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Introduction
� In Newton’s method, for a general nonlinear objective function, 

convergence to a solution cannot be guaranteed from an 
arbitrary initial point       . 

� The idea behind Newton’s method is to locally approximate the 
function     being minimized, at every iteration, by a quadratic 
function. The minimizerfor the quadratic approximation is function. The minimizerfor the quadratic approximation is 
used as the starting point for the next iteration. 

� Guarantee that the algorithm has the descent property by 
modifying as follows

where      is chosen to ensure that 
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Introduction
� For example, we may choose 

We can then determine an appropriate value of      by 
performing a line search in the direction                       . Note 
that although the line search is simply the minimization of the 
real variable function                                                 , it is not a 
trivial problem to solve. 
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trivial problem to solve. 

� A computational drawback of Newton’s method is the need to 
evaluate              and solve the equation                              . To 
avoid the computation of                , the quasi-Newton methods 
use an approximation to                in place of the true inverse. 



Introduction
� Consider the formula

where        is an           matrix and      is a positive search 
parameter. Expanding     about         yields
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As      tends to zero, the second term on the right-hand side 
dominates the third. Thus, to guarantee a decrease in    for 
small     , we have to have 

A simple way to ensure this is to require that       be positive 
definite. 



Introduction
� Proposition 11.1: Let           ,                ,                             , and 

an            real symmetric positive definite matrix. If we set
, where                                                  , 

then            and 
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Approximating the Inverse Hessian
� Let                       be successive approximations of the inverse                  

of the Hessian. 

� Suppose first that the Hessian matrix         of the objective 
function     is constant and independent of    . In other words, 
the objective function is quadratic, with Hessian

for all    , where            . Then, 
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for all    , where            . Then, 

Let 

Then, we may write 



Approximating the Inverse Hessian
� We start with a real symmetric positive definite matrix      . 

Note that given     , the matrix        satisfies 

� Therefore, we also impose the requirement that the 
approximation           of the Hessian satisfy 
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� If      steps are involved, then moving in     directions 
yields 

…



Approximating the Inverse Hessian
� This set of equations can be represented as 

Note that     satisfies 

and 
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Therefore, if                                      is nonsingular, then        is 
determined uniquely after     steps, via 



Approximating the Inverse Hessian
� We conclude that if        satisfies the equations 

then the algorithm                                     , 
, is guaranteed to solve problems 

with quadratic objective functions in          steps, because the 
update                                      is equivalent to Newton’s 
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update                                      is equivalent to Newton’s 
algorithm. 



Approximating the Inverse Hessian
� The quasi-Newton algorithms have the form

where the matrices                 are symmetric. In the quadratic 
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where the matrices                 are symmetric. In the quadratic 
case these matrices are required to satisfy 

where                                           and 
It turns out that quasi-Newton methods are also conjugate 
direction methods. 



Approximating the Inverse Hessian
� Theorem 11.1: Consider a quasi-Newton algorithm applied to a 

quadratic function with Hessian              such that for 

where                     . If          ,                , then                     are 
-conjugate. 

� Proof: We proceed by induction. We begin with the          case: 
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� Proof: We proceed by induction. We begin with the          case: 
that       and       are     -conjugate. Because           , we can write 

. Hence, 
but                     as a consequence 
of            being the minimizer of 

. Hence, 



Approximating the Inverse Hessian
� Assume that the result is true for         . We now prove that the 

result for    , that is, that                     are    -conjugate. If 
suffices to show that                                        . Given 
using the same algebraic steps as in the          case, and using 
the assumption that           , we obtain
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Because                  are    -conjugate by assumption, we 
conclude from Lemma 10.2 that                      . Hence, 

, which completes the proof. 



The Rank One Correction Formula
� In the rank one correction formula, the correction term is 

symmetric and has the form                 , where            and 
The update equation is 

Note that 
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and hence the name rank one correction [also called single-
rank symmetric (SRF) algorithm]. 
The product               is sometimes referred to as  the dyadic 
product or outer product. Observe that if       is symmetric, 
then so is 



The Rank One Correction Formula
� Our goal now is to determine      and        , given       ,         , 

so that the required relationship discussed in Section 11.2 is 
satisfied; namely                                            . 

� To begin, consider the condition                             . In other 
words, given        ,         ,         , we wish to find       and        to 
ensure that 
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ensure that 

� First note that                 is a scalar. Thus, 

and hence 



The Rank One Correction Formula
� We can now determine 

Hence, 
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� The next step is to express the denominator of the second term 
on the right-hand side as a function of the given quantities

,          ,         . Premultiply
by            to obtain 



The Rank One Correction Formula
� Observe that      is a scalar and so is                                   . 

Thus, 

Taking this relation into account yields 

16



Rank One Algorithm
� 1. Set           ; select         and a real symmetric positive definite  

� 2. If             , stop; else, 

� 3. Compute 
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� 4. Compute 

� 5. Set                ; go to step 2. 



Rank One Algorithm
� However, what we want is 

� Theorem 11.2: For the rank one algorithm applied to the 
quadratic with Hessian             , we have 

� Proof. 
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Example
� Let                                   . Apply the rank one correction 

algorithm to minimize    . Use                     and 

� We can represent     as 

Thus, 
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Thus, 

Because              , 



Example
� The objective function is quadratic, and hence 
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and thus
We then compute 



Example
� Because

We obtain  
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Therefore, 

We now compute 
Note that              , and therefore               . As expected, the 
algorithm solves the problem in two steps. 

Note that the directions                 are      -conjugate, in accordance with 
Theorem 11.1. 



The Rank One Correction Formula
� Unfortunately, the rank one correction algorithm is not very 

satisfactory for several reasons. 
� The matrix            that the rank one algorithm generates may not be 

positive definite and thus            may not be a descent direction. This 
happens even in the quadratic case. 

� If                                             is close to zero, then there may be 
numerical problems in evaluating           . 
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numerical problems in evaluating           . 

� Fortunately, alternative algorithms have been developed for 
updating      . In particular, if we use a “rank two” update, then

is guaranteed to be positive definite for all    , provided that 
the line search is exact. 



The DFP Algorithm
� This algorithm was developed by Davidon (1959), Fletcher, 

and Powell (1963). 

� The DFP algorithm is also known as the variable metric 
algorithm. 

� DFP Algorithm
� 1. Set            ; select         and a real symmetric positive definite 
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� 1. Set            ; select         and a real symmetric positive definite 

� 2. If               , stop; else, 

� 3. Compute 

� 4. Compute 

� 5. Set                 ; go to step 2. 



The DFP Algorithm
� Theorem 11.3: In the DFP algorithm applied to the quadratic 

with Hessian             , we have                            , 

� Theorem 11.4: Suppose that             . In the DFP algorithm, if 
is positive definite, then so is          . 
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Example
� Locate the minimizer of                                              , 

Use the initial point                    and 

� Note that in this case
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Hence, 

Because    is a quadratic function, 



Example
� Therefore, 

� We then compute 

� Observe that
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Thus, 



Example

� We now compute                                    and 
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� We now compute                                    and 

Hence,                                                      , because    is a 
quadratic function of two variables. 

� Note that we have                                         ; that is,        and 
are    -conjugate directions. 



The DFP Algorithm
� The DFP algorithm is superior to the rank one algorithm in that 

it preserves the positive definiteness of      . 

� However, it turns out that in the case of larger nonquadratic
problems the algorithm has the tendency of sometimes getting 
stuck. This phenomenon is attributed to       becoming nearly 
singular. 
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singular. 



The BFGS Algorithm
� Suggested by Broyden, Fletcher, Goldfarb, and Shanno. 

� Recall that the updating formulas for the approximation of the 
inverse of the Hessian matrix were based on satisfying the 
equations 

where were derived from                       ,               . We then 
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where were derived from                       ,               . We then 
formulated update formulas for the approximations to the 
inverse of the Hessian matrix        . 

� An alternative to approximating        is to approximate     itself. 



The BFGS Algorithm
� Let       be our estimate of      at the   th step. We require         to 

satisfy                            ,               . 

� Notice that this set of equations is similar to the previous set of 
equations for         , the only difference being that the roles of 

and          are interchanged. 

� Given any update formula for       , a corresponding update 
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� Given any update formula for       , a corresponding update 
formula for      can be found by interchanging the roles of      
and        and of          and          . In particular, the BFGS update 
for        corresponds to the DFP update for       . Formulas 
related in this way are said to be dual or complementary. 



The BFGS Algorithm
� Recall that the DFP update for the approximation        of the 

inverse Hessian is 

� Using the complementarity concept, we can easily obtain an 
update equation for the approximation      of the Hessian
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� To obtain the BFGS update for the approximation of the 
inverse Hessian, we take the inverse of          to obtain



The BFGS Algorithm
� Lemma 11.1 Sherman-Morrison formula: Let      be a 

nonsingular matrix. Let     and     be column vectors such that 
. Then,                is nonsingular, and its inverse 

can be written in terms of        using the following formula: 
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� From Lemma 11.1 it follows that if        is known, then the 
inverse of the matrix     augmented by a rank one matrix can be 
obtained by a modification of the matrix       . 



The BFGS Algorithm
� Applying Lemma 11.1 twice to          yields

� Recall that for the quadratic case the DFP algorithm satisfies 
. Therefore, the BFGS update for 
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. Therefore, the BFGS update for 
satisfies                                        . By construction of the BFGS 
formula for            , we conclude that 
Hence, the BFGS algorithm enjoys all the properties of quasi-
Newton methods, including the conjugate directions property. 
Moreover, the BFGS algorithm also inherits the positive 
definiteness property of the DFP algorithm; that is, if              
and             , then 



Example
� The BFGS formula is often far more efficient than the DFP 

formula. 

� Use the BFGS method to minimize 

Take               and                 . Verify that                 . 
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� Take               and                 . Verify that                 . 

� We have 

The objective function is a quadratic, and hence we can use the 
following formula to compute 



Example
� Therefore, 

To compute                     , we need the following quantities: 
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Therefore, 



Example
� Hence, we have 

Therefore, 

� Because our objective function is a quadratic on      ,        is the 
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� Because our objective function is a quadratic on      ,        is the 
minimizer. Notice that the gradient at       is   ; that is, 



Example
� To verify that                 , we compute 
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