Lecture 23: 6.1
Inner Products

Wei-Ta Chu

2008/12/17
Definition

- An **inner product** on a real vector space V is a function that associates a real number $\langle u, v \rangle$ with each pair of vectors u and v in V in such a way that the following axioms are satisfied for all vectors u, v, and w in V and all scalars k.
 - $\langle u, v \rangle = \langle v, u \rangle$
 - $\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$
 - $\langle ku, v \rangle = k \langle u, v \rangle$
 - $\langle u, u \rangle \geq 0$ and $\langle u, u \rangle = 0$ if and only if $u = 0$

A real vector space with an **inner product** is called a **real inner product space**.
Euclidean Inner Product on \mathbb{R}^n

- If $\mathbf{u} = (u_1, u_2, \ldots, u_n)$ and $\mathbf{v} = (v_1, v_2, \ldots, v_n)$ are vectors in \mathbb{R}^n, then the formula
 $$\langle \mathbf{v}, \mathbf{u} \rangle = \mathbf{u} \cdot \mathbf{v} = u_1v_1 + u_2v_2 + \ldots + u_nv_n$$
defines $\langle \mathbf{v}, \mathbf{u} \rangle$ to be the Euclidean product on \mathbb{R}^n.

- The four inner product axioms hold by Theorem 4.1.2.
Properties of Euclidean Inner Product

Theorem 4.1.2

If \(\mathbf{u} \), \(\mathbf{v} \) and \(\mathbf{w} \) are vectors in \(\mathbb{R}^n \) and \(k \) is any scalar, then

- \(\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u} \)
- \((\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w} \)
- \((k \mathbf{u}) \cdot \mathbf{v} = k (\mathbf{u} \cdot \mathbf{v}) \)
- \(\mathbf{v} \cdot \mathbf{v} \geq 0 \); Further, \(\mathbf{v} \cdot \mathbf{v} = 0 \) if and only if \(\mathbf{v} = \mathbf{0} \)

Example

- \((3\mathbf{u} + 2\mathbf{v}) \cdot (4\mathbf{u} + \mathbf{v}) \)
 \[= (3\mathbf{u}) \cdot (4\mathbf{u} + \mathbf{v}) + (2\mathbf{v}) \cdot (4\mathbf{u} + \mathbf{v}) \]
 \[= (3\mathbf{u}) \cdot (4\mathbf{u}) + (3\mathbf{u}) \cdot \mathbf{v} + (2\mathbf{v}) \cdot (4\mathbf{u}) + (2\mathbf{v}) \cdot \mathbf{v} \]
 \[= 12(\mathbf{u} \cdot \mathbf{u}) + 11(\mathbf{u} \cdot \mathbf{v}) + 2(\mathbf{v} \cdot \mathbf{v}) \]
Euclidean Inner Product vs. Inner Product

- The Euclidean inner product is the most important inner product on \mathbb{R}^n. However, there are various applications in which it is desirable to modify the Euclidean inner product by weighting its terms differently.

- More precisely, if w_1, w_2, \ldots, w_n are positive real numbers, and if $\mathbf{u} = (u_1, u_2, \ldots, u_n)$ and $\mathbf{v} = (v_1, v_2, \ldots, v_n)$ are vectors in \mathbb{R}^n, then it can be shown

$$\langle \mathbf{u}, \mathbf{v} \rangle = w_1 u_1 v_1 + w_2 u_2 v_2 + \cdots + w_n u_n v_n$$

which is called *weighted Euclidean inner product with weights* $w_1, w_2, \ldots, w_n \ldots$
Example

- Suppose that some physical experiment can produce any of n possible numerical values x_1, x_2, \ldots, x_n.
- We perform m repetitions of the experiment and yield these values with various frequencies; that is, x_1 occurs f_1 times, x_2 occurs f_2 times, and so forth. $f_1 + f_2 + \ldots + f_n = m$.
- Thus, the **arithmetic average**, or **mean**, is

$$
\bar{x} = \frac{f_1 x_1 + f_2 x_2 + \cdots + f_n x_n}{f_1 + f_2 + \cdots + f_n} = \frac{1}{m} (f_1 x_1 + f_2 x_2 + \cdots + f_n x_n)
$$

Example

\[\bar{x} = \frac{f_1 x_1 + f_2 x_2 + \cdots + f_n x_n}{f_1 + f_2 + \cdots + f_n} = \frac{1}{m} (f_1 x_1 + f_2 x_2 + \cdots + f_n x_n) \]

- If we let \(f=(f_1,f_2,\ldots,f_n), x=(x_1,x_2,\ldots,x_n), w_1=w_2=\ldots=w_n=1/m \)
- Then this equation can be expressed as the weighted inner product

\[\bar{x} = \langle f, x \rangle = w_1 f_1 x_1 + w_2 f_2 x_2 + \cdots + w_n f_n x_n \]
Weighted Euclidean Product

- Let $\mathbf{u} = (u_1, u_2)$ and $\mathbf{v} = (v_1, v_2)$ be vectors in \mathbb{R}^2. Verify that the weighted Euclidean inner product $\langle \mathbf{u}, \mathbf{v} \rangle = 3u_1v_1 + 2u_2v_2$ satisfies the four product axioms.

Solution:
- Note first that if \mathbf{u} and \mathbf{v} are interchanged in this equation, the right side remains the same. Therefore, $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$.
- If $\mathbf{w} = (w_1, w_2)$, then

 $\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = 3(u_1+v_1)w_1 + 2(u_2+v_2)w_2 = (3u_1w_1 + 2u_2w_2) + (3v_1w_1 + 2v_2w_2) = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$

which establishes the second axiom.
Weighted Euclidean Product

- \(\langle ku, v \rangle = 3(ku_1)v_1 + 2(ku_2)v_2 = k(3u_1v_1 + 2u_2v_2) = k \langle u, v \rangle \)
 which establishes the third axiom.

- \(\langle v, v \rangle = 3v_1^2 + 2v_2^2 \geq 0 \). Obviously, \(\langle v, v \rangle = 3v_1^2 + 2v_2^2 = 0 \) if and only if \(v_1 = v_2 = 0 \), That is, if and only if \(v = (v_1, v_2) = 0 \). Thus, the fourth axiom is satisfied.
Definition

- If \(V \) is an inner product space, then the norm (or length) of a vector \(u \) in \(V \) is denoted by \(||u|| \) and is defined by
 \[
 ||u|| = \left(\langle u, u \rangle \right)^{\frac{1}{2}}
 \]

- The distance between two points (vectors) \(u \) and \(v \) is denoted by \(d(u,v) \) and is defined by
 \[
 d(u, v) = ||u − v||
 \]

- If a vector has norm 1, then we say that it is a **unit vector**.
Norm and Distance in \mathbb{R}^n

- If $\mathbf{u} = (u_1, u_2, \ldots, u_n)$ and $\mathbf{v} = (v_1, v_2, \ldots, v_n)$ are vectors in \mathbb{R}^n with the Euclidean inner product, then

$$\|\mathbf{u}\| = \langle \mathbf{u}, \mathbf{u} \rangle^{1/2} = (\mathbf{u} \cdot \mathbf{u})^{1/2} = \sqrt{u_1^2 + u_2^2 + \cdots + u_n^2}$$

$$d(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\| = \langle \mathbf{u} - \mathbf{v}, \mathbf{u} - \mathbf{v} \rangle^{1/2} = \left[(\mathbf{u} - \mathbf{v}) \cdot (\mathbf{u} - \mathbf{v}) \right]^{1/2}$$

$$= \sqrt{(u_1 - v_1)^2 + (u_2 - v_2)^2 + \cdots + (u_n - v_n)^2}$$
Weighted Euclidean Inner Product

- The norm and distance depend on the inner product used.
 - If the inner product is changed, then the norms and distances between vectors also change.
 - For example, for the vectors $\mathbf{u} = (1,0)$ and $\mathbf{v} = (0,1)$ in \mathbb{R}^2 with the Euclidean inner product, we have
 \[
 \|\mathbf{u}\| = 1 \quad \text{and} \quad d(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\| = \|(1,-1)\| = \sqrt{1^2 - (-1)^2} = \sqrt{2}
 \]
 - However, if we change to the weighted Euclidean inner product $\langle \mathbf{u}, \mathbf{v} \rangle = 3u_1 v_1 + 2u_2 v_2$, then we obtain
 \[
 \|\mathbf{u}\| = \langle \mathbf{u}, \mathbf{u} \rangle^{1/2} = (3 \cdot 1 \cdot 1 + 2 \cdot 0 \cdot 0)^{1/2} = \sqrt{3}
 \]
 \[
 d(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\| = \langle (1,-1), (1,-1) \rangle^{1/2} = [3 \cdot 1 \cdot 1 + 2 \cdot (-1) \cdot (-1)]^{1/2} = \sqrt{5}
 \]
Unit Circles and Spheres in Inner Product Space

- If V is an inner product space, then the set of points in V that satisfy

$$||u|| = 1$$

is called the unite sphere or sometimes the unit circle in V. In R^2 and R^3 these are the points that lie 1 unit away from the origin.
Unit Circles in R^2

- Sketch the unit circle in an xy-coordinate system in R^2 using the Euclidean inner product $\langle u, v \rangle = u_1v_1 + u_2v_2$
- Sketch the unit circle in an xy-coordinate system in R^2 using the Euclidean inner product $\langle u, v \rangle = \frac{1}{9}u_1v_1 + \frac{1}{4}u_2v_2$
- Solution
 - If $u = (x, y)$, then $||u|| = \langle u, u \rangle^{\frac{1}{2}} = (x^2 + y^2)^{\frac{1}{2}}$, so the equation of the unit circle is $x^2 + y^2 = 1$.
 - If $u = (x, y)$, then $||u|| = \langle u, u \rangle^{\frac{1}{2}} = (\frac{1}{9}x^2 + \frac{1}{4}y^2)^{\frac{1}{2}}$, so the equation of the unit circle is $x^2/9 + y^2/4 = 1$.

![Diagram of unit circle in R^2]
Inner Products Generated by Matrices

Let \(u = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} \) and \(v = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} \) be vectors in \(\mathbb{R}^n \) (expressed as \(n \times 1 \) matrices), and let \(A \) be an invertible \(n \times n \) matrix.

If \(u \cdot v \) is the Euclidean inner product on \(\mathbb{R}^n \), then the formula

\[
\langle u, v \rangle = A u \cdot A v
\]

defines an inner product; it is called the inner product on \(\mathbb{R}^n \) generated by \(A \).

Recalling that the Euclidean inner product \(u \cdot v \) can be written as the matrix product \(v^T u \), the above formula can be written in the alternative form

\[
\langle u, v \rangle = (Av)^T A u,
\]
or equivalently,

\[
\langle u, v \rangle = v^T A^T A u
\]
Inner Product Generated by the Identity Matrix

- The inner product on \mathbb{R}^n generated by the $n \times n$ identity matrix is the Euclidean inner product: Let $A = I$, we have $\langle u, v \rangle = Iu \cdot Iv = u \cdot v$

- The weighted Euclidean inner product $\langle u, v \rangle = 3u_1v_1 + 2u_2v_2$ is the inner product on \mathbb{R}^2 generated by

\[
A = \begin{bmatrix} \sqrt{3} & 0 \\ 0 & \sqrt{2} \end{bmatrix}
\]

since

\[
\langle u, v \rangle = \begin{bmatrix} v_1 & v_2 \end{bmatrix} \begin{bmatrix} \sqrt{3} & 0 \\ 0 & \sqrt{2} \end{bmatrix} \begin{bmatrix} \sqrt{3} \\ 0 \end{bmatrix} u_1 = \begin{bmatrix} v_1 & v_2 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = 3u_1v_1 + 2u_2v_2
\]

\[
\langle u, v \rangle = v^T A^T A u
\]
Inner Product Generated by the Identity Matrix

In general, the weighted Euclidean inner product \(\langle \mathbf{u}, \mathbf{v} \rangle = w_1 u_1 v_1 + w_2 u_2 v_2 + \ldots + w_n u_n v_n \) is the inner product on \(\mathbb{R}^n \) generated by

\[
A = \begin{bmatrix}
\sqrt{w_1} & 0 & 0 & \cdots & 0 \\
0 & \sqrt{w_2} & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & \sqrt{w_n}
\end{bmatrix}
\]
An Inner Product on M_{22}

- If $U = \begin{bmatrix} u_1 & u_2 \\ u_3 & u_4 \end{bmatrix}$ and $V = \begin{bmatrix} v_1 & v_2 \\ v_3 & v_4 \end{bmatrix}$ are any two 2×2 matrices, then
 \[\langle U, V \rangle = \text{tr}(U^T V) = \text{tr}(V^T U) = u_1 v_1 + u_2 v_2 + u_3 v_3 + u_4 v_4 \]
defines an inner product on M_{22}

- For example, if
 \[
 U = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \quad \text{and} \quad V = \begin{bmatrix} -1 & 0 \\ 3 & 2 \end{bmatrix}
 \]
then $\langle U, V \rangle = 1(-1) + 2(0) + 3(3) + 4(2) = 16$

- The norm of a matrix U relative to this inner product is
 \[\|U\| = \sqrt{\langle U, U \rangle} = \sqrt{u_1^2 + u_2^2 + u_3^2 + u_4^2} \]
and the unit sphere in this space consists of all 2×2 matrices U whose entries satisfy the equation $\|U\| = 1$, which on squaring yields $u_1^2 + u_2^2 + u_3^2 + u_4^2 = 1$
An Inner Product on P_2

- If $p = a_0 + a_1 x + a_2 x^2$ and $q = b_0 + b_1 x + b_2 x^2$ are any two vectors in P_2, then the following formula defines an inner product on P_2:

$$\langle p, q \rangle = a_0 b_0 + a_1 b_1 + a_2 b_2$$

- The norm of the polynomial p relative to this inner product is

$$\|p\| = \langle p, p \rangle^{1/2} = \sqrt{a_0^2 + a_1^2 + a_2^2}$$

and the unit sphere in this space consists of all polynomials p in P_2 whose coefficients satisfy the equation $\|p\| = 1$, which on squaring yields

$$a_0^2 + a_1^2 + a_2^2 = 1$$
Theorem 6.1.1 (Properties of Inner Products)

- If \(\mathbf{u}, \mathbf{v}, \) and \(\mathbf{w} \) are vectors in a real inner product space, and \(k \) is any scalar, then:
 - \(\langle 0, \mathbf{v} \rangle = \langle \mathbf{v}, 0 \rangle = 0 \)
 - \(\langle \mathbf{u}, \mathbf{v} + \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{u}, \mathbf{w} \rangle \)
 - \(\langle \mathbf{u}, k\mathbf{v} \rangle = k \langle \mathbf{u}, \mathbf{v} \rangle \)
 - \(\langle \mathbf{u} - \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle - \langle \mathbf{v}, \mathbf{w} \rangle \)
 - \(\langle \mathbf{u}, \mathbf{v} - \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle - \langle \mathbf{u}, \mathbf{w} \rangle \)
Example

\[\langle u - 2v, 3u + 4v \rangle \]
\[= \langle u, 3u + 4v \rangle - \langle 2v, 3u + 4v \rangle \]
\[= \langle u, 3u \rangle + \langle u, 4v \rangle - \langle 2v, 3u \rangle - \langle 2v, 4v \rangle \]
\[= 3 \langle u, u \rangle + 4 \langle u, v \rangle - 6 \langle v, u \rangle - 8 \langle v, v \rangle \]
\[= 3 \| u \|^2 + 4 \langle u, v \rangle - 6 \langle u, v \rangle - 8 \| v \|^2 \]
\[= 3 \| u \|^2 - 2 \langle u, v \rangle - 8 \| v \|^2 \]
Example

- We are guaranteed without any further proof that the five properties given in Theorem 6.1.1 are true for the inner product on \mathbb{R}^n generated by any matrix A.

\[\langle u, v + w \rangle = (v+w)^T A^T A u \]
\[= (v^T + w^T) A^T A u \quad \text{[Property of transpose]} \]
\[= (v^T A^T A u) + (w^T A^T A u) \quad \text{[Property of matrix multiplication]} \]
\[= \langle u, v \rangle + \langle u, w \rangle \]
Lecture 23: 6.2
Angle and Orthogonality

Wei-Ta Chu

2008/12/17
Theorem 6.2.1 (Cauchy-Schwarz Inequality)

If \(\mathbf{u} \) and \(\mathbf{v} \) are vectors in a real inner product space, then

\[
|\langle \mathbf{u}, \mathbf{v} \rangle| \leq ||\mathbf{u}|| \, ||\mathbf{v}||
\]

The inequality can be written in the following two forms

\[
\langle \mathbf{u}, \mathbf{v} \rangle^2 \leq \langle \mathbf{u}, \mathbf{u} \rangle \langle \mathbf{v}, \mathbf{v} \rangle
\]

\[
\langle \mathbf{u}, \mathbf{v} \rangle^2 \leq ||\mathbf{u}||^2 ||\mathbf{v}||^2
\]

The Cauchy-Schwarz inequality for \(\mathbb{R}^n \) (Theorem 4.1.3) follows as a special case of this theorem by taking \(\langle \mathbf{u}, \mathbf{v} \rangle \) to be the Euclidean inner product \(\mathbf{u} \cdot \mathbf{v} \).
Theorem 6.2.2

Theorem 6.2.2 (Properties of Length)

- If \(u \) and \(v \) are vectors in an inner product space \(V \), and if \(k \) is any scalar, then:
 - \(||u|| \geq 0 \)
 - \(||u|| = 0 \) if and only if \(u = 0 \)
 - \(||ku|| = |k||u|| \)
 - \(||u + v|| \leq ||u|| + ||v|| \) (Triangle inequality)

Proof of (d)

\[
\begin{align*}
||u + v||^2 &= \langle u + v, u + v \rangle \\
&= \langle u, u \rangle + 2\langle u, v \rangle + \langle v, v \rangle \\
&\leq \langle u, u \rangle + 2||u||||v|| + \langle v, v \rangle \quad \text{(Property of absolute value)} \\
&\leq \langle u, u \rangle + 2||u||||v|| + \langle v, v \rangle \quad \text{(Theorem 6.2.1)} \\
&= ||u||^2 + 2||u||||v|| + ||v||^2 \\
&= (||u|| + ||v||)^2
\end{align*}
\]
Theorem 6.2.3 (Properties of Distance)

- If \(u, v, \) and \(w \) are vectors in an inner product space \(V \), and if \(k \) is any scalar, then:
 - \(d(u, v) \geq 0 \)
 - \(d(u, v) = 0 \) if and only if \(u = v \)
 - \(d(u, v) = d(v, u) \)
 - \(d(u, v) \leq d(u, w) + d(w, v) \) (Triangle inequality)
Angle Between Vectors

- Cauchy-Schwarz inequality can be used to define angles in general inner product cases.

\[
\langle u, v \rangle^2 \leq \|u\|^2 \|v\|^2
\]

\[
\left[\frac{\langle u, v \rangle}{\|u\| \|v\|} \right]^2 \leq 1 \quad -1 \leq \frac{\langle u, v \rangle}{\|u\| \|v\|} \leq 1
\]

\[
\cos \theta = \frac{\langle u, v \rangle}{\|u\| \|v\|} \quad 0 \leq \theta \leq \pi
\]

- We define \(\theta \) to be the angle between \(u \) and \(v \).
Example

Let \mathbb{R}^4 have the Euclidean inner product. Find the cosine of the angle θ between the vectors $\mathbf{u} = (4, 3, 1, -2)$ and $\mathbf{v} = (-2, 1, 2, 3)$.

\[\|\mathbf{u}\| = \sqrt{30} \quad \|\mathbf{v}\| = \sqrt{18} \quad \langle \mathbf{u}, \mathbf{v} \rangle = -9 \]

\[\cos \theta = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|\mathbf{u}\| \|\mathbf{v}\|} = -\frac{9}{\sqrt{30} \sqrt{18}} = -\frac{3}{2 \sqrt{15}} \]
Orthogonality

- **Definition**
 - Two vectors u and v in an inner product space are called *orthogonal* if $\langle u, v \rangle = 0$.

- **Example** ($\langle U, V \rangle = \text{tr}(U^T V) = \text{tr}(V^T U) = u_1v_1 + u_2v_2 + u_3v_3 + u_4v_4$)
 - If M_{22} has the inner product defined previously, then the matrices

 $U = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ and $V = \begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix}$

 are orthogonal, since $\langle U, V \rangle = 1(0) + 0(2) + 1(0) + 1(0) = 0$.
Orthogonal Vectors in P_2

- Let P_2 have the inner product $\langle p, q \rangle = \int_{-1}^{1} p(x)q(x)\,dx$ and let $p = x$ and $q = x^2$.

- Then

$$\|p\| = \langle p, p \rangle^{1/2} = \left[\int_{-1}^{1} xx\,dx \right]^{1/2} = \left[\int_{-1}^{1} x^2\,dx \right]^{1/2} = \sqrt{\frac{2}{3}}$$

$$\|q\| = \langle q, q \rangle^{1/2} = \left[\int_{-1}^{1} x^2 x^2\,dx \right]^{1/2} = \left[\int_{-1}^{1} x^4\,dx \right]^{1/2} = \sqrt{\frac{2}{5}}$$

$$\langle p, q \rangle = \int_{-1}^{1} xx^2\,dx = \int_{-1}^{1} x^3\,dx = 0$$

because $\langle p, q \rangle = 0$, the vectors $p = x$ and $q = x^2$ are orthogonal relative to the given inner product.
Theorem 6.2.4 (Generalized Theorem of Pythagoras)

- If \(\mathbf{u} \) and \(\mathbf{v} \) are orthogonal vectors in an inner product space, then

\[
\| \mathbf{u} + \mathbf{v} \|^2 = \| \mathbf{u} \|^2 + \| \mathbf{v} \|^2
\]

- Proof

\[
\| \mathbf{u} + \mathbf{v} \|^2 = \langle \mathbf{u} + \mathbf{v}, \mathbf{u} + \mathbf{v} \rangle \\
= \langle \mathbf{u}, \mathbf{u} \rangle + 2 \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{v}, \mathbf{v} \rangle \\
= \| \mathbf{u} \|^2 + \| \mathbf{v} \|^2
\]
Example

- Since \(p = x \) and \(q = x^2 \) are orthogonal relative to the inner product \(\langle p, q \rangle = \int_{-1}^{1} p(x)q(x)dx \) on \(P_2 \).
- It follows from the Theorem of Pythagoras that
 \[\| p + q \|^2 = \| p \|^2 + \| q \|^2 \]
- Thus, from the previous example:
 \[\| p+q \|^2 = (\sqrt{\frac{2}{3}})^2 + (\sqrt{\frac{2}{5}})^2 = \frac{2}{3} + \frac{2}{5} = \frac{16}{15} \]
- We can check this result by direct integration:
 \[\| p+q \|^2 = \langle p+q, p+q \rangle = \int_{-1}^{1} (x + x^2)(x + x^2)dx \]
 \[= \int_{-1}^{1} x^2 dx + 2 \int_{-1}^{1} x^3 dx + \int_{-1}^{1} x^4 dx = \frac{2}{3} + 0 + \frac{2}{5} = \frac{16}{15} \]
Orthogonality

- **Definition**
 - Let W be a subspace of an inner product space V. A vector u in V is said to be **orthogonal to** W if it is orthogonal to every vector in W, and the set of all vectors in V that are orthogonal to W is called the **orthogonal complement** of W.

 - If V is a plane through the origin of \mathbb{R}^3 with Euclidean inner product, then the set of all vectors that are orthogonal to every vector in V forms the line L through the origin that is perpendicular to V.

![Diagram](https://example.com/diagram.png)
Theorem 6.2.5 (Properties of Orthogonal Complements)

- If W is a subspace of a finite-dimensional inner product space V, then:
 - W^\perp is a subspace of V. (read “W perp”)
 - The only vector common to W and W^\perp is 0; that is, $W \cap W^\perp = \{0\}$.
 - The orthogonal complement of W^\perp is W; that is, $(W^\perp)^\perp = W$.
Proof of Theorem 6.2.5(a)

- Note first that $\langle 0, w \rangle = 0$ for every vector w in W, so W^\perp contains at least the zero vector.

- We want to show that the sum of two vectors in W^\perp is orthogonal to every vector in W (closed under addition) and that any scalar multiple of a vector in W^\perp is orthogonal to every vector in W (closed under scalar multiplication).
Proof of Theorem 6.2.5(a)

- Let u and v be any vector in W^\perp, let k be any scalar, and let w be any vector in W. Then from the definition of W^\perp, we have $\langle u, w \rangle = 0$ and $\langle v, w \rangle = 0$.
- Using the basic properties of the inner product, we have
 \[
 \langle u+v, w \rangle = \langle u, w \rangle + \langle v, w \rangle = 0 + 0 = 0
 \]
 \[
 \langle ku, w \rangle = k \langle u, w \rangle = k(0) = 0
 \]
- Which proves that $u+v$ and ku are in W^\perp.
Proof of Theorem 6.2.5(b)

The only vector common to W and W^\perp is 0; that is, $W \cap W^\perp = 0$.

- If v is common to W and W^\perp, then $\langle v, v \rangle = 0$, which implies that $v = 0$ by Axiom 4 for inner products.
Theorem 6.2.6

- If A is an $m \times n$ matrix, then:
 - The nullspace of A and the row space of A are orthogonal complements in \mathbb{R}^n with respect to the Euclidean inner product.
 - The nullspace of A^T and the column space of A are orthogonal complements in \mathbb{R}^m with respect to the Euclidean inner product.
Proof of Theorem 6.2.6(a)

- We must show that if a vector \(\mathbf{v} \) is orthogonal to every vector in the row space, then \(A\mathbf{v} = \mathbf{0} \), and conversely, that if \(A\mathbf{v} = \mathbf{0} \), then \(\mathbf{v} \) is orthogonal to every vector in the row space.

- Assume that \(\mathbf{v} \) is orthogonal to every vector in the row space of \(A \). Then in particular, \(\mathbf{v} \) is orthogonal to the row vectors \(\mathbf{r}_1, \mathbf{r}_2, \ldots, \mathbf{r}_m \) of \(A \); that is
 \[
 \mathbf{r}_1 \cdot \mathbf{v} = \mathbf{r}_2 \cdot \mathbf{v} = \cdots = \mathbf{r}_m \cdot \mathbf{v} = 0
 \]
Proof of Theorem 6.2.6(a)

\[\mathbf{r}_1 \cdot \mathbf{v} = \mathbf{r}_2 \cdot \mathbf{v} = \cdots = \mathbf{r}_m \cdot \mathbf{v} = 0 \]

- The linear system \(\mathbf{A}\mathbf{x} = \mathbf{0} \) can be expressed in dot product notation as

\[
\begin{bmatrix}
\mathbf{r}_1 \cdot \mathbf{x} \\
\mathbf{r}_2 \cdot \mathbf{x} \\
\vdots \\
\mathbf{r}_m \cdot \mathbf{x}
\end{bmatrix} =
\begin{bmatrix}
0 \\
0 \\
\vdots \\
0
\end{bmatrix}
\]

- And it follows that \(\mathbf{v} \) is a solution of this system and hence lies in the nullspace of \(\mathbf{A} \).
Proof of Theorem 6.2.6(a)

- Conversely, assume that \(\mathbf{v} \) is a vector in the nullspace of \(A \), so \(A\mathbf{v} = \mathbf{0} \). It follows that \(\mathbf{r}_1 \cdot \mathbf{v} = \mathbf{r}_2 \cdot \mathbf{v} = \cdots = \mathbf{r}_m \cdot \mathbf{v} = 0 \).

- But if \(\mathbf{r} \) is any vector in the row space of \(A \), then \(\mathbf{r} \) is expressible as a linear combination of the row vectors of \(A \), say \(\mathbf{r} = c_1 \mathbf{r}_1 + c_2 \mathbf{r}_2 + \cdots + c_m \mathbf{r}_m \).

- Thus \(\mathbf{r} \cdot \mathbf{v} = (c_1 \mathbf{r}_1 + c_2 \mathbf{r}_2 + \cdots + c_m \mathbf{r}_m) \cdot \mathbf{v} = c_1(\mathbf{r}_1 \cdot \mathbf{v}) + c_2(\mathbf{r}_2 \cdot \mathbf{v}) + \cdots + c_m(\mathbf{r}_m \cdot \mathbf{v}) = 0 + 0 + \cdots + 0 = 0 \).

- Which proves that \(\mathbf{v} \) is orthogonal to every vector in the row space of \(A \).
Example (Basis for an Orthogonal Complement)

- Let W be the subspace of \mathbb{R}^5 spanned by the vectors $w_1=(2, 2, -1, 0, 1)$, $w_2=(-1, -1, 2, -3, 1)$, $w_3=(1, 1, -2, 0, -1)$, $w_4=(0, 0, 1, 1, 1)$. Find a basis for the orthogonal complement of W.

- Solution
 - The space W spanned by w_1, w_2, w_3, and w_4 is the same as the row space of the matrix
 \[
 A = \begin{bmatrix}
 2 & 2 & -1 & 0 & 1 \\
 -1 & -1 & 2 & -3 & 1 \\
 1 & 1 & -2 & 0 & -1 \\
 0 & 0 & 1 & 1 & 1
 \end{bmatrix}
 \]
 - By Theorem 6.2.6, the nullspace of A is the orthogonal complement of W.
 - In Example 4 of Section 5.5 we showed that
 \[
 \begin{bmatrix}
 -1 \\
 1 \\
 0 \\
 0 \\
 0
 \end{bmatrix}
 \quad \text{and} \quad
 \begin{bmatrix}
 -1 \\
 0 \\
 -1 \\
 0 \\
 1
 \end{bmatrix}
 \]
 form a basis for this nullspace.
 - Thus, vectors $v_1 = (-1, 1, 0, 0, 0)$ and $v_2 = (-1, 0, -1, 0, 1)$ form a basis for the orthogonal complement of W.

Remarks

- In any inner product space V, the zero space $\{0\}$ and the entire space V are orthogonal complements.
- If A is an $n \times n$ matrix, to say that $Ax=0$ has only the trivial solution is equivalent to saying that the orthogonal complement of the nullspace of A is all of \mathbb{R}^n, or equivalently, that the row space of A is all of \mathbb{R}^n.
Theorem 6.2.7 (Equivalent Statements)

If A is an $m \times n$ matrix, and if $T_A : \mathbb{R}^n \to \mathbb{R}^n$ is multiplication by A, then the following are equivalent:

- A is invertible.
- $Ax = 0$ has only the trivial solution.
- The reduced row-echelon form of A is I_n.
- A is expressible as a product of elementary matrices.
- $Ax = b$ is consistent for every $n \times 1$ matrix b.
- $Ax = b$ has exactly one solution for every $n \times 1$ matrix b.
- $\det(A) \neq 0$.
- The range of T_A is \mathbb{R}^n.
- T_A is one-to-one.
- The column vectors of A are linearly independent.
- The row vectors of A are linearly independent.
- The column vectors of A span \mathbb{R}^n.
- The row vectors of A span \mathbb{R}^n.
- The column vectors of A form a basis for \mathbb{R}^n.
- The row vectors of A form a basis for \mathbb{R}^n.
- A has rank n.
- A has nullity 0.
- The orthogonal complement of the nullspace of A is \mathbb{R}^n.
- The orthogonal complement of the row of A is $\{0\}$.