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Least-Squares Analysis

4

Consider a system of linear equationg=b , WRergr "
andbc R" jn>n ,amdnk(A)=n . Note that the number of
unknowns, » , is no larger than the number of equations,

If b does not belong to the rangef |, thabisR(A) , then
this system of equations is said toibeonsistent or
overdetermined.

Our goal is to find the vector(s) minimizingx — bl . This
problem is a special case of the nonlinear least-squares problem
discussed in Section 9.4.



Least-Squares Analysis

» Let z* be a vector that minimizesx — b|)* ; that is, for alR”
|Az — b|* > [|Az* — b’

» We refer to the vectag* as a least-squares solutidn tob .
In the case wherdxz =b  has a solution, then the solution is a
least-squares solution. Otherwise, a least-squares solution
minimizes the norm of the difference between the left- and
right-hand sides of the equatiorx = b



Least-Squares Analysis
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Lemma 12.1: LetA ¢ R™" m>n . Themk(A) =n If and
only if rank(ATA)=n (i.e., the square mattixa IS
nonsingular).

Theorem 12.1: The unique vecter  that minimjzes — b||?

IS given by the solution to the equatidh Az = A™b : that is,
- =(A"A)'A"D
The columns ofA spantheramed) Aof ,whichisan -

dimensional subspace af* . The equatsan=1»b has a
solution if and only ifb € R(A)

If m=n ,thenbeR(A) always, and the solutiogris A~'b




Least-Squares Analysis
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Suppose now that. >» . We would expect the likelihood of
b e R(A) to be small, because the subspace spanned by the
columns ofA is very “thin.”

Suppose thab ¢ R(A) . We wish to find a pairtR(A) that
IS “closest” top . Geometrically, the poiat  should be such
that the vectoe = h — b IS orthogonal to the subspade

We callh theorthogonal projection of » onto the subspade(A)
It turns out thath = Ax* = A(ATA)"1ATb

Range of A



Least-Squares Analysis

» Write A=a,,...,a, ,Where,...a, edine columns oh

» The vectore Is orthogonal 1 A) If andyorfhlit is
orthogonal to each of the columns ....a, AOf

» Note that(e,a;) =0,i=1,....,n  if and offlyor any set of

scalars{zi, =, ....,z,} , we also have
<€,£L’1a1 + - Slj‘nan> = ()

Any vector inR(A) has the forma, + - + z,a,



Least-Squares Analysis

» Proposition 12.1: Leh ¢ R(A)  be such thaty IS
orthogonal torR(A) . Thenp = Az = A(ATA)1ATb
» Note that the matrix

(aj,a1) -+ (an,a1)
ATA = : :
(a1,ay,) -+ (a,,a,)

plays an important role in the least-squares solution. This
matrix is often called th&ram matrix (or Grammian).
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xample

Suppose that you are given two different types of concrete. The
first type contains 30% cement, 40% gravel, and 30% sand (all
percentages of weight). The second type contains 10% cement,
20% gravel, and 70% sand. How many pounds of each type of
concrete should you mix together so that you get a concrete
mixture that has as close as possible to a total of 5 pounds of
cement, 3 pounds of gravel, and 4 pounds of sand?

The problem can be formulated as a least-squares problem with

(0.3 0.1] 5
A=104 02 b= |3
0.3 0.7 4]

where the decision variable is= [z, 2]’ and zand are the
amounts of concrete of the first and second types, respectively.



Example

» The problem can be formulated as a least-squares problem with

A=

where the decision variable 5= [z, 23]’

(0.3 0.1
0.4 0.2

0.3 0.7]

b —

3
3
4

and

xand

are the

amounts of concrete of the first and second types, respectively.
» After some algebra, we obtain the solution:

= (ATA)1ATD

1

(0.34)(0.54) — (0.32)2

0.54 —0.32
—0.32 0.34

|

3.9
3.9

10.6
0.961



Example

» LineFitting. Suppose that a process has a single input
and a single output ¢ k. Suppose that we perform an
experiment on the process, resulting in a number of
measurements.

2 0 1 2
i |2
Yi 3 4 15

The i th measurement results in the input labeled and the
output labeled,, . We would like to find a straight line given
by y =mt+c¢ that fits the experimental data.

In other words, we wish to find two numbers, and , such
that y, = mt; +¢,i =0, 1,2

10



Example

» However, it is apparent that there is no choice.of cand that
results in the requirement above. Therefore, we would like to
find the values ofn and that best fit the data.

A
16
4
14 Imt2+c-y2| t I
12 2 0 1 2
10 i |2 3
8 Yi |3 4 15

£ ()]

N
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o
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Example

» We can represent our problem as a system of linear equations

of the form oM + ¢ = 3
3m+c=4
4m +c =15

(2 1] [ 3
A= |31 b= |4
4 1]

C

m
w*:[*

] =(ATA)'ATh = [

12

15
Notice that sinceank(A) < rank([A,b]
belong to the range o

» The solution to this least-squares problem is

|

C

|

, the vegtor
. Thus, this system is inconsistent.

—3(;/3]

does not



Example

4

Attenuation Estimation. A wireless transmitter sends a

discrete-time signals,, s;,s2}  (of duration 3) to a receiver. The
real numbers; is the value of the signal at time

The transmitted signal takes two paths to the receiver: a direct
path, with delay 10 and attenuation factor , and an indirect
(reflected) path, with delay 12 and attenuation fagior . The
received signal is the sum of the signals from these two paths,
with their respective delays and attenuation factors.

LIJL TIOILIL X

012 i

i

\I/ . \}/
TransmiMmewm
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Example

» Suppose that the received signal is measured from times 10
through 14 as,,,ryy,...,7x . We wish to compute the least-
squares estimates of amd , based on the following values

S0 S1 52 10 11 12 13 T'14
1 2 1 4 4 8 6 3

» The problem can be posed as a least- -squares problem with

so 0 r
a1s +ass’ =r 0 10
s;1 O r11
A= z= " b=
# a159 + 0 = rqg = |52 So as = |T12
a1s1 +0=rq; 0 s 713
a1S9 + a9Sg = 119 B 0 52 | 714 |

0—|—Cl281 — 713
04 asss = ry

14



Example

» The least-squares estimate is given

15

Tt = H = (ATA)ATD

1
35

6 1
16

|

a

133
112

5052 || s

| |

|

4414 +8
S+ 12+ 3

_ 2 _1
||3|| 5052 SoT10 T S1711 1+ S2T12
SoT12 + S1T13 + SaT'14

|

|



Example

» Discrete Fourier Series. Suppose that we are given a discrete
time signal, represented by the vector
b= [bi,by, ... b7
We wish to approximate this signal by a sum of sinusoids.
Specifically, we approximate by the vector
yoc® + 30 (ykc<k) n st(k-))
whereyo, yi, ..., Y, 21,..., 2o € B~ and the vectvts  s@nd are
given by

16



Example

» We call the sum of sinusoids abovdiscrete Fourier series.
We wish to findyy, vi, ..., yn, 21, ..., 20 such that

2
(y0c<0> Iy (ykcw n st(k))) _ b
IS minimized.
» To proceed, we define
A =[c )

Ir = [y(), Y1y ooy Yny 21y ooy Zpy
Our problem can be reformulated as minimizing

|Az — bl

c(”) S(1>

g ey 3 3 seey

]T

S (”)}

)
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Example

» We assume that, >2n+1 . To find the solution, we first
computea”4 . We make use of the following trigonometric
identities: for any nonzero integer that is not an integral
multiple of m , we have

E ?11 cos(z'—%”) = ()

— e

E ?11 sin (z’—%”) = ()
— m

with the aid of these identities, we can verify that

T el) _ | m/2 itk :j
\O otherwise

ST 50) — ¢ m/2 it k :j
0 otherwise

c®Tsl) = ( for any k, j
18



Example

» Hence, A"A =21,,,, ,which s clearly nonsingular, with
inverse(A’A)™! = 21,,,,

m,

Therefore, the solution to our problem is

= [yt oy, 2, 2
—(ATA) 1A'
=2A"b
We represent the solution as
V2 . 2 2k
Yo = HZizl b, Yr = EZM bi COS(ZW) k=1..n

2 2k
g=—3"b sin(z'—”) k=1,..n

m
We call thesaliscrete Fourier coefficients.

19



Example

» Orthogonal Projections. Let v ¢ r* be a subspace. Given a

vectorz € R* , we write the orthogonal decompositios of as
r=ay+ TyL

wherez, ¢ v Is the orthogonal projectioncof onto and
z,,. € V*+ IS the orthogonal projectionaf orte . We can
write z, = P« for some matrir  callexthogonal projector.
In the following, we derive expressions fBr  for the case
wherey = R(A) and the case where /(A

» Consider a matriXa ¢ R™* ' m>n , andk(A) =n VEeR(A)
be the range oA . In this case we can write an expressian for
In terms of A

20



Example

» By Proposition 12.1 we have, = A(ATA) ATz , whence
P =A(A"A)'A”. Note that by Proposition 12.1, we may also
write z, = arg mingey||y — x|

» Next, consider a matrix e R m<n , amgk(A) =m . Let
V =N(A be the nullspace od . To derive an expression for
the orthogonal projectop  intermsof for this case, we use
the formula derived above and the idenfityd): = R(A?)
(see Theorem 3.4).
Indeed, ifi/ = R(AT) , then the orthogonal decomposition with
respectta/ isc=xy+x, ,wWhetg=AT(AAT) ' Ax

21



Example

» BecauseN(A)-=R(AT) ,we deduce that z, = AT(AAT) Ax
Hence,
ry=x -2y =x — A ([AA) TAx = (I — AT(AA") 1TA)x
Thus, the orthogonal projector in this case is
P=1-A"AA")A

22



The Recursive Least-Squares Algorithm

» Assume that we are originally given three experimental results
(to, v0), (t1,y1), (t2,40) , and we find the parameters: and of
the straight line that best bits these data. Suppose that we are
now given an extra measurement point:) . We can use
previous calculations ofn,* and  for the three data points to
calculate the parameters for the four data points. This

procedure is called thecursive least-squares (RLS)
algorithm.

23



The Recursive Least-Squares Algorithm

» Consider the problem of minimizinga,z — (> . The
solutl_on is given by = gt Agb.(@. | ,_Wheznf@: AL A,
Consider now the problem of minimizing

A, »O1|I°

nig

The solution is given by
Agl’ [ Agl' A
1) _ -1 0 _ 0 0
S PO v

Our goal is to writex!Y)  as a function 8f) G,, , and the new
dataA, and®

24



The Recursive Least-Squares Algorithm

» To this end, we first write&z;, as

A

G\ — [ATAT [ ] _ ATAy+ ATA, = Gy + AT A,

Next, we write

T
Ag]” [ b
{ !ﬂ [bd — [AT AT] [b“ﬂ — AT + ATV

To proceed further, we writa’s®  as
Al b0 — GG, AOTb(O) — Gz
= (G, —ATANz") = G2V — AT A 20

25



The Recursive Least-Squares Algorithm

» Combining these formulas, we see that we can wiite as

A, bl
= 20+ G AT (b1 - 4,20

T rpo
20 = G [Ao] [b ] _ G;l(le(O) ~ AT Az +A1Tb(1)>

where G; can be calculated usigg= G, + AT A,

» With this formula, z(® can be computed using oay A4, bV,
and G, . Hence, we have a way of using our previous efforts in

calculating z© to compute” . Observe that if the new data
are consistent with the old data, thatdsg© = bV , then the
correction term is O and the updated solution IS equal to the

previous solutiong©

26



The Recursive Least-Squares Algorithm

» Atthe(k +1) thiteration, we have
Gi1=Gr+ Aj Ap

2+ — (k) G1§+11Ag+1 <b<k+1) _ Akﬂaz(’f))

The vectorp*V — A, ,2z® Is often calleditireovation. As
before, observe that if the innovation is zero, then the updated
solution z*+1 is equal to the previous solutn

» We can see that to computeé+.  we neel rather than
G4 . It turns out that we can derive an update formulagfor,
itself.

27



The Recursive Least-Squares Algorithm

» Lemma 12.2: Les be a nonsingular matrix. teandv
pe matrices such thatr va—'u IS nondeglihen,A + Uv
IS nonsingular, and
(A+UV)l=A"-(A'U)T+VA'U (VAT
» By Lemma 12.2, we get
G = (Gk - AZ+1Ak+1>
=G, — G AL (T + A Gy Ap) T A Gy
For simplicity of notation, we rewrite;! &5 . \We
summarize by writing the RLS algorithm usimg

P = P — PkA;E;FH(I + AkHPkAzH)_lAkHPk
2+ = 200 1 Py AT (607D — Ay 2)

28



The Recursive Least-Squares Algorithm

» In the special case where the new data at each step are such that
A1 1S @ matrix consisting of a single row,,, = a! , and
p*+L is a scalarp*tt =p,,, , we get

k+1+ k

T
1 + a’k_|_1Pka’k-|—1

W) = 2 4+ Pragy (bk+1 - afﬂw(’{))

29



(1 0] 1
» Let
Ay= (01 bY=1]1
11 1
Ai=al' =121 bV =p =3
Ay=al=[31 b@ =by=[4
First compute the vectog®  minimizing,z — b . Then,
use the RLS algorithm to find®  minimizing
Ay _b(o)_ 2
‘ A1 xr — b(l)
Ay b2
We have o [2/3 =13
POZ(AOAO) — __1/3 2/3]

20) = Py ATHO) [2/ 3]

30



Example

» Applying the RLS algorithm twice, we get
Poala{Po _ [ ]_/3 —1/3]

P, =P,-

1+ ai Pya, —1/3 2/3
1
M =20 + Pia, (bl - ale(O)) B [2/3]
P1a2a2TP1 1/6 _1/4
P,=P, - -
YT 14 alPiay,  |-1/4 58
ol s P - afat) - [ 1017

31



Solution to A Linear Equation with Minimum Norm

4

Consider now a system of linear equations = b , Where
AcR™™, beR" m<n ,antank(A)=m . Note that the
number of equations is no longer than the number of unknowns.
There may exist an infinite number of solutions to this system
of equations.

However, as we shall see, there is only one solution that is

closest to the origin: the solution or = b whose nam IS
minimal.
Let «* be this solution that isz* = b did|| < ||z for any

x such thataz = . In other words, IS the solution to the

problem o
minimize |||

subject to Ax = b

32



Solution to A Linear Equation with Minimum Norm

» Theorem 12.2: The unique solutien A@=1p that
minimizes the normjz| Is given by
' = AT (AAT)" b

» Example: Find the point closest to the originmf on the line
of intersection of the two planes defined by the following two
equations: T+ 229 — 23 = 1

dx1 + x9+ 323 =10
Note that this problem is equivalent to the problem

minimize ||| _
| A 12 —1 b 1
subject to Ax = b 41 3 0

[ 0.0952 ]
r* = AT (AAT)" b = | 0.3333
| —0.2381 |

33



Kaczmarz’s Algorithm

» Kaczmarz's algorithm converges to the vecior= AT(AAT) b
without explicitly having to invert the matrix4oZ . Thisis
Important from a practical point of view, especially when
has many rows.

» Let o' denote the throwdf ,and the thcomponent of
and . a positive scalao, < i < 2 . Kaczmarz’s algorithm is:
1. Seti:=0 , initial conditiop©
2.Forj=1,...,m ,set

plimtj) — glim+j=1) p(b; — a?w(im%—j—l))%

3.5et;:=7+1 ;gotostep 2.

34



Kaczmarz’s Algorithm

» For the first,,m  iterations, we have

2+l — pk) 4 p(brs1 — agHw(k))aif;ﬂ

where, in each iteration, we use rowsof  and corresponding

components of, successively. For ther 1) th iteration, we
revert back to the firstrow ad  and the first componert of
that is, 20m D) — £ 4 (b, — a2 )

We continue with them +2) th iteration using the second row
of A and the second componenkof , and so on, repeating the
cycle every,, Iterations. The reason ot i < 2 will

become apparent from the convergence anlaysis.

35



Kaczmarz’s Algorithm

» Theorem 12.3: In Kaczmarz'’s algorithm, 4f®) — ¢ , then
¥ - = AT(AAT)"'b aSk — 0o -

» Example: Let
U L T b
B! 3

In this casexz* = (5,37 . This figure shows a few iterations of

Kaczmarz's algorithm with, =1 angl” =0 . We haVe- 1, -1
a; =[0,1], b =2 ,b,=3 . The diagonal line passing through the
point [2, 07 corresponds to the get: a’z =b,} , and the
horizontal line passing through the pojnt|? corresponds to

the set{z : alz = b}

36



Kaczmarz'’s Algorithm

» We perform three iterations:

37




Solving Linear Equations in General

» Consider a system of linear equations = » , Whegerm<n
and rank(A) =r . Note that we always havemin{m,n} .In
the cased ¢ R andnk(A) =n , the unique solution to the
equation above has the forg = A% . Thus, to solve the
problem in this case it is enough to know the invegse

» A general approach to solvinge =b . The approach involves
defining apseudoinverse or generalized inverse of a given
matrix A € r™" , which plays the role gf! when  does
not have an inverse. In particular, we discus3vtbere-
Penrose inverse of a given matrixa , denoted!

38



Solving Linear Equations in General

4

Lemma 12.3Full-Rank Factorization: Let A € rm*"
rank(A) =r < min{m,n}. Then, there exist matriceB ¢ r™*

and ¢ e R suchthat= BC  , where
rank(A) = rank(B) = rank(C) =r

Proof: Becauseank(A)=r ,we canfind linearly
iIndependent columns of . Without loss of generality, let

a, as ...,a, be such columns, wheke  isthe th columa of
The remaining columns of  can be expressed as linear
combination ofa,, a,....,a, . Thus, a possible choicesfor and

C are | (1 -+ 0 Clpq1 - Cin
B = [(1,1, as, ..., a,.] c R™ C = : : . . c Rrxn
0 - 1 ¢Gpy1 - 0 G
where the entries;;  are such that for epaeh +1,....n , we

3£]ave a; = Cy,;a1 + -+ Cr jQy . ThUBF BC



Solving Linear Equations in General

» Note that ifin < »  anaank(A)=m , then we take 1, and
C=A
» If, on the other handy, >n  an@nk(A) =n , then we can
take B=A and =1,
» Example: Let 2 1 —2 5]
A=1|1 0 -3 2 rank(A) = 2
3 —1 —13 5]

We can write a full-rank factorization of  based on the proof
of Lemma 12.3

2 1
A= 1|1 0
3

40



Solving Linear Equations in General

» Consider the matrix equationx A = A , Wheeep < IS a
given matrix andx < g™ IS a matrix we wish to determine.
Observe that ifA is a nonsingular square matrix, then the
equation above has the unigue solution A-!

» Definition 12.1: Givend ¢ ™" |, a matrix' ¢ prxm is called
apseudoinverse of the matrixa ifAaAatA = A , and there exist
matricestU € R antt e Rm*m such thiat 7 A7 and

Al =A"V

41



Solving Linear Equations in General

» The requirementa’ = yA” = ATV can be interpreted as
follows. Each row of the pseudoinverse matax  Aof IS a
linear combination of the rows o’ , and each columu’of
IS a linear combination of the columns af

» For the case which a matrix € r™*” with> n and
rank(A) =n, we can easily check that the following is a
pseudoinverse oA

Al =(ATA)1AT

» Indeed, A(A7A)'ATA=A ,and if we define (474)"
andv = A(ATA)1(ATA) AT ,thah=p AT = ATV

» Note that we havafA =1, . For this reasai,A)-1A? IS
often called theeft pseudoinverse of A . This formula also

appears in least-squares analysis (Sec. 12.1)
42



Solving Linear Equations in General

» For the case which a matrix ¢ rmx» witth< n and
rank(A) = m, we can easily check that the following is a
pseudoinverse oA

Al = AT(AAT)!

» Note that we havaA’ =71, . For this reasah,4A’)-! IS
often called theight pseudoinverse of A. This formula also
appears in the problem of minimizing| subjecio= b

43



Solving Linear Equations in General

4

Theorem 12.4: Len € r»» . If a pseudoinvense A of
exists, then it is unique.

Our goal now is to show that the pseudoinverse matrix always
exists. In fact, we show that the pseudoinverse of any given
matrix A Is given by the formula

A= C'B
where gt andct are the pseudoinverse of the matmces and
C that form a full-rank factorization oA ; thatis= BC
where B andc are of full rank (Lemma 12.3)

Note that we already know how to compue and
B' = (B'B)'B?! c'=cTicch)!

44



Solving Linear Equations in General

» Theorem 12.5: Let a matrig ¢ rmx» have a full-rank
factorization A = BC , Withank(A) = rank(B) = rank(C) = r

B e R™" CeR™* | then . :
(Does not necessarily hold if

t o _
Al=C'B A = BC is not a full-rank
» Example: factorization)
2 1 —2 5] 2 1]
A=11 0 -3 2| =110 lé?_fﬂ:BC
3 -1 -13 5 3 —1]
52 5
T 1 T 1
B'=(B'B)"B [16 1 —11]
"9 5] (123 23 —10 |
- 5 7 b it 1 | 137 17 =52
ct=c’icc’y =1 2o A'=C'B' =555 | 00 T
23 17 387 63 -T2




Solving Linear Equations in General

» We can simplify the expression
Al=c'B'=cf(cc"(B'B)"'B”
to
Al =cT(BTAAT) !B
This is easily verified by substituting = BC

» Theorem 12.6: Consider a system of linear equations b
A € R, rank(A)=r . The vector = A'p minimizes
|Axz — b||* on R* . Furthermore, among all vectorsin that
minimizes |Ax — b|? , the vectyy* = A'p IS the unique vector
with minimal norm.

46



Solving Linear Equations in General

» The generalized inverse has the following useful properties
(AT)T = (Al
(AN = A

» These two properties are similar to those that are satisfied by

the usual matrix inverse. However, the propeuyA,)! = Al Al
does not hold in general.
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