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Theorem 6.2.1

Theorem 6.2.1 (Cauchy-Schwarz Inequality)
o If u and v are vectors in a real inner product space, then
Qu, V)| < [luff |v]

o The mequality can be written in the following two forms
(u,v)” < (u, u)(v,v)

(u,v)* < [[ul[v]

a0 The Cauchy-Schwarz inequality for R” (Theorem 4.1.3)
follows as a special case of this theorem by taking (u, v) to
be the Euclidean inner product u * v.
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Theorem 06.2.2

Theorem 6.2.2 (Properties of Length)

o If u and v are vectors 1n an inner product space V, and 1f k£ 1s
any scalar, then :

ul|>0

u||=01fand only ifu=20

fu [ =k || u]

utv|<||ul|[+]v] (Triangle inequality)
Proof of (d) lu+ 0|2 = (u+ v, u +v)

w,u) + 2{u,v) + (v, v)
w, u) + 2|u, v| + (v, v) (Property of absolute value)

(
(
‘<|u ,u) + 2 \UHH’UH (v,v) (Theorem 6.2.1)
(

I IATIA

ull® +2lu vl + o]

)’

lufl + v
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Theorem 6.2.3

Theorem 6.2.3 (Properties of Distance)
o Ifu, v, and w are vectors in an inner product space V, and 1f
k 1s any scalar, then:
d(u,v) >0
dlu,v)=01fand onlyifu=v
d(u, v) =d(v,u)
du, v)<d(u,w)+dw,vVv) (Triangle inequality)
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Angle Between Vectors

Cauchy-Schwarz inequality can be used to define angles
in general inner product cases.

(u, v)? < [Jul?|v]|

(,0) T’ (v}
< —1 < <1
E>[uum|vu <1 m Sy S
cosf= 0 g
fao] 0 <?<

We define 6 to be the angle between u and v.
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Example

Let R* have the Euclidean inner product. Find the

cosine of the angle 6 between the vectors u = (4, 3, 1,
-2)and v=(-2, 1, 2, 3).

lull =v30  [lv| =v18  (u,v)=—9
(w,v) 9 3
lulllvl - v30VI8  2V15

cos =

2008/12/19 Elementary Linear Algebra



Orthogonality

Definition

o Two vectors u and v in an inner product space are called
orthogonal 1f (u, v) = 0.

Example ((U, Vy=t(U'V)=tr(V'U) = u,v; + uyv, + uzvy + u4v4)

a If M,, has the inner project defined previously, then the matrices

1 O 0o 2
U = and V =
L 1} {0 O}

are orthogonal, since (U, V)= 1(0) + 0(2) + 1(0) + 1(0) = 0.
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Orthogonal Vectors in P,

Let P, have the inner product «<p, q >= I p(x)q(x)dx and let p =x and

q-= x2.

Then

Ip|=<p, p>"*=

la] =<a, a>"*=

1

<p, q>= Ixxzdx :j x’dx =0

-1

because {p, q) = 0, the vectors p = x and q = x ? are orthogonal

-1

relative to the given inner product.
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Theorem 6.2.4 (Generalized Theorem of
Pythagoras)

= If u and v are orthogonal vectors in an inner product
space, then

futv|P=[u[?+]v]?
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Since p = x and q = x ? are orthogonal relative to the inner product
<p, q>= [ p(x)g(x)dx on P,.
It follows from the Theorem of Pythagoras that

lp+tallP=lplP+lql?
Thus, from the previous example:

s Py Ppo2,2.16

We can check this result by direct integration:
2 1 2 2
[praf =<pta. prq>= [ (x+x")(x+x7)dx
-1
1 1 1 2 2 16
= Ixzdx+2jx3dx+ Ix4dx=—+0+—:—
e e e 3 5 15
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Orthogonality

Definition

o Let W be a subspace of an inner product space V. A vector u
in V 1s said to be orthogonal to /7 1f 1t 1s orthogonal to every
vector 1n W, and the set of all vectors in V that are
orthogonal to W is called the orthogonal complement ([

H|&%) of 1.

o If Vis a plane through the origin of R with Euclidean inner
product, then the set of all vectors that are orthogonal to
every vector in J forms the line L through the origin that 1s

perpendicular to V. I
=y
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‘ Theorem 6.2.5

m Theorem 6.2.5 (Properties of Orthogonal Complements)

o If Wis a subspace of a finite-dimensional inner product
space V, then:
= W< is a subspace of V.
= The only vector common to W and W is 0; that is ,J// n W= 0,
= The orthogonal complement of W+ is W; thatis , (W)= V.
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Proot of Theorem 6.2.5(a)

Note first that (0, w)=0 for every vector w in W, so W+
contains at least the zero vector.

We want to show that the sum of two vectors in W+ is
orthogonal to every vector in W (closed under addition)
and that any scalar multiple of a vector in W is

orthogonal to every vector in W (closed under scalar
multiplication).
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Proot of Theorem 6.2.5(a)

Let u and v be any vector in W+, let k be any scalar, and
let w be any vector in /. Then from the definition of W+
we have (u, w)=0 and (v, w)=0.
Using the basic properties of the imnner product, we have
utv, w)y=<u, w)+<{v, wy=0+0=0
(ku, w) = k{u, w) = k(0) =0
Which proves that u+v and ku are in W+

2008/12/19 Elementary Linear Algebra

b

14



‘ Proot of Theorem 6.2.5(b)

The only vector common to W and W= is 0; that is , )/ n W= 0.

= Ifvis common to W and W, then (v, v)=0, which
implies that v=0 by Axiom 4 for inner products.
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Theorem 6.2.6

Theorem 6.2.6

a If A 1s an mxn matrix, then:

2008/12/19

The nullspace of 4 and the row space of 4 are orthogonal
complements in R” with respect to the Euclidean inner
product.

The nullspace of A7 and the column space of 4 are
orthogonal complements in R™ with respect to the
Euclidean inner product.
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Proot of Theorem 6.2.6(a)

We must show that if a vector v 1s orthogonal to every
vector 1n the row space, then Av=0, and conversely, that if
Av=0, then v 1s orthogonal to every vector in the row
space.

Assume that v 1s orthogonal to every vector in the row
space of 4. Then 1n particular, v 1s orthogonal to the row
vectors ry, I'», ..., ¥, of 4; that1s

T V=T - V=:--=7,,-V=0
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Proot of Theorem 6.2.6(a)

T V=T - V=:--=7,,-V=0

The linear system Ax=0 can be expressed in dot product

notation as @ 0
ro-x| |0
T T 0

And 1t follows that v is a solution of this system and
hence lies in the nullspace of A4.
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Proot of Theorem 6.2.6(a)

Conversely, assume that v 1s a vector in the nullspace of
A, so Av=0. It follows that r{ - v=7ry-v=---=7r, - v =0

But if r 1s any vector in the row space of 4, then r 1s
expressible as a linear combination of the row vectors of
A, SaAY r = cir1 +Cro+ -+ ¢
Thus r.-v = (ci7 +coro+ -+ +cpm) - v
=c(r1-v)+ e(ry-v)+ -+ Ty - V)
=0+0+---4+0=0

Which proves that v 1s orthogonal to every vector in the
row space of A4.
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Complement)
Let W be the subspace of R spanned 0
by the vectors w,=(2, 2, -1, 0, 1),
WZZ(_la'laza '39 1)9 W3:(19 19 '29 Oa' a

1), w,=(0,0, 1, 1, 1). Find a basis for
the orthogonal complement of W.

Solution

o The space W spanned by w,, w,, w,
and w, 1s the same as the row space of

the matrix

2008/12/19

-1 0 1]
2 -3 1
2 0 -1
g
11 1]

Elementary Linear Algebra

Example (Basts for an Orthogonal

By Theorem 6.2.6, the nullspace of 4
is the orthogonal complement of W.

In Example 4 of Section 5.5 we
showed that

—1 -1
1 0
v,=| 0| and v, =| -1
0 0
_O_ _1_

form a basis for this nullspace.
Thus, vectors v;= (-1, 1, 0, 0, 0)
andv,=(-1,0,-1,0, 1) forma
basis for the orthogonal
complement of W.
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Remarks

In any inner product space ¥V, the zero space {0} and the
entire space V are orthogonal complements.

If A 1s an n x n matrix, to say that Ax=0 has only the
trivial solution 1s equivalent to saying that the orthogonal
complement of the nullspace of 4 1s all of R”, or
equivalently, that the row space of 4 1s all of R".

2008/12/19 Elementary Linear Algebra
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‘ Theorem 6.2.7 (Equivalent
Statements)

o If A 1s an mxn matrix, and if 7, : R" — R" is multiplication by A4, then the following are
equivalent:

A is invertible.

Ax = 0 has only the trivial solution.

The reduced row-echelon form of 4 1s 7,.

A 1s expressible as a product of elementary matrices.

Ax = b is consistent for every nx1 matrix b.

Ax = b has exactly one solution for every nx1 matrix b.

det(A4)#0.

The range of 7,1s R".

T, 1s one-to-one.

The column vectors of 4 are linearly independent.

The row vectors of 4 are linearly independent.

The column vectors of 4 span R".

The row vectors of 4 span R".

The column vectors of 4 form a basis for R”.

The row vectors of 4 form a basis for R".

A has rank n.

A has nullity 0.

The orthogonal complement of the nullspace of 4 1s R".

The orthogonal complement of the row of 4 is {0}.

o000 00000000000 00 0O
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Orthonormal Basis

Definition

0 A set of vectors in an inner product space 1s called an
orthogonal set 1f all pairs of distinct vectors 1n the set are
orthogonal.

a0 An orthogonal set in which each vector has norm 1 1s called
orthonormal (Ef#&@ 7).

Example
o Letu,=(0,1,0),u,=(1,0, 1), u3=(1, 0, -1) and assume
that R> has the Euclidean inner product.

o It follows that the set of vectors S = {u,, u,, u;} 1s
orthogonal since

(u;, uy) = Uy, uy) = Uy, uy) =0.

2008/12/19 Elementary Linear Algebra 24



Orthonormal

If v 1s a nonzero vector in an inner product space, then the
1

vector v has norm 1
v

: 1 1 1

Since ||| = || [|v]| = - [lv] = 1
|v]] v]| |v]]

The process of multiplying a nonzero vector v by the
reciprocal of its length to obtain a unit vector 1s called
normalizing (I [™) v.

An orthogonal set of nonzero vectors can always be converted
to an orthonormal set by normalizing each of its vectors.
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Example

The Euclidean norms of the vectors are
qu:\/E, u3H=\/5

Normalizing u,, u,, and u; yields

=1,

The set S = {v,, v,, v;} 1s orthonormal since

(Vi, Vo) =V, V3) =V, v3) =0 and  ||v]| = ||v,]| = ||v5]| = 1
u, u, 1 1 u, 1 1
V., == (09190)9 Vo=7—"7= ( 909 )9 Vi = = ( ’O’_—)
* ful Ul V22T ] V2T N2

2008/12/19 Elementary Linear Algebra
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Orthonormal Basis

In an 1nner product space, a basis consisting of
orthonormal vectors is called an orthonormal basis, and a
basis consisting of orthogonal vectors is called an
orthogonal basis.

A familiar example of an orthornormal basis 1s the
standard basis for R’

i=(1,0,0), j=(0,1,0), k=(0,0,1)
The standard basis for Rn
e,=(1,0,0,...,0), e,=(0,1,0,...,0), ..., ¢,=(0,0,0,...,1)

2008/12/19 Elementary Linear Algebra
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Orthonormal Basis

Theorem 6.3.1%

a IfS={v, v, ..., v, } 1s an orthonormal basis for an inner product
space V, and u 1s any vector in V, then

u=qu,v)v,+u, v,) v+ - +u, v ) v,

Remark

a The scalars (u, v;),(u, v,), ..., {u,v,) are the coordinates of the
vector u relative to the orthonormal basis S = {v,, v,, ..., v} and

(u)S — (<u9 V1>9 <u9 V2>9 ey <u9 Vn>)

1s the coordinate vector of u relative to this basis
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Proof of Theorem 6.3.1

Since S={v,,v,,...,v,} 1s a basis, a vector u can be
expressed in the form u=k,v,+k,v,+...+k v,

We shall show that k= (u, v,) for i=1, 2,..., n. For each
vector v; in S, we have

(, vy =k Vit vy b Ak, Y, V)
= Kk(Vy, V)t ke (v,, VY kA, V)
Since S 1s an orthonormal set, we have
(i, vi) = [Jvil| = 1 (vj,v;) =0 itjF1
Therefore, (u, v;) = £,
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Example

Letv,=(0, 1, 0), v,=(-4/5, 0, 3/5), v;= (3/5, 0, 4/5).

[t 1s easy to check that S = {v,, v,, v;} 1s an orthonormal basis
for R? with the Euclidean inner product.

Express the vectoru = (1, 1, 1) as a linear combination of the
vectors 1n S, and find the coordinate vector (u)..

Solution:
a (w,vy)=1,Cu, vy =-1/5,(u, v;) =7/5
a Therefore, by Theorem 6.3.1 we have u=v;— 1/5 v,+ 7/5 v,
o Thatis, (1,1,1)=(0, 1,0)—1/5(-4/5, 0, 3/5) +7/5 (3/5, 0, 4/5)
o The coordinate vector of u relative to S 1s
() =((u, v,), (U, vy, (U, v) = (1, -1/5, 7/5)
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Theorem 6.3.2

Theorem 6.3.2

o If .S 1s an orthonormal basis for an n-dimensional inner
product space, and if (u), = (uy, U, ..., u,) and (v),= (v, v,,
..., v,) then:

[ 2 2 2
Jul|=ul +us +-+u,

d(u,v) :\/(”1 _v1)2 + (u, _v2)2 +o+(u, _vn)2

<u, v> = UV, F UV, UV

Remark

o By working with orthonormal bases, the computation of
general norms and 1nner products can be reduced to the
computation of Euclidean norms and inner products of the
coordinate vectors.
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Example

If R3 has the Euclidean inner product, then the norm of
the vector u=(1,1,1) 1s

[ull = (- w)? = VI F 2+ = V3
However, if we let R have the orthonormal basis S in the

last example, then we know from that the coordinate
vector of u relative to S'1s (u)= (1, -1/5, 7/5)

The norm of u yields

Jull = /12 + (=12 + (02 = /2 = V3
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Coordinates Relative to Orthogonal Bases

IfS={v,, v, ..., v,} 1s an orthogonal basis for a vector space V,
then normalizing each of these vectors yields the orthonormal basis

va i1 i2 i
i TN THTIE 9 "y .
Hil '2 In

Thus, 1f u 1s any vector in V, it follows from theorem 6.3.1 that
u:<u,L>L+<u, v, > v, +...+<u,L> v,
il /v vl e v.[/ v,

wv) o wv) )

u= 2 Vl 2 2 2 n
v [V

The above equation expresses u as a linear combination of the
vectors in the orthogonal basis S.

or

\

n
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‘ Theorem 6.3.3

m Theorem 6.3.3

a It S={v,, v, ..., v } 1s an orthogonal set of
nonzero vectors in an inner product space, then S 1s
linearly independent.
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Proof of Theorem 6.3.3

Assume that k,v,+k,v,+...+k v, = 0. To demonstrate that

§'1s linearly independent, we must prove that k,=k,=...=0.
For each v, in §, (kv thk,v,+...Fk v, v,) =(0,v)=0

or, equivalently k,(v,,v )+ k{v,,v)+...+ k(v v)=0

From the orthogonality of S it follows that (v, v)=0 when
Jj 1s not equal to i, so the equation reduces to k(v,v,) =0

Since the vectors in § are assumed to be nonzero, (v,,v;)

#0. Therefore, £=0. Since the subscript i 1s arbitrary, we
have k,=k,=...=k =0.
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Theorem 6.3.4

Theorem 6.3.4 (Projection Theorem)

o If W 1s a finite-dimensional subspace of an product space V,
then every vector u in V can be expressed in exactly one
way as

u=w,;+w,
where w, is in W and w, is in W~
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Projection /
W,
W
Wi

The vector w, 1s called the orthogonal projection of u on
W and 1s denoted proj .

The vector w, 1s called the component of u orthogonal to
W and 1s denote by projy,,, u.

U= proj,u + projyy, u
Since w, = u-w,, it follows that proj;;; u = u — proj,u

So we can write u = proj,u + (u — proj,u)

o priyu

proj,u
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Theorem 6.3.5

Theorem 6.3.5

0 Let W be a finite-dimensional subspace of an inner

product space V.
If {v, ..., v,.} 1s an orthonormal basis for ¥, and u 1s any
vector in V, then
proj,,u = (u,v;) v, +{u,v,) v,+ ... +{w,v,) v,
If {v, ..., v,.} 1s an orthogonal basis for /¥, and u is any
vector in V, then

>V, >V, 5V, <== Need Normalization
vl vl v

projy u =

7
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Example

Let R? have the Euclidean inner product, and let ¥ be the

subspace spanned by the orthonormal vectors v, = (0, 1, 0) and
v,=(-4/5, 0, 3/5).

From the above theorem, the orthogonal projection of u = (1,
I, )on Wmoj u=<u,v,>v+<u,v,>vV,

(1), 1, 0>+<—§><—§, 0, §)=<215, ! —%)

The component of u orthogonal to W 1s

4 3 21 28
roj u=u—-propu=(1, 1, H)—-(—, 1, —)=(—, 0, —
proj proj,,u = ( ) (25 25) (25 25)

Observe that projy,1u 1s orthogonal to both v, and v,,.
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