Lecture 12: 4.1~4.2 Euclidean Vector Space

Wei-Ta Chu

2008/11/5

Definitions

- If n is a positive integer, then an ordered n-tuple is a sequence of n real numbers (a₁, a₂, ..., a_n). The set of all ordered n-tuple is called n-space and is denoted by Rⁿ.
- (a_1, a_2, a_3) can be interpreted as a point or a vector in \mathbb{R}^3 .
- Two vectors $\mathbf{u} = (u_1, u_2, ..., u_n)$ and $\mathbf{v} = (v_1, v_2, ..., v_n)$ in \mathbb{R}^n are called equal if

$$u_1 = v_1, u_2 = v_2, \dots, u_n = v_n$$

The sum $\mathbf{u} + \mathbf{v}$ is defined by

$$\mathbf{u} + \mathbf{v} = (u_1 + v_1, u_1 + v_1, \dots, u_n + v_n)$$

and if k is any scalar, the scalar multiple $k\mathbf{u}$ is defined by

$$k\mathbf{u} = (ku_1, ku_2, \dots, ku_n)$$

Some Examples of Vectors

Graphical images

- One way to describe a color is by assigning each pixel three numbers that means the *red*, *blue*, and *green* of the pixel.
- □ E.g.: red (255, 0, 0), yellow (255, 255, 0)
- Experimental data
 - A scientist performs an experiment and makes *n* numerical measurements each time. The result of each experiment can be regarded as a vector $\mathbf{y}=(y_1,y_2,\ldots,y_n)$ in \mathbb{R}^n in which y_1,y_2,\ldots,y_n are the measured values.

Remarks

- The operations of addition and scalar multiplication in this definition are called the *standard operations* on *R*^{*n*}.
- The zero vector in Rⁿ is denoted by **0** and is defined to be the vector **0** = (0, 0, ..., 0).
- If $\mathbf{u} = (u_1, u_2, ..., u_n)$ is any vector in \mathbb{R}^n , then the negative (or additive inverse) of \mathbf{u} is denoted by $-\mathbf{u}$ and is defined by $-\mathbf{u} = (-u_1, -u_2, ..., -u_n)$.
- The difference of vectors in \mathbb{R}^n is defined by

$$\mathbf{v} - \mathbf{u} = \mathbf{v} + (-\mathbf{u}) = (v_1 - u_1, v_2 - u_2, ..., v_n - u_n)$$

Theorem 4.1.1 (Properties of Vector in \mathbb{R}^n)

- If $\mathbf{u} = (u_1, u_2, \dots, u_n)$, $\mathbf{v} = (v_1, v_2, \dots, v_n)$, and $\mathbf{w} = (w_1, w_2, \dots, w_n)$ are vectors in \mathbb{R}^n and k and l are scalars, then:
 - $\Box \quad \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
 - $\Box \quad \mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$
 - $\square \quad u + 0 = 0 + u = u$
 - **u** + (-**u**) = 0; that is u u = 0
 - $\mathbf{u} \quad k(l\mathbf{u}) = (kl)\mathbf{u}$
 - $\mathbf{a} \quad k(\mathbf{u} + \mathbf{v}) = k\mathbf{u} + k\mathbf{v}$
 - $\Box (k+l)\mathbf{u} = k\mathbf{u}+l\mathbf{u}$
 - $\mathbf{D} \quad \mathbf{1}\mathbf{u} = \mathbf{u}$

Euclidean Inner Product

Definition

□ If $\mathbf{u} = (u_1, u_2, ..., u_n)$, $\mathbf{v} = (v_1, v_2, ..., v_n)$ are vectors in \mathbb{R}^n , then the Euclidean inner product $\mathbf{u} \cdot \mathbf{v}$ is defined by

 $\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$

Example

• The Euclidean inner product of the vectors $\mathbf{u} = (-1,3,5,7)$ and $\mathbf{v} = (5,-4,7,0)$ in \mathbb{R}^4 is $\mathbf{u} \cdot \mathbf{v} = (-1)(5) + (3)(-4) + (5)(7) + (7)(0) = 18$

Properties of Euclidean Inner Product

- Theorem 4.1.2
 - If **u**, **v** and **w** are vectors in \mathbb{R}^n and k is any scalar, then
 - $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$
 - $(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w}$
 - $(k \mathbf{u}) \cdot \mathbf{v} = k(\mathbf{u} \cdot \mathbf{v})$
 - $\mathbf{v} \cdot \mathbf{v} \ge \mathbf{0}$; Further, $\mathbf{v} \cdot \mathbf{v} = \mathbf{0}$ if and only if $\mathbf{v} = 0$
- Example

$$(3\mathbf{u} + 2\mathbf{v}) \cdot (4\mathbf{u} + \mathbf{v})$$

= $(3\mathbf{u}) \cdot (4\mathbf{u} + \mathbf{v}) + (2\mathbf{v}) \cdot (4\mathbf{u} + \mathbf{v})$
= $(3\mathbf{u}) \cdot (4\mathbf{u}) + (3\mathbf{u}) \cdot \mathbf{v} + (2\mathbf{v}) \cdot (4\mathbf{u}) + (2\mathbf{v}) \cdot \mathbf{v}$
= $12(\mathbf{u} \cdot \mathbf{u}) + 11(\mathbf{u} \cdot \mathbf{v}) + 2(\mathbf{v} \cdot \mathbf{v})$

Norm and Distance in Euclidean *n*-Space

- We define the Euclidean norm (or Euclidean length) of a vector $\mathbf{u} = (u_1, u_2, ..., u_n)$ in \mathbb{R}^n by $\|\mathbf{u}\| = (\mathbf{u} \cdot \mathbf{u})^{1/2} = \sqrt{u_1^2 + u_2^2 + ... + u_n^2}$
- Similarly, the Euclidean distance between the points $\mathbf{u} = (u_1, u_2, ..., u_n)$ and $\mathbf{v} = (v_1, v_2, ..., v_n)$ in \mathbb{R}^n is defined by $d(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\| = \sqrt{(u_1 - v_1)^2 + (u_2 - v_2)^2 + ... + (u_n - v_n)^2}$

Example

• If $\mathbf{u} = (1,3,-2,7)$ and $\mathbf{v} = (0,7,2,2)$, then in the Euclidean space R^4 $\|\mathbf{u}\| = \sqrt{(1)^2 + (3)^2 + (-2)^2 + (7)^2} = \sqrt{63} = 3\sqrt{7}$ $d(\mathbf{u},\mathbf{v}) = \sqrt{(1-0)^2 + (3-7)^2 + (-2-2)^2 + (7-2)^2} = \sqrt{58}$

Theorems

then

• Theorem 4.1.3 (Cauchy-Schwarz Inequality in \mathbb{R}^n) • If $\mathbf{u} = (u_1, u_2, ..., u_n)$ and $\mathbf{v} = (v_1, v_2, ..., v_n)$ are vectors in \mathbb{R}^n ,

 $|\mathbf{u} \cdot \mathbf{v}| \le || \mathbf{u} || || \mathbf{v} ||$

• For vectors in R^2 and R^3 , we know

 $|u \cdot v| = ||u|||v||\cos \theta| = ||u|||v|||\cos \theta| \le ||u|||v||$

Theorems

- Theorem 4.1.4 (Properties of Length in *Rⁿ*)
 - If **u** and **v** are vectors in \mathbb{R}^n and k is any scalar, then
 - $||\mathbf{u}|| \ge 0$
 - $\|\mathbf{u}\| = 0$ if and only if $\mathbf{u} = \mathbf{0}$
 - $|| k\mathbf{u} || = |k| || \mathbf{u} ||$
 - $\| \mathbf{u} + \mathbf{v} \| \le \| \mathbf{u} \| + \| \mathbf{v} \|$

(Triangle inequality)

Proof of Theorem 4.1.4 (c) $|| k\mathbf{u} || = |k| || \mathbf{u} ||$ If $\mathbf{u} = (u_1, u_2, ..., u_n)$, then $k\mathbf{u} = (ku_1, ku_2, ..., ku_n)$, so

$$\|k\boldsymbol{u}\| = \sqrt{(ku_1)^2 + (ku_2)^2 + \dots + (ku_n)^2}$$

= $|k|\sqrt{(u_1)^2 + (u_2)^2 + \dots + (u_n)^2}$
= $|k|\|\boldsymbol{u}\|$

Proof of Theorem 4.1.4 (d) $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$

$$\|u + v\|^{2} = (u + v) \cdot (u + v) = (u \cdot u) + 2(u \cdot v) + (v \cdot v)$$

= $\|u\|^{2} + 2(u \cdot v) + \|v\|^{2}$
 $\leq \|u\|^{2} + 2\|u\|\|v\| + \|v\|^{2}$
 $\leq \|u\|^{2} + 2\|u\|\|v\| + \|v\|^{2}$
= $(\|u\| + \|v\|)^{2}$
 $u + v$

U

Theorems

- Theorem 4.1.5 (Properties of Distance in *Rⁿ*)
 - If **u**, **v**, and **w** are vectors in \mathbb{R}^n and k is any scalar, then
 - $d(\mathbf{u},\mathbf{v}) \geq 0$
 - $d(\mathbf{u}, \mathbf{v}) = 0$ if and only if $\mathbf{u} = \mathbf{v}$

$$d(\mathbf{u},\mathbf{v}) = d(\mathbf{v},\mathbf{u})$$

•
$$d(\mathbf{u}, \mathbf{v}) \leq d(\mathbf{u}, \mathbf{w}) + d(\mathbf{w}, \mathbf{v})$$

(Triangle inequality)

U

• Proof(d)

$$d(\boldsymbol{u}, \boldsymbol{v}) = \|\boldsymbol{u} - \boldsymbol{v}\| = \|(\boldsymbol{u} - \boldsymbol{w}) + (\boldsymbol{w} - \boldsymbol{v})\|$$

$$\leq \|\boldsymbol{u} - \boldsymbol{w}\| + \|\boldsymbol{w} - \boldsymbol{v}\| = d(\boldsymbol{u}, \boldsymbol{w}) + d(\boldsymbol{w}, \boldsymbol{v})$$

1)

W

Theorems

- Theorem 4.1.6
 - □ If **u**, **v**, and **w** are vectors in *Rⁿ* with the Euclidean inner product, then

$$\mathbf{u} \cdot \mathbf{v} = \frac{1}{4} \parallel \mathbf{u} + \mathbf{v} \parallel^2 - \frac{1}{4} \parallel \mathbf{u} - \mathbf{v} \parallel^2$$

Proof:

$$\|\boldsymbol{u} + \boldsymbol{v}\|^{2} = (\boldsymbol{u} + \boldsymbol{v}) \cdot (\boldsymbol{u} + \boldsymbol{v}) = \|\boldsymbol{u}\|^{2} + 2(\boldsymbol{u} \cdot \boldsymbol{v}) + \|\boldsymbol{v}\|^{2}$$
$$\|\boldsymbol{u} - \boldsymbol{v}\|^{2} = (\boldsymbol{u} - \boldsymbol{v}) \cdot (\boldsymbol{u} - \boldsymbol{v}) = \|\boldsymbol{u}\|^{2} - 2(\boldsymbol{u} \cdot \boldsymbol{v}) + \|\boldsymbol{v}\|^{2}$$

Orthogonality

Definition

- Two vectors **u** and **v** in \mathbb{R}^n are called orthogonal if $\mathbf{u} \cdot \mathbf{v} = 0$
- Example
 - In the Euclidean space R^4 the vectors

 $\mathbf{u} = (-2, 3, 1, 4)$ and $\mathbf{v} = (1, 2, 0, -1)$ are orthogonal, since $\mathbf{u} \cdot \mathbf{v} = (-2)(1) + (3)(2) + (1)(0) + (4)(-1) = 0$

- Theorem 4.1.7 (Pythagorean Theorem in *Rⁿ*)
 - □ If **u** and **v** are orthogonal vectors in \mathbb{R}^n which the Euclidean inner product, then

$$|\mathbf{u} + \mathbf{v}||^2 = ||\mathbf{u}||^2 + ||\mathbf{v}||^2$$

2008/11/5

V

u + v

U

Matrix Formula for the Dot Product

• If we use column matrix notation for the vectors

or $\mathbf{u} = \begin{bmatrix} u_1 & u_2 & \dots & u_n \end{bmatrix}^T \text{ and } \mathbf{v} = \begin{bmatrix} v_1 & v_2 & \dots & v_n \end{bmatrix}^T,$ $\mathbf{u} = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix} \text{ and } \mathbf{v} = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}$ then

$$oldsymbol{v}^Toldsymbol{u} = egin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix} egin{bmatrix} u_1 \ u_2 \ dots \ u_n \end{bmatrix} \ = egin{bmatrix} u_1 & v_1 + u_2 v_2 + \cdots + u_n v_n \end{bmatrix} = egin{bmatrix} oldsymbol{u} \cdot oldsymbol{v} \end{bmatrix} = oldsymbol{u} \cdot oldsymbol{v} \end{bmatrix}$$

Matrix Formula for the Dot Product

For vectors in column matrix notation, we have the following formula for the Euclidean inner product: $\mathbf{u} \cdot \mathbf{v} = \mathbf{v}^T \mathbf{u}$

For example: $\boldsymbol{u} = \begin{bmatrix} -1\\3\\5\\7 \end{bmatrix} \quad \boldsymbol{v} = \begin{bmatrix} 5\\-4\\7\\0 \end{bmatrix}$ $\boldsymbol{u} \cdot \boldsymbol{v} = \boldsymbol{v}^T \boldsymbol{u} = \begin{bmatrix} 5 & -4\\7 & 0 \end{bmatrix} \begin{bmatrix} -1\\3\\5\\7 \end{bmatrix} = \begin{bmatrix} 18 \end{bmatrix} = 18$

Matrix Formula for the Dot Product

- If A is an $n \times n$ matrix, then it follows $A\mathbf{u} \cdot \mathbf{v} = \mathbf{v}^T (A\mathbf{u}) = (\mathbf{v}^T A)\mathbf{u} = (A^T \mathbf{v})^T \mathbf{u} = \mathbf{u} \cdot A^T \mathbf{v}$ $\mathbf{u} \cdot A\mathbf{v} = (A\mathbf{v})^T \mathbf{u} = (\mathbf{v}^T A^T)\mathbf{u} = \mathbf{v}^T (A^T \mathbf{u}) = A^T \mathbf{u} \cdot \mathbf{v}$
- These provide important links between multiplication by an $n \times n$ matrix A and multiplication by A^T .

Example

$$A = \begin{bmatrix} 1 & -2 & 3 \\ 2 & 4 & 1 \\ -1 & 0 & 1 \end{bmatrix} \quad \boldsymbol{u} = \begin{bmatrix} -1 \\ 2 \\ 4 \end{bmatrix} \quad \boldsymbol{v} = \begin{bmatrix} -2 \\ 0 \\ 5 \end{bmatrix}$$
$$A\boldsymbol{u} = \begin{bmatrix} 1 & -2 & 3 \\ 2 & 4 & 1 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \\ 4 \end{bmatrix} = \begin{bmatrix} 7 \\ 10 \\ 5 \end{bmatrix}$$
$$A^{T}\boldsymbol{v} = \begin{bmatrix} 1 & 2 & -1 \\ -2 & 4 & 0 \\ 3 & 1 & 1 \end{bmatrix} \begin{bmatrix} -2 \\ 0 \\ 5 \end{bmatrix} = \begin{bmatrix} -7 \\ 4 \\ 1 \end{bmatrix}$$
$$A\boldsymbol{u} \cdot \boldsymbol{v} = 7(-2) + 10(0) + 5(5) = 11$$
$$\boldsymbol{u} \cdot A^{T}\boldsymbol{v} = (-1)(-7) + 2(4) + 4(-1) = 11$$

A Dot Product View of Matrix Multiplication

• If $A = [a_{ij}]$ is an $m \times r$ matrix and $B = [b_{ij}]$ is an $r \times n$ matrix, then the *ij*-th entry of *AB* is

$$a_{i1}b_{1j} + a_{i2}b_{2j} + a_{i3}b_{3j} + \ldots + a_{ir}b_{rj}$$

which is the dot product of the *i*th row vector of A and the *j*th column vector of B

Thus, if the row vectors of A are r₁, r₂, ..., r_m and the column vectors of B are c₁, c₂, ..., c_n, then the matrix product AB can be expressed as

 $AB = \begin{bmatrix} \mathbf{r}_1 \cdot \mathbf{c}_1 & \mathbf{r}_1 \cdot \mathbf{c}_2 & \cdots & \mathbf{r}_1 \cdot \mathbf{c}_n \\ \mathbf{r}_2 \cdot \mathbf{c}_1 & \mathbf{r}_2 \cdot \mathbf{c}_2 & \cdots & \mathbf{r}_2 \cdot \mathbf{c}_n \\ \vdots & \vdots & & \vdots \\ \mathbf{r}_m \cdot \mathbf{c}_1 & \mathbf{r}_m \cdot \mathbf{c}_2 & \cdots & \mathbf{r}_m \cdot \mathbf{c}_n \end{bmatrix}$

A Dot Product View of Matrix Multiplication

A linear system Ax=b can be expressed in dot product form as

Example

System

Dot Product Form

$$3x_1 - 4x_2 + x_3 = 1$$

$$2x_1 - 7x_2 - 4x_3 = 5$$

$$x_1 + 5x_2 - 8x_3 = 0$$

$$\begin{bmatrix} (3, -4, 1) \cdot (x_1, x_2, x_3) \\ (2, -7, -4) \cdot (x_1, x_2, x_3) \\ (1, 5, -8) \cdot (x_1, x_2, x_3) \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \\ 0 \end{bmatrix}$$

Functions from R^n to R

- A function is a rule *f* that associates with each element in a set *A* one and only one element in a set *B*.
- If f associates the element b with the element, then we write b = f(a) and say that b is the image of a under f or that f(a) is the value of f at a.
- The set *A* is called the domain of *f* and the set *B* is called the codomain of *f*.
- The subset of *B* consisting of all possible values for *f* as a varies over *A* is called the range of *f*.

Examples

Formula	Example	Classification	Description
f(x)	$f(x) = x^2$	Real-valued function of a real variable	Function from <i>R</i> to <i>R</i>
f(x, y)	$f(x,y) = x^2 + y^2$	Real-valued function of two real variable	Function from R^2 to R
f(x, y, z)	$f(x, y, z) = x^{2}$ $+ y^{2} + z^{2}$	Real-valued function of three real variable	Function from R^3 to R
$f(x_1, x_2,, x_n)$	$f(x_1, x_2,, x_n) = x_1^2 + x_2^2 + + x_n^2$	Real-valued function of n real variable	Function from R^n to R

Function from \mathbb{R}^n to \mathbb{R}^m

- If the domain of a function f is \mathbb{R}^n and the codomain is \mathbb{R}^m , then f is called a map or transformation from \mathbb{R}^n to \mathbb{R}^m . We say that the function f maps \mathbb{R}^n into \mathbb{R}^m , and denoted by $f: \mathbb{R}^n \to \mathbb{R}^m$.
- If m = n the transformation $f : \mathbb{R}^n \to \mathbb{R}^m$ is called an operator on \mathbb{R}^n .

Function from \mathbb{R}^n to \mathbb{R}^m

• Suppose $f_1, f_2, ..., f_m$ are real-valued functions of *n* real variables, say

$$w_1 = f_1(x_1, x_2, \dots, x_n)$$

$$w_2 = f_2(x_1, x_2, \dots, x_n)$$

$$W_m = f_m(x_1, x_2, \dots, x_n)$$

These *m* equations assign a unique point $(w_1, w_2, ..., w_m)$ in R^m to each point $(x_1, x_2, ..., x_n)$ in R^n and thus define a transformation from R^n to R^m . If we denote this transformation by $T: R^n \to R^m$ then

$$T(x_1, x_2, \dots, x_n) = (w_1, w_2, \dots, w_m)$$

Example: A Transformation from R² to R³

$$w_1 = x_1 + x_2$$

 $w_2 = 3x_1x_2$
 $w_3 = x_1^2 - x_2^2$

- Define a transform $T: \mathbb{R}^2 \to \mathbb{R}^3$
- With this transformation, the image of the point (x_1, x_2) is $T(x_1, x_2) = (x_1 + x_2, 3x_1x_2, x_1^2 - x_2^2)$
- Thus, for example, T(1,-2) = (-1, -6, -3)

Linear Transformations from \mathbb{R}^n to \mathbb{R}^m

• A linear transformation (or a linear operator if m = n) $T: \mathbb{R}^n \to \mathbb{R}^m$ is defined by equations of the form

$$w_{1} = a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n}$$

$$w_{2} = a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n} \quad \text{or}$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots$$

$$w_{m} = a_{m1}x_{1} + a_{m2}x_{2} + \dots + a_{mn}x_{n}$$

$$\begin{bmatrix}w_{1}\\w_{2}\\\vdots\\\vdots\\w_{m}\end{bmatrix} = \begin{bmatrix}a_{11} & a_{12} & \cdots & a_{13}\\a_{21} & a_{22} & \cdots & a_{23}\\\vdots\\\vdots\\a_{mn} & a_{mn} & \cdots & a_{mn}\end{bmatrix}\begin{bmatrix}x_{1}\\x_{2}\\\vdots\\x_{m}\end{bmatrix}$$

or

$$\mathbf{w} = A\mathbf{x}$$

• The matrix $A = [a_{ij}]$ is called the standard matrix for the linear transformation *T*, and *T* is called multiplication by *A*.

Example (Transformation and Linear Transformation)

• The linear transformation $T: \mathbb{R}^4 \rightarrow \mathbb{R}^3$ defined by the equations

$$w_{1} = 2x_{1} - 3x_{2} + x_{3} - 5x_{4}$$

$$w_{2} = 4x_{1} + x_{2} - 2x_{3} + x_{4}$$

$$w_{3} = 5x_{1} - x_{2} + 4x_{3}$$
the standard matrix for T (i.e., $\mathbf{w} = A\mathbf{x}$) is $A = \begin{bmatrix} 2 & -3 & 1 & -5 \\ 4 & 1 & -2 & 1 \\ 5 & -1 & 4 & 0 \end{bmatrix}$

$$\begin{bmatrix} w_{1} \\ w_{2} \\ w_{3} \end{bmatrix} = \begin{bmatrix} 2 & -3 & 1 & -5 \\ 4 & 1 & -2 & 1 \\ 5 & -1 & 4 & 0 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{bmatrix}$$

Notations

Notations:

□ If it is important to emphasize that *A* is the standard matrix for *T*. We denote the linear transformation $T: R^n \to R^m$ by $T_A: R^n \to R^m$. Thus,

$T_A(\mathbf{x}) = A\mathbf{x}$

■ We can also denote the standard matrix for *T* by the symbol [*T*], or

 $T(\mathbf{x}) = [T]\mathbf{x}$

Remarks

Remark:

- We have establish a correspondence between $m \times n$ matrices and linear transformations from R^n to R^m :
 - To each matrix *A* there corresponds a linear transformation T_A (multiplication by *A*), and to each linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$, there corresponds an $m \times n$ matrix [*T*] (the standard matrix for *T*).

Zero Transformation

- Zero Transformation from R^n to R^m
 - □ If 0 is the *m*×*n* zero matrix and 0 is the zero vector in *Rⁿ*, then for every vector **x** in *Rⁿ*

 $T_0(\mathbf{x}) = 0\mathbf{x} = 0$

• So multiplication by zero maps every vector in \mathbb{R}^n into the zero vector in \mathbb{R}^m . We call T_0 the zero transformation from \mathbb{R}^n to \mathbb{R}^m .

Identity Operator

- Identity Operator on Rⁿ
 If *I* is the *n×n* identity, then for every vector in Rⁿ
 T_I(**x**) = *I***x** = **x**
 - So multiplication by *I* maps every vector in *Rⁿ* into itself.
 - We call T_I the identity operator on \mathbb{R}^n .

Reflection Operators

- In general, operators on R² and R³ that map each vector into its symmetric image about some line or plane are called reflection operators.
- Such operators are linear.

Example

Reflection Operators (2-Space)

Operator	Illustration	Equations	Standard Matrix
Reflection about the y-axis	$(-x, y)$ $\mathbf{w} = T(\mathbf{x})$ \mathbf{x} \mathbf{x}	$w_1 = -x$ $w_2 = y$	$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$
Reflection about the <i>x</i> -axis	$\mathbf{w} = T(\mathbf{x})$	$w_1 = x$ $w_2 = -y$	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
Reflection about the line $y = x$	$\mathbf{w} = T(\mathbf{x})$ $y = x$ $\mathbf{x} (x, y) = x$	$w_1 = y$ $w_2 = x$	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

Reflection Operators (3-Space)

Operator	Illustration	Equations	Standard Matrix
Reflection about the <i>xy</i> -plane	x w (x, y, z) y $(x, y, -z)$	$w_1 = x$ $w_2 = y$ $w_3 = -z$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$
Reflection about the <i>xz</i> -plane	(x, -y, z)	$w_1 = x$ $w_2 = -y$ $w_3 = z$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
Reflection about the <i>yz</i> -plane	x	$w_1 = -x$ $w_2 = y$ $w_3 = z$	$\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$