given a system of equations:t =b  , consider the associated
canonical augmented matrix
(10 -+ 0 Yims1 -+ Yin Y10
L0, Y s Yol = 0 1 0 y277:1—|—1 y2n y20
00 - 1 Ynms1 “** Ymn Ymo,

From the augments above we conclude that
b = y10a1 + yooa2 + - -+ + Yo

» In other words, the entries in the last column of the canonical
augmented matrix are the coordinates of the vector with
respect to the basia, ..., a,,}

13



The Canonical Augmented Matrix

» The entries of all the other columns of the canonical augmented
matrix have a similar interpretation. Specifically, the entlfes
the j th columns of the canonical augmented matexi., ..., »
are the coordinates @f  with respect to the basis.,a,,}

» To see this, note that the first  columns of the augmented
matrix form a basis (the standard basis). Every other vector in
the augmented matrix can be expressed as a linear combination
of these basis vectors by reading the coefficients down the
corresponding column.

14



The Canonical Augmented Matrix

» Specifically, leta!.i=1,...n+1 bethe thcolumn inthe
augmented matrix above. Clearly, singe...,a/, form the
standard basis, then fet < j <n

a’ = yi;a) + Y205 + - + Ymjay,
Leta,i=1,...n bethe thcolumnaf ,and==s . Now,
a;=FEa;,;i=1,..,n+1, whereE Is a nonsingular matrix that
represents the elementary row operations needed to transform
[A,b] INtO [I,,,Y ;nm,yy] - Therefore, for< j <n . we also

have
aj = Y1;a1 + Y2;Q2 + -+ YmjQm

15



Updating the Augmented Matrix

» Suppose that we are given the canonical representation of a
systemAz =b . If we replace a basic variable by a nonbasic
variable, what is the new canonical representation
corresponding to the new set of basic variables? Specifically,
suppose that we wish to replace the basis vegtok p < m
by the vectora,,m < ¢ <n . Provided that the fisst  vectors
with a, replaced by, are linearly independent, these vectors
constitute a basis and every vector can be expressed as a linear
combination of the new basic columns.

16



Updating the Augmented Matrix

» Let us now find the coordinates of the vecters... a, with
respect to the new basis. These coordinates form the entries of
the canonical augmented matrix of the system with respect to
the new basis. In terms of the old basis, we can exptess as

ag =" Yig®i = 2%219 YiqQi T YpgQy
» Note that the set of vectofs&,,....,a, 1,a,,a,.1,...,a,} IS
linearly independent if and only if,, #C . Solving the equation
above fora, , we get 1 )
m tq

ap=—0;— ) i-1—Q
Ypq 17D Ypg

17



Updating the Augmented Matrix

» Recall that in terms of the old augmented matrix, any vector
a;,m<j<n can be expressed as
aj = Y1;@1 + Y2,;Q2 + -+ YmjQm
Combining the last two equations yields
aj=> -1 (yz-j 2 ybq) a;+a,

7P Ypaq Ypa
» Denoting the entries of the new au%mented matrix by , we
b Y
obtain vi; = vij — i, i # 1 Ypj =
pq Ypq

Therefore, the entries of the new canonical augmented matrix
can be obtained from the entries of the old canonical
augmented matrix via the formulas above. These equations are
often called theivot equations, andy,, , th@ivot element.

18



Updating the Augmented Matrix

» We refer to the operation on a given matrix by the formulas
above apivoting about the(p, ¢)-th element. Note that
pivoting about thep, ) th element results in a matrix whose th
column has all zero entries, except the) th entry, which is
unity.

» The pivoting operation can be accomplished via a sequence of
elementary row operations, as was done in the proof of
Theorem 16.1.

19



The Simplex Algorithm

4

The essence of the simplex algorithm is to move from one
basic feasible solution to another until an optimal basic feasible
solution is found.

Suppose that we are given the basic feasible solution
=21, ..., 00,0, ...,01'  2;>0i=1,...m

or equivalently
ria1+---+x,a,=>b

In the simplex method we want to move from one basic
feasible solution to another. This means that we want to change
basic columns in such as way that the last column of the
canonical augmented matrix remains nonnegative.

20



The Simplex Algorithm

» We assume that every basic feasible solutiomet=b x>0
IS a nondegenerate basic feasible solution. We make this
assumption primarily for convenience — all arguments can be
extended to include degeneracy.

21



The Simplex Algorithm

» Let us start with the basic columas..., a,, , and assume that
the corresponding basic soluti®n: [y, ..., Yo, 0, ..., 0]” IS
feasible; that is, the entrieg,i =1,...,m , In the last column of
the canonical augmented matrix are positive.

» Suppose that we now decide to make the vegtor > n , a
basic column. We first represedmt In terms of the current
basis asa, = y1,a1 + y2,02 + - -+ + YmgQn, . Multiplying the above
by ¢>0 Vields

€Ay = €Y14A1 + €Y2,A2 + * + - + EYpgQm
We combine this equation withya; + - - - + y.0a, = b to get

(ylo — €y1q)a1 -+ (y2o - €y2q)a2 + e (ymo — equ)am +ea, = b

22



The Simplex Algorithm

» Note that the vector [ yy — eyy, ]

Ym0 — €Ymg
0

€

0
where ¢ appears in the th position, is a solutiomuie b

If ¢=0, then we obtain the old basic feasible solutionc As is
Increased from zero, the th component of the vector above
Increases. All other entries of this vector will increase or
decrease linearly as Is increased, depending on whether the
corresponding;, IS negative or positive.

23



The Simplex Algorithm

4

For small enough , we have a feasible but nonbasic solution.
If any of the components decreases as increases, we ¢hoose
to be the smallest value where one (or more) of the components
vanishes. That is,

€ = ming{Yio/Yig : Yiqg > 0}
With this choice ofe we have a new basic feasible solution,
with the vectore, replacing, ,whepe corresponds to the
minimizing indexp = arg min{yio/vie : i >0} - SO, We now have
a new basisa,,....a, 1,a,.1,...,a,,a,
As we can seeqg, was replacedspy in the new basis. We say
that a, entersthe basis andch, leavesthe basis.

24



The Simplex Algorithm

4

If the minimum 1IN min; {y0/vi, : i, >0} 1S achieved by more

than a single index, then the new solution is degenerate and any
of the zero components can be regarded as the component
corresponding to the basic column that leaves the basis.

If none of they;,, are positive, then all components in the
VECtOr [y19 — eYig, Y20 — €Y2gs -os Ym0 — €Yimgs Oy oey €, -0y O] Increase (or
remain constant) as is increased, and no new basic feasible
solution is obtained, no matter how large we make

In this case there are feasible solutions having arbitrarily large
components, which means that theget of feasible solutions is
unbounded.

25



The Simplex Algorithm

» So far, we have discussed how to change from one basis to
another, while preserving feasibility of the corresponding basic
solution assuming that we have already chosen a nonbasic
column to enter the basis. To complete our development of the
simplex method, we need to consider two more issues.

» The first issue concerns the choice of which nonbasic column
should enter the basis.

» The second issue is to find a stopping criterion, that is, a way to
determine if a basic feasible solution is optimal or is not.

26



The Simplex Algorithm

» Suppose that we have fond a basic feasible solution. The main
iIdea of the simplex method is to move from one basic feasible
solution (extreme point of the sat ) to another basic feasible
solution at which the value of the objective function is smaller.

» Because there is only a finite number of extreme points of the
feasible set, the optimal point will be reached after a finite
number of steps.

27



The Simplex Algorithm

» We already know how to move from one extreme point of the
set to a neighboring one by updating the canonical
augmented matrix. To see which neighboring solution we
should move to and when to stop moving, consider the
following basic feasible solution:

xF, 0"1" = [y10, . Ymo, 0, ..., O]
together with the corresponding canonical augmented matrix,
having an identity matrix appearing in the first  columns.
The value of the objective function for any solutien is
Z = C1T1+ CoZo + -+ + CrTy
For our basic solution, the value of the objective function is
2 =2)=ChRER = CY10+ *** + Cmlmo
wherecl = jc;, ¢y, ..., ¢

28



The Simplex Algorithm

» To see how the value of the objective function changes when
we move from one basic feasible solution to another, suppose
that we choose the th columm,<¢<n , to enter the basis.

» To update the canonical augmented matrix, let
p = argming{yio/ i, : vig > 0} @Nd € = y0/y,, . The New basic
feasible solutionis [, — ey,
q

Ym0 — €Ymg

29



The Simplex Algorithm

» Note that the single appears in the th component, whereas
the p th component is zero. Observe that we would have
arrived at the basic feasible solution above simply by updating
the canonical augmented matrix using the pivot equations from

the previous section

Upj Upj
Ui = Vi — i L F P Yy = =

pq Ypg

where theq th column enters the basis andpthe th column
leaves [i.e., we pivot about theq)  th component]. The values
of the basic variables are entries in the last column of the
updated canonical augmented matrix.

30



The Simplex Algorithm

» The cost for this new basic feasible solution is

2= c1(Y10 — Y14€) + -+ + cm(Ymo — Ymg€) + Cq€

= 20+ [¢g — (CL¥1g + *** + CulYma )€
Where:, = ciyig+ - -+ + CnYmo - Lt iy, + - + CnYmg  then
z=2+(cg—z)e. Thus, if 2 — 2= (¢, — z)e <0 , then the
objective function value at the new basic feasible solution
above is smaller than the objective function value at the
original solution (i.e.z < z, ). Thereforegjf- z, < 0 , then the
new basic feasible solution with, ~ entering the basis has a
lower objective function value.

31



The Simplex Algorithm

» On the other hand, if the given basic feasible solution is such
thatforally=m+1,....,n,¢,—2,>0 , then we can show that this
solution is in fact an optimal solution.

» To show this, recall that any solution Aa: = b can be
represented as i
_ [y()] [_Ym,n—me
Tr = +
0 Irp |
for somezp = 2,11, ..., 2, € R . Using manipulations

similar to the above, we obtain

cle=z+>" . (c—2z)
where:, = ¢y, + - + cpymii =m+1,....n . For a feasible
solution we have, >0,i=1,...n . Therefore,#:, > 0 for
all i=m+1,...,n ,then any feasible solution  will have

objective function value’y  no smaller than
32



The Simplex Algorithm

» Let ;=0 fori=1,..m an@g=c¢ -z ferm+1,...n
we callr; thei theduced cost coefficient or relative cost
coefficient. Note that the reduced cost coefficients
corresponding to basic variables are zero.

» Theorem 16.2: A basic feasible solution is optimal if and only
If the corresponding reduced cost coefficients are all
nonnegative.

33



The Simplex Algorithm

» 1. Form a canonical augmented matrix corresponding to an
Initial basic feasible solution

» 2. Calculate the reduced cost coefficients corresponding to the
nonbasic variables

» 3.1f r, >0 forall; , stop —the current basic feasible solution
IS optimal.
» 4. Select g such that < ¢

» 5. 1fnoy,, >0 , stop —the problem is unbounded; else, calculate
p = argmin{yio/yiq - vig > 0}. (If more than one index
minimizesy,, /v, , we lek  be the smallest such index.

» 6. Update the canonical augmented matrix by pivoting about
the (p,q) th element.

» . (GO to step 2.

34



The Simplex Algorithm

» Theorem 16.3: Suppose that we have an LP problem in
standard form that has an optimal feasible solution. If the
simplex method applied to this problem terminates and the
reduced cost coefficients in the last step are all nonnegative,
then the resulting basic feasible solution is optimal.

35



Example

» Consider the following linear program

maximize 2x1 + 9o
subject to 1 < 4
) S §
T1+ T < S
X1, Z 0
» Introducing slack variables, we transform the problem into
standard form: minimize — 2z, — 529
subject to x1 + 23 =4
To+ T4 =06
Tl + To+ x5 =28
X1,T9,T3,T4,Tx > 0

» The starting canonical augmented matrix for this problem is
a; a; as a4 as b
1 01 0 0 4
010 1 06
% 1 1 0 0 1 8



Example U100 1 s

4

Observe that the columns forming the identity matrix in the
canonical augmented matrix above do not appear at the
beginning. We could rearrange the augmented matrix so that
the identity matrix would appear first. However, this is not
essential from the computational point of view.

The starting basic feasible solution to the problem in standard
formis £ =10,0,4,6,8" . The columasa,,as are basic, and
they form the identity matrix. The basis matrix3s- [as, ay, a5 = I;
The value of the objective function corresponding to this basic
feasible solutionis =0 . We next compute the reduced cost
coefficients corresponding to the nonbasic variables

ri=c1 — 21 = ¢1 — (Y11 + CaYan + CsYa1) = —2

ro = Cy — 2 = €2 — (C3Y12 + CaY22 + C5Y32) = —5

37



Example

» We would like now to move to an adjacent basic feasible
solution for which the objective function value is lower.
Naturally, if there is more than one such solution, it is desirable
to move to the adjacent basic feasible solution with the lowest
objective value. A common practice is to select the most
negative value of-; and then to bring the corresponding
column into the basis.

» In this example, we bring, into the basis; that is, we ch@ose
as the new basic column. We then compute
p = arg min{yio/vi2 : yi2 > 0} = 2. We now update the canonical
augmented matrix by pivoting about the (2,2)th entry using the
pivot equations:
y@/j = Yij yzij’i # 2 yéj =

Y22 Y22
38



Example

» The resulting updated canonical augmented matrix is
a; as as a4 as b
1 01 0 0 4
001 0 1 06

1 0 0 =11 2
Note thata, entered the basis and left the basis. The

corresponding basic feasible solutionis 0,6, 4,0, 2] . We
now compute the reduced cost coefficients for the nonbasic
columns ri=c — 2z = —2

Ty = Cq4 — 24 — 5]
Becauser, = -2 <0 , the current solution is not optimal, and a
lower objective function value can be obtained by bringing
Into the basis.

39



Example

» Proceeding to update the canonical augmented matrix by

pivoting about the (3,1)th element, we obtain
a, a, a3 a, as b
00 1 1 —12
01 0 1 06
1 00 -1 1 2
The corresponding basic feasible solutiog is [2,6,2,0,0]”

The reduced cost coefficients are

Ty =C4— 24 =3

s = C; — 25 = 2
Because no reduced cost coefficient is negative, the current
basic feasible solution is optimal. The solution to the original
problem is therefore, = 2,2, =6 , and the objective function
value is 34.

40



Matrix Form of The Simplex Method

» Consider a linear programming problem in standard form
T

minimize ¢ &
subject to Az =b x>0
Let the first.» columns ek be the basic columns. The
columns form a square x m nonsingular magrix . The
nonbasic columns op  form an x (n —m) matrix . We
partition the cost vector correspondingly @s= [c%, ¢

Then, the original linear program can be represented as follows:

minimize cgw B+ c:,gw Iy

LB

subject to [B, D] [w
D

]:BwB+D33D:b

xp>0,xp >0

41



minimize ckxp + chxp

subject to [B, D] ] Bxp+ Dxzp =15

Matrix Form of The Simplex Method
» If xp =0 ,then the solutiop= [z £1]” = [zL, 0T)" IS the

basic feaS|bIe solution corresponding to the basis . Itis clear

that for this to be a solution, we need = B~ 'b ' that Is, the

basic feasible solutionis g1

€Tr =
0

» The corresponding objective function valuejs- ¢LB'b

» If, on the other handg, #0 , then the solufien|z? £T)|7
IS not basic. In this case;  is givendy= B 'b— B'Dz),
and the corresponding objective function value is
z = cBwB + cDa:D
=cL(B'b - B'Dzxp) + chxp
=ctB'b+ (¢}, - B 'D)x
B D B D
=20+ THTp rD=cl —ctB'D

42



rL=¢l —c¢EB™'D
Matrix Form of The Simplex Method

» The elements of the vector, are the reduced cost
coefficients corresponding to the nonbasic variables.

» If »p >0, then the basic feasible solution corresponding to the
basisB is optimal. If, on the other hand, a component of
IS negative, then the value of the objective function can be

reduced by increasing a corresponding components of
that is, by changing the basis.
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Matrix Form of The Simplex Method

» We now use the foregoing observations to develop a matrix
forms of the simplex method. To this end we first add the cost
coefficient vectog” to the bottom of the augmented miadrix

Abl [B Db
c 0| |ck b o

We refer to this matrix as thableau of the given LP problem.
The tableau contains all relevant information about the linear
program.

» Suppose that we apply elementary row operations to the
tableau such that the top part of the tableau corresponding to
the augmented matrjx,s] is transformed into canonical form.
This corresponds to premultiplying the tableau by the matrix

[B_l 0
ol 1
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Matrix Form of The Simplex Method

» The result of this operation is
[B 0] [B D b] B [Im B'D B™'b
0" 1| |eb eh 0| | 0
» We now apply elementary row operations to the tableau above
so that the entries of the last row corresponding to the basic
columns become zero. Specifically, this corresponds to

premultiplication of the tableau by the matrix

I, O
—cg 1
The result is
I, ol[I, B'D B'| [I, B'D B7'b
—ch 1| | 0 | |0T ¢§~cEB'D —ckB'b
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Matrix Form of The Simplex Method

» We refer to the resulting tableau as ¢thronical tableau
corresponding to the basis B. Note that the firstn  entries of
the last column of the canonical tabledr,'s , are the values
of the basic variables corresponding to the basis . The entries
¢t — ¢ B~'D in the last row are the reduced cost coefficients.
The last element in the last row of the tableaiB ' , IS the

negative of the value of the objective function corresponding to
the basic feasible solution.

I, ol[I, B'D B'| [I, B'D B7'b
—ch 1| |eh 0 | |0T ¢f~cEB'D —ckB'b
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Matrix Form of The Simplex Method

» Given an LP problem, we can in general construct many
different canonical tableaus, depending on which columns are
basic. Suppose that we have a canonical tableau corresponding
to the particular basis. Consider the task of computing the
tableau corresponding to another basis that differs from the
previous basis by a single vector. This can be accomplished by
applying elementary row operations to the tableau in a similar
fashion as discussed above. We refer to this operation as
updating the canonical tableau.

47



Matrix Form of The Simplex Method

» Note that updating of the tableau involves using exactly the
same update equations as we used before in updating the

canonical augmented matrix, namely, fer1,....m + 1

Y
Vi =y — Py, i £ p

Ly Pq
d
Y,

I Ypqg

wherey,;, and;, arethe;) thentries of the original and
updated canonical tableaus, respectively.

» Working with the tableau is a convenient way of implementing
the simplex algorithm, since updating the tableau immediately
gives us the values of both the basic variables and the reduce
cost coefficients. In addition, the value of the objective
function can be found in the lower right-hand corner of the

tableau.
48



Example

» Consider the following linear programming problem
maximize 7xy + 6xo
subject to 221 + 29 < 3
T+ 456’2 S 4

L1, T2 Z 0
» Transform the problem into standard form. Multiplying the
objective function by -1, and introducing two nonnegative

slack variables;, =, , and construct the tableau for the problem
a, a, a3 a, b
2 1 1 03

1 4 0 1 4

c —-7-60 00
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Example & D)0 0 0

» Notice that this tableau is already in canonical form with
respect to the basis;,a,] . Hence, the last row contains the
reduced cost coefficients, and the rightmost column contains
the values of the basic variables. Becadse —7 IS the most
negative reduced cost coefficient, we bring Into the basis.
We then compute the ratiag,/y; = 3/2 s, = 4
Becauseyio/yi1 < y20/yn  , We get argmin{yo/yi1 vy > 0} =1
We pivot about the (1,1)th element of the tableau to obtain

0 3

I NGTEN eI
DO —

Do Gt

1
0
0

Y I

1
0 1

NN I DO —
|
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Example JaYe

4

1
0

1
2,

| =] =

0
5 1
0

o Dol cwoleo

In the second tableau, only  is negative. Therefaore, (.e.,

we bring a, Into the basis). Because
Yio o Y 9

Y12 Yo T

we havep =2 . We thus pivot about the (2,2)th element of the
second tableau to obtain the third tableau

(-
-
~1| Rl ol oo

Because the last row of the third tableau has no negative
elements, we conclude that the basic feasible solution
corresponding to the third tableau is optimal. Thys; 8/7

19 ="5/7, z3=0 ,24 =0 1S the solution, and the objective value
IS -86/7. The solution to the original problemais=38/7 z,=15/7

sand the corresponding objective value is 86/7



Remark

» Degenerate basic feasible solutions may arise in the course of
applying the simplex algorithm. In such as situation, the
minimum ratioy,/y;, 1S 0. Therefore, even though the basis
changes after we pivot about the;)  th element, the basic
feasible solution does not (and remains degenerate)

» Itis possible that if we start with a basis corresponding to a
degenerate solution, several iterations of the simplex algorithm
will involve the same degenerate solution, and eventually the
original basis will occur. The entire process will then repeat
indefinitely, leading to what is callexycling.
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Remark

» Such a scenario, although rare in practice, is clearly undesirable.
Fortunately, there is a simple rule for choosing and that
eliminates the cycling problem

g = min{i:r; <0}

p = min{j : Z/jO/yjq = mini{yio/yiq Yiq > 0}}
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Two-Phase Simplex Method

» The simplex method requires starting with a tableau for the
problem in canonical form; that is, we need an initial basic
feasible solution. A brute-force approach to finding a starting
basic feasible solution is to choose  basic columns arbitrarily
and transform the tableau for the problem into canonical form.
If the rightmost column is positive, then we have a legitimate
(initial) basic feasible solution. Otherwise, we would have to
pick another candidate basis. Potentially, this brute-force
procedure requireg’) tries, and is therefore not practical.
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Two-Phase Simplex Method

» Certain LP problems have obvious initial basic feasible
solutions. For example, if we have constraints of the famx »
and we add» slack variablgs..., z,, , then the constraints in
standard form become

i 0[]

4

where z = [z, ..., z,]T . The obvious initial basic feasible
solution is [0]
b

and the basic variables are the slack variables.
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Two-Phase Simplex Method

» Suppose that we are given a linear program in standard form:
T

minimize ¢ &

subject to Az =b x>0
In general, an initial basic feasible solution is not always
apparent. We therefore need a systematic method for finding an
Initial basic feasible solution for general LP problems so that

the simplex method can be initialized.

» For this purpose, suppose that we are given an LP problem in
standard form. Consider the following associatedicial

problem: L
minimize Yy +ys + - -+ + Y

subject to [A, I,,] [az‘] =b [m] >0

Y = (Y1, Y25 e, Ym,
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Two-Phase Simplex Method

» We cally the vector ddrtificial variables. Note that the
artificial problem has an obvious initial basic feasible solution:

0
b
We can therefore solve this problem by the simplex method.

» Proposition 16.1: The original LP problem has a basic feasible
solution if and only if the associated artificial problem has an
optimal feasible solution with objective function value zero.
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Two-Phase Simplex Method

4

Assume that the original LP problem has a basic feasible
solution. Suppose that the simplex method applied to the
associated artificial problem has terminated with an objective
function value of zero. Then, the solution to the artificial
problem will have ally, =0,i =1,...m

Hence, assuming nondegeneracy, the basic variables are in the
first » components; that is, none of the artificial variables are
basic. Therefore, the firgst components form a basic feasible
solution to the original problem.

We can then use this basic feasible solution as the initial basic
feasible solution for the original LP problem (after deleting the
components corresponding to artificial variables).
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Two-Phase Simplex Method

» Thus, using artificial variables, we can attack a general linear
programming problem by applying th&o-phase simplex
method. In phase | we introduce artificial variables and the
artificial objective function and find a basic feasible solution.
In phase |l we use the basic feasible solution resulting from
phase I to initialize the simplex algorithm to solve the original

LP problem.
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Example

» Consider the following linear programming problem
minimize 2x1 + 3x9

subject to 4x1 + 2z > 12
r1+ 4x9 > 06
I, T2 2 0

First, we express the problem in standard form by introducing

surplus variables: minimize 2z, + 3z,
subject to 4x1 + 229 — x3 = 12
1+ 4x9y — x4 =6
i, To, T3, Ty > 0

There i1s no obvious basic feasible solution that we can use to
Initialize the simplex method. Therefore, we use the two-phase
method.
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Example

» Phase I. We introduce artificial variableszs > 0 , and an
artificial objective function:; + z; . We form the corresponding
tableau for the problem

a, a; a3 a4 as ag b
4 2 -1 0 1 0 12

1 4 0 -1 0 1 6
¢ 000 0 0 1 1 0

To initialize the simplex procedure, we must update the last
row of this tableau to transform it into canonical form. We

obtain a, a, a3 a, as ag b

4 2 -1 0 1 0 12
I 4 0 -1 0 1 6
-5 -6 1 1 0 0 —18
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Example

» The basic feasible solution corresponding to this tableau is not
optimal. Therefore, we proceed with the simplex method to
obtain the next tableau:

1 %

0 —

1

| I NG N ¢
NSIEN|
O = O
[\DIr—\
| ojw O

I —
0
0 9

NO| = | =
DN Q| =

» We still have not yet reached an optimal basic feasible solution.
Performing another iteration, we get

10 — 1 2 1 18

1 2

00 0 0 1

Both of the artificial variables have been driven out of the basis,

and the current basic feasible solution is optimal.
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Example

» Phase II. We start by deleting the columns corresponding to the
artificial variables in the last tableau in phase | and revekt bac
to the original objective function. We obtain

a; a; as ay b
1 _2 l 18
A
T
2 3 0 0 0
» We transform the last row so that the zeros appear in the basis

columns: that is, we transform the tableau above into canonical

2 1 18

form 10 -2 4 &
01 L —2 O

U 77

00 =2 4 _5

All the reduced cost coefficients are nonnegative. Hence, the

. o 1 . .
optimal solution isz = {178, 2,0, o} and the optimal cost is 54/7.
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Revised Simplex Method

4

Consider an LP problem in standard form with a matrix  of
size m xn . Suppose that we use the simplex method to solve
the problem. Experience suggests thatif i1s much smaller
than , then, in most instances, pivots will occur in only a
small fraction of the columns of the maturx

The operation of pivoting involves updating all the columns of
the tableau. However, if a particular column4of  never enters
any basis during the entire simplex procedure, then
computations performed on this column are never used.

Therefore, ify,,  Is much smaller than |, the effort expended on
performing operations on many of the columnaiof may be
wasted. Theevised smplex method reduces computation.
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The Revised Simplex Method

» To be specific, suppose we are at a particular iteration in the
simplex algorithm. LeB  be the matrix composed of columns
of A forming the current basis, and »t  be the matrix
composed of the remaining columns af

» The sequence of elementary row operations on the tableau
leading to this iteration (represented by matre,, ..., E, )
corresponds to premultiplyirB, D.b bB™ = E,...E,

» In particular, the vector of current values of basic variables is
B~'b . Observe that computation of the current basic feasible
solution does not require computatiorB—'D . Instead, we
only keep track of the basic variables and the revised tableau,
which is the tableatB—!, B~!¢]
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B~ B 'Y

The Revised Simplex Method

» Note that this tableau is only of Sizn x (m +1) . To see how to
update the revised tableau, suppose that we choose the column
a, to enter the basis. Ly, = B 'a, y, = [vo1, -, Yom|. = B~'b
and p = arg mini{yio/yiq : Yiq > 0} (as the original simplex
method). Then, to update the revised tableau, we form the
augmented tablegB', y,, y,| , and pivot aboup the th
element of the last column.

» We claim that the firsm+1  columns of the resulting matrix
comprise the revised tableau. To see this,\B~' = E,.--- E,
and let the matri.E,.,;, represent the pivoting operation above
(.e., Ex1iy,=e¢, ,the thcolumn of thix m identity matrix)
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The Revised Simplex Method

» The matrixg,,, Is given by

1 _qu/ Ypq 0
Ei = 1/ypq
0 —~Ymg/ Ypq 1]

» Then, the updated augmented tableau resulting from the above
pivoting operation iSE;. 1B, Ei.,1y,, )] . B, be the
new basis. Then, we haB ! = E,.,--- E; . But notice that

new

B! = E,,B~', and the values of the basic variables

corresponding tB,., are givenyo... = Er11Yo . Hence, the
updated tableau IS indqu;elwa yOnew] — [Ek‘—l—lB_ly Ek—l—lyO]

67



The Revised Simplex Method

» 1. Form a revised tableau corresponding to an initial basic
feasible solutiofB~!, y,]

2. Calculate the current reduced cost coefficients vector via
r,=cp— A D,where)" = cIB™!

3.1f ;>0 forall; ,stop - the current basic feasible solution

IS optimal.

4, Select ey such thir, <0 and compy, = B 'a,

5.1fno v, >0 , stop —the problem is unbounded; else,

computep = arg min;{yio/viq : yig > 0}

6. Form the augmented revised tabl{B~', y,, y,| , and pivot
about thep th element of the last column. Form the updated
revised tableau by taking the firn + 1 columns of the
resulting augmented revised tableau.

»°7. Go to step 2.

v

v

vV Vv
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The Revised Simplex Method

» The reason for computir®,  in two steps indicated in Step 2
Is as follows. We first note thel, = ¢, — ¢t B™'D . To compute
cpB~'D | we can either do the multiplication in the or(¢,B~')D
or cL(B~'D) . The former involves two vector-matrix
multiplications, whereas the latter involves a matrix-matrix
multiplication followed by a vector-matrix multiplication.
Clearly the former is more efficient.

» As in the original simplex method, we can use the two-phase
method to solve a given LP problem using the revised simple
method. In particular, we use the revised tableau from the final
step of phase | as the initial revised tableau in phase II.
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Example

» Consider solving the following LP problem using the revised

simplex methodiyaximize 3z, + 51
subject to x1 + 19 < 4
br1 + 319 > 8
Iy, L2 Z 0
» First, we express the problem in standard form
minimize — 3x1 — dT9

subject to x1 + 19+ x3 =4

dx1 + 3x9 — x4 = &

L1, L2, X3, T4 Z 0

There is no obvious basic feasible solution to this LP problem.
Therefore, we use the two-phase method.
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Example

4

Phase |. We introduce one artificial variable and an artificial

objective function. The tableau for the artificial problem is
a; as as a4 as b
1 1 1 0 0 4

We start with an initial basic feasible solution and
corresponding@~! , as shown in the Ing revised tableau

B!y N
x3 10 4 cg = |0,1]
x5 01 8 p_ |11 0
We compute A" = LB ' =0, 1 53 —1

’I"% — C% T ATD — [03070] T [5737 _H — [—57 _37 1 — [7,.1770277“4
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Example

4

Because; Is the most negative reduced cost coefficient, we
bring «, into the basis. To do this, we first compute B 'a;
In this casey, =a; . We get the augmented revised tableau
B vy,

3 10 4 1

rs 01 8 5}
We then compute = arg min;{yio/yiq : yig > 0} = 2 and pivot about
the second element of the last column to get the updated

revised tableau B! y, .
r3 1 % 12 Cp = [Oa 0]
r1 0 % % Cg = [0, 0, 1]
We next compute’ = LB~ =[0,0

rL =cb — \'D = (0,0,1] = [rg, 74, 75] > 0OF

All nonnegative. Hence, the solution to the artificial problem ,[8/ 12/5, 0, O]
72 The initial basic feasible solution for phase Il is theref@&,[0, 12/5, O]
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B!y
r3 1 —% 12
Example o oo L3
» We bringa, into the basis, and compuyte- B 'a; to get
B! vy wy,
r3 1 % 12 2
n 0 3 % %

In this case, we get=2 . We update this tableau by pivoting

about the second elem?nt of the last column to get
B Yo

X3

1
1 13
X9 O 3

QO] OO0 | v

We compute

_1 |
A =B =0,-7] [o 13] =[0,—2

3

= ch- XD~ [-3.0-10.-3 |} ] =B -3 =l
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Example

» We now bringa, into the basis

B! vy, wy,

I3 1 =1 4 1

W0 L

2 3 3 3

We update the tableau to obtain
B!y
Ty 3 —1 4
X9 1 0 4

We compute
_ 3 —1
M =cIB' =0, -5 [1 o | =150
11]

rh=cp— AN D=[=3,01—[-50|. | =[25]=[r,rs

The reduced cost coefficient are all positive. Hence, [0, 4,05 4]

optimal. The optimal solution to the original problem is [0,4]
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