Chapter 11 Quasi-Newton Methods

An Introduction to Optimization
Spring, 2012

Wei-Ta Chu
2012/4/20



Introduction

4

In Newton’s method, for a general nonlinear objective function,
convergence to a solution cannot be guaranteed from an
arbitrary initial pointz©

The idea behind Newton’s method is to locally approximate the
function f being minimized, at every iteration, by a quadratic
function. Theminimizel for the quadratic approximation

used as the starting point for the next iteration.

2+ = g0) _ p(zph)-1gk
Guarantee that the algorithm has the descent property by
modifying as follows
20D = 20 _ o, P(z®)-1g*)
whereq, IS chosen to ensure that
fla® ) < fa®)



Introduction

» For example, we may choosg = arg min,~ f(z*) — . F(2™)~1g*)
We can then determine an appropriate valug.of by

performing a line search in the directiof(z")~1g® . Note
that although the line search is simply the minimization of the
real variable function,(a) = f(z'*) — o, F(z*)~1g") , itis not a

trivial problem to solve

» A computational drawback of Newton’s method is the need to
evaluateF(z®) and solve the equatitin’))d*) = —g'* . To
avoid the computation of (z*))~! |, the quasi-Newton methods
use an approximation tB(z*)~!  in place of the true inverse.



Introduction

4

Consider the formula

25+ — 2 — o H,q®
where H, I1samxn matrixand IS a positive search
parameter. Expanding  abowit’ yields

Fla® ) = f(a®)+g T (g — )4 o(||zE ) —zH)|))
= f(z®) — ag®TH g™ + o(|| Hrg™ | a)

As o tends to zero, the second term on the right-hand side
dominates the third. Thus, to guarantee a decrease in for
small « , we have to have

g TH .g® > 0
A simple way to ensure this is to require that be positive
definite.



Introduction

» Proposition 11.1: Let e ¢! ™ ¢ 7 g% = v f(z®) #£ 0 . and
H;, ann xn real symmetric positive definite matrix. If we set
) = 2% — o H,.gW, Where o = argmingsq f(x¥) — a Hpg™) ,
thena, >0 and(z*+)) < f(z®)



Approximating the Inverse Hessian

» LetH,, H,,H,,.. be successive approximations of the inverse
F(z")~1 of the Hessian.

» Suppose first that the Hessian matrix) of the objective
function 7 is constant and independentof . In other words,
the objective function is quadratic, with Hessian
F(z)=qQ for allz , whereQ = Q! . The

gt — gb) = Q(zF+D) — g

Let Agh) & gltt) _ ik
R \

Az k)

Then, we may write
Agh) = QAx™



Approximating the Inverse Hessian

» We start with a real symmetric positive definite mamix
Note that given; , the matrgx-!  satisfies

Q 'Agl) = Azl 0<i<k

» Therefore, we also impose the requirement that the
approximationH,.; of the Hessian satisfy

H, Agl) = Azl 0<i<k
» If n steps are involved, then moving:;n  directions
Az AzM . Az yields
H,Ag" = Az
H,AgV = Az

HnAg<”_1) _ Aw(n—l]



Approximating the Inverse Hessian

» This set of equations can be represented as

H,[Ag" AgW, ... Ag" V] = [Az) Azl . Agl—1)

Note thatQ satisfies
QA Az . AxD] =[Ag" AgV, ... Ag"~V)

and

Q 'Ag"Y, AgW, ... Ag" V] = [Az®) Az, . Azt~
Therefore, if[Agl?, Ag'V, ..., Ag"~1)] IS nonsingular, hen
determined uniquely after steps, via

Q' =H, =[AzV Ax) _ Az"D|[Ag) Aglh . Agln—b]

IS



Approximating the Inverse Hessian

» We conclude that iff,, satisfies the equations
H,Ag" =Az®W 0<i<n-—1
then the algorithm.:+1) — £*) — o, ;T g®) ,
= argming>o f(z® — aHg'"™W) s guaranteed to solve problems
with quadratic objective functions in+1  steps, because the
updatez"t!) = £ — o, H,g™ is equivalent to New
algorithm.



Approximating the Inverse Hessian

» The quasi-Newton algorithms have the form

d¥) = _H,qg"
Qf = al'g HlinozZO f(aj(k) + Otd(k)>

2+ = 20 1 o d®)

where the matriceg,, H,,...  are symmetric. In the qua
case these matrices are required to satisfy

H; 1AgW) = Az 0<i<k
whereAz® = g+ — g0 — o.4® angl) = gi+1) — gl — QAz)
It turns out that quasi-Newton methods are also conjugate
direction methods.

10



Approximating the Inverse Hessian

4

Theorem 11.1: Consider a quasi-Newton algorithm applied to a

guadratic function with Hessiap= Q?  such that fok < n — 1
H; . AgW =Az® 0<i<k

whereH, ., = H},, .H, #0 0<i<k ,taén.. d*Y are

Q-conjugate.

Proof. We proceed by induction. We begin with theo (

thatd® andi¥ ar@ -conjugate. Becayseo , We can write
d" = Az /o, . Hence, d7QdY) = _gOTH,Qd®

but g7d"” =0 as a consequence  ; F QAa

of oy >0 being the minimizerof ~ 7 7! K

d(a) = f(x9 + ad). Hence, = —gT e

d(l)TQd(O) —( _ _g(1)TAm(0)

&

— g7 )

11



Approximating the Inverse Hessian

» Assume that the result is true for 1 . We now prove that the
result forg , thatis, that”,....d**Y)  gre -conjugate. If
suffices to show that*+*7TQd" = 0.0 <i < k . Given < k
using the same algebraic steps as in:the case, and using
the assumption that, 40 , we obtain

dHUTQdY — _ g DT H, . Qd?
LT )

Because)”) ... 4"} afe -conjugate by assumption, we
conclude from Lemma 10.2 thgit+)7q" = g . Hence,
d*VTQd" = 0, which completes the proof.
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The Rank One Correction Formula

» In therank one correction formula, the correction term Is
symmetric and has the formz*z*T where R zdhd R"

The update equation is
H, ,=H;+ akz<k)z(k)T

Note that L

(k)
rank(z" zMT) = rank( : {zyﬂ) L zflk)}> =1

and hence the namank one correction [also calledsingle-
rank symmetric (SRF) algorithm].

The productz®zMT  is sometimes referred to asiydmdic
product or outer product. Observe that iff, IS symmetric,
then so IsH .,

13



The Rank One Correction Formula

4

Our goal now is to determing  anth , gi¥eN Agh Azl
so that the required relationship discussed in Section 11.2 is
satisfied; namel\H . ,;Agl) = Az i =1, ...k

To begin, consider the conditiad,.;Ag® = Az®) . In other
words, givenH, Ag¢® Az* ,we wishto find  ahd to
ensure tha

H; . Ag¥) = (Hj + a;z% 20T AgH) = AgF)

First note thak(¥TAg®  Is a scalar. Thus,
Az®) — H Ag® = (4,207 Agh) 24
and hence
L) — Az'®) — H, Ag®
ar(zMWTAgH)

14



The Rank One Correction Formula

» We can now determine
(Awﬂc) _ HkAg(k>)(Aa:(’“> _ HkAgUf))T

(k) o, (K)T _
e ar(zMT Agk))2
Hence,
Hy . =Hg)+ (Az™ — H Ag®)(Ax®) — H AgWHT

ak(z(k)TAg(k))2

» The next step is to express the denominator of the second term
on the right-hand side as a function of the given quantities
H, , Ag® Az® . Premultiphpz® — H Ag® = (a2 T Ag")2®
by Ag¥)T to obtain
AgPTAz® — AgWTH Ag®) = AgHT g, 2*) 2T A g(k)

15



The Rank One Correction Formula

» Observe that, Is a scalar and s@8)72%*) = 2T A gk
Thus,

AgTAx® — AgWT H . Ag®) = a5 (20T Agh))?

Taking this relation into account yields

16

(Ax™) — H . AgW ) (Ax™) —H . AgtNT
YAgPT(Axz®) — H,Ag®))

Hy. = H;+




Rank One Algorithm

» 1. Setk =0 ;select®”  and areal symmetric positive defipite
2.1fg® =0 , stop; elsed® = —H  g*
3. Compute

vV Vv

aj = arg mingso f(z® + ad™)
) — 2k 1 o, d®)

v

4. Compute Az — 4, d®
Agh) = glt+1) _ g(k)
(Ax™) — HyAg™)(Ax™) — H Ag™)T
k

Hy, =H
b= S AgIT Az — HkAg< )

v

5.Setk:=k+1 ; go to step 2.

17



Rank One Algorithm

» However, what we want i#, . ,Ag") = Ax® i =1,... k

» Theorem 11.2: For the rank one algorithm applied to the
guadratic with Hessiam = Q7 , we hatg ,Ag¥ = Azl
0<i<k

» Proof.

18



Example

» Let f(zy,20) =27 +323+3 . Apply the rank one correction
algorithm to minimizef . Use® =[1,2]7  ag=1I,
» We can represent as

flz) = 52" [g g)] T + 3

2 0
(k) — (k)
Thus, g [O 1] T

BecauseH, =1, d" = —g» =[-2, 9]

19



Example

» The objective function is quadratic, and hence

ap = arg mingso (2 + ad?)

2
 g0Tg0 2,2] H E
B —d(U)TQd(O) N 201 T21 3

and thusz®® = z© + o,d¥ = -1 27
We then compute

Az = apd? = [-3, —3]"

g(l) — QZU(l) _ [_%’ E]T

20



Example

» Because 4
AgOT(AzY) — HyAgW) =[5, —3] [3] =
We obtain
Ar0 — H.A — HyAgY :
H, — Hy+ 2% 027z A
AgOT(Ax0) — HOAQ( )) 01
Therefore,
d) = ~H gV = %7 _%]T
§ ) g(l)Td(l) g
1 d7QdM

We now computer® =z + a;dY = [0, 0]"
Note thatg® = , and therefar@ = z*

algorithm solves the problem in two steps.

Note that the directiong”). d'!)  afe conjugate, in accordance with
21 Theorem 11.1.

. As expected, the



The Rank One Correction Formula

» Unfortunately, the rank one correction algorithm is not very
satisfactory for several reasons.

The matrix H,,; thatthe rank one algorithemgrates may not be
positive definite and thud**  may not leacent direction. This
happens even in the quadratic case.

If Ag®T(Az®) — H.Ag®)) ibse to zero, then there may be
numerical problems in evaluating .

» Fortunately, alternative algorithms have been developed for
updatings, . In particular, if we use a “rank two” update, then
H, IS guaranteed to be positive definite foriall , provided that
the line search Is exact.
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The DFP Algorithm

» This algorithm was developed by Davidon (1959), Fletcher,
and Powell (1963).

» The DFP algorithm is also known as traeiable metric
algorithm.
» DFP Algorithm
1. Setk =0 ; seleat? and a real sytmmpositive definiteH |,
2. 1f g¥) =0 , stop; els&l™ = —H,g*
3. Compute ay, = arg minasg f(z® + ad™)
2+ — g®) 4 o, g®)

4. Compute

Az = q . d®)
Agh) = glk+D) — gk
AzPAZOT  [HAgW|[HAgP)T

Hier = Hy AzWTAGH — — AgWTH, Ag®

22 5.5etk:=k+1 ;gotostep 2.




The DFP Algorithm

» Theorem 11.3: In the DFP algorithm applied to the quadratic
with HessiarnQ = @7 , we have,,;Agl) = Az 0<§<k

» Theorem 11.4: Suppose that - 0 . In the DFP algorithm, if
H, is positive definite, then so B,

24



Example

L 1 _
» Locate the minimizer off (x) =§wT [4 2] az—wT[ 1

Use the initial pointe® = (0,01 amd, = I,
» Note that in this case

49 —1
(k) — (k) _
o= of= =)
Hence, ¢ =1, —1]"

© _ g0 (L0 1]l
v =g = | ) = [

Becausg Is a quadratic function,
g7 g

N dO7Qd" =1

ap = arg mingso f(x + ad?) =

25




Example

» Thereforezg® = 2 + q,d® = [-1,1]7
)

» We then computenz© = g1 — 20 = [—1 1]7

4 2] [—=1 —1
(1) _ _
o= ol 1) - 17
Ag) = g — g — 9 q|T
» Observe that g 9 g | |

1 —1
(0) A (0T _
Ax"VAx [_1 ! ]
il =
Thus,
(HoAg'")(H Ag)T = lg 8 AgOTHAgO = 4



Example
Az VAT [H A [H AgT

H = Mot R 0TAg0 ~  AgOTH,AgO
Cfrop L a0
01 C2[-1 1] t{00
F1 1
=14 4
. 2 2
» We now computel't) = —H,gY = [0,1]*
LwTgl)
_ - (1) iy _ 9 _ -
ap = argming>g f(x'" + ad") d0T0qD 2
Hencegz® = 20 + qpdV = [-1,3/2]" = «* , because isa
guadratic function of two variables.
» Note that we hava"”Qd" = dM7Qd") =0 - that'¥s, and

d" areqQ -conjugate directions.
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The DFP Algorithm

» The DFP algorithm is superior to the rank one algorithm in that
It preserves the positive definitenessnf

» However, it turns out that in the case of larger nonquadratic
problems the algorithm has the tendency of sometimes getting

stuck. This phenomenon is attributedrg becoming nearly
singular.

28



The BFGS Algorithm

» Suggested by Broyden, Fletcher, Goldfarb, and Shanno.

» Recall that the updating formulas for the approximation of the
iInverse of the Hessian matrix were based on satisfying the
equations . |

H,.,Ag") = Azl 0<i<k

where were derived fromg() = QAz" 0 <i <k . We

formulated update formulas for the approximations to the

Inverse of the Hessian matrgx!

» An alternative to approximating=! Is to approxin@te itself.

29



The BFGS Algorithm

4

Let B, be ourestimate@f atthe th step. We require to
satisfyAgl) = By, Azt 0,<i <k

Notice that this set of equations is similar to the previous set of
equations foH,., , the only difference being that the roles of
Az and Ag() are interchanged.

Given any update formula fef,,  , a corresponding uf

formula forB, can be found by interchanging the roles,;of

and H, and of\g® andz* . In particular, the BFGS update
for B, corresponds to the DFP updatefnr . Formulas
related in this way are said to Geal or complementary.

30



The BFGS Algorithm

» Recall that the DFP update for the approximatpn of the

Inverse Hessian is
FpDFP A F) Ag(F)T [HkAg(’“)][HkAg(WT

e = Hit Az®TAGH — — AgWTH Ag®)
» Using the complementarity concept, we can easily obtain an
update equation for the approximatiBp  of the Hessian
AgWAgT B Az W[ BAz*)]T

Bit =Bt R 0T az® ~ T Az®T B Az D

» To obtain the BFGS update for the approximation of the
Inverse Hessian, we take the inversasgf, to obtain

Hl?flGS = (Bjt1) "
AgF) Ag®T [BkAw“‘“)][BkAw(k’)]T ~1
AgWTAZ®) — Azx®TB, Az®) )

= (Bk—|—

31



The BFGS Algorithm

» Lemma 11.1Sherman-Morrison formula: Let A be a
nonsingular matrix. Let and be column vectors such that
1+v'Au #0.Then, A + wo” 1S nonsingular, and its inverse

can be written in terms of ! using the following formula:
_ A ) (vTAT
A -1 _ A I (
(A +uv) 1+vTA
» From Lemma 11.1 it follows that £=!  is known, then the

Inverse of the matrixa augmented by a rank one matrix can be
obtained by a modification of the matrax!

32



The BFGS Algorithm

» Applying Lemma 11.1 twice t®,,, Vields

HBFGS _ [ n 1_|_Ag(k)THkAg(k)>Am(k)Am(k)T
. ’ ( AghTAz®) ) AxTAgk)

HkAg( J AP (HkAg( TAR)T)T
AgPT Ag®)

» Recall that for the quadratic case the DFP algorithm satisfie
HPEPAgW) = 2W 0 <4 <k . Therefore, the BFGS update B,
satisfiesB, 1Az =g®, 0<i<k . By construction of the BFGS
formula fora 2> |, we conclude thff[f+ NG = Axl) 0 <i <k
Hence, the BFGS algorlthm enjoys all the properties of quasi-
Newton methods, including the conjugate directions property.
Moreover, the BFGS algorithm also inherits the positive
definiteness property of the DFP algorithm; that ig#f-£ o

and H, >0 , themr 27> > ¢
33




Example

» The BFGS formula is often far more efficient than the DFP
formula.

» Use the BFGS method to minimizge) = $z"Qx — b + log(r)
o-[43] o[
» TakeH, =1, and,=10,07 . Verifyt=Q!

The objective function is a quadratic, and hence we can use the
following formula to compute,
gOTg®

T dOTQq0 2

apy =

34



Example

» Therefore z(U — 20 4 a,d© — [192]

To computeH, = H?*“> | we need the following quantities:

0
(0) — (1) _ 7(0) —
Ax €T T [1/2]

g = Qal) _ b= [—%/ 2]

AgO — gl — g0 — [—?i/ 2]
Therefore,

AdOTF AGO\ Ag®ApOT
H1:H0+(1+ g 1029 ) T o
Ag(O)TAa;(O) Aw(O)TAg(O)
AzVAgOTH) + HiAgW AT T1 3/2
Ag(O)TAx(O) - 3/2 11/4
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Example
» Hence, we have dV) = —H,gV = [‘;’ﬁ]

g7 g
N1 — — =2

dVrQd"

w(2) f— w(l) _|_ Oéld(l) — [g]

» Because our objective function is a quadraticcénz? |
minimizer. Notice that the gradientat) ois ; thayis,=0

Therefore,
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Example

» To verify thatH, =Q ' , we compute

3
(1) — (2) _ (1) —
Ax €T €T [9/2]

3/2
AglV) = g — g0 :[é]

Ag DT H AgW\ AxpMWALMT
R

Ag(l)TA;U(D A;p(l)TAg(l)

AzWAgWTH | + HiAgWAzWT T2 3

B AgMTAg) 135

‘HQQ:QHQZIQ — H2 Ql
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