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Theorem 6.2.1

 Theorem 6.2.1 (Cauchy-Schwarz Inequality)
 If u and v are vectors in a real inner product space, then

|u, v| ||u|| ||v||

 The inequality can be written in the following two forms
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 The inequality can be written in the following two forms

 The Cauchy-Schwarz inequality for Rn (Theorem 4.1.3)
follows as a special case of this theorem by taking u, vto
be the Euclidean inner product u‧v.



Theorem 6.2.2

 Theorem 6.2.2 (Properties of Length)
 If u and v are vectors in an inner product space V, and if k is

any scalar, then :
 || u || 0
 || u || = 0 if and only if u = 0|| || = 0 if and only if =
 || ku || = | k | || u ||
 || u + v || || u || + || v || (Triangle inequality)

 Proof of (d)
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(Property of absolute value)
(Theorem 6.2.1)



Theorem 6.2.3

 Theorem 6.2.3 (Properties of Distance)
 If u, v, and w are vectors in an inner product space V, and if

k is any scalar, then:
 d(u, v) 0
 d(u, v) = 0 if and only if u = vd( , ) = 0 if and only if =
 d(u, v) = d(v, u)
 d(u, v) d(u, w) + d(w, v) (Triangle inequality)
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Angle Between Vectors

 Cauchy-Schwarz inequality can be used to define angles
in general inner product cases.

 We define to be the angle between u and v.
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Example

 Let R4 have the Euclidean inner product. Find the
cosine of the angle between the vectors u = (4, 3, 1,
-2) and v = (-2, 1, 2, 3).
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Orthogonality

 Definition
 Two vectors u and v in an inner product space are called

orthogonal if u, v= 0.

Example (U, V= tr(UTV) = tr(VTU) = u v + u v + u v + u v )
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 Example (U, V= tr(UTV) = tr(VTU) = u1v1 + u2v2 + u3v3 + u4v4)
 If M22 has the inner project defined previously, then the matrices

are orthogonal, since U, V= 1(0) + 0(2) + 1(0) + 1(0) = 0.
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Orthogonal Vectors in P2

 Let P2 have the inner product and let p = x and
q = x2.

 Then
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because p, q= 0, the vectors p = x and q = x 2 are orthogonal
relative to the given inner product.
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Theorem 6.2.4 (Generalized Theorem of
Pythagoras)
 If u and v are orthogonal vectors in an inner product

space, then
|| u + v ||2 = || u ||2 + || v ||2
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Example

 Since p = x and q = x 2 are orthogonal relative to the inner product
on P2.

 It follows from the Theorem of Pythagoras that
|| p + q ||2 = || p ||2 + || q ||2

 Thus, from the previous example:
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, ( ) ( )p x q x dx


 p q
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 Thus, from the previous example:

 We can check this result by direct integration:
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Orthogonality

 Definition
 Let W be a subspace of an inner product space V. A vector u

in V is said to be orthogonal to W if it is orthogonal to every
vector in W, and the set of all vectors in V that are
orthogonal to W is called the orthogonal complement (正交

) of W.
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補餘) of W.
 If V is a plane through the origin of R3 with Euclidean inner

product, then the set of all vectors that are orthogonal to
every vector in V forms the line L through the origin that is
perpendicular to V. L

V



Theorem 6.2.5

 Theorem 6.2.5 (Properties of Orthogonal Complements)
 If W is a subspace of a finite-dimensional inner product

space V, then:
 Wis a subspace of V.
 The only vector common to W and Wis 0; that is ,W W= 0.The only vector common to W and W is ; that is ,W W = .
 The orthogonal complement of Wis W; that is , (W)= W.
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Proof of Theorem 6.2.5(a)

 Note first that 0, w=0 for every vector w in W, so W 

contains at least the zero vector.
 We want to show that the sum of two vectors in W is

orthogonal to every vector in W (closed under addition)
and that any scalar multiple of a vector in W isand that any scalar multiple of a vector in W is
orthogonal to every vector in W (closed under scalar
multiplication).
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Proof of Theorem 6.2.5(a)

 Let u and v be any vector in W , let k be any scalar, and
let w be any vector in W. Then from the definition of W ,
we have u, w=0 and v, w=0.

 Using the basic properties of the inner product, we have
u+v, w= u, w+ v, w= 0 + 0 = 0u+v, w= u, w+ v, w= 0 + 0 = 0

ku, w= ku, w= k(0) = 0
 Which proves that u+v and ku are in W .
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Proof of Theorem 6.2.5(b)

 If v is common to W and W , then v, v=0, which
implies that v=0 by Axiom 4 for inner products.

The only vector common to W and Wis 0; that is ,W W= 0.
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Theorem 6.2.6

 Theorem 6.2.6
 If A is an mn matrix, then:
 The nullspace of A and the row space of A are orthogonal

complements in Rn with respect to the Euclidean inner
product.product.

 The nullspace of AT and the column space of A are
orthogonal complements in Rm with respect to the
Euclidean inner product.
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Proof of Theorem 6.2.6(a)

 We must show that if a vector v is orthogonal to every
vector in the row space, then Av=0, and conversely, that if
Av=0, then v is orthogonal to every vector in the row
space.
Assume that v is orthogonal to every vector in the row Assume that v is orthogonal to every vector in the row
space of A. Then in particular, v is orthogonal to the row
vectors r1, r2, …, rm of A; that is
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Proof of Theorem 6.2.6(a)

 The linear system Ax=0 can be expressed in dot product
notation as

 And it follows that v is a solution of this system and
hence lies in the nullspace of A.
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Proof of Theorem 6.2.6(a)

 Conversely, assume that v is a vector in the nullspace of
A, so Av=0. It follows that

 But if r is any vector in the row space of A, then r is
expressible as a linear combination of the row vectors of
A, sayA, say

 Thus

 Which proves that v is orthogonal to every vector in the
row space of A.
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Example (Basis for an Orthogonal
Complement)
 Let W be the subspace of R5 spanned

by the vectors w1=(2, 2, -1, 0, 1),
w2=(-1, -1, 2, -3, 1), w3=(1, 1, -2, 0, -
1), w4=(0, 0, 1, 1, 1). Find a basis for
the orthogonal complement of W.

 Solution
 The space W spanned by w1, w2, w3,

 By Theorem 6.2.6, the nullspace of A
is the orthogonal complement of W.

 In Example 4 of Section 5.5 we
showed that

1 1
1 0
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The space W spanned by w1, w2, w3,
and w4 is the same as the row space of
the matrix

form a basis for this nullspace.
 Thus, vectors v1 = (-1, 1, 0, 0, 0)

and v2 = (-1, 0, -1, 0, 1) form a
basis for the orthogonal
complement of W.

2 2 1 0 1
1 1 2 3 1

1 1 2 0 1
0 0 1 1 1
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Remarks

 In any inner product space V, the zero space {0} and the
entire space V are orthogonal complements.

 If A is an matrix, to say that Ax=0 has only the
trivial solution is equivalent to saying that the orthogonal
complement of the nullspace of A is all of Rn, orcomplement of the nullspace of A is all of Rn, or
equivalently, that the row space of A is all of Rn.
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Theorem 6.2.7 (Equivalent
Statements)
 If A is an mn matrix, and if TA : Rn Rn is multiplication by A, then the following are

equivalent:
 A is invertible.
 Ax = 0 has only the trivial solution.
 The reduced row-echelon form of A is In.
 A is expressible as a product of elementary matrices.
 Ax = b is consistent for every n1 matrix b.
 Ax = b has exactly one solution for every n1 matrix b.
 det(A)≠0.
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 det(A)≠0.
 The range of TA is Rn.
 TA is one-to-one.
 The column vectors of A are linearly independent.
 The row vectors of A are linearly independent.
 The column vectors of A span Rn.
 The row vectors of A span Rn.
 The column vectors of A form a basis for Rn.
 The row vectors of A form a basis for Rn.
 A has rank n.
 A has nullity 0.
 The orthogonal complement of the nullspace of A is Rn.
 The orthogonal complement of the row of A is {0}.
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Orthonormal Basis

 Definition
 A set of vectors in an inner product space is called an

orthogonal set if all pairs of distinct vectors in the set are
orthogonal.

 An orthogonal set in which each vector has norm 1 is called
orthonormal (單範正交).
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orthonormal (單範正交).

 Example
 Let u1 = (0, 1, 0), u2 = (1, 0, 1), u3 = (1, 0, -1) and assume

that R3 has the Euclidean inner product.
 It follows that the set of vectors S = {u1, u2, u3} is

orthogonal since
u1, u2= u1, u3= u2, u3= 0.



Orthonormal

 If v is a nonzero vector in an inner product space, then the
vector has norm 1

 Since

 The process of multiplying a nonzero vector v by the
reciprocal of its length to obtain a unit vector is called
normalizing (正規化) v.

 An orthogonal set of nonzero vectors can always be converted
to an orthonormal set by normalizing each of its vectors.
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Example

 The Euclidean norms of the vectors are

 Normalizing u1, u2, and u3 yields

 The set S = {v1, v2, v3} is orthonormal since

1 2 31, 2, 2  u u u

 The set S = {v1, v2, v3} is orthonormal since
v1, v2= v1, v3= v2, v3= 0 and ||v1|| = ||v2|| = ||v3|| = 1
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Orthonormal Basis

 In an inner product space, a basis consisting of
orthonormal vectors is called an orthonormal basis, and a
basis consisting of orthogonal vectors is called an
orthogonal basis.
A familiar example of an orthornormal basis is the A familiar example of an orthornormal basis is the
standard basis for R3

i=(1,0,0), j=(0,1,0), k=(0,0,1)
 The standard basis for Rn

e1=(1,0,0,…,0), e2=(0,1,0,…,0), …, en=(0,0,0,…,1)
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Orthonormal Basis

 Theorem 6.3.1*
 If S = {v1, v2, …, vn} is an orthonormal basis for an inner product

space V, and u is any vector in V, then
u = u, v1v1 + u, v2v2 + · · · + u, vnvn

2008/12/19 Elementary Linear Algebra 28

 Remark
 The scalars u, v1,u, v2, …, u, vnare the coordinates of the

vector u relative to the orthonormal basis S = {v1, v2, …, vn} and
(u)S = (u, v1,u, v2, …, u, vn)

is the coordinate vector of u relative to this basis



Proof of Theorem 6.3.1

 Since S={v1,v2,…,vn} is a basis, a vector u can be
expressed in the form u=k1v1+k2v2+…+knvn

 We shall show that ki= u, vifor i=1, 2,…, n. For each
vector vi in S, we have

 u, vi= k1v1+k2v2+…+knvn, vi
= k1v1, vi+ k2v2, vi+…+knvn, vi

 Since S is an orthonormal set, we have

 Therefore, u, vi= ki
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Example

 Let v1 = (0, 1, 0), v2 = (-4/5, 0, 3/5), v3 = (3/5, 0, 4/5).
It is easy to check that S = {v1, v2, v3} is an orthonormal basis
for R3 with the Euclidean inner product.
Express the vector u = (1, 1, 1) as a linear combination of the
vectors in S, and find the coordinate vector (u)s.
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 Solution:
 u, v1= 1, u, v2= -1/5, u, v3= 7/5
 Therefore, by Theorem 6.3.1 we have u = v1–1/5 v2 + 7/5 v3

 That is, (1, 1, 1) = (0, 1, 0)–1/5 (-4/5, 0, 3/5) + 7/5 (3/5, 0, 4/5)
 The coordinate vector of u relative to S is

(u)s=(u, v1, u, v2, u, v3) = (1, -1/5, 7/5)



Theorem 6.3.2

 Theorem 6.3.2
 If S is an orthonormal basis for an n-dimensional inner

product space, and if (u)s = (u1, u2, …, un) and (v)s = (v1, v2,
…, vn) then:

nuuu   22
2

2
1u
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 Remark
 By working with orthonormal bases, the computation of

general norms and inner products can be reduced to the
computation of Euclidean norms and inner products of the
coordinate vectors.
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Example

 If R3 has the Euclidean inner product, then the norm of
the vector u=(1,1,1) is

 However, if we let R3 have the orthonormal basis S in the
last example, then we know from that the coordinatelast example, then we know from that the coordinate
vector of u relative to S is (u)s= (1, -1/5, 7/5)

 The norm of u yields
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Coordinates Relative to Orthogonal Bases

 If S = {v1, v2, …, vn} is an orthogonal basis for a vector space V,
then normalizing each of these vectors yields the orthonormal basis

 Thus, if u is any vector in V, it follows from theorem 6.3.1 that













n

nS
v
v

v
v

v
v

,,,'
2

2

1

1 

2008/12/19 Elementary Linear Algebra 33

or

 The above equation expresses u as a linear combination of the
vectors in the orthogonal basis S.
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Theorem 6.3.3

 Theorem 6.3.3
 If S = {v1, v2, …, vn} is an orthogonal set of

nonzero vectors in an inner product space, then S is
linearly independent.
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Proof of Theorem 6.3.3

 Assume that k1v1+k2v2+…+knvn = 0. To demonstrate that
S is linearly independent, we must prove that k1=k2=…=0. 

 For each vi in S, k1v1+k2v2+…+knvn, vi= 0,vi=0
or, equivalently k1v1,vi+ k2v2,vi+…+knvn,vi=0
From the orthogonality of S it follows that v ,v=0 when From the orthogonality of S it follows that vj,vi=0 when
j is not equal to i, so the equation reduces to kivi,vi=0

 Since the vectors in S are assumed to be nonzero, vi,vi
≠0. Therefore, ki=0. Since the subscript i is arbitrary, we
have k1=k2=…=kn=0.
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Theorem 6.3.4

 Theorem 6.3.4 (Projection Theorem)
 If W is a finite-dimensional subspace of an product space V,

then every vector u in V can be expressed in exactly one
way as

u = w1 + w2
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u = w1 + w2

where w1 is in W and w2 is in W.

Ww1

w2
u

Ww1

w2
u



Projection

 The vector w1 is called the orthogonal projection of u on
W and is denoted projWu.

 The vector w2 is called the component of u orthogonal to
W and is denote by projWu.
u = proj u + proj u

Ww1

w2
u

 u = projWu + projWu
 Since w2 = u-w1, it follows that projWu = u–projWu
 So we can write u = projWu + (u–projWu)
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Theorem 6.3.5

 Theorem 6.3.5
 Let W be a finite-dimensional subspace of an inner

product space V.
 If {v1, …, vr} is an orthonormal basis for W, and u is any

vector in V, thenvector in V, then
projwu = u,v1v1 + u,v2v2 +… + u,vrvr

 If {v1, …, vr} is an orthogonal basis for W, and u is any
vector in V, then

2008/12/19 Elementary Linear Algebra 38

r

r

r v
v

vu
v

v

vu
v

v

vu
uW 222

2

2
12

1

1 ,,,
proj   Need Normalization



Example

 Let R3 have the Euclidean inner product, and let W be the
subspace spanned by the orthonormal vectors v1 = (0, 1, 0) and
v2 = (-4/5, 0, 3/5).

 From the above theorem, the orthogonal projection of u = (1,
1, 1) on W is w 1 1 2 2proj =< , > < , >u u v v u v v

2008/12/19 Elementary Linear Algebra 39

 The component of u orthogonal to W is

 Observe that projWu is orthogonal to both v1 and v2.

1 4 3 4 3
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