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Why Laplace Transforms?

e The process of solving an ODE using the Laplace
transform method consists of three steps, shown

schematically in Fig. 113:

e Step 1. The given ODE is transformed into an algebraic

equation, called thsubsidiary equation

e Step 2. The subsidiary equation is solved by purely

algebraic manipulations.

e Step 3. The solution in Step 2 is transformed back,

resulting in the solution of the given problem.
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Why Laplace Transforms?

e The key motivation for learning about Laplace
transforms is that the process of solving an ODE is
simplified to an algebraic problem (and
transformations). This type of mathematics that
converts problems of calculus to algebraic problems
known as operational calculus. The Laplace transfor

method has two main advantages over the methods
discussed in Chaps. 1-4:




Why Laplace Transforms?

 |. Problems are solved more directly: Initial value
problems are solved without first determining a
general solution. Nonhomogenous ODEs are solved
without first solving the corresponding homogeneous
ODE.

e Il. More importantly, the use of the unit step ftion
(Heaviside function in Sec. 6.3) and Dirac’s dé@iha
Sec. 6.4) make the method particularly powerful for
problems with inputs (driving forces) that have
discontinuities or represent short impulses or
complicated periodic functions.
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6.1 Laplace Transform. Linearity.
First Shifting TheoremstShifting)




Laplace Transform

o If f(t) is a function defined for all> O, itsLaplace
transform is the integral off(t) timese™stfromt =0
to «. It Is a function of, say,F(s), and is denoted by
L(f); thus

(1) F(s) = fo _Stf

* Here we must assume tHé) is such that the integral
exists (that is, has some finite value). This aggion
IS usually satisfied in applications—we shall discus
this near the end of the section.
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Laplace Transform

e Not only is the resul(s) called the Laplace transform,
but the operation just described, which yidtds)
from a giveni(t), is also called thkeaplace transform.
It is an ‘integral transform”

F(s) = [, k(s t) f(t)dt
with “kernel” k(s, t) = e™st.

* Note that the Laplace transform is called an irdgkegr
transform because it transforms (changes) a fumatio
one space to a function in another space jpeess
of integrationthat involves a kernel. The kernel or

kernel function is a function of the variableshe two
spaces and defines the integral transform.

o y




Laplace Transform

e Furthermore, the given functid() in (1) is called the
iInverse transform of F(s) and is denoted bly ~(f);
that is, we shall write

(1%) f(t) = L7(F).
e Note that (1) and (1*) together imply*(L(f)) =fand
L(L-X(F)) =F.




Notation

e Original functions depend drand their transforms on
s—keep this in mind! Original functions are denoted
by lowercase letters and their transforms by the same
letters in capital, so that-(s) denotes the transform of
f(t), andY(s) denotes the transform gft), and so on.




Example

e Letf(t) = 1 whent > 0. FindF(s)

e Solution. From (1) we obtain by integration
L(f)=L(1) = fooo e Sldt = —ée‘“ ZO — é
Such an integral is called amproper integral and,
by definition, is evaluated according to the rule
[ e st f()dt = limp oo [ e f(£)d
Hence our convenient notation means

1 T 1 1 1

o0 . _ ) .
fo e 5ldt = limp_,o [——e St] ;= limy oo [——e ST 4 —60] = —
S S S S

We shall use this notation throughout this chapter.




Example

o Let f(t)=e® when >0 ,whauas a constant. Find
L().

e Solution. Again by (1),

1 00
aty _ [ ,—st at jpr _ —(s—a)t
L(e™) = [, e *'e"dt —¢ )
hence, whes-a> 0,

Lie") = —

S —1




Theorem 1

 Linearity of the Laplace Transform

e The Laplace transform is a linear operation; thst |
for any functions(f) and dt) whose transforms exist
and any constants a and b the transform @) afbg(t)
exists, and

L taf(t) +bg(t) } =al{f ()} + bL{g())}.




Proof of Theorem 1

e This is true because integration is a linear opmETao

that (1) gives
Liaf(t) +bg(t)} = fo

—afo e " f(t) dt+bf0
=aL{f(t)} +bL{g(?)}

“af(t) + bg(t)]dt
~Slg(t)dt




Example

e Find the transforms ofosh ¢t  an@h at

e Solution. Sincecoshat = (e +e7a!)  dan
sinh at = (e — =), we obtain from the previous

example and Theorem 1

1 1/ 1 1 s
L h — (L, at L —ah)) = _< ) —
(cosh at) 2( (e”) + L{e™™)) 5 s—a_I_S—I—CL 2 _ 2
| 1/ 1 1 a
. _ - L at _L —at :_( _ ) —
L(sinh at) 2< (e®) (™)) 2\s —a s+a s — a?

o




Example
 Derive the formulas
S , w
L(coswt) = PR L(sinwt) = o

e Solution. We writeL. = L(coswt)  and = L(sinwt)
Integrating by parts and noting that the integraéef
parts give no contribution from the upper limi, we

obtain
e 5! 0w , 1 w
L.= fooo e 5t cos wtdt = coswt| — — fooo e St sinwtdt = = — —L,
—3 NS s S
o o 0 W g W
L= [, e *sinwtdt = sinwt| +— [, e coswtdt = =L,
—S 0N S S
w=coswt, v = —wsinwt !
, o T [uv'dt = uv — [w'vdt

V=€ T, U = —=€




Example

e By substituting_, into the formula folL . on the right
and then by substituting, into the formula folL_ on
the right, we obtain

I wyw w? 1 S
L-l-t) n(e) -l b

S S \S

2

s s 52 s% + w?




Laplace Transform

Table 6.1 Some Functions f(t) and Their Laplace Transforms £(f)
f(@ L) f@ £(f)
s
1 | 1/s 7 cos wt
52 + »?
2 t 1/s2 8 sin wt @
52 + w?
3 12 21/s3 9 cosh at >
52 — a®
" n! ) a
4 =01, - a1 10 sinh at 2 2
a I'a+1) _
5 L —_— 11 e cos wt Ak
(a positive) ga+1 (s — a)z + 02
at 1 at - w
6 e — 12 e sin wt
o (s — a)2 + w?




Laplace Transform

e From basic transforms almost all the others can be
obtained by the use of the general propertiesef th
Laplace transform. Formulas 1-3 are special cafses o
formula 4.

 We make the induction hypothesis that it holdsaioy
Integern>0:

tn+1 fo —Sttn—l-ldt — _le—sttn—i-l > 4+ n+
S 0

> estendt

now the integral-free part is zero and the last igar
(n+1)/stimesL(t"). From this and the induction

hypothesis,
L) — n + 1L(t”) _n+l n! (n+1)!




Laplace Transform

e T'(a+1)In formula 5 is the so-callegamma function

We get formula 5 from (1), settirg=x:
L(t") = [[Te*tudt = [T e (f)adx _

o0 —x_ .a
) - foexdaz

s gatl
wheres>0. The last integral is precisely that defining
I'(a+1), SOwWe haver'(a +1)/s7"  , as claimed.

e Note the formula 4 also follows from 5 because
I'(n+ 1) =n! for integern >0 .




s-Shifting

e The Laplace transform has the very useful property
that, if we know the transform @ft), we can
Immediately get that a#'(t), as in Theorem 2.




Theorem 2

e First Shifting Theorens-Shifting

o If f(t) has the transform (s) (where s> k for some k
then é%(t) has the transform (s — a) (where s -a>
K). In formulas,

L{e?f(t)} = F(s —a)
or, If we take the inverse on both sides,
ef(t) =LY F(s —a)}




Proof of Theorem 2

e We obtainF(s-a) by replacings with s-a in the integral
In (1) so that
(s —a) = [*e G0 f(t)dt = [ e e f(t)]dt = L{e" f(1)}
If F(s) exists (| e., Is flnlte) fos greater than sonle
then our first integral exists fara>k. Now take the
Inverse on both sides of this formula to obtain the

second formula in the theorem.
e CAUTION! —ain F(s-a) but +a in ef(t)




Example

* From the previous example and the first shifting
theorem we immediately obtain formulas 11 and 12 in
Table 6.1

at _ s —a at .- w
L(e" coswt) = (5—a) + o L(e™sinwt) = TR E:
For instance, use these formulas to find the irevefs

3s—137
the transformL(f) = o P

e Solution. Applying the inverse transform, using its
linearity, and completing the square, we obtain

;= L_l{?isjlg ;iég} N 3L_1{ (s +81; }l- 202} - 7L_1{ (s + SSJF 202}

we now see that the inverse of the right side mju&d
vibration f(t) = e~*(3 cos 20t — 7 sin 20¢)
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Fig. 114. Vibrations in Example 5
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. . N
Existence and Uniqueness of Laplace

Transforms

e Afunctionf(t) has a Laplace transform if it does not
grow too fast, say, If for atl> 0 and some constarits
andk it satisfies the growth restriction™”

(2) | f(t)] < Mex.

e f(t) need not be continuous, but it should not be too
bad. The technical term (generally used in mathes)at
IS piecewise continuity.(t) is piecewise continuous
on a finite intervah <t <b wheref is defined, if this
Interval can be divided intlinitely manysubintervals
In each of whicH is continuous and has finite limits as
t approaches either endpoint of such a subintergai fr
the interior.

/




. . N
Existence and Uniqueness of Laplace

Transforms

e This then givesinite jJumps as in Fig. 115 as the only
possible discontinuities, but this suffices in most
applications, and so does the following theorem.

T\
N b

|
a t

Fig. 115. Example of a piecewise continuous function f(t).
(The dots mark the function values at the jumps.)




Theorem 3

» Existence Theorem for Laplace Transforms

e If f(t) Is defined and piecewise continuous on every
finite interval on the semi-axis>tO and satisfieg2)
for all and some constants M and k, then the Laplac
transform L(f ) exists for all s> k.




Proof of Theorem 3

» Sincef(t) is piecewise continuous;*'f(¢t) IS integeabl

over any finite interval on thieaxis. From (2),

assuming thas > k (to be needed for the existence of
the last of the following integrals), we obtain tr@of

of L(f) from
IL(f)| = |fooo e f (t)dt‘ < Jo lf@)le~dt < fi7 MeMe™'dt =

M
s — k




Uniqueness

e If the Laplace transform of a given function exist$s
uniquely determined. Conversely, it can be shovanm th
If two functions (both defined on the positive raals)
have the same transform, these functions canrfet dif
over an interval of positive length, although timegy
differ at isolated points. Hence, we may say that t
Inverse of a given transform is essentially unidaoe.
particular, if two continuous functions have thensa
transform, they are completely identical.




6.2 Transforms of Derivatives and
Integrals.




Laplace Transform

e The Laplace transform is a method of solving ODEs
and initial value problems. The crucial idea igtha
operations of calculus on functions are replaced by
operations of algebra on transforms. Roughly,
differentiationof f(t) will correspond tanultiplication
of L(f) by s(see Theorems 1 and 2) antegrationof
f(t) to divisionof L(f) by s.

* To solve ODEs, we must first consider the Laplace
transform of derivatives. You have encountered such
an idea in your study of logarithms. Under the
application of the natural logarithm, a product of
numbers becomes a sum of their logarithms, a divisi
of numbers becomes their difference of logarithms.

/




Theorem 1

» Laplace Transform of Derivatives

e The transforms of the first and second derivatofet)
satisfy

(1) L(f") = sL(f) - 1(0)
(2) L(f ") = SL(f) - sf(0) - ’(0).

e Formula(1) holds if {t) is continuous for all &0 and
satisfies the growth restrictiof2) in Sec6.1and f'(t)
IS piecewise continuous on every finite intervatio
semi-axis £ 0. Similarly, (2) holds if f and f are
continuous for all & 0 and satisfy the growth
restriction and f’ is piecewise continuous on every
finite interval on the semi-axis>tO .




Proof of Theorem 1

e We prove (1) first under the additional assumptiat
f I1s continuous. Then, by the definition and inteyyn
by parts

= [T e e = [ )] s fiT et
Slncef satlsfles (2) In Sec 6.1, the iIntegrated part on
the right is zero at the upper limit whem k, and at
the lower limit it contributes#0). The last integral is
L(f). It exists fors > k because of Theorem 3 in Sec.
6.1. Hencd (f') exists whers> k and (1) holds.

(1) L{f") = sL(f) = f(0)




Proof of Theorem 1

 If 'Is merely piecewise continuous, the proof is
similar. In this case the interval of integratidif’'o
must be broken up into parts such that continuous

In each such part.

e The proof of (2) now follows by applying (1) tband
then substituting (1), that is

L(f") = sL(f') = f'(0) = s[sL(f) — f(0)] = s*L(f) — sf(0) — f'(0)

o




Theorem 2

 Laplace Transform of the Derivativef(™ of Any
Order

e Letf f’, ..., f(™ 1 be continuous for all+ 0 and
satisfy the growth restrictio(2) in Sec6.1.
Furthermore, let 7 be piecewise continuous on every
finite interval on the semi-axis>t0. Then the
transform of {7 satisfies

(3) LE®™) =sL(f) - 71(0) -2 °(0) — ... —f (-1)(0).




Example 1

o Let f(t)=tsinwt . Then)=0,f'(t) = sinwt + wt coswt
f1(0) =0, f" = 2wcoswt — w?tsinwt. Hence by (2),

V)
L(f") = 25— = w2 L(f) = $*L(f)
2WS




Example 2

e This is a third derivation of (coswt)  amdsinwt).
Let f(t) =coswt . Then
f0)=1, f(0) =0, f"(t) = —w*coswt
From this and (2) we obtain
L(f") = s*L(f) ms= ~w?L(f)
By algebra, L(coswt) = R
o Similarly, let g =sinwt . Ther(0) =0,¢ = wcoswt
From this and (1) we obtain
L(g") = sL(g) = wL(coswt)

Hence, L(sinwt) = 2L N Y
(sinwt) p (coswt) .

(2)  L(f") = s*L(f) — sf(0) = f'(0)




Laplace Transform of the Integral of a
Function

 Differentiation and integration are inverse op@nad,
and so are multiplication and division.

e Since differentiation of a functidit) (roughly)
corresponds to multiplication of its transfolif) by s,
we expect integration dft) to correspond to division
of L(f) bys:




Theorem 3

e Laplace Transform of Integral
e Let Hs) denote the transform of a functio(t)fwhich
IS piecewise continuous fort0 and satisfies a growth
restriction(2), Sec6.1.Then, for s> 0,s>k, and t> 0O,
1 thus 1
(4) L{fot f(T)dT} = gF(S) . fo T)dT = L~ {—F(S)}

S




Proof of Theorem 3
e Denote the integral in (4) lyt). Sincef(t) is piecewise

continuousg(t) is continuous, and (2), Sec. 6.1, giv<e£€'°,> 0

9(t)] =

g'(t)=f(t), except at points at whid{t) is discontinuous.

Henceg'(t) is piecewise continuous on each finite interval
and, by Theorem 1, singg0)=0 (the integral from O to O is

Zero)

L{f(t)} = L{g' (1)} = sL{g(t)} — g(0) = sL{g(t)}
Division by sand interchange of the left and right sides
gives the first formula in (4), from which the second
follows by taking the inverse transform on both sides.

)
i F)dr] < {1 )ldr < M [ e = (e 1) < Mo
This shows thagl(t) also satisfies a growth restriction. Also,

/




Example 3

e Using Theorem 3, find the inverse of and
) s(s? +w?)
82(82 + (JJ2> Table 6.1 Some Functions f(t) and Their Laplace Transforms £(f)

1
O o
52 4 w? W

1
—1 L
L {3(32+w2)}_ 0w w

e Solution. From Table 6.1 |
Sec. 6.1 and the integrati
In (4) we obtain

sin wt

¢ SIN WT 1

£ 2(f) f@ £
s
1 1 1/s 7 cos wt
2+ w
2 t 1/s2 8 sin wf? -
+ w
3 i? 21/s3 9 osh at -
4 i n! 10 e
(=0, 1 S inh a _
a I'a+ 1) =
5 d . 11 S wt =
(a positive) set (s —a)® + o®
| ®
6 —=— 12 ot
S a (s — a)2 + o?




Example 3

e This is formula 19 in Sec. 6.9. Integrating thisui¢
again and using (4) as before, we obtain formulan20

Sec. 6.9
1 1 T SIN WT t sin wt
—1 _ t _ _
L {52(52+w2)}_E‘[O(l_COSMT)dT_ [w2_ w3 ] W WS

It is typical that results such as these can bedon
several ways. In this example, try partial fraction
reduction.




. . . N ™
Differential Equations, Initial Value

Problems

e Let us now discuss how the Laplace transform metho
solves ODEs and initial value problems. We consider
an initial value problem

5) y +ay+by=r(t), y(0) =K, Y(0) =K,

wherea andb are constant. Hemrgt) is the givennput
(driving force applied to the mechanical or electrical
system ang(t) is theoutput (response to the inputo
be obtained.

d




. . . N ™
Differential Equations, Initial Value

Problems

 In Laplace’s method we do three steps:

e Step 1. Setting up the subsidiary equation. This is an
algebraic equation for the transfoim= L(y) obtained
by transforming (5) by means of (1) and (2), namely

[s°Y —s0) —y'(0)] + a[sY — Y0)] +bY =R()

whereR(s) = L(r). Collecting they-terms, we have the
subsidiary equation

(s°+as +h)Y =(s +a)y(0) +y(0) + R(s).




Differential Equations, Initial Value
Problems

e Step 2. Solution of the subsidiary equation by algebra.
We divide bys? + as +b and use the so-called
transfer function

6 S 1
(6) Q(s) s?+as+b  (s+35a)>+b— 1a?

(Q is often denoted bi, but we needd much more
frequently for other purposes.)




Differential Equations, Initial Value
Problems

e This gives the solution

(7)  Y(9) =1[(s +a)y(0) +y(0)]Q(s) + R(5)Q(s).

e If y(0) =y'(0) = 0, this is simplyY = RQ); hence
Yy L(output)

©= R L(input)

and this explains the name@Qf Note thatQ depends
neither on r(t) nor on theinitial conditions (but only on

a andb).




4 . . . L N
Differential Equations, Initial Value

Problems

e Step 3. Inversion of Ytoobtainy =L (Y). We
reduce (7) (usually bgartial fractions as in calculus)
to a sum of terms whose inverses can be found from
the tables (e.g., in Sec. 6.1 or Sec. 6.9) or G, so
that we obtain the solutioy(t) = L7(Y) of (5).




Example 4

*Solve y'-y=t, y0)=1, y(@0)=1
e Solution. Step 1. From (2) and Table 6.1 we get the
subsidiary equation [with = L(y)]
Y —sy0) -y'(0) - Y =1/%,
thus -1 =s+1+1K.
» Step 2. The transfer function i® = 1/(s? — 1), and (7)

becomes
s+ 1 1

1
Y=(5+1)Q+§Q:52_1+52(s2—1)

o Simplification of the first fraction and an expamsiof
the last fraction gives

1 1 1
Y:R—1+<S2—1—9_2>




Example 4

o Step 3. From this expression fof and Table 6.1 we
obtain the solution

1 1 1
_ -1y — 71 -1 _ 71 ot i d
yt)=L(Y)=1L {5—1}+L {32—1} L {52} e' +sinht — ¢

e The diagram summarizes this approach

t-space s-space
Given problem Subsidiary equation
y' =yt —— (s2-1)Y=s5+1+1/s2
y(0) =1
¥'(0) =1

|

Solution of given problem Solution of subsidiary equation
y(t) =e +sinh¢-¢ —— y=_1 I
Ts-1 s2-1 g2

Fig. 116. Steps of the Laplace transform method




Example 5

e Solve the initial value problem
' +9y ' +9y=0. y(0)=0.16, 2'(0)=0
e Solution. From (1) and (2) we see that the subsidia

equation is
s*Y —0.16s + sY — 0.16 + 9Y =0
(2 +5+9)Y =0.16(s + 1) 0.165+0.08 _ 0165 0.08

2 4 35 32_1_37‘5

The solution is A
0.16(s +1)  0.16(s + 3) + 0.08

3—|—3745
Y = — J
2+ s+9 (s+3)2+2

Hence by the first shifting theorem and the formula
for cos and sin in Table 6.1 we obtain

/35 0.08 35

y(t) = L7HY) = e7t/? (0.16 oS t+ 5 sin —t)
4 L35 4

= e 9(0.16 cos 2.96t + 0.027 sin 2.96t) y




Table

6.1

Table 6.1 Some Functions f(t) and Their Laplace Transforms &£(f)
f( L) f@® L(f)
s
1 1 1/s 7 cos wt
52 + w?
) t 1/s2 8 sin ot 2
52 + w?
3 t2 21/s3 9 cosh at >
2 — g2
tm n! . a
4 n=0,1--°) a1 10 sinh at 2_ 2
a I'a+1) —
5 e 11 e cos wt ol
(a positive) ga+l (s — a)z + o2
6 e l 12 e™ sin wt 2
S a (S _ a)z o= (1)2

(2)

L(f")

= s*L(f) — sf(0) — f'(0)




N
Advantages of the Laplace Method

» 1. Solving a nonhomogeneous ODE does not require
first solving the homogeneous O&ee Example 4.

e 2. Initial values are automatically taken care 8ke
Examples 4 and 5.

e 3. Complicated inputs(t) (right sides of linear ODES)

can be handled very efficientBs we show in the next
sections.




Example 6

e This means initial value problems with initial
conditions given at sontet, > 0 instead of=0. For
such a problem set=¢+¢, , sothatt, givest =0
and the Laplace transform can be applied. Formaesta
solve

1

'ty =2t yGm)=g7, YT =2-v2
e Solution. We have, =ir  and we gseti + 1r. Then
the problem is
g =20t +gm), §0)=gm, §0)=2-+2
where g(f) = y(1)

© y




~

g +g=2(+qm), §(0) =
Example 6

e Using (2) and Table 6.1 and denoting the transfoirm
yby Y , we see that the subsidiary equation of the

“shifted” initial value problem is 1
_ N 9 1

S2Y—S-%7T—(2—\/§)+Y:—2‘|‘£

S S

-2 w1
(52+1)Y:—2+£+—7Ts+2—\/§
. n S . S 2 ~ »
Solving this algebraically foy , we obtain

- 2 %71' %WS 2 — \@

r= (524—1)32+(524—1)5+32+1+ s? 41
The inverse of the first two terms can be seen from
Example 3 (withw =1 ), and the last two teignse

cos and sin,

DO —
=
<
—
(-
~—
|
DO
|
>




Example 6

= LY (Y) =2(t —sint) +
ot + %71' — ﬂsint

|| <2

* Now f:t—%w,sinf:
IS y = 2t —sint + cost

1

+ 4m(1 — cost) 4+ gmcost + (2 — V2)sint

—_(sint — cost), SO that the answer
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6.3 Unit Step Function (Heaviside
Function). Second Shifting Theorem (t-
Shifting)




Unit Step Function

e We shall introduce two auxiliary functions, theit
step functioror Heaviside function @ — a) (following)
andDirac’s deltad(t — a) (in Sec. 6.4).

e These functions are suitable for solving ODEs with
complicated right sides of considerable engineering
Interest, such as single waves, inputs (drivingdey
that are discontinuous or act for some time only,
periodic inputs more general than just cosine amgl s
or impulsive forces acting for an instant
(hammerblows, for example).

o




-

Unit Step Fun

ction

e Theunit step function or Heaviside functionu(t — a)
Is O fort < a, has a jump of size 1 &t a (where we
can leave it undefined), and is 1 for a, in a formula:

|

(1) u(t —a) = {O

ft<a
ift>a

(a=>0).

e Figure 118 shows the special cagg, which has its
jump at zero, and Fig. 119 the general agse a) for
an arbitrary positiva. (For Heaviside, see Sec. 6.1.)

u(t)

1—

0 t

Fig. 118. Unit step function u(t)

ult —a)

1 —

0 a t

Fig. 119. Unit step function u(t — a)

/




Unit Step Function

e The transform ofi(t-a) follows directly from the

defining integral in Sec. 6.1,

L{u(t —a)} = [T e ult —a)dt = [ e - 1dt = —

S lt=a

here the integration beginstat a (>0) because(t-a)
Is O fort < a. Hence

L{u(t — a)} = —

e The unit step function is a typical “engineering
function” made to measure for engineering
applications, which often involve functions thag ar
either “off” or “on.”

—as




Unit Step Function

e Multiplying functionsf (t) with u(t — a), we can
produce all sorts of effects. The simple basic idea
llustrated in Figs. 120 and 121. In Fig. 120 tinesg
function is shown in (A). In (B) it is switched off
betweent = 0 andt = 2 (because@(t — 2) = 0 whern <
2) and is switched on beginningtat 2. In (C) it is
shifted to the right by 2 units, say, for instanug 2
sec, so that it begins 2 sec later in the samediasts

before.




Unit Step Function

* More generally we have the following.

e Let {(t) = Ofor all negative t. Then(tf— a)u(t — a) with
a > 0 is f(t) shifted (translated to the right by the
amount a.

e Figure 121 shows the effect of many unit step
functions, three of them in (A) and infinitely mamy
(B) when continued periodically to the right; tisshe
effect of a rectifier that clips off the negativalfh
waves of a sinuosidal voltage.




Unit Step Function

f(t)
5

SV

(A) f(¢£)=5sint
Fig. 120.

B) fOu(t-2)

1N
0 [

2 m42 2m42

S U

(©C) f(t -2)ult —2)

(B) Switching off and on. (C) Shift.

t

Effects of the unit step function: (A) Given function.




(A) Rlut-1)—2u(t-4) + u(t — 6)] (B) 4 sin (%n‘t)[u(t) —u(t-2)+u(t-4) -

-

Unit Step Function

/% I 4r-
|
1 4 6 t

k= = 0 2 4 6 8

Fig. 121.  Use of many unit step functions.

t

+ ]




Time Shifting {-Shifting)

e The first shifting theorem §&shifting”) in Sec. 6.1
concerned transfornty(s) = L{f(t)} andF(s —a) =
L{ ea'f(t)}.

e The second shifting theorem will concern functif(ts
andf(t — a).




s-shifting: L{e“f(t)} = F(s — a)

Time Shifting {-Shifting)

e Theorem 1. Second Shifting Theorem; Time Shifting
e If f(t) has the transform (s) then the'shifted function”

3) ., C Vult — ) — 0 ift<a
ft) = (¢ - apult >{f<t_a> oo

has the transforraask(s). That is, if {f(t)} = F(s), then

(4) L{f(t — a)u(t — a)} = eF(9).
Or, If we take the inverse on both sides, we catewr
(4%) f(t — a)u(t — a)} = L e F(9)}.




Time Shifting (-Shifting)

» Practically speaking, if we knof#(s), we can obtain
the transform of (3) by multiplying(s) by e2s. In Fig.
120, the transform of &in tis F(s) = 5/(s*+1), hence
the shifted function Sin(t-2)u(t-2) shown in Fig. 120
(C) has the transform

e F(s) =5e */s* + 1

@)
5 5—/\ 5
[
[

[ gy /\ i
%28 ¢+ 9 2% 2% : O 2 mzzmz ¢
VA IV A |
(A) f(t)=5sint  B) fO)ult-2) (C) f(t —2)ult-2)

Fig. 120. Effects of the unit step function: (A) Given function.
(B) Switching off and on. (C) Shift.




(4) L{f(t—a)ult —a)} = " F(s)
Time Shifting {-Shifting)

e Proof of Theorem 1. In (4), on the right, we use th
definition of the Laplace transform, writing rfio(to
havet avallable later). Then, takirgpsinside the
Integral, we have

—asF — pas fo STf dT _ fo —S T-|-a)f(7_)d7_
Substltutlng T+a=t thlJ;S— t —a,dr =dt Inthe
Integral, we obtain

—asF f e—stf )




Time Shifting {-Shifting)

e To make the right side into a Laplace transform, we
must have an integral from 046 , not franto ~

But this is easy. We multiply the integral oft-a).
Then fort from O toathe integrand is 0, and we can

write, with f asin (3),
—asF fO —stf ) t— CL dt fo —stf

This integral is the left side of (4), the Laplace
transform of f(t) in (3). This completes the groo




Example

* Write the following function using unit step furmiis
and find its transform.

(9 fo<t<l
il <t<gm

cost ift > %77

Fig. 122. f(t) in Example 1




Table 6.1

Table 6.1 Some Functions f(t) and Their Laplace Transforms &£(f)
f(0) L) f® £(f)
s
1 1 1/s 7 cos wt
52 + w?
2 t 1/s2 8 sin wt 2
52 + w?
3 t2 21/s3 9 cosh at :
52 — a?
" n! . a
4 n=01--") 1 10 sinh at 2_ 2
a I'a+1) —
5 - —_— 11 e cos wt i
(a positive) ga+l (s — a)2 + o2
6 e l 12 ¢™ sin wt @
§F—a (s — a)2 + w?




Example

e Step 1. In terms of unit step functions
f(t) =2(1 —u(t — 1)) +3 t2(u(t — 1) —u(t — 37)) + (cos
tu(t — 7). Indeed, 2(1 w(t — 1)) givesf(t) for 0 <t <
1, and so on.

e Step 2. To apply Theorem 1, we must write each term
In f(t) in the formf(t — a)u(t — a). Thus, 2(1 -u(t — 1))
remains as it is and gives the transform 2€tsy/s.

Then

SN BT | PRI BAPRECTOME I BRI (N U SO S S
L <\2t u(t 1)}—L {[Z(t 1) +(t 1)+2ju(t 1)}_£53+52+25)e

- {Jue-gmf=u {(Jo-1m o Ja- 1 e 1

2

J\
r




Example
o Step 2. (continued)

L {(cos Bu(t —;ﬂ)} =L {—(Sin(t —;ﬂ)ju(t —;ﬂ)} =—— 1 e ™2,

s°+1

e Together,

2 2 (1 1 1j_s [1 s nzj P e

—Ze "+ +—+ e’ — + + e -~ € :
S

s s s s 2s s> 2¢* 8s +1

L (f)=

e If the conversion of(t) to f(t-a) is inconvenient,
replace it by

(4*) L{f)u(t —a)} = e"L{f(t +a)}

o




Example
e Step 2. (continued). (4**) follows from (4) by wing
f(t-a)=g(t), hence‘(t):g(t+a) and then again writingy
for g. Thus, ‘[azl f(t) =
L{%tQu(t— D} =e L{2<t+1) }—e_SL{2t2+t+;} (813+ : *213)
as before, Similarly for.{1:2ut - ix)} . &dly, by (4*%),
L{costu(t - %7’(’)} = e_“/ZL{cos(t + %W)} — e ™P2L{—sint} = —e ™2 ———
a =37, f(t) = cos t?
(4) L{f(t —a)u(t —a)} ie‘“sﬂs) = e “L{f(t)}
L{g(t)u(t —a)} = e L{g(t +a)}

2
@ (@) L{f(ult — )t = e OL{f(t+ 0)) y

1
s2 41




s-shifting: L{e“f(t)} = F(s — a)

~

Example
e Find the inverse transforit) of
F(g) B e~ S 6—23 6—33

= +
32+772+52+7T2 (s +2)?

e Solution. Without the exponential functions in the
numerator the three termsfefs) would have the
inverses(sinnt)/x, (sinwt) /7, ard” because $f has

the inversd, so that 14+2)* has the inverse=2 by the
first shifting theorem in Sec. 6.1. Hence by theosel

shifting theoremt¢{shifting),
1

—sin(w(t — 1))u(t — 1) + ! sin(m(t — 2))u(t —2) + (t — 3)e 203y (t — 3)




Example

* NOW sin(rt — 1) = —sinmt ~ angi(xt — 27) =sinnt , SO that
the first and second terms cancel each other w¥en
Hence we obtaif(t)=0 if O<t<1, —sin(zt)/7 If 1 €< 2,
0if 2 <t< 3, andi —3)e2-» 1> 3.

0.3

0.2 -
0.1 N
0 1 |
1 2 3 4 5 6 t

Fig. 123. f(t) in Example 2




6.4 Short Impulses. Dirac’s Delta
Function. Partial Fractions




Dirac’s Delta Function

e An airplane making a “hard” landing, a mechanical
system being hit by a hammerbloavship being hit by
a single high wave, a tennis ball being hit by ckea,
and many other similar examples appear in everyday
life. They are phenomena of an impulsive natureravhe
actions of forces—mechanical, electrical, etc.—are
applied over short intervals of time.

* We can model such phenomena and problems by
“Dirac’s delta function,” and solve them very
effectively by the Laplace transform




Dirac’s Delta Function

e To model situations of that type, we consider the function

- JUE fa<t<a+k
(1) filt —a) = 0 otherwise (Fig. 132)

(and later its limit ag — 0). This function represents, for
Instance, a force of magnitud&k ating fromt =atot=a +

K, wherek is positive and small. In mechanics, the integral of
a force acting over a time intenakt <a + kis called the
Impulse of the force; similarly for electromotive forcést)
acting on circuits. Since the blue rectangle in Fig. 132 has
area 1, the impulse @fin (1) is

o0 a 1 o Area=1
(2) I = |, felt —a)dt = [ *’“ Edt =1 v P(

a a+k t

Fig. 132. The function f,(t — a) in (1) /




Dirac’s Delta Function

e To find out what will happen &k becomes smaller and
smaller, we take the limit dfask—0 (k> 0). This
limit is denoted by(t — a), that is,

O(t — a) = limy_o fr(t — a)
o(t — a) is called théDirac delta function or theunit
Impulse function.
e o(t — @) Is not a function in the ordinary sense as used
In calculus, but a so-callegeneralized functionl.o see

this, we note that the impul$gof f, is 1, so that from
(1) and (2) by taking the limit 4s—0 we obtain

(3) 5(t_a>_{oo ift=a  and [20(t —a)dt =1

0  otherwise




Dirac’s Delta Function

e pbut from calculus we know that a function which is
everywhere 0 except at a single point must have the
Integral equal to 0. Nevertheless, in impulse pFoid,

It IS convenient to operate ot — a) as thought it
were an ordinary function. In particular, for a
continuoudunctiong(t) one uses the property [often
called thesifting property of 6(t — a), not to be
confused withshifting]

(4) fooo g(t)o(t —a)dt = g(a)
which is plausible by (2).




Dirac’s Delta Function

e To obtain the Laplace transformdit — a) we write

filt — a) = Tfult — a) — ult — (a + k)

and take the transform [see (2)]

—ks
e 1l —e
ks

e We now take the limit als—0. By I’'HOpital’s rule the
guotient on the right has the limit 1 (differentiate the
numerator and the denominator separately with respé&ct to
obtainingse*sands, respectively, and use*s/s -1 as
k—0). Hence the right side has the limits. This suggests
defining the transform af(t — a) by this limit, that is,

(5) L{S(t —a)} = e

L{fult — a)} = e — 0] = ¢




Example 1

e Determine the response of the damped mass-spring
system under a square wave, modeled by
y' '+ 3y +2y=rt)=ult—1)—ult—-2) y(0)=0,y(0)=0

e Solution. From (1) and (2) in Sec. 6.2 and (2) éh)d

In this section we obtain the subsidiary equation
1
2 _1lr,—s  _—2s — —5 _ ,—25
s*Y +3sY +2Y = (e e =) Y(s) 3(52+33+2)<6 e %)
Using the notatiofir(s) and partial fractions, we obtain
B 1 B 1 31
Fls) = s(s24+3s+2) s(s+1)(s+2) s s+l 542

© y

DO —




[shifting: L7t — apu(t — o)) — e F(s T

F(s) = Tsil 510
Example 1
e From Table 6.1 In Sec. 6.1, we see that the Iinverse Is
e P Y
f(t)=1L (F)—2 e+ g€

Therefore, by Theorem 1 in Sec. 6:3lifting) we obtain
the square-wave response shown in Fig. 133,

y =L YF(s)e™® — F(s)e™%)

= f(t —Du(t—1) — f(t — 2u(t —2)

(0 0<t<l)
= 1 — et 4 Tem20-1) (1<t<?2)
\_6—(75—1) 1oett=2) | %6—2(75—1) _ %G—Q(t—@ (t > 2)

y(t)

1+ —

[
[
|
0.5+ :
|
|

0

Fig. 133. Square wave and response in Example 1




Example 2

e Find the response of the system in Example 1 \igh t
sguare wave replaced by a unit impulse at timd..

e Solution. We now have the ODE and the subsidiary
equation
Yy + 3y + 2y =0(t —1) (82 4+ 35 +2)Y =~
Solving algebraically gives

Y(s) = ‘ = L _ 1 e ”.
(s+1)(s+2) \s+1 s+2
By Theorem 1 the inverse is
o 0 if 0<t<1
y) =L (¥)= e U —eD)f t>1.

@ Table 6.1; % «— !
K S — 1l /




Example 2

* y(t) Is shown in Fig. 134. Can you imagine how Fig.
133 approaches Fig. 134 as the wave becomes short
and shorter, the area of the rectangle remaining 17?

y(t)
0.2+

0.1

| |
OO 1 3 D t

Fig. 134. Response to a hammerblow in Example 2

er




More on Partial Fractions

e We have seen that the solutigiof a subsidiary
equation usually appears as a guotient of polynismia
Y(s) = F(9)/G(s), so that a partial fraction
representation leads to a sum of expressions whose
Inverses we can obtain from a table, aided byitke f
shifting theorem (Sec. 6.1). These representatons
sometimes calletleaviside expansions




More on Partial Fractions

e An unrepeated fact@a in G(s) requires a single
partial fractionA/(s-a). See Examples 1 and 2.
Repeated real factors-8)?, (s-a)3, etc., require patrtial

fractions
A A A A A
(s —20L)2 - s —1a (s —Sa)S " (s —Ba)2 - s —1a
The inverses ar@dyt + A )e™, (543t + Ast + Aj)e”
* Unrepeated complex factors
(s —a)(s—a),a=a+if,a=a—10, require a partial
fraction(As + B)/[(s — )2+ 33 . For application, see
Example 4 in Sec. 6.3.




Example

e Solve the initial value problem for a damped mass-
spring system acted upon by a sinusoidal force for
some time interval

y' 4+ 2y + 2y =r(t),r(t) =10sin2tif 0 <t <wand 0if t > 7
y(0) = 1,9'(0) = =5

y(t)

2 —
1 L
= S—— y = 0 (Equilibrium
fs 0 | e ! |
l posIiion) Y r 2n 3n 4r t
, ! -1 -
w Dashpot (damping) =5

Mechanical system Output (solution)

Fig. 136. Example 4

Driving forcel




'+ 2y + 2y =r(t),r(t) =10sin2tif O <t <mand 0if t > 7

Example y(0) = 1,5/(0) = -

e From Table 6.1, (1), (2) in Sec. 6.2, and the sécon
shifting theorem in Sec. 6.3, we obtain the sulasidi
equation )

(82 — s +5)+2(sY — 1) +2Y = 4(1—6_7TS>
We collect they-terms, $2+25+2)Y take Sst+5-2 = -
s+3 to the right, and solve,
20 20e 77 s —3
(6) Y= (s24+4)(s24+ 25 +2) (s2+4)(s2+2s+2) " §2 + 25 + 2
For the last fraction we get from Table 6.1 andfirs
shifting theorem

(7) L_l{ (;:—rll);fl} = e '(cost — 4sint)




Example

e In the first fraction in (6) we have unrepeated ptar

roots, hence a partial fraction representation
20 _ As+B Ms+ N

_|_
(s2+4)(s2+2s+2) s2+4  s2+25+2
Multiplication by the common denominator gives

20 = (As+ B)(s* + 25 +2) + (Ms + N)(s* + 4)
We determine A, B, M, N. Equating the coefficieats
each power of on both sides gives the four equations

(@) [s¥:0=A+M (b) [s°]:0=24+ B+ N
() [s]:0=24+2B+4M (d) [s"]:20=2B+4N




Example

e We can solve this, for instance, obtainMg-A from
(a), thenA=B from (c), therN=-3A from (b), and
finally A=-2 from (d). Hencé&=-2, B=-2, M=2, N=6,
and the first fraction in (6) has the representatio

—28—2+2(S—|—1)-|—6—2
s 44 (s+1)2+1
Inverse transform:i—2 cos 2t — sin 2t + e (2 cost + 4sin t)

e The sum of this inverse and (7) is the solutiothef
problem foro < ¢+ < # , namely (the sines cajcel

(9) y(t) = 3e "t cost — 2 cos 2t — sin 2t

(8)




—2cos2t — sin2t + e "(2cost + 4sint)

Example

* In the second fraction in (6), taken with the misug,
we have the factoe ™ , so that from (8) arad th
second shifting theorem (Sec. 6.3) we get the gerer
transform of this fraction far=0 in the form

+2c0s(2t — 2m) + sin(2t — 27) — e "2 cos(t — ) + 4sin(t — )]
— 2c082t +sin2t + e~ "™)(2cost + 4sint)

The sum of this and (9) is the solution for =
(10) y(t) = e '[(3+2¢e™) cost + 4e” sin t]

e Figure 136 shows (9) (far<t <= ), a begugn
vibration, which goes to zero rapidly because ef th
damping and the absence of a driving force after

o




6.5 Convolution. Integral Equations




Convolution

e Convolution has to do with the multiplication of
transforms. The situation 1s as follows.

e Additionof transforms provides no problem; we know
thatL(f + g) = L(f) + L(Q).

 Now multiplication of transforms occurs frequently
In connection with ODEs, integral equations, and
elsewhere. Then we usually kndaf) andL(g) and
would like to know the function whose transfornthe
productL(f)L(g). We might perhaps guess that ifgs
but this is falseThe transform of a product is
generally different from the product of the transis
of the factors,

L(fg) # L(f)L(g) in general.
o




Convolution

e To see this takk= € andg = 1. Thenfg = €', L(fg) =
1/(s — 1), butL(f) =1/ — 1) andL(1) = 16give L(f)L
(g) = 1/(s% - 9).

e According to the next theorem, the correct answer |
thatL(f)L(g) is the transform of theonvolution of f
andg, denoted by the standard notatfidhy and
defined by the integral

h(t)=(f*g)(t fo g(t —1)dT




Theorem 1

e Convolution Theorem

e If two functions f and g satisfy the assumptiothan
existence theorem in Sécl,so that their transforms
F and G exist, the product HEG is the transform of
h given by(1). (Proof after Example 2.)




Example 1

e LetH(s) = 1/[(s —a)g]. Find h(t).

e Solution: 1/(s — a) has the inverst) = e and 16 has
the inversg(t) = 1. Withf (zr) =e* andg(t — 7) = 1 we
thus obtain from (1) the answer

B(t) = e 1= [ e - 1dr — é@at )
e To check, calculate
1 1N 1 a 11
) . L




o

~

(11) App. 3.1 sinzsiny = 4[— cos(x + y) + cos(z — y)]

Example 2

e Let H(s)=1/(s*>+w?)? . Findt).
e Solution. The inverse of/(s> + w?)  (iBwt)/w . HeENce

from (1) and the first formula in (11) in App. 3k

obtain
B sinwt sinwt 1

h(t)l— —r—— = — fg sinwr sinw(t — 7)dr
=53 [ coswt + cos(2wT — wt)]dr
W
i Sin wT !
= —— | —7coswt + }
22 L w  lr=0
i sin wt
ZQ—M_—tcoswt+ - }

In agreement with formula 21 in the table in Se®. 6

/




Proof of Theorem 1

e CAUTION! Note which ones are the variables of
Integration! We can denote them as we want, for
Instance, by: angl and write

F(s) = [y e~ f(r)dr G(s) = [, e Pg(p)dp

We now sett =p++ , where s at firstgtant. Then
p=t—7,andt varies fromr tooo . Thus

G(s) = [Fe gt — 7)dt = e [ e stg(t — 7)dt
7 In F andt in G vary independently.




Proof of Theorem 1

* Hence we can insert tli&integral into the=-integral.
Cancellation ok*" ane” then gives
F(s)G(s) = [, e 5 f(r)e’ [Ze gt — r)dtdr = [ f(7) [ e *'g(t — 7)dtdr
Here we integrate for fixee ovefrom r tocc and
then overr from O tec . This is the blue regio Fig.
141. ’

t

Fig. 141. Region of integration in the
tr-plane in the proof of Theorem 1 /




Proof of Theorem 1

e Under the assumption drandg the order of
Integration can be reversed. We then integrate firs
overr from O td and then overfrom 0 to « , that is,

F(s)G(s) = [, e fo g(t — 7)drdt = [;" e *'h(t)dt = L(h) = H(s)

This completes the proof.

= [ e Tf(r)eT [yt — T)dtdr = [[° f(r) [ e gt — T)dtdr




Convolution

e Convolution has the properties

e Commutative lawf*g = g*f

e Distributive law:f*(g,+g,) = f*g, + f*g,
e Associative law:ftg)*v = f*(g*v)

e *0=0*f=0




Example 3

° {1+ fIn general. For instance,
t*lzf(fT-ldT:%t%ét
° (f*f)(t) >0 may not hold. For instance, Example 2
with w =1 gives

sint xsint = —%tcost + %Sil’lt
4 -
2r sinwt  sinwt 1
h(t) = * = — [ si sinw(t — 7)d
/\ ( )1 ~ — — fo sinwt sinw(t — 7)dr
| | | | | |
°I2 a6 810 ¢ =5 f(f[— cos wt + cos(2wT — wt)|dT
W
1 sinwrt
2 = —[—TCOSLdt+ ]
2?2 w dr=0
sin wt
4k :—2w2 [—tcoswt—l— " ]
Fig. 142. Example 3 /




Example 4

* In an undamped mass-spring system, resonance occurs
If the frequency of the driving force equals théunal
frequency of the system. Then the model is

" + wiy = K sinwyt
wherew? = k/m KIs the spring constant, analis the
mass of the body attached to the spring. We assume
y(0)=0 anady’(0)=0, for simplicity. Then the subsidiary
equation is

Kuwy Kuwy

Eilehad U V —
s2 + w? (82 4+ wj)?

Y +wiY =




Example 4

e This is a transform as in Example 2 with= «, and
multiplied by Kw, . Hence from Example 2 we cae
directly that the solution of our problem is

y(t) = %?(—t coswot + Slr;tot) = 2—[58
We see that the first term grows without bound a@\e
In the case of resonance such a term must ocae. (S

also a similar kind of solution in Fig. 55 in S@®)

(—wot cos wot + sin wyt)

sinwt  sinwt 1
h(t) = * = — |, si sinw(t — 7)d
(1) » » 3 Jo sinwt sinw(t — 7)dr

1
=5 fot[— cos wt + cos(2wT — wt)]dT
w

1
= ——|—7Tcoswt +
2w2[

1
= —— | —tcoswt +
2w2[

Sin (,UT} t
7=0

w
sin wt]

w




L )
Application to Nonhomogeneous Linear

ODEs

e Nonhomogeneous linear ODEs can now be solved by
general method based on convolution by which the
solution is obtained in the form of an integral.ske

this, recall from Sec. 6.2 that the subsidiary éguna
of the ODE

(2) Yy’ + ay + by =r(t) (a, b constant)
has the solution [(7) in Sec. 6.2]
Y(s) = [(s + a)y(0) +y(0)]Q(s) + R(s)Q(s)

with R(s) = L(r) andQ(s) = 1/(s* + as + b) the transfer
function.

~y




L )
Application to Nonhomogeneous Linear

ODEs

 Inversion of the first term [ ... ] provides no diffiity;
depending on whether (8)- b is positive, zero, or
negative, its inverse will be a linear combinatodn
two exponential functions, or of the form (-
c,t)e @2 or a damped oscillation, respectively. The
Interesting term IKR(s)Q(s) because(t)can have
various forms of practical importance, as we séted.
If y(O) = 0 andy’(0) = 0, thenY = RQ and the
convolution theorem gives the solution

(3) y(t) = [y q(t —7)r(T)dr




Example 5

e Using convolution, determine the response of the
damped mass-spring system modeled by
y'+ 3y +2y =1(t) y(0) = y'(0) =0
r(t) =1if 1 <t < 2 and 0 otherwise
This system with an input (a driving force) thatsafor
some time only (Fig. 143) has been solved by gartia
fraction reduction in Sec. 6.4 (Example 1).

y(t)
1 |—

!
I
|
0.5 : Output (response)

' | /
|
|//\r

0 l I |

0 1 2 3 4 t

Fig. 143. Square wave and response in Example 5




Example 5
e Solution by Convolution. The transfer function arsd
Inverse are
1 1 1 1
Q(s) =

T 243542 (s+1)(s+2) s+l s+2
nenceq(t) =et —e

* Hence the convolution integral (3) is (except fog t
Imits of integration)

1
V(0) = Jaft = 1) = [t — 20 = o) — L=

©




y(t) = eV — %6—0 _ (6—(15—1) _ %e—Q(t—l)) _ % e (t=1) 4 %e—z(t_l)

Example 5

e Now comes an important point in handling
convolution.r(r)=1 Ifi<r<2 onkence ift<l,
the integral is zero. If 1 &< 2, we have to integrate
from r =1 (not 0) td. This gives (with the first two
terms from the upper limit)

o If t>2, we have to integrate from=1 to 2 (naito
This gives

y(t) = e (72 — %6—2(t—2) — (e7(t=D) — %6_2@_1))

e Figure 143 shows the input (the square wave) aad th
Interesting output, which is zero from 0 to 1, then
Increases, reaches a maximum (near 2.6) aftenfug |
has become zero, and finally decreases to zero in a
monotone fashion. J




Integral Equations

e Convolution also helps in solving certamtegral
equations that is, equations in which the unknown
functiony(t) appears in an integral (and perhaps also
outside of it).

e This concerns equations with an integral of thenfoff
a convolution. Hence these are special and itcasfi
to explain the idea in terms of two examples araiaad
few problems in the problem set.




Example 6

e Solve the Wolterra integral equation of the secommd k
y(t) — [ y(r)sin(t — 7)dr =t

e Solution. From (1) we see that the given equatam c
be written as a convolution,— y *sint = ¢. Writing
Y=L(y) and applying the convolution theorem, we

obtain ' .2 .
(S) . (8)82 +1 (8)52 +1 g2
The solution is
s2+1 1 1 13
()=——=5+5 Yy =t+g




Example 7

» Solve the Volterra integral equation
y(t) — fg(l + 7)y(t — 7)dT =1 — sinht

e Solution. By (1) we can writg — (1 +¢) xy = 1 — sinht
Writing Y = L(y), we obtain by using the convolution
theorem and then taking common denominators

2 2
B e R T

(s> — s —1)/s cancels on both sides, so that solving for
Y simply givesy (s) = , and the solntisy(t) = cosh

g2

Table 6.1 cosh at ¢ >

o
N, J




fl I

6.6 Differentiation and Integration of
Transforms. ODEs with Variable
Coefficients




Differentiation of Transforms

e |t can be shown that,

If a functidft) satisfies the

conditions of the existence theorem in Sec. 64dn th

the derivative=’(s) =d
L(f) can be obtained

F/dsof the transfornt(s) =
by differentiatikg@s) under the

Integral sign with respect ®(proof in Ref. [GenRef4]
Iisted In App. 1). Thus, if

= Jo e f(t)dt then /(s) = — f* et f(t)dt




:_fo e "t f(1)
Differentiation of Transforms

e Consequently, IL(f) = F(s), then
(1) L{tf()} = —F ’(s), hencd."1 {F ’(9)} = —tf (t)

where the second formula is obtained by applirig
on both sides of the first formula.

e In this way,differentiation of the transform of a
function corresponds to the multiplication of the

function by-t.




Example 1

e We shall derive t

ne following three formulas

L(f) (@)
(2) 2 +1 o %Bg’(sin Bt — Bt cos Br)
(3) = : o % sin Bt
4) - isz)z %(sin Bt + Bt cos )




Table 6.1 sinwt <—

s2 4 W2

Example 1

e Solution. From (1) and formula 8 (with= g n)Table
6.1 of Sec. 6.1 we obtain by differentiation
(CAUTION! Chain rule!)

2
L(tsin f5t) = E f;2)2

Dividing by 25 and using the linearity bf we obtain
(3).

o p
sin 5 4 82+526 , —28s
tsin Ot <— _<32 +52) B _((32 +52)2)




Table 6.1 coswt +—

$2 4 w?

Example 1

e Formulas (2) and (4) are obtained as follows. F(bm

and formula 7 (withw = 8 ) in Table 6.1 wedin
2 2) _ g2 2 _ 32
L(tcos Bt) = 5 (2_26_)62)2 e +;>2
From this and formula 8 (with = 5 ) in Taleld we
have L(t cos 5t + lsm ft) = s -7 + :
o (s*+ 07 2+

On the right we now take the common denominator.
Then we see that for the plus sign the numerator
becomess? — 52+ 52+ 32 =252 , so {Aafollows by
division by 2. Similarly, for the minus sign the
numerator takes the formd — g2 — 2 — g2 = —232? , and

we obtain (2). J




Integration of Transforms

o Similarly, if f(t) satisfies the conditions of the existence

theorem in Sec. 6.1 and the limitft)/t ast
approaches 0 from the right, exists, thensfoik,

t 0. ~ ~ o ~ ~ t
(6) L{#} = [ F(s)ds L‘l{fs F(S)dS} = @
In this way, integration of the transform of a ftion
f(t) corresponds to the division fff) by t.

e We indicate how (6) is obtained. From the defimtib
follows that

[ F(3)ds = [~ [ [ e f(t)dt] d3

| >4




Integration of Transforms

e And it can be shown that under the above assungtior
we may reverse the order of integration, that is,

[ F)s = [ [ et pe)ds] de = [ f(e)] [ e ds] i

Integration of =5t with respectto gives'/(—t) .
Here the integral over on the right equals/:

Therefore, ( ) 0 \
o0 —stf f t
f F(3)ds = L{T}

6—315

—7 s

0

—




Example 2
s + w?

 Find the inverse transform cpft(1+—) In=—

e Solution. Denote the given transform bfs). Its

derivative Is

d 25 25
F'(s) = £(11(1(82 +w?) — Ins?) = R

Taking the inverse transform and using (1), we iabta
_ p B 25 2
LYF(s)y =L 1{82 — g} — 2coswt — 2= —tf(t)
Hence the inverskt) of F(S) IS f(t) = 2(1 — coswt)/t
This agrees with formula 42 in Sec. 6.9.




; N
LY F(s)} = L—l{Sin2 _ g} _ Dcoswt — 2 = —tf(1)
Example 2 (6) L—l{fsoo F(§)d§} _ f(t)
o Alternatively, if we let
G(s) = quﬂ —g o(t) = LY(G) = 2coswt — 1)

From this and (6) we get, in agreement with thevans
just obtained

L_l{ln > ;wz} = L_l{fsoo G(s)ds} = —@ = %(1 — coswt)

the minus occurring sincas the lower limit of
Integration.

* In a similar way we obtain formula 43 in Sec. 6.9

CL2

L‘l{ln(l — ?>} = %(1 — cosh at)




. . . . N
Special Linear ODEs with Variable

Coefficients

e Formula (1) can be used to solve certain ODEs with
variable coefficients. The idea is this. LL&Yy) =Y.
ThenL(y') = sY — Y0) (see Sec. 6.2). Hence by (1),

(7) Lity) = —d%[sy ()] = —Y — s‘%
Similarly, L(y") = s?Y — sy(0) —+/(0) and by (1)

8) Lty = —di‘i[S?Y — sy(0) — y/(0)] = —2sY — 52% +4(0)

_______________________________________




. . . . N
Special Linear ODEs with Variable

Coefficients

e Hence if an ODE has coefficients suchasid, the
subsidiary equation is a first-order ODE %mwhich is
sometimes simpler than the given second-order ODE.

» But if the latter has coefficientt? + bt + ¢, then two
applications of (1) would give a second-order ODE f
Y, and this shows that the present method works well
only for rather special ODEs with variable coefiais.




Example 3
e Laguerre’s ODE is
(9) ty"+ (1 —t)y +ny =0
We determine a solution of (9) witi==0,1, .... From

(7)-(9) we get the subsidiary equation

dy : dY
oy — 281 _ _(—y — & _
[ 25 — 5"+ y(0)| +sY = y(0) ( Y Sd5> Y =0
Simplification gives
(3—32)%+(n+1—3)Y:0
dY
/ =Y — s—
(7) L(ty") Y Sds
Y
(8) L(ty") = —2sY — 5262—8 + (0)




4 N
Example 3
e Separating variables, using partial fractions,
Integrating (with the constant of integration takere
zero), and taking exponentials, we get
dY n+1l—s n n+1 (s —1)"
* . _ _ —
(10%) v s — g2 ds = (S — 1 S )dS ¥ gntl
We write [, = L~1(Y) and pro¥edrigues’s formula
et d" n,— _
(10) lo=1, Lt) = ——(t"e™) n=1,2,..

©

These are polynomials because the exponential term:
cancel if we perform the indicated differentiations

D




Example 3

e They are calledlaguerre polynomialsand are usually
denoted by . We prove (10). By Table 6.1 and the
first shifting theoremg:shifting),

N n!
L(t"e™) = (5 + 1)

hence by (3) in Sec. 6. ZL{ (t” t)} -5 Z!;nﬂ

n

because the derivatives up to the omdédrare zero at O.
Now make another shift and divide byto get

s—1)"
gntl

L(,) = ! —Y

L(f") = s"L(F) = s"1f(0) = s"2f'(0) — -~ = f"=D(0)




6.7 System of ODEs




System of ODEs

e The Laplace transform method may also be used for
solving systems of ODEs, as we shall explain imger
of typical applications. We consider a first-ortieear

system with constant coefficients (as discusses)

4.1) ,
Y1 = an1y1 + a1y + g1(t)

(1) Yy = G191 + a2y + ga(t)

DI

* Writing Y; = L(y,), Y, = L(¥,), G, = L(9y), G, = L(9y),
we obtain from (1) in Sec. 6.2 the subsidiary gyste

sY1 —y1(0) = anY1 + anYa + Gy (s)
sYo — 12(0) = a1 Y1 + axnYs + G(s)




System of ODEs

» By collecting theY;- andY,-terms we have

(a11 — 8)Y1 + a12Ys = —11(0) — G1(s)

(2) a1 Y1 + (az — 8)Ya = —12(0) — Gafs)

e By solving this system algebraically fg)(s), Y,(S)
and taking the inverse transform we obtain thetswlu
y; = LYY, ¥, = L7Y,) of the given system (1). Note
that (1) and (2) may be written in vector form (and
similarly for the systems in the examples); thestiisg
y=[y1 Yo', A=yl 9=1[0; G, Y =[Y1 YoI', G =
[G, G,]"we have

y=Ay+g and A-3)Y=-y(0) -G.




Example 1

e TankT,In Fig. 144 initially contains 100 gal of pure water.
TankT, initially contains 100 gal of water in which 150 Ib
of salt are dissolved. The inflow In1q is 2 gal/min from
T, and 6 gal/min containing 6 Ib of salt from the outside.
The inflow intoT, is 8 gal/min fromT,;. The outflow from
T,Iis 2 + 6 = 8 gal/min, as shown in the figure. The
mixtures are kept uniform by stirring. Find and plot the salt
contentsy,(t) andy,(t) in T, andT,, respectively.

6 gal/min

y(t)

150

100

50

5

'\ Salt content in T2

—

—

P

/. —— Salt content in T',

Fig. 144. Mixing problem in Example 1

|
200 t

_

|
50 100 150




Example 1

e Solution. The model is obtained in the form of two
equations

Time rate of change = Inflow/min — Outflow/min

for the two tanks (see Sec. 4.1). Thus,

Vi = —qo5Y1 + o5z + 6 Yh = 10591 — TogY2
e The initial conditions arg,(0) = 0,y,(0) = 150. From

this we see that the subsidiary system (2) is

6
(—0.08 — 5)Y; + 0.02Y, = ——
S

0.08Y; + (—0.08 — 5)Ys = —150




Example 1

» \WWe solve this algebraically fof; andY, by
elimination (or by Cramer’s rule in Sec. 7.7), ansl
write the solutions in terms of partial fractions,

v = 95 +0.48 _100_ 625 _ 375
' os(s+0.12)(s+0.04) s s+0.12 s5+0.04
v = 150s* +125+0.48 _100 125 75

2 T 5(s+0.12)(s+0.04) s s+0.12 s+0.04




Example 1

» By taking the inverse transform we arrive at the solution
y, =100 —62.5¢™*" =37.5¢

y, =100 +125¢™"%" =757

e Figure 144 shows the interesting plot of these functions.
Can you give physical explanations for their main features”
Why do they have the limit 100? Whyysnot monotone,
whereag, is? Why isy, from some time on suddenly
larger thary,? Etc.

6 gal/min

y(t)

150

I
\,‘/,_ Salt content in T2

\
M\ —

100 .
50 f Salt content in T',

12
[
[

| | | |
50 100 150 200 t

6 gal/min
Fig. 144. Mixing problem in Example 1 _—




Example 3

e The mechanical system in Fig. 146 consists of two
bodies of mass 1 on three springs of the samegsprin
constank and of negligibly small masses of the
springs. Also damping is assumed to be practically
zero. Then the model of the physical system is the
system of ODEs ——

yi = —ky1 + k(y2 — 1)
vy = —k(ys — y1) — kyo

(3)

Fig. 146. Example 3 /




Example 3

e Herey, andy, are the displacements of the bodies fron
their positions of static equilibrium. These ODEs
follow from Newton’s second lavilassX
Acceleration= Force, as in Sec. 2.4 for a single body.
We again regard downward forces as positive and
upward as negative. On the upper bolly, is the
force of the upper spring akdy,-y,) that of the middle
spring,y,-y; being the net change in spring length —
think this over before going on. On the lower body,
K(Y,-Y,) Is the force of the middle spring ankl, that of
the lower spring.

L




vyl = —ky1 + k(ys — 1)
Example 3 [¥=—*o:—v) — ks

e We shall determine the solution corresponding o th
initial conditions y,(0) = 1, y2(0) = 1,4,(0) = V/3k, ¥4(0) = —v/3k
Let vi=L(y),Ya=L(y,) . Thenfrom (2)3ec. 6.2 and
the initial conditions we obtain the subsidiaryteys

%Yy — 5 — V3k = —kYy + k(Ys — Y1)
s?Yy — s+ 3k = —k(Yy — Y}) — kY,
This system of linear algebraic equations in the
unknownsy, andY, may be written
(s +2k)Y — kYs = s + 3k
—ky; + (s* +2k)Y; = 5 — V3k




Example 3

e Elimination (or Cramer’s rule in Sec. 7.7) yieltie t

solutions, which we can expand in terms of partial
fractions,

le(s%—\/—)(s +2k) + k(s —V3k) s V3k

(52 4 2k)2 — k2 TSItk 1k
}/’2:(82+2k)<8 \/_)+k(s+\/3_k)_ s V3k

(s2 + 2k)2 — k2 T 24k 243k
Here the solution of our initial value problem k4d.

147) () = L~HY7) = cos Vkt + sin v/3kt
12(t) = L7HY3) = cos Vkt — sin v/3kt




Example 3

e We see that the motion of each mass is harmorec (th
system is undamped!), being the superposition of a
“slow” oscillation and a “rapid” oscillation.

2L ¥
| /\ /><\
R ~J] /i
0] 2r 4r t
-1+

-2

Fig. 147. Solutions in Example 3




Summary of Chapter 6




Summary of Chapter 6

e The main purpose of Laplace transforms is the solution of
differential equations and systems of such equations, as
well as corresponding initial value problems. Tiaplace
transform F(s) = L(f) of a functionf(t) is defined by

(1)  F@)=L (f)=] e fpyt. (Sec. 6.1).

e This definition is motivated by the property that the
differentiation off with respect td corresponds to the
multiplication of the transforri by s, more precisely,

L (f)=sL (f)=f(0)

Sec. 6.2
L=l (D-O-FOo) oo

(2)




Summary of Chapter 6

e Hence by taking the transform of a given differahti

equation
(3) y' + ay + by =r(t) (a, b constant)
and writing L §) = Y(s), we obtain theubsidiary
equation

(4) (@+as +b)Y =L (r) +sf0) +f (0) + af (0).

e Here, in obtaining the transfori{r) we can get help
from the small table in Sec. 6.1 or the largerdgabl
Sec. 6.9. This is the first step. In the seconp ste
solve the subsidiary equatiatgebraicallyfor Y(s).

o




Summary of Chapter 6

* In the third step we determine tim¥verse transform
y(t) =L ~(Y), that is, the solution of the problem. This
IS generally the hardest step, and in it we maynaga
use one of those two tablé4s) will often be a
rational function, so that we can obtain the ingdrs
~1(Y) by partial fraction reduction (Sec. 6.4) if wese
no simpler way.

e The Laplace method avoids the determination of a
general solution of the homogeneous ODE, and we
also need not determine values of arbitrary constan
a general solution from initial conditions; insteac
can insert the latter directly into (4).




Summary of Chapter 6

e Two further facts account for the practical impaoda
of the Laplace transform. First, it has some basic
properties and resulting techniques that simphfy t
determination of transforms and inverses. The most
Important of these properties are listed in Se&,. 6.
together with references to the corresponding @esti
More on the use of unit step functions and Dirac’s
delta can be found in Secs. 6.3 and 6.4, and nmore o
convolution in Sec. 6.5.




Summary of Chapter 6

e Second, due to these properties, the present method
particularly suitable for handling right sidg$) given
by different expressions over different intervdisime,
for instance, when(t) is a square wave or an impulse
or of a form such aqt) = costif 0 <t<4xand 0
elsewhere.

e The application of the Laplace transform to systeims
ODEs is shown in Sec. 6.7. (The application to PDEs
follows in Sec. 12.12.)




