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Theorem 6.2.1

 Theorem 6.2.1 (Cauchy-Schwarz Inequality)
 If u and v are vectors in a real inner product space, then

|u, v| ||u|| ||v||

 The inequality can be written in the following two forms
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 The inequality can be written in the following two forms

 The Cauchy-Schwarz inequality for Rn (Theorem 4.1.3)
follows as a special case of this theorem by taking u, vto
be the Euclidean inner product u‧v.



Theorem 6.2.2

 Theorem 6.2.2 (Properties of Length)
 If u and v are vectors in an inner product space V, and if k is

any scalar, then :
 || u || 0
 || u || = 0 if and only if u = 0|| || = 0 if and only if =
 || ku || = | k | || u ||
 || u + v || || u || + || v || (Triangle inequality)

 Proof of (d)
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(Property of absolute value)
(Theorem 6.2.1)



Theorem 6.2.3

 Theorem 6.2.3 (Properties of Distance)
 If u, v, and w are vectors in an inner product space V, and if

k is any scalar, then:
 d(u, v) 0
 d(u, v) = 0 if and only if u = vd( , ) = 0 if and only if =
 d(u, v) = d(v, u)
 d(u, v) d(u, w) + d(w, v) (Triangle inequality)
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Angle Between Vectors

 Cauchy-Schwarz inequality can be used to define angles
in general inner product cases.

 We define to be the angle between u and v.
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Example

 Let R4 have the Euclidean inner product. Find the
cosine of the angle between the vectors u = (4, 3, 1,
-2) and v = (-2, 1, 2, 3).
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Orthogonality

 Definition
 Two vectors u and v in an inner product space are called

orthogonal if u, v= 0.

Example (U, V= tr(UTV) = tr(VTU) = u v + u v + u v + u v )
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 Example (U, V= tr(UTV) = tr(VTU) = u1v1 + u2v2 + u3v3 + u4v4)
 If M22 has the inner project defined previously, then the matrices

are orthogonal, since U, V= 1(0) + 0(2) + 1(0) + 1(0) = 0.




















00
20

and
11
01

VU



Orthogonal Vectors in P2

 Let P2 have the inner product and let p = x and
q = x2.

 Then
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because p, q= 0, the vectors p = x and q = x 2 are orthogonal
relative to the given inner product.
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Theorem 6.2.4 (Generalized Theorem of
Pythagoras)
 If u and v are orthogonal vectors in an inner product

space, then
|| u + v ||2 = || u ||2 + || v ||2
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Example

 Since p = x and q = x 2 are orthogonal relative to the inner product
on P2.

 It follows from the Theorem of Pythagoras that
|| p + q ||2 = || p ||2 + || q ||2

 Thus, from the previous example:
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 Thus, from the previous example:

 We can check this result by direct integration:
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Orthogonality

 Definition
 Let W be a subspace of an inner product space V. A vector u

in V is said to be orthogonal to W if it is orthogonal to every
vector in W, and the set of all vectors in V that are
orthogonal to W is called the orthogonal complement (正交

) of W.
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補餘) of W.
 If V is a plane through the origin of R3 with Euclidean inner

product, then the set of all vectors that are orthogonal to
every vector in V forms the line L through the origin that is
perpendicular to V. L

V



Theorem 6.2.5

 Theorem 6.2.5 (Properties of Orthogonal Complements)
 If W is a subspace of a finite-dimensional inner product

space V, then:
 Wis a subspace of V.
 The only vector common to W and Wis 0; that is ,W W= 0.The only vector common to W and W is ; that is ,W W = .
 The orthogonal complement of Wis W; that is , (W)= W.
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Proof of Theorem 6.2.5(a)

 Note first that 0, w=0 for every vector w in W, so W 

contains at least the zero vector.
 We want to show that the sum of two vectors in W is

orthogonal to every vector in W (closed under addition)
and that any scalar multiple of a vector in W isand that any scalar multiple of a vector in W is
orthogonal to every vector in W (closed under scalar
multiplication).
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Proof of Theorem 6.2.5(a)

 Let u and v be any vector in W , let k be any scalar, and
let w be any vector in W. Then from the definition of W ,
we have u, w=0 and v, w=0.

 Using the basic properties of the inner product, we have
u+v, w= u, w+ v, w= 0 + 0 = 0u+v, w= u, w+ v, w= 0 + 0 = 0

ku, w= ku, w= k(0) = 0
 Which proves that u+v and ku are in W .

2008/12/19 Elementary Linear Algebra 14



Proof of Theorem 6.2.5(b)

 If v is common to W and W , then v, v=0, which
implies that v=0 by Axiom 4 for inner products.

The only vector common to W and Wis 0; that is ,W W= 0.
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Theorem 6.2.6

 Theorem 6.2.6
 If A is an mn matrix, then:
 The nullspace of A and the row space of A are orthogonal

complements in Rn with respect to the Euclidean inner
product.product.

 The nullspace of AT and the column space of A are
orthogonal complements in Rm with respect to the
Euclidean inner product.
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Proof of Theorem 6.2.6(a)

 We must show that if a vector v is orthogonal to every
vector in the row space, then Av=0, and conversely, that if
Av=0, then v is orthogonal to every vector in the row
space.
Assume that v is orthogonal to every vector in the row Assume that v is orthogonal to every vector in the row
space of A. Then in particular, v is orthogonal to the row
vectors r1, r2, …, rm of A; that is
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Proof of Theorem 6.2.6(a)

 The linear system Ax=0 can be expressed in dot product
notation as

 And it follows that v is a solution of this system and
hence lies in the nullspace of A.
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Proof of Theorem 6.2.6(a)

 Conversely, assume that v is a vector in the nullspace of
A, so Av=0. It follows that

 But if r is any vector in the row space of A, then r is
expressible as a linear combination of the row vectors of
A, sayA, say

 Thus

 Which proves that v is orthogonal to every vector in the
row space of A.
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Example (Basis for an Orthogonal
Complement)
 Let W be the subspace of R5 spanned

by the vectors w1=(2, 2, -1, 0, 1),
w2=(-1, -1, 2, -3, 1), w3=(1, 1, -2, 0, -
1), w4=(0, 0, 1, 1, 1). Find a basis for
the orthogonal complement of W.

 Solution
 The space W spanned by w1, w2, w3,

 By Theorem 6.2.6, the nullspace of A
is the orthogonal complement of W.

 In Example 4 of Section 5.5 we
showed that
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The space W spanned by w1, w2, w3,
and w4 is the same as the row space of
the matrix

form a basis for this nullspace.
 Thus, vectors v1 = (-1, 1, 0, 0, 0)

and v2 = (-1, 0, -1, 0, 1) form a
basis for the orthogonal
complement of W.
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Remarks

 In any inner product space V, the zero space {0} and the
entire space V are orthogonal complements.

 If A is an matrix, to say that Ax=0 has only the
trivial solution is equivalent to saying that the orthogonal
complement of the nullspace of A is all of Rn, orcomplement of the nullspace of A is all of Rn, or
equivalently, that the row space of A is all of Rn.
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Theorem 6.2.7 (Equivalent
Statements)
 If A is an mn matrix, and if TA : Rn Rn is multiplication by A, then the following are

equivalent:
 A is invertible.
 Ax = 0 has only the trivial solution.
 The reduced row-echelon form of A is In.
 A is expressible as a product of elementary matrices.
 Ax = b is consistent for every n1 matrix b.
 Ax = b has exactly one solution for every n1 matrix b.
 det(A)≠0.
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 det(A)≠0.
 The range of TA is Rn.
 TA is one-to-one.
 The column vectors of A are linearly independent.
 The row vectors of A are linearly independent.
 The column vectors of A span Rn.
 The row vectors of A span Rn.
 The column vectors of A form a basis for Rn.
 The row vectors of A form a basis for Rn.
 A has rank n.
 A has nullity 0.
 The orthogonal complement of the nullspace of A is Rn.
 The orthogonal complement of the row of A is {0}.
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Orthonormal Basis

 Definition
 A set of vectors in an inner product space is called an

orthogonal set if all pairs of distinct vectors in the set are
orthogonal.

 An orthogonal set in which each vector has norm 1 is called
orthonormal (單範正交).
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orthonormal (單範正交).

 Example
 Let u1 = (0, 1, 0), u2 = (1, 0, 1), u3 = (1, 0, -1) and assume

that R3 has the Euclidean inner product.
 It follows that the set of vectors S = {u1, u2, u3} is

orthogonal since
u1, u2= u1, u3= u2, u3= 0.



Orthonormal

 If v is a nonzero vector in an inner product space, then the
vector has norm 1

 Since

 The process of multiplying a nonzero vector v by the
reciprocal of its length to obtain a unit vector is called
normalizing (正規化) v.

 An orthogonal set of nonzero vectors can always be converted
to an orthonormal set by normalizing each of its vectors.
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Example

 The Euclidean norms of the vectors are

 Normalizing u1, u2, and u3 yields

 The set S = {v1, v2, v3} is orthonormal since

1 2 31, 2, 2  u u u

 The set S = {v1, v2, v3} is orthonormal since
v1, v2= v1, v3= v2, v3= 0 and ||v1|| = ||v2|| = ||v3|| = 1
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Orthonormal Basis

 In an inner product space, a basis consisting of
orthonormal vectors is called an orthonormal basis, and a
basis consisting of orthogonal vectors is called an
orthogonal basis.
A familiar example of an orthornormal basis is the A familiar example of an orthornormal basis is the
standard basis for R3

i=(1,0,0), j=(0,1,0), k=(0,0,1)
 The standard basis for Rn

e1=(1,0,0,…,0), e2=(0,1,0,…,0), …, en=(0,0,0,…,1)
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Orthonormal Basis

 Theorem 6.3.1*
 If S = {v1, v2, …, vn} is an orthonormal basis for an inner product

space V, and u is any vector in V, then
u = u, v1v1 + u, v2v2 + · · · + u, vnvn
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 Remark
 The scalars u, v1,u, v2, …, u, vnare the coordinates of the

vector u relative to the orthonormal basis S = {v1, v2, …, vn} and
(u)S = (u, v1,u, v2, …, u, vn)

is the coordinate vector of u relative to this basis



Proof of Theorem 6.3.1

 Since S={v1,v2,…,vn} is a basis, a vector u can be
expressed in the form u=k1v1+k2v2+…+knvn

 We shall show that ki= u, vifor i=1, 2,…, n. For each
vector vi in S, we have

 u, vi= k1v1+k2v2+…+knvn, vi
= k1v1, vi+ k2v2, vi+…+knvn, vi

 Since S is an orthonormal set, we have

 Therefore, u, vi= ki
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Example

 Let v1 = (0, 1, 0), v2 = (-4/5, 0, 3/5), v3 = (3/5, 0, 4/5).
It is easy to check that S = {v1, v2, v3} is an orthonormal basis
for R3 with the Euclidean inner product.
Express the vector u = (1, 1, 1) as a linear combination of the
vectors in S, and find the coordinate vector (u)s.
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 Solution:
 u, v1= 1, u, v2= -1/5, u, v3= 7/5
 Therefore, by Theorem 6.3.1 we have u = v1–1/5 v2 + 7/5 v3

 That is, (1, 1, 1) = (0, 1, 0)–1/5 (-4/5, 0, 3/5) + 7/5 (3/5, 0, 4/5)
 The coordinate vector of u relative to S is

(u)s=(u, v1, u, v2, u, v3) = (1, -1/5, 7/5)



Theorem 6.3.2

 Theorem 6.3.2
 If S is an orthonormal basis for an n-dimensional inner

product space, and if (u)s = (u1, u2, …, un) and (v)s = (v1, v2,
…, vn) then:
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 Remark
 By working with orthonormal bases, the computation of

general norms and inner products can be reduced to the
computation of Euclidean norms and inner products of the
coordinate vectors.
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Example

 If R3 has the Euclidean inner product, then the norm of
the vector u=(1,1,1) is

 However, if we let R3 have the orthonormal basis S in the
last example, then we know from that the coordinatelast example, then we know from that the coordinate
vector of u relative to S is (u)s= (1, -1/5, 7/5)

 The norm of u yields
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Coordinates Relative to Orthogonal Bases

 If S = {v1, v2, …, vn} is an orthogonal basis for a vector space V,
then normalizing each of these vectors yields the orthonormal basis

 Thus, if u is any vector in V, it follows from theorem 6.3.1 that
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or

 The above equation expresses u as a linear combination of the
vectors in the orthogonal basis S.
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Theorem 6.3.3

 Theorem 6.3.3
 If S = {v1, v2, …, vn} is an orthogonal set of

nonzero vectors in an inner product space, then S is
linearly independent.
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Proof of Theorem 6.3.3

 Assume that k1v1+k2v2+…+knvn = 0. To demonstrate that
S is linearly independent, we must prove that k1=k2=…=0. 

 For each vi in S, k1v1+k2v2+…+knvn, vi= 0,vi=0
or, equivalently k1v1,vi+ k2v2,vi+…+knvn,vi=0
From the orthogonality of S it follows that v ,v=0 when From the orthogonality of S it follows that vj,vi=0 when
j is not equal to i, so the equation reduces to kivi,vi=0

 Since the vectors in S are assumed to be nonzero, vi,vi
≠0. Therefore, ki=0. Since the subscript i is arbitrary, we
have k1=k2=…=kn=0.
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Theorem 6.3.4

 Theorem 6.3.4 (Projection Theorem)
 If W is a finite-dimensional subspace of an product space V,

then every vector u in V can be expressed in exactly one
way as

u = w1 + w2
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u = w1 + w2

where w1 is in W and w2 is in W.
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Projection

 The vector w1 is called the orthogonal projection of u on
W and is denoted projWu.

 The vector w2 is called the component of u orthogonal to
W and is denote by projWu.
u = proj u + proj u

Ww1

w2
u

 u = projWu + projWu
 Since w2 = u-w1, it follows that projWu = u–projWu
 So we can write u = projWu + (u–projWu)
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W
projWu

(u–projWu)
u



Theorem 6.3.5

 Theorem 6.3.5
 Let W be a finite-dimensional subspace of an inner

product space V.
 If {v1, …, vr} is an orthonormal basis for W, and u is any

vector in V, thenvector in V, then
projwu = u,v1v1 + u,v2v2 +… + u,vrvr

 If {v1, …, vr} is an orthogonal basis for W, and u is any
vector in V, then
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Example

 Let R3 have the Euclidean inner product, and let W be the
subspace spanned by the orthonormal vectors v1 = (0, 1, 0) and
v2 = (-4/5, 0, 3/5).

 From the above theorem, the orthogonal projection of u = (1,
1, 1) on W is w 1 1 2 2proj =< , > < , >u u v v u v v
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 The component of u orthogonal to W is

 Observe that projWu is orthogonal to both v1 and v2.

1 4 3 4 3
=(1)(0, 1, 0) ( )( , 0, )=( , 1, )

5 5 5 25 25
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ww

4 3 21 28
proj = proj = (1, 1, 1) ( , 1, ) ( , 0, )

25 25 25 25
    u u u


