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Chapter 6 Laplace Transforms
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Why Laplace Transforms?
� The process of solving an ODE using the Laplace 

transform method consists of three steps, shown 
schematically in Fig. 113:
� Step 1. The given ODE is transformed into an algebraic 

equation, called the subsidiary equation.
� Step 2. The subsidiary equation is solved by purely 

algebraic manipulations.
� Step 3. The solution in Step 2 is transformed back, 

resulting in the solution of the given problem.
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Why Laplace Transforms?
� The key motivation for learning about Laplace 

transforms is that the process of solving an ODE is 
simplified to an algebraic problem (and 
transformations). This type of mathematics that 
converts problems of calculus to algebraic problems is 
known as operational calculus. The Laplace transform 
method has two main advantages over the methods 
discussed in Chaps. 1–4:
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Why Laplace Transforms?
� I. Problems are solved more directly: Initial value 

problems are solved without first determining a 
general solution. Nonhomogenous ODEs are solved 
without first solving the corresponding homogeneous 
ODE.

� II. More importantly, the use of the unit step function 
(Heaviside function in Sec. 6.3) and Dirac’s delta (in 
Sec. 6.4) make the method particularly powerful for 
problems with inputs (driving forces) that have 
discontinuities or represent short impulses or 
complicated periodic functions.
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6.1 Laplace Transform. Linearity. 
First Shifting Theorem (s-Shifting)
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Laplace Transform
� If f(t) is a function defined for all t ≥ 0, its Laplace 

transform is the integral of  f(t) times e−st from t = 0 
to ∞. It is a function of s, say, F(s), and is denoted by 
L(f); thus

(1)

� Here we must assume that f(t) is such that the integral 
exists (that is, has some finite value). This assumption 
is usually satisfied in applications—we shall discuss 
this near the end of the section.
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Laplace Transform
� Not only is the result F(s) called the Laplace transform, 

but the operation just described, which yields F(s) 
from a given f(t), is also called the Laplace transform. 
It is an “integral transform ”

with “kernel” k(s, t) = e−st.
� Note that the Laplace transform is called an integral 

transform because it transforms (changes) a function in 
one space to a function in another space by a process 
of integration that involves a kernel. The kernel or 
kernel function is a function of the variables in the two 
spaces and defines the integral transform.
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Laplace Transform
� Furthermore, the given function f(t) in (1) is called the 

inverse transform of F(s) and is denoted by L −1(f); 
that is, we shall write

(1*) f(t) = L−1(F). 

� Note that (1) and (1*) together imply L−1(L(f)) = f and 
L(L−1(F)) = F .
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Notation
� Original functions depend on t and their transforms on 

s—keep this in mind! Original functions are denoted 
by lowercase letters and their transforms by the same 
letters in capital, so that F(s) denotes the transform of 
f(t), and Y(s) denotes the transform of y(t), and so on.
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Example
� Let f(t) = 1 when t ≥ 0. Find F(s)

� Solution. From (1) we obtain by integration

Such an integral is called an improper integral and, 
by definition, is evaluated according to the rule 

Hence our convenient notation means 

We shall use this notation throughout this chapter. 
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Example
� Let                 when         , where a is a constant. Find 

L(f). 

� Solution. Again by (1), 

hence, when s-a > 0, 
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Theorem 1
� Linearity of the Laplace Transform
� The Laplace transform is a linear operation; that is, 

for any functions f(t) and g(t) whose transforms exist 
and any constants a and b the transform of af(t) + bg(t) 
exists, and

L｛af(t) + bg(t)｝= aL{ f (t)} + bL{ g(t)}.

12



Proof of Theorem 1
� This is true because integration is a linear operation so 

that (1) gives 
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Example
� Find the transforms of             and

� Solution. Since                                  and 
, we obtain from the previous 

example and Theorem 1
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Example
� Derive the formulas

� Solution. We write                       and 
Integrating by parts and noting that the integral-free 
parts give no contribution from the upper limit     , we 
obtain 
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Example
� By substituting Ls into the formula for Lc on the right 

and then by substituting Lc into the formula for Ls on 
the right, we obtain
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Laplace Transform

17



Laplace Transform
� From basic transforms almost all the others can be 

obtained by the use of the general properties of the 
Laplace transform. Formulas 1-3 are special cases of 
formula 4. 

� We make the induction hypothesis that it holds for any 
integer n≥0: 

now the integral-free part is zero and the last part is 
(n+1)/s times L(tn). From this and the induction 
hypothesis, 
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Laplace Transform
� in formula 5 is the so-called gamma function. 

We get formula 5 from (1), setting st=x: 

where s>0. The last integral is precisely that defining 
, so we have                      , as claimed. 

� Note the formula 4 also follows from 5 because 
for integer          . 
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s-Shifting
� The Laplace transform has the very useful property 

that, if we know the transform of f(t), we can 
immediately get that of eatf(t), as in Theorem 2.
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Theorem 2
� First Shifting Theorem, s-Shifting

� If f(t) has the transform F(s) (where s > k for some k), 
then eatf(t) has the transform F(s − a) (where s −a > 
k). In formulas,

L{ eatf(t)} = F(s − a)

or, if we take the inverse on both sides,

eatf(t) = L−1{ F(s − a)}
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Proof of Theorem 2
� We obtain F(s-a) by replacing swith s-a in the integral 

in (1), so that 

If F(s) exists (i.e., is finite) for sgreater than some k, 
then our first integral exists for s-a>k. Now take the 
inverse on both sides of this formula to obtain the 
second formula in the theorem. 

� CAUTION! –a in F(s-a) but +a in eatf(t)
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Example
� From the previous example and the first shifting 

theorem we immediately obtain formulas 11 and 12 in 
Table 6.1

For instance, use these formulas to find the inverse of 
the transform

� Solution. Applying the inverse transform, using its 
linearity, and completing the square, we obtain 

we now see that the inverse of the right side is damped 
vibration
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Example
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Existence and Uniqueness of Laplace 
Transforms
� A function f(t) has a Laplace transform if it does not 

grow too fast, say, if for all t ≥ 0 and some constants M 
and k it satisfies the “growth restriction ”

(2) | f(t)| ≤ Mekt.

� f(t) need not be continuous, but it should not be too 
bad. The technical term (generally used in mathematics) 
is piecewise continuity.  f(t) is piecewise continuous 
on a finite interval a ≤ t ≤ b where f is defined, if this 
interval can be divided into finitely many subintervals 
in each of which f is continuous and has finite limits as 
t approaches either endpoint of such a subinterval from 
the interior. 
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Existence and Uniqueness of Laplace 
Transforms
� This then gives finite jumps as in Fig. 115 as the only 

possible discontinuities, but this suffices in most 
applications, and so does the following theorem.
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Theorem 3
� Existence Theorem for Laplace Transforms
� If f(t) is defined and piecewise continuous on every 

finite interval on the semi-axis t ≥ 0 and satisfies (2) 
for all and some constants M and k, then the Laplace 
transform L(f ) exists for all s > k.
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Proof of Theorem 3
� Since f(t) is piecewise continuous,             is integrable

over any finite interval on the t-axis. From (2), 
assuming that s > k (to be needed for the existence of 
the last of the following integrals), we obtain the proof 
of L(f) from
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Uniqueness
� If the Laplace transform of a given function exists, it is 

uniquely determined. Conversely, it can be shown that 
if two functions (both defined on the positive real axis) 
have the same transform, these functions cannot differ 
over an interval of positive length, although they may 
differ at isolated points. Hence, we may say that the 
inverse of a given transform is essentially unique. In 
particular, if two continuous functions have the same 
transform, they are completely identical. 
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6.2 Transforms of Derivatives and 
Integrals. 
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Laplace Transform
� The Laplace transform is a method of solving ODEs 

and initial value problems. The crucial idea is that 
operations of calculus on functions are replaced by 
operations of algebra on transforms. Roughly, 
differentiation of f(t) will correspond to multiplication 
of L(f) by s (see Theorems 1 and 2) and integration of 
f(t) to division of L(f) by s. 

� To solve ODEs, we must first consider the Laplace 
transform of derivatives. You have encountered such 
an idea in your study of logarithms. Under the 
application of the natural logarithm, a product of 
numbers becomes a sum of their logarithms, a division 
of numbers becomes their difference of logarithms.
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Theorem 1
� Laplace Transform of Derivatives
� The transforms of the first and second derivatives of f(t) 

satisfy

(1) L( f ’) = sL(f) − f(0)

(2) L(f ”) = s2L(f) − sf(0) − f ’(0). 

� Formula (1) holds if f(t) is continuous for all t ≥ 0 and 
satisfies the growth restriction (2) in Sec. 6.1 and f ’( t) 
is piecewise continuous on every finite interval on the 
semi-axis t ≥ 0.  Similarly, (2) holds if f and f ’ are 
continuous for all t ≥ 0 and satisfy the growth 
restriction and f ” is piecewise continuous on every 
finite interval on the semi-axis t ≥ 0 .
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Proof of Theorem 1
� We prove (1) first under the additional assumption that 

f’ is continuous. Then, by the definition and integration 
by parts, 

Since f satisfies (2) in Sec. 6.1, the integrated part on 
the right is zero at the upper limit when s > k, and at 
the lower limit it contributes –f(0). The last integral is 
L(f). It exists for s > k because of Theorem 3 in Sec. 
6.1. Hence L(f’) exists when s > k and (1) holds. 

(1)
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Proof of Theorem 1
� If f’ is merely piecewise continuous, the proof is 

similar. In this case the interval of integration of f’ 
must be broken up into parts such that f’ is continuous 
in each such part. 

� The proof of (2) now follows by applying (1) to f’’ and 
then substituting (1), that is
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Theorem 2
� Laplace Transform of the Derivative f(n) of Any 

Order
� Let f, f ’, … , f (n−1) be continuous for all t ≥ 0 and 

satisfy the growth restriction (2) in Sec. 6.1. 
Furthermore, let f (n) be piecewise continuous on every 
finite interval on the semi-axis t ≥ 0. Then the 
transform of f (n) satisfies

(3) L(f (n)) = sn L(f) − sn−1 f(0) − sn−2 f ’(0) − … − f (n−1)(0). 
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Example 1
� Let                      . Then 

. Hence by (2), 

(2)
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Example 2
� This is a third derivation of                and              . 

Let                    . Then 

From this and (2) we obtain 

By algebra, 

� Similarly, let                . Then 
From this and (1) we obtain 

Hence, 

(2)
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Laplace Transform of the Integral of a 
Function
� Differentiation and integration are inverse operations, 

and so are multiplication and division. 

� Since differentiation of a function f(t) (roughly) 
corresponds to multiplication of its transform L(f) by s, 
we expect integration of f(t) to correspond to division 
of L(f) by s:
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Theorem 3
� Laplace Transform of Integral
� Let F(s) denote the transform of a function f (t) which 

is piecewise continuous for t ≥ 0 and satisfies a growth 
restriction (2), Sec. 6.1. Then, for s > 0, s > k, and t > 0,

thus
(4)

39



Proof of Theorem 3
� Denote the integral in (4) by g(t). Since f(t) is piecewise 

continuous, g(t) is continuous, and (2), Sec. 6.1, gives

This shows that g(t) also satisfies a growth restriction. Also, 
g’( t)=f(t), except at points at which f(t) is discontinuous. 
Hence, g’( t) is piecewise continuous on each finite interval 
and, by Theorem 1, since g(0)=0 (the integral from 0 to 0 is 
zero) 

Division by s and interchange of the left and right sides 
gives the first formula in (4), from which the second 
follows by taking the inverse transform on both sides. 

40



Example 3
� Using Theorem 3, find the inverse of                  and

� Solution. From Table 6.1 in 
Sec. 6.1 and the integration 
in (4) we obtain
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Example 3
� This is formula 19 in Sec. 6.9. Integrating this result 

again and using (4) as before, we obtain formula 20 in 
Sec. 6.9

It is typical that results such as these can be found in 
several ways. In this example, try partial fraction 
reduction. 
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Differential Equations, Initial Value 
Problems
� Let us now discuss how the Laplace transform method 

solves ODEs and initial value problems. We consider 
an initial value problem

(5) y” + ay’ + by = r(t), y(0) = K0, y’(0) = K1

where a and b are constant. Here r(t) is the given input 
(driving force) applied to the mechanical or electrical 
system and y(t) is the output (response to the input) to 
be obtained.
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Differential Equations, Initial Value 
Problems
� In Laplace’s method we do three steps:

� Step 1. Setting up the subsidiary equation. This is an 
algebraic equation for the transform Y = L(y) obtained 
by transforming (5) by means of (1) and (2), namely,

[s2Y − sy(0) − y’(0)] + a[sY − y(0)] + bY = R(s)

where R(s) = L(r). Collecting the Y-terms, we have the 
subsidiary equation

(s2 + as + b)Y = (s + a)y(0) + y’(0) + R(s).
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Differential Equations, Initial Value 
Problems
� Step 2. Solution of the subsidiary equation by algebra. 

We divide by s2 + as + b and use the so-called 
transfer function

(6) 

(Q is often denoted by H, but we need H much more 
frequently for other purposes.)
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Differential Equations, Initial Value 
Problems
� This gives the solution

(7) Y(s) = [(s + a)y(0) + y’(0)]Q(s) + R(s)Q(s).

� If y(0) = y’(0) = 0, this is simply Y = RQ; hence

and this explains the name of Q. Note that Q depends 
neither on r(t) nor on the initial conditions (but only on 
a and b).
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Differential Equations, Initial Value 
Problems
� Step 3. Inversion of Y to obtain y = L−1 (Y ). We 

reduce (7) (usually by partial fractions as in calculus) 
to a sum of terms whose inverses can be found from 
the tables (e.g., in Sec. 6.1 or Sec. 6.9) or by a CAS, so 
that we obtain the solution y(t) = L−1(Y ) of (5).
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Example 4
� Solve y” − y = t, y(0) = 1, y’(0) = 1

� Solution. Step 1. From (2) and Table 6.1 we get the 
subsidiary equation [with Y = L(y)]

s2Y − sy(0) − y’(0) − Y = 1/s2, 

thus (s2 − 1)Y = s + 1 + 1/s2. 

� Step 2. The transfer function is Q = 1/(s2 − 1), and (7) 
becomes

� Simplification of the first fraction and an expansion of 
the last fraction gives
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Example 4
� Step 3. From this expression for Y and Table 6.1 we 

obtain the solution

� The diagram summarizes this approach
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Example 5
� Solve the initial value problem

� Solution. From (1) and (2) we see that the subsidiary 
equation is 

The solution is  

Hence by the first shifting theorem and the formulas 
for cos and sin in Table 6.1 we obtain
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Table 6.1
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Advantages of the Laplace Method
� 1. Solving a nonhomogeneous ODE does not require 

first solving the homogeneous ODE. See Example 4.

� 2. Initial values are automatically taken care of. See 
Examples 4 and 5.

� 3. Complicated inputs r(t) (right sides of linear ODEs) 
can be handled very efficiently, as we show in the next 
sections.
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Example 6
� This means initial value problems with initial 

conditions given at some t=t0 > 0 instead of t=0. For 
such a problem set               , so that            gives
and the Laplace transform can be applied. For instance, 
solve  

� Solution. We have              and we set                . Then 
the problem is 

where                 . 
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Example 6
� Using (2) and Table 6.1 and denoting the transform of 

by     , we see that the subsidiary equation of the 
“shifted” initial value problem is 

Solving this algebraically for    , we obtain

The inverse of the first two terms can be seen from 
Example 3 (with          ), and the last two terms give 
cos and sin,  
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Example 6

� Now                                                  , so that the answer 
is 
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6.3 Unit Step Function (Heaviside 
Function). Second Shifting Theorem (t-
Shifting)
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Unit Step Function
� We shall introduce two auxiliary functions, the unit 

step function or Heaviside function u(t − a) (following) 
and Dirac’s delta δ(t − a) (in Sec. 6.4). 

� These functions are suitable for solving ODEs with 
complicated right sides of considerable engineering 
interest, such as single waves, inputs (driving forces) 
that are discontinuous or act for some time only, 
periodic inputs more general than just cosine and sine, 
or impulsive forces acting for an instant 
(hammerblows, for example).
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Unit Step Function
� The unit step function or Heaviside function u(t − a) 

is 0 for t < a, has a jump of size 1 at t = a (where we 
can leave it undefined), and is 1 for t > a, in a formula:

(1) (a ≥ 0).

� Figure 118 shows the special case u(t), which has its 
jump at zero, and Fig. 119 the general case u(t − a) for 
an arbitrary positive a. (For Heaviside, see Sec. 6.1.)
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Unit Step Function
� The transform of u(t-a) follows directly from the 

defining integral in Sec. 6.1, 

here the integration begins at t = a (≥0) because u(t-a) 
is 0 for t < a. Hence 

� The unit step function is a typical “engineering 
function” made to measure for engineering 
applications, which often involve functions that are 
either “off” or “on.”
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Unit Step Function
� Multiplying functions f (t) with u(t − a), we can 

produce all sorts of effects. The simple basic idea is 
illustrated in Figs. 120 and 121. In Fig. 120 the given 
function is shown in (A). In (B) it is switched off 
between t = 0 and t = 2 (because u(t − 2) = 0 when t <
2) and is switched on beginning at t = 2. In (C) it is 
shifted to the right by 2 units, say, for instance, by 2 
sec, so that it begins 2 sec later in the same fashion as 
before. 
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Unit Step Function
� More generally we have the following.

� Let f(t) = 0 for all negative t. Then f(t − a)u(t − a) with 
a > 0 is f(t) shifted (translated) to the right by the 
amount a.

� Figure 121 shows the effect of many unit step 
functions, three of them in (A) and infinitely many in 
(B) when continued periodically to the right; this is the 
effect of a rectifier that clips off the negative half-
waves of a sinuosidal voltage.
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Unit Step Function
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Unit Step Function
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Time Shifting (t-Shifting)
� The first shifting theorem (“s-shifting”) in Sec. 6.1 

concerned transforms F(s) = L{ f(t)} and F(s − a) = 
L{ eatf(t)}. 

� The second shifting theorem will concern functions f(t) 
and f(t − a). 
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Time Shifting (t-Shifting)
� Theorem 1. Second Shifting Theorem; Time Shifting

� If f(t) has the transform F(s) then the “shifted function”

(3)

has the transform e−asF(s). That is, if L{ f(t)} = F(s), then

(4) L{ f(t − a)u(t − a)} = e−asF(s).

Or, if we take the inverse on both sides, we can write

(4*) f(t − a)u(t − a)} = L−1{ e−asF(s)}.
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Time Shifting (t-Shifting)
� Practically speaking, if we know F(s), we can obtain 

the transform of (3) by multiplying F(s) by e-as. In Fig. 
120, the transform of 5 sin t is F(s) = 5/(s2+1), hence 
the shifted function 5 sin(t-2)u(t-2) shown in Fig. 120 
(C) has the transform 
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Time Shifting (t-Shifting)
� Proof of Theorem 1. In (4), on the right, we use the 

definition of the Laplace transform, writing     for t (to 
have t available later). Then, taking e-as inside the 
integral, we have 

Substituting                , thus                            in the 
integral, we obtain

(4)
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Time Shifting (t-Shifting)
� To make the right side into a Laplace transform, we 

must have an integral from 0 to , not from a to 
But this is easy. We multiply the integral by u(t-a). 
Then for t from 0 to a the integrand is 0, and we can 
write, with      as in (3), 

This integral is the left side of (4), the Laplace 
transform of        in (3). This completes the proof. 
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Example
� Write the following function using unit step functions 

and find its transform.
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Table 6.1
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Example
� Step 1. In terms of unit step functions 

f (t) = 2(1 − u(t − 1)) +  t2(u(t − 1) − u(t − π)) + (cos
t)u(t − π). Indeed, 2(1 − u(t − 1)) gives f(t) for 0 < t <
1, and so on.

� Step 2. To apply Theorem 1, we must write each term 
in f(t) in the form f(t − a)u(t − a). Thus, 2(1 − u(t − 1)) 
remains as it is and gives the transform 2(1 − e−s)/s. 
Then

2 2

3 2

2
2 2

2
/2

3 2

1 1 1 1 1 1
( 1) ( 1) ( 1) ( 1)

2 2 2 2

1 1 1 1 1 1
( ) ( ) ( ) ( )

2 2 2 2 2 2 8 2

1
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t u t t t u t e
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t u t t t u t

e
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π

π ππ π π π

π π
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 
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 

L L
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Example
� Step 2. (continued)

� Together,

� If the conversion of f(t) to f(t-a) is inconvenient, 
replace it by 

/2

2

1 1 1 1
(cos ) ( ) sin( ) ( ) .

2 2 2 1

st u t t u t e
s

ππ π π −    − = − − − = −     +    
L L

2
/2 /2

3 2 3 2 2

2 2 1 1 1 1 1
( ) .

2 82 1

s s s sf e e e e
s s s ss s s s s

π ππ π− − − −  = − + + + − + + −   +   
L

(4**)
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Example
� Step 2. (continued). (4**) follows from (4) by writing 

f(t-a)=g(t), hence f(t)=g(t+a) and then again writing f
for g. Thus, 

as before, Similarly for                      . Finally, by (4**), 
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Example
� Find the inverse transform f(t) of 

� Solution. Without the exponential functions in the 
numerator the three terms of F(s) would have the 
inverses                              , and         because 1/s2 has 
the inverse t, so that 1/(s+2)2 has the inverse te-2t by the 
first shifting theorem in Sec. 6.1. Hence by the second 
shifting theorem (t-shifting), 
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Example
� Now                               and                            , so that 

the first and second terms cancel each other when t>2. 
Hence we obtain f(t)=0 if 0<t<1,                  if 1 < t < 2, 
0 if 2 < t < 3, and                     if t > 3. 
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6.4 Short Impulses. Dirac’s Delta 
Function. Partial Fractions
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Dirac’s Delta Function
� An airplane making a “hard” landing, a mechanical 

system being hit by a hammerblow, a ship being hit by 
a single high wave, a tennis ball being hit by a racket, 
and many other similar examples appear in everyday 
life. They are phenomena of an impulsive nature where 
actions of forces—mechanical, electrical, etc.—are 
applied over short intervals of time.

� We can model such phenomena and problems by 
“Dirac’s delta function,” and solve them very 
effectively by the Laplace transform.
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Dirac’s Delta Function
� To model situations of that type, we consider the function

(1) (Fig. 132)

(and later its limit as k → 0). This function represents, for 
instance, a force of magnitude 1/k acting from t = a to t = a +
k, where k is positive and small. In mechanics, the integral of 
a force acting over a time interval a ≤ t ≤ a + k is called the 
impulse of the force; similarly for electromotive forces E(t) 
acting on circuits. Since the blue rectangle in Fig. 132 has 
area 1, the impulse of fk in (1) is

(2)
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Dirac’s Delta Function
� To find out what will happen if k becomes smaller and 

smaller, we take the limit of fk as k→0 (k > 0).  This 
limit is denoted by δ(t − a), that is,

δ(t − a) is called the Dirac delta function or the unit 
impulse function.
� δ(t − a) is not a function in the ordinary sense as used 

in calculus, but a so-called generalized function.To see 
this, we note that the impulse Ik of fk is 1, so that from 
(1) and (2) by taking the limit as k→0 we obtain

(3) and
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Dirac’s Delta Function
� but from calculus we know that a function which is 

everywhere 0 except at a single point must have the 
integral equal to 0. Nevertheless, in impulse problems, 
it is convenient to operate on δ(t − a) as thought it 
were an ordinary function. In particular, for a 
continuous function g(t) one uses the property [often 
called the sifting property of δ(t − a), not to be 
confused with shifting]

(4)
which is plausible by (2).
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Dirac’s Delta Function
� To obtain the Laplace transform of δ(t − a) we write

and take the transform [see (2)]

� We now take the limit as k→0. By l’Hôpital’s rule the 
quotient on the right has the limit 1 (differentiate the 
numerator and the denominator separately with respect to k, 
obtaining se−ks and s, respectively, and use se−ks/s→1 as 
k→0). Hence the right side has the limit e−as. This suggests 
defining the transform of δ(t − a) by this limit, that is,

(5)
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Example 1
� Determine the response of the damped mass-spring 

system under a square wave, modeled by 

� Solution. From (1) and (2) in Sec. 6.2 and (2) and (4) 
in this section we obtain the subsidiary equation

Using the notation F(s) and partial fractions, we obtain 
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Example 1
� From Table 6.1 in Sec. 6.1, we see that the inverse is 

Therefore, by Theorem 1 in Sec. 6.3 (t-shifting) we obtain 
the square-wave response shown in Fig. 133, 
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t-shifting:



Example 2
� Find the response of the system in Example 1 with the 

square wave replaced by a unit impulse at time t = 1.

� Solution. We now have the ODE and the subsidiary 
equation

Solving algebraically gives

By Theorem 1 the inverse is 

1 1
( ) .

( 1)( 2) 1 2

s
se

Y s e
s s s s

−
− = = − + + + + 

1

( 1) 2( 1)

         0               if 0 1
( ) ( )

     if       1.t t

t
y t Y

e e t

−
− − − −

< <
= =  − >

L
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Example 2
� y(t) is shown in Fig. 134. Can you imagine how Fig. 

133 approaches Fig. 134 as the wave becomes shorter 
and shorter, the area of the rectangle remaining 1?
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More on Partial Fractions
� We have seen that the solution Y of a subsidiary 

equation usually appears as a quotient of polynomials 
Y(s) = F(s)/G(s), so that a partial fraction 
representation leads to a sum of expressions whose 
inverses we can obtain from a table, aided by the first 
shifting theorem (Sec. 6.1). These representations are 
sometimes called Heaviside expansions.
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More on Partial Fractions
� An unrepeated factor s-a in G(s) requires a single 

partial fraction A/(s-a). See Examples 1 and 2. 
Repeated real factors (s-a)2, (s-a)3, etc., require partial 
fractions 

The inverses are 

� Unrepeated complex factors 
, require a partial 

fraction                                    . For an application, see 
Example 4 in Sec. 6.3. 
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Example
� Solve the initial value problem for a damped mass-

spring system acted upon by a sinusoidal force for 
some time interval
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Example
� From Table 6.1, (1), (2) in Sec. 6.2, and the second 

shifting theorem in Sec. 6.3, we obtain the subsidiary 
equation

We collect the Y-terms, (s2+2s+2)Y,  take –s+5-2 = -
s+3 to the right, and solve, 

For the last fraction we get from Table 6.1 and the first 
shifting theorem

(6)

(7)
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Example
� In the first fraction in (6) we have unrepeated complex 

roots, hence a partial fraction representation

Multiplication by the common denominator gives

We determine A, B, M, N. Equating the coefficients of 
each power of s on both sides gives the four equations

(a)

(c)

(b)

(d)
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Example
� We can solve this, for instance, obtaining M=-A from 

(a), then A=B from (c), then N=-3A from (b), and 
finally A=-2 from (d). Hence A=-2, B=-2, M=2, N=6, 
and the first fraction in (6) has the representation

inverse transform:

� The sum of this inverse and (7) is the solution of the 
problem for               , namely (the sines cancel), 

(8)

(9)
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Example
� In the second fraction in (6), taken with the minus sign, 

we have the factor        , so that from (8) and the 
second shifting theorem (Sec. 6.3) we get the inverse 
transform of this fraction for t>0 in the form

The sum of this and (9) is the solution for 

� Figure 136 shows (9) (for               ), a beginning 
vibration, which goes to zero rapidly because of the 
damping and the absence of a driving force after 

(10)
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6.5 Convolution. Integral Equations
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Convolution
� Convolution has to do with the multiplication of 

transforms. The situation is as follows.
� Addition of transforms provides no problem; we know 

that L(f + g) = L(f) + L(g).
� Now multiplication of transforms occurs frequently 

in connection with ODEs, integral equations, and 
elsewhere. Then we usually know L(f) and L(g) and 
would like to know the function whose transform is the 
product L(f)L(g). We might perhaps guess that it is fg, 
but this is false. The transform of a product is 
generally different from the product of the transforms 
of the factors,

L(fg) ≠ L(f)L(g) in general.
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Convolution
� To see this take f = et and g = 1. Then fg = et, L(fg) = 

1/(s − 1), but L(f) = 1/(s − 1) and L(1) = 1/s give L(f)L
(g) = 1/(s2 − s).

� According to the next theorem, the correct answer is 
that L(f)L(g) is the transform of the convolution of f 
and g, denoted by the standard notation f *g and 
defined by the integral
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Theorem 1
� Convolution Theorem

� If two functions f and g satisfy the assumption in the 
existence theorem in Sec. 6.1, so that their transforms 
F and G exist, the product H =FG is the transform of 
h given by (1). (Proof after Example 2.)
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Example 1
� Let H(s) = 1/[(s − a)s]. Find h(t).

� Solution: 1/(s − a) has the inverse f(t) = eat and 1/s has 
the inverse g(t) = 1. With f (τ) = eaτ and g(t − τ) ≡ 1 we 
thus obtain from (1) the answer

� To check, calculate
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Example 2
� Let                              . Find h(t). 

� Solution. The inverse of                   is                . Hence 
from (1) and the first formula in (11) in App. 3.1 we 
obtain 

in agreement with formula 21 in the table in Sec. 6.9. 
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Proof of Theorem 1
� CAUTION! Note which ones are the variables of 

integration! We can denote them as we want, for 
instance, by     and p, and write 

We now set               , where    is at first constant. Then 
, and t varies from    to     . Thus 

in F and t in G vary independently. 
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Proof of Theorem 1
� Hence we can insert the G-integral into the F-integral. 

Cancellation of        and       then gives 

Here we integrate for fixed    over t from    to      and 
then over    from 0 to     . This is the blue region in Fig. 
141. 
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Proof of Theorem 1
� Under the assumption on f and g the order of 

integration can be reversed. We then integrate first 
over    from 0 to t and then over t from 0 to     , that is, 

This completes the proof. 
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Convolution
� Convolution has the properties

� Commutative law: f*g = g* f

� Distributive law: f*(g1+g2) = f*g1 + f*g2

� Associative law: (f*g)*v = f*(g*v)

� f*0 = 0*f = 0
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Example 3
� in general. For instance, 

� may not hold. For instance, Example 2 
with           gives 
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Example 4
� In an undamped mass-spring system, resonance occurs 

if the frequency of the driving force equals the natural 
frequency of the system. Then the model is 

where                , k is the spring constant, and m is the 
mass of the body attached to the spring. We assume 
y(0)=0 and y’(0)=0, for simplicity. Then the subsidiary 
equation is 
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Example 4
� This is a transform as in Example 2 with             and 

multiplied by         . Hence from Example 2 we can see 
directly that the solution of our problem is 

We see that the first term grows without bound. Clearly, 
in the case of resonance such a term must occur. (See 
also a similar kind of solution in Fig. 55 in Sec. 2.8)
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Application to Nonhomogeneous Linear 
ODEs
� Nonhomogeneous linear ODEs can now be solved by a 

general method based on convolution by which the 
solution is obtained in the form of an integral. To see 
this, recall from Sec. 6.2 that the subsidiary equation 
of the ODE

(2) y” + ay’ + by = r(t) (a, b constant)

has the solution [(7) in Sec. 6.2]

Y(s) = [(s + a)y(0) + y’(0)]Q(s) + R(s)Q(s)

with R(s) = L(r) and Q(s) = 1/(s2 + as + b) the transfer 
function. 
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Application to Nonhomogeneous Linear 
ODEs
� Inversion of the first term [ … ] provides no difficulty; 

depending on whether (¼)a2 − b is positive, zero, or 
negative, its inverse will be a linear combination of 
two exponential functions, or of the form (c1 + 
c2t)e−at/2, or a damped oscillation, respectively. The 
interesting term is R(s)Q(s) because r(t)can have 
various forms of practical importance, as we shall see. 
If y(0) = 0 and y’(0) = 0, then Y = RQ, and the 
convolution theorem gives the solution

(3)
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Example 5
� Using convolution, determine the response of the 

damped mass-spring system modeled by 

This system with an input (a driving force) that acts for 
some time only (Fig. 143) has been solved by partial 
fraction reduction in Sec. 6.4 (Example 1). 
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Example 5
� Solution by Convolution. The transfer function and its 

inverse are 

hence

� Hence the convolution integral (3) is (except for the 
limits of integration) 
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Example 5
� Now comes an important point in handling 

convolution.              if                 only. Hence if t<1, 
the integral is zero. If 1 < t < 2, we have to integrate 
from           (not 0) to t. This gives (with the first two 
terms from the upper limit)

� If t>2, we have to integrate from          to 2 (not to t). 
This gives 

� Figure 143 shows the input (the square wave) and the 
interesting output, which is zero from 0 to 1, then 
increases, reaches a maximum (near 2.6) after the input 
has become zero, and finally decreases to zero in a 
monotone fashion. 
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Integral Equations
� Convolution also helps in solving certain integral 

equations, that is, equations in which the unknown 
function y(t) appears in an integral (and perhaps also 
outside of it). 

� This concerns equations with an integral of the form of 
a convolution. Hence these are special and it suffices 
to explain the idea in terms of two examples and add a 
few problems in the problem set.
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Example 6
� Solve the Volterra integral equation of the second kind

� Solution. From (1) we see that the given equation can 
be written as a convolution,                       . Writing 
Y=L(y) and applying the convolution theorem, we 
obtain

The solution is 
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Example 7
� Solve the Volterra integral equation

� Solution. By (1) we can write 
Writing Y = L(y), we obtain by using the convolution 
theorem and then taking common denominators

cancels on both sides, so that solving for 
Y simply gives                      , and the solution is 
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6.6 Differentiation and Integration of 
Transforms. ODEs with Variable 
Coefficients
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Differentiation of Transforms
� It can be shown that, if a function f(t) satisfies the 

conditions of the existence theorem in Sec. 6.1, then 
the derivative F’(s) = dF/ds of the transform F(s) = 
L( f ) can be obtained by differentiating F(s) under the 
integral sign with respect to s (proof in Ref. [GenRef4] 
listed in App. 1). Thus, if

then
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Differentiation of Transforms
� Consequently, if L(f) = F(s), then

(1) L{ tf(t)} = −F ’(s), hence L−1 { F ’(s)} = −tf (t)

where the second formula is obtained by applying L−1

on both sides of the first formula. 

� In this way, differentiation of the transform of a 
function corresponds to the multiplication of the 
function by −t.
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Example 1
� We shall derive the following three formulas
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Example 1
� Solution. From (1) and formula 8 (with          ) in Table 

6.1 of Sec. 6.1 we obtain by differentiation 
(CAUTION! Chain rule!) 

Dividing by      and using the linearity of L, we obtain 
(3). 
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Example 1
� Formulas (2) and (4) are obtained as follows. From (1) 

and formula 7 (with           ) in Table 6.1 we find 

From this and formula 8 (with           ) in Table 6.1 we 
have 

On the right we now take the common denominator. 
Then we see that for the plus sign the numerator 
becomes                                  , so that (4) follows by 
division by 2. Similarly, for the minus sign the 
numerator takes the form                                      , and 
we obtain (2). 119
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Integration of Transforms
� Similarly, if f(t) satisfies the conditions of the existence 

theorem in Sec. 6.1 and the limit of f(t)/t as t 
approaches 0 from the right, exists, then for s > k,

In this way, integration of the transform of a function 
f(t) corresponds to the division of f(t) by t. 

� We indicate how (6) is obtained. From the definition it 
follows that 
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Integration of Transforms
� And it can be shown that under the above assumptions 

we may reverse the order of integration, that is,

Integration of         with respect to    gives               . 
Here the integral over    on the right equals               . 
Therefore, 
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Example 2
� Find the inverse transform of 

� Solution. Denote the given transform by F(s). Its 
derivative is

Taking the inverse transform and using (1), we obtain

Hence the inverse f(t) of F(s) is 
This agrees with formula 42 in Sec. 6.9. 
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Example 2
� Alternatively, if we let 

From this and (6) we get, in agreement with the answer 
just obtained 

the minus occurring since s is the lower limit of 
integration. 

� In a similar way we obtain formula 43 in Sec. 6.9
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Special Linear ODEs with Variable 
Coefficients
� Formula (1) can be used to solve certain ODEs with 

variable coefficients. The idea is this. Let L(y) = Y. 
Then L(y’) = sY − y(0) (see Sec. 6.2). Hence by (1),

Similarly,                                          and by (1)
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Special Linear ODEs with Variable 
Coefficients
� Hence if an ODE has coefficients such as at+b, the 

subsidiary equation is a first-order ODE for Y, which is 
sometimes simpler than the given second-order ODE.

� But if the latter has coefficients at2 + bt + c, then two 
applications of (1) would give a second-order ODE for 
Y, and this shows that the present method works well 
only for rather special ODEs with variable coefficients.
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Example 3
� Laguerre’s ODE is

We determine a solution of (9) with n=0,1, ….  From 
(7)-(9) we get the subsidiary equation

Simplification gives 

(9)
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Example 3
� Separating variables, using partial fractions, 

integrating (with the constant of integration taken to be 
zero), and taking exponentials, we get

We write                    and prove Rodrigues’s formula

These are polynomials because the exponential terms 
cancel if we perform the indicated differentiations. 

(10*)

(10)
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Example 3
� They are called Laguerre polynomialsand are usually 

denoted by Ln. We prove (10). By Table 6.1 and the 
first shifting theorem (s-shifting), 

hence by (3) in Sec. 6.2

because the derivatives up to the order n-1 are zero at 0. 
Now make another shift and divide by n! to get 
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6.7 System of ODEs

129



System of ODEs
� The Laplace transform method may also be used for 

solving systems of ODEs, as we shall explain in terms 
of typical applications. We consider a first-order linear 
system with constant coefficients (as discussed in Sec. 
4.1)

(1)

� Writing Y1 = L(y1), Y2 = L(y2), G1 = L(g1), G2 = L(g2), 
we obtain from (1) in Sec. 6.2 the subsidiary system
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System of ODEs
� By collecting the Y1- and Y2-terms we have

(2)
� By solving this system algebraically for Y1(s), Y2(s) 

and taking the inverse transform we obtain the solution 
y1 = L−1(Y1), y2 = L−1(Y2) of the given system (1). Note 
that (1) and (2) may be written in vector form (and 
similarly for the systems in the examples); thus, setting 
y = [y1 y2]T, A = [ajk], g = [g1 g2]T, Y = [Y1 Y2]T,  G = 
[G1 G2]T we have

y’ = Ay + g and (A − sI )Y = −y(0) − G.
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Example 1
� Tank T1 in Fig. 144 initially contains 100 gal of pure water. 

Tank T2 initially contains 100 gal of water in which 150 lb
of salt are dissolved. The inflow into T1 is 2 gal/min from 
T2 and 6 gal/min containing 6 lb of salt from the outside. 
The inflow into T2 is 8 gal/min from T1. The outflow from 
T2 is 2 + 6 = 8 gal/min, as shown in the figure. The 
mixtures are kept uniform by stirring. Find and plot the salt 
contents y1(t) and y2(t) in T1 and T2 , respectively.
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Example 1
� Solution. The model is obtained in the form of two 

equations

Time rate of change = Inflow/min − Outflow/min

for the two tanks (see Sec. 4.1). Thus,

� The initial conditions are y1(0) = 0, y2(0) = 150. From 
this we see that the subsidiary system (2) is
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Example 1
� We solve this algebraically for Y1 and Y2 by 

elimination (or by Cramer’s rule in Sec. 7.7), and we 
write the solutions in terms of partial fractions,

1

2

2

9 0.48 100 62.5 37.5

( 0.12)( 0.04) 0.12 0.04

150 12 0.48 100 125 75

( 0.12)( 0.04) 0.12 0.04

s
Y

s s s s s s

s s
Y

s s s s s s

+= = − −
+ + + +

+ += = + −
+ + + +
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Example 1
� By taking the inverse transform we arrive at the solution

� Figure 144 shows the interesting plot of these functions. 
Can you give physical explanations for their main features? 
Why do they have the limit 100? Why is y2 not monotone, 
whereas y1 is? Why is y1 from some time on suddenly 
larger than y2? Etc.

0.12 0.04

1

0.12 0.04

2

100 62.5 37.5

100 125 75 .

t t

t t

y e e

y e e

− −

− −

= − −
= + −
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Example 3
� The mechanical system in Fig. 146 consists of two 

bodies of mass 1 on three springs of the same spring 
constant k and of negligibly small masses of the 
springs. Also damping is assumed to be practically 
zero. Then the model of the physical system is the 
system of ODEs 

(3)
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Example 3
� Here y1 and y2 are the displacements of the bodies from 

their positions of static equilibrium. These ODEs 
follow from Newton’s second law, MassX 
Acceleration= Force, as in Sec. 2.4 for a single body. 
We again regard downward forces as positive and 
upward as negative. On the upper body, -ky1 is the 
force of the upper spring and k(y2-y1) that of the middle 
spring, y2-y1 being the net change in spring length –
think this over before going on. On the lower body, -
k(y2-y1) is the force of the middle spring and –k2 that of 
the lower spring. 
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Example 3
� We shall determine the solution corresponding to the 

initial conditions 
Let                              . Then from (2) in Sec. 6.2 and 
the initial conditions we obtain the subsidiary system 

This system of linear algebraic equations in the 
unknowns Y1 and Y2 may be written 
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Example 3
� Elimination (or Cramer’s rule in Sec. 7.7) yields the 

solutions, which we can expand in terms of partial 
fractions,

Here the solution of our initial value problem is (Fig. 
147) 
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Example 3
� We see that the motion of each mass is harmonic (the 

system is undamped!), being the superposition of a 
“slow” oscillation and a “rapid” oscillation. 
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Summary of Chapter 6
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Summary of Chapter 6
� The main purpose of Laplace transforms is the solution of 

differential equations and systems of such equations, as 
well as corresponding initial value problems. The Laplace 
transform F(s) = L(f) of a function f(t) is defined by

(1) (Sec. 6.1).

� This definition is motivated by the property that the 
differentiation of f with respect to t corresponds to the 
multiplication of the transform F by s; more precisely,

(2) (Sec. 6.2)

0
( ) ( ) ( ) .stF s f e f t dt

∞ −= = ∫L

2

( ) ( ) (0)

( ) ( ) (0) (0)

f s f f

f s f sf f

′ = −
′′ ′= − −

L L

L L
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Summary of Chapter 6
� Hence by taking the transform of a given differential 

equation

(3) y” + ay’ + by = r(t) (a, b constant)

and writing L (y) = Y(s), we obtain the subsidiary 
equation

(4) (s2 + as + b)Y = L (r) + sf(0) + f ‘(0) + af (0).

� Here, in obtaining the transform L(r) we can get help 
from the small table in Sec. 6.1 or the larger table in 
Sec. 6.9. This is the first step. In the second step we 
solve the subsidiary equation algebraically for Y(s). 
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Summary of Chapter 6
� In the third step we determine the inverse transform 

y(t) =L −1(Y), that is, the solution of the problem. This 
is generally the hardest step, and in it we may again 
use one of those two tables. Y(s) will often be a 
rational function, so that we can obtain the inverse L 
−1(Y) by partial fraction reduction (Sec. 6.4) if we see 
no simpler way.

� The Laplace method avoids the determination of a 
general solution of the homogeneous ODE, and we 
also need not determine values of arbitrary constants in 
a general solution from initial conditions; instead, we 
can insert the latter directly into (4).
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Summary of Chapter 6
� Two further facts account for the practical importance 

of the Laplace transform. First, it has some basic 
properties and resulting techniques that simplify the 
determination of transforms and inverses. The most 
important of these properties are listed in Sec. 6.8, 
together with references to the corresponding sections. 
More on the use of unit step functions and Dirac’s 
delta can be found in Secs. 6.3 and 6.4, and more on 
convolution in Sec. 6.5. 
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Summary of Chapter 6
� Second, due to these properties, the present method is 

particularly suitable for handling right sides r(t) given 
by different expressions over different intervals of time, 
for instance, when r(t) is a square wave or an impulse 
or of a form such as r(t) = cost if 0 ≤ t ≤ 4π and 0 
elsewhere.

� The application of the Laplace transform to systems of 
ODEs is shown in Sec. 6.7. (The application to PDEs 
follows in Sec. 12.12.)
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