'l.-
LT

A Low- Complex1ty ngh Performance

N
Wear-Leveling Algorlthm for Flash Memory System
/7 \

““"Design ¥

oE o2 R
EERR AFT BL

dEAR - f- & =

-1-

&

Bt P AP ALY T g it FaEk 1335 0 © €2 Greedy
FERIE 232 FLTe CFE 2 T8 RG> TN B2 ¥ MAFRRAE 2

T AT (U BT B i, SGO) et st & > % hat K e gz ii e

%éﬂégﬂﬁﬂ?ﬁ%@%ﬁ%ﬁﬁﬁﬁ%%%ﬂiﬁ?}W;%Wﬁ%
RBER ALK AHERARZE S RL dE A LD BIF PT G G R
BAEG IR R R AT R TG ARG BT R AR Bk
AAE 0 F AR P e R e R g

i%é%ﬁmiiaﬂﬁﬁﬁ;ﬁﬁ&ﬁk&ﬁﬁ@@)’#ﬁﬂﬁﬁﬁﬁ
'\
ﬂk%ﬁ#@mﬁ%Jipmx&l{ﬁ ﬁiﬁﬂ“ bR R AT S R

" -J .o-‘u

F) R e Al g 4 T foi”ﬁ G al B+ o2 A BB B

= "'-u.-.

g o
AR Qﬁfﬁﬁﬁ%lmﬂﬁﬁﬁﬂﬂv$*v”ﬁ VTS B 2 BT B T

e = ﬁ
PR BT ¥ e \—i*’*IEJE {,gampgwm—» N
Y ' y

5+ ¢ # g Greedy i‘*%}};%" EEH %w BB R E A BB

ﬁﬂa&ﬁ%m’zﬁ%ﬁp$ﬂ%ﬂwﬁ«t@fﬁﬁé’i&ﬁ$$ﬂﬁvuﬁ#$$
P egE b B AR Bdy ROt R e

Bofl 5B EA LB BB LT S R LA R R

*FPGARBFARE ZLFT T M Ad 7

5

Abstract

In this thesis, we discuss the techniques of wear leveling in the flash memory
system and also rebuild algorithm of Greedy garbage collection and static wear
leveling for comparison. Thus a low-complexity high-performance wear leveling is
proposed and it can extend lifetime of the flash memory and balance the utilization of

each block.

This thesis analyzes the advantages and disadvantages in current wear leveling
techniques. Besides, we introduce the important issues to maintain read/program
performance and the lifetime in the flash memory. In addition, we will introduce the

current wear leveling methods, and discus‘s e complexity of these approaches.

\

The proposed wear levehp,g ""lgorlth-m 1s called sequential garbage collection

E.._‘ '''''' A
(SGC), SGC outperforms ex\Btlng demgﬁfs lni_tf:rn’ls of Wéar evenness and low design
S i !

I
complexity. The lifetime of the\antlre ﬂaﬁh memory c.;an be greatly lengthened by the
proposed SGC. In addition, the prf)'posed SGC d@es% t require any tuning threshold
e

parameter. The low-complexity low-cost SGC maies it easy to be implemented by

firmware-based or hardware-based approaches.

This thesis compares Greedy garbage collection, static wear leveling and
sequential garbage collection (SGC) in terms of maximum block erase count, the
standard deviation of the block erase count, average erase count and overhead of wear

leveling.

Finally, to prove the sequential garbage collection (SGC) is easy to be
implemented by firmware-based or hardware-based approaches. We use the FPGA
board to implement the propose algorithm and verify the performance of the proposed

algorithm.

Contents

Chapter 1 INErOAUCTIONttt e tee e ree e e eaveeeereas -8-
1.1 FIash MemMOTY OVEIVIEWccociiieiiiieeiiieeiiie ettt tte et sree v e e snseeeeseeennnes -8 -
1.2 NAND flash memory SyStem OVETVIEWc..ceecuieerireesiiieeeiieesieeesveeesreeesnreeenens -13 -

1.2.1 Flash translation [ayer..........cccoecuieeiiiiiiiieciie e -14 -
1.2.2 Garbage COIIECHIONccveiieiiieeiie et -16 -
1.2.3 Wear IEVEIING ..cc.uvieieiieeiee ettt et ee s e e e e aaeeeeaeeens -17 -
1.2.4 Bad block Mmanagement.............cceeeriieeiiieeiiieecieeecee e e eeeeeevee e vee e -18 -
1.3 Thesis OrganiZationc.ceeeveeeruieeriieesiieesieeesieeesreeessseesseeesseeessseessssessssseennnes -18 -

Chapter 2 Related work of wear 1eVelingc.coeciveeiiiiiiiiicieecee e -20 -
2.1 Dynamic wear leveling and static wear levelingccccceeeviieeiieencieeniieeieeens -20 -
2.2 Survey of wear leveling algorithimgscoveieiniiiiiii -22-

2.2.1 Hot-cold swapping.....{.,{./.j.ji..x.‘.\.\;i .. -23-
2.2.2 Static-dynamic weaf—fevellng......f':..:h\. .. -23 -
2.2.3 Two level of'wear levehng S M::J:: ... -24 -
2.2.4 Erase pool....\f‘;.........-'..!.'fr_.[\}f ... -25-
2.2.5 Old block proteagon..~_.;..|_m...-..-;..-.f:.';_.,r;...,{rf ... -25-
2.2.6 Dual-pool '.,,; WpoFf ' ... -26-
2.2.7 Conditional threshgﬁi wear leveln’%\. .. -26 -
2.2.8 Efficient garbage cgllectlon pohcy }B .. -27 -
2.2.9 Static Wear leVEIING.......cccuviieiieeiieeiie ettt e -28 -
2.2.10 Lazy wear 1eVeliNg.......cccuveeiiieeiieeieeeeeee e -28 -
2.3 SUIMIMATY ..eiiiiiiiieee et e e ettt e e e st eeeseaateeeeesnsaeeeesnsseeeeesseeeesannseeens -29 -

Chapter 3 Architecture and implementation............ccccveeevieeeciieeniieeccie e -32-
3.1 Design of Wear IeVEIINGccccviieiiiiiiieceeeee et -32-
3.2 Sequential garbage collection Algorithm 1.........cccooooviiiiiieiiiiieee e, -33-
3.3 Sequential garbage collection Algorithm 2...........ccccvieeiiieiiiiiieee e -34 -
3.4 EXperimental TeSULLS.......cccueieiiiiiiiiiciie et ere e eare e -36 -

3.4.1 ENVITONMENE SETUP ...vveeeviieeiiieeiieeeieeeeieeeeieeesieeesteeessseeessseeessseeessseeensseens -36 -
3.4.2 Lifetime of flash MEmMOTYcccceeeiiiieiiieciieceeee e -42 -
3.4.3 Average Block Erase Countscccccveecuiieriiieeiieeciie e -43 -
3.4.4 Distribution of Block Erase Counts............ccoooueeniiniiiiiieniiiiieniceceieee -44 -
3.4.5 Extra overheadcooooiiiiiiiiiii e -46 -
3.4.6 Total cycles for Writing data...........cccveeeriieeiieeeieeeeeeee e -47 -

4.

3.5 SUMMATY ..eeviiieeiiiiee ettt e et e e e st e e e enntaeeeesnnreeeeeaneees
Chapter 4 FPGA simulation result..........cccoeeeviieniiiieniieeiee e

Chapter 5 Conclusion and future Work..........ccceecvveeviieeniieeieeeieeeen,

Reference -54 -

. o r el L
"'-.-._I SoF R

[3 L . ..-'- —- . ::-_‘ el
A S ’

g .‘"” .___q"-\.__. LW

List of Figures

Fig. 1.1: The architecture of the flash memory...........ccceeeevveevciiiniiieenieens
Fig.1.3: The flash memory system architecture...........c.cceeevveevvieerieeenieens
Fig.1.4: page level flash translation layer.ccccceevviieiiieencieiiiieeiees
Fig.3.1: Greedy garbage collection...........ccceeevvieeriiieniieeriee e
Fig.3.2: Static wear 1eVelingccceeeviieeiiieeieeee e
Fig.3.3: Sequential garbage collection 1.........ccccecvvveviiieiiiieniiieeieeeieee,
Fig.3.4: Sequential garbage collection 2...........ccccccuveviiieniiienciieciieeeieeee
Fig.3.5: maximum block erase count...........cccceeviiiiniiieeniieeriie e
Fig.3.6: Normalized average erase COUNt..........cecvvveerueeenveeenieeenreeeeeee e
Fig.3.7: Standard deviations of block erase count............ccceevviierrieennenns
Fig.3.8: changes in standard deviationscccceevveeeciieeniieencie e
Fig.3.9: The increased ratio of block erase(§ p) ..
Fig.3.10: The increased ratio of Live p(a‘g/ ﬁxmg (%0) vveeienieeeeeee,
Fig.3.11: Total cycles for wrltlng deGB data.....f':...»._\.i
Fig.4.1: MDK-3D bOArd PhGt0.ccs. ssseessi- iirmeei fnsessssesssmitidy oo
Fig.4.2: FPGA testing modufé I_P_.[\ }:{
Fig.4.3: FPGA design module..ta?....., |_rr{x"
Fig.4.4: FPGA hardware design. '.,,; ' u\ j

i
I &5 ’ P ““\
L T

........................ -16 -
........................ -43 -

........................ -13 -

-51-

........................ -52-

Table 3.1: Setting for the simulation

List of Tables

http://www.elnec.com/sw/an_elnec nand flash.pdf
Table 1.2-1: The comparison table of SLC and MLC; this table is captured from the
Website of http://www.psism.com/SLC%20vs%20MLC.pdf........cccoooiiiiiiiiiiiiieieeeee -11-
Table 1.2-2: The comparison table of price and density; this table is captured from the
Website of http://www.cnyes.com/fc/metal/fc_flash.asp

Table 2.1: The comparison table of wear leveling algorithms...........ccccceceeeeiieeeiieenieeenee.

Table 4.1: Device utilization summary of FPGA implement
A

\\

e L

Table 1.1: The comparison table of NAND flash memory and NOR flash memory; this
table is captured from the Website of

Table 3.2: Performance COMPATISONS.cuueeeeuveeriuieeeiieeeiieeeieeesteeesreeesseeessseeessseeessseeensnes - 49 -

Chapter 1

Introduction

1.1 Flash memory overview

In recent years, flash memory becomes an important storage system for embedded
systems, just like smart phones, PDAs, note books. Flash memory has many
advantages, such as low power consumption, high performance in read operation, and
better shock resistance than the conventlonal designs. However it also has some

disadvantages need to be improve hk,e pr1 \be‘rformance of write operation, and the

_,.... .-h

i—— \. - f
Flash memory can be leld‘Sd 1nto NO|R_ﬂ|ash memory and NAND flash memory

in the market [1] [2], and it bect)mef the most popul}ir storage device in non-volatile
portable electronic device. NORfLﬂzISh n"lerﬁ'(')ry "ca}f"execute—in—place (XIP) (random
access) because it can access each byte. Therefore, NOR flash memory has fast read
access time especially in small random data access (ex: IMB-4MB). In the other hand,
the NAND flash memory erase time is faster than NOR flash memory, because the
size of erase blocks of NOR flash memory is larger than NAND flash memory. It
means NOR flash memory has longer execution time in the program/erase access.
However NOR flash memory also has disadvantages of poor chip density and high cost
per bit. NOR flash memory is usually used for code storage which often execution in
place such as simple home appliances, low-end mobile handsets and embedded designs.

On the other hand, NAND flash memory has been developed to become an high chip

density data storage and it reads/writes for I/O interference with page, so the write
-8-

access time is shorter than NOR flash memory, but the read access time is longer than
NOR flash memory. After the design trade-off, it was give up execute in place (XIP) to
become high density and small cell size storage devices. Table 1.1 Shows the

comparison of NAND and NOR flash memory.

Table 1.1: The comparison table of NAND flash memory and NOR flash memory; this
table is captured from the Website of

http://www.elnec.com/sw/an_elnec_nand_flash.pdf

NAND NOR
Capacity ' ~32Gbit ~1Gbit
l'l Il-\.
L iby
Access method Sequential*, Random
P e S
Performance '!‘"\'::'I:'F'ast fééd;gs-e-ri:alj-éf_(‘:qesézf;;:r Fast read (random access)
g —"
YL gycle) " s
- (Fl) ;;”; Slow write
\ Fastwrite
| /3 T Q:‘ E Slow erase (approx.
Fast eras“éﬂ‘('apprexﬂgﬁ 1s/block)"
2ms/block)
Life span 100,000-1,000,000 10,000-100,000
Price Low High

*1-By NAND flash manufactures materials(available at 01/2006)
*2-Toashiba TH85NVG1S3A(1 block is 16 kB)
*3-Intel StrataFlashP30family(1 block is 128 kB)

Many applications choose NAND flash memory to develope their design instead

of NOR flash memory [3] [4]. Because capacity and price are very important issues for

-9.-

smart phones, solid-state disks (SSDs) and MP3 players.

NAND flash memory has two major types: single-level cell (SLC) and
multi-level-cell (MLC) [5] [6] [7]. SLC means per cell stores one bit information, it has
two states: O(program) and 1(erase). SLC has higher speed and higher reliability than
MLC. On the other hand, MLC can contain more than one bit information so it has
large capacity. For example, 2-bit MLC has 4 states: 00, 01, 10 and 11 to store data.
Although MLC has lower speed and worse reliability, it has lower price with higher
capacity than SLC. Different applications will choose a suitable type NAND flash
memory for the system. Recently on the market TLC is developed, TLC means triple

level cell (3-bit cell) .Table 1.2-1 is the comparison for different types of NAND flash

memories. A “\\

'l.-
"'-u.-.

flash have different price, SLQ has higher pt'l'C'a and low’er ch1p density although it has
higher endurance cycle. Opposnlizly, TLG h_as Very lo::v price and highest chip density
as compared with SLC. D1fferenigp{phc@u®gsl reg_[_\.ggg different types of NAND flash

memory. If TLC is chosen a very low endurance cycle of TLC requires a good policy

to handle the erase operation.

-10 -

Table 1.2-1: The comparison table of SLC and MLC; this table is captured from the

Website of http://www.psism.com/SLC%20vs%20MLC.pdf

SLC MLC
Voltage 3.3V/1.8V 3.3V
Technology/Chip Size 0.12um 0.16um
Page Size/Block Size 2KB/128KB 512B/32KB or
2KB/256KB
Access time (Max.) 25us 70us
Page Program Time(Typ.) 250us 1.2ms
A
Partial Program - Yes \\x No
i Y
— = |
Endurance o, o [0k e 10k
D T am oy
Y E j;
Write Data Rate T o 8MB/st) 1.5MB/s
| L e]|
VR N
{"::::‘" S ,.__‘\1":.

Table 1.2-2: The comparison table of price and denéity; this table is captured from the

Website of http://www.cnyes.com/fc/metal/fc_flash.asp

SLC MLC TLC
Density 32GB 32GB 32GB
Price 44.3(US) 2.29(US) 1.93(US)
endurance 100K 5-10K 100-500

-11 -

The functional block diagram for the Samsung K9GAGO8XOM flash chip is
shown in Fig. 1.1 [8]. The NAND flash memory architecture of 2G*8bits flash chip
contains 8-bit I/O port to translate commands, data and addresses. If we want to
read/write data, it needs 5 cycles to translate the address data (2 cycles for the column
address and 3 cycles for the row address). A flash memory contains many blocks, and
each block is consisted of a fixed number of pages. In the Samsung 2G MLC chip, each
page is 4K bytes. A page is divided into data area and spare area, and data are stored in
data area and meta data of ECC are stored in the spare area. The data structure of flash

memory is shown in Fig. 1.2.

There are some special characteristics in the flash memory such as the unit of

-'l l
read/program is a page and the unit gf’ ql‘é‘sg&is a block and the speed in different

."
operations has great dlfference . The™ most anoﬂanﬁqghn1que of the flash memory is

.g-._, ______ -)

that it cannot be overwritten ‘1‘[must be erased befare neW "data can be stored.
b R | w7 -: !
T N ¢
i B 9 1
b . . !
|7 SN
Vee —»
Vss —» >
A3 - At X-Buffers 16,384M + 512M Bit
> NAND Flash
¥ Latches ARRAY
& Decoders *
Ao - A12 Y-Buffers *| (4,096 +128)Byte x 524,288
Latches
& Decoders
y Data Register & SIA
> Y-Gating
Command A
» Command v
Register »l
> > 110 Buffers & Latches ‘ Veo
k [Vss
E » Control Logic |[— ¥ Y _ ¥ f
RE » & High Voltage o
WE > Generator » Global Buffers Ou.tput «—> @
Driver Ps
[A]
17
CLE ALE WP

-12 -

Fig. 1.1: The architecture of the flash memory.

—Block 4095
: data area (page) | SPpafc drcd
4096 — Block 1 “ area
blocks data area (page) | Sparc arca
Block 0 areq
data area (page) | SParc arca o, ="
— page 0 spare area o,
— 18 page | spare area| [arca
pages
ca
. page 127 spare area

Ty

Fig. 1.2: T.],}ye daita_ siluc_'f;é.érfgﬂasﬁ’ memory
|

s DR
1.2 NAND ﬂaslﬁihem-ovgzﬁsystem

overview

Fig.1.3 shows the NAND flash memory system architecture. Firstly, logical
page addresses are translated into physical page addresses by the flash translation layer
(FTL) [8] [9] [10]. Then data are programmed into the physical address of the flash
memory. When free space is not enough, garbage collection (GC) will start to collect
invalid data and release free space. When some blocks of the flash memory are used
more often, these blocks of the flash memory will be worn out more often and causes

the flash memory retired earlier. Thus, wear leveling is required to lengthen the life

-13 -

time of the flash memory [11] [12]. A flash memory needs to manage which block
cannot be used, and this is called bad block management [13]. In a simple flash
memory system, we need a flash translation layer (FTL), a garbage collection (GC), a
wear leveling and a bad block management. These techniques can let user be easy to

use the flash memory and maintain the performance of the flash memory.

Application

A
A

File system

Flash Garbage Wear Bad block
translation : .
collection leveling management
layer
il il T
Eret art T=a f_f—l:':"

Nand flash memory device driver

T T 0 T
| Lo e 1

\ Nl J

Flash memory

Fig.1.3: The flash memory system architecture.

1.2.1 Flash translation layer

NAND flash memory has many design bottlenecks. First, it cannot be overwritten,
it must be erased before new data can be stored in the same physical address. However,
erase operation usually takes several million-seconds. For performance consideration,
updates to data are usually handled in an out of place fashion, rather than directly

overwriting the old data. So data should be written to another page of the flash memory,
_14 -

and the original page of the data is marked as an invalid page. To solve this problem,
flash translation layer (FTL) has been proposed. The FTL translates the logical page
address (LPA) into physical page address (PPA) of the flash memory chip. Many flash
translation layer mechanisms have been proposed such as the page level mapping
(FTL), the block level mapping (NFTL), and the hybrid mapping. Fig. 1.4 shows a
example operation of the page-level FTL, there have 5 write request (5,2,0,5,2) and
LPAs address (5,2) have be rewritten. In each action of FTL, LPA will be mapped in a
new PPA. In addition, the original PPA will be marked as invalid data. When data need
to be rewritten, FTL will find free PPAs to map instead of erasing the current physical
blocks. By using FTL, we can avoid the frequently erase the blocks. On the other hand,
the performance can be improved and the I spaces can be best allocated with FTL in

| SN

the flash memory. Although FTL haSﬁnany adva.ntages but to record all the mapping
table needs a large memory-!agéee Apcorchng to above? NJF'TL [9] and hybrid-FTL [25]
approaches had been proposed\?NFTL a_gpl’a:'h 1S prgposed to solve the problem of
memory space for a mapping table ;so 1t uses‘a blocli level mapping table. Therefore,

NFTL can decrease required merﬁ-ﬁw spa‘Ce 6fth6‘n1ﬁf>ping table, but the flash memory
space utilization is not better than a page-level FTL. Finally hybrid-FTL [25] is

proposed which uses both page level and block level mapping.

-15-

Mapping table Flash memory

. 0 |02 0,0 i [| i:invalid page
Write request 1 0,1 i v:valid page
(logical address) 2 > f:free page
Address : 5,2,0,5,2 0,173 04 0.2 -
3 03 v
4 0,4 v
5 10,0903 0,5 f
Logical physical (bl]:)l:ifi;:lge) User data Il]?:;l:d

page (block, page)

Fig.1.4: page level flash translation layer.

3
l‘,{/ 4 Ii \x_‘I
____..»f'"‘ S
i o e e
1.2.2 Garbage coi!_ect_ypnl =)
) e

| - J 1 .
When data are written into the flash-memory, {he;‘amount of free pages is reduced,
| 7 '

and thus the garbage collection % 1s p’é?fbmed&é recycle the spaces occupied by
invalid pages. The GC operation collects valid pages in the selected block, copies valid
pages to an another free block, and then it erases the selected block to recycle free
pages. Many approaches have be proposed, Greedy algorithm [10] is the most effective
algorithm to recycle blocks of the flash memory. The Greedy algorithm find the block
which has maximum invalid pages then erases it. Therefore Greedy algorithm has

minimum overhead in each GC operation. Fig.1.5 shows the operation of GC.

-16 -

i:invalid page
v:valid page
f:free page

\data ,/ i 09‘3/" data
\Qlta/ ' A data

;lélta\ \%
/ data \\i
/ Block1 \ Block2

o
-
i @
C
o)
<,
ty | o |- |2 | <

Fig.1.5: The garbage collection operation.

l'l l
AR
l‘,{/ Ii \x_‘
P - P~ S
E-:-::"::_h__ . - ., J'_',_'_:I-.
y f 1\ 4
5\ u :—_' 4
LRy
1.2.3 Wear leveling, . ./
{{;::,q A r.._‘};{';

The bottleneck in a NAND flash memory is the endurance. Blocks of the NAND
flash memory have a limited erase cycle, the limitation of the MLC NAND flash
memory is about 10,000 times, and the SLC NAND flash memory is about 100,000
times. In addition, GC operation with Greedy algorithm may wear out some blocks of
flash memory chip due to the localities of data access. For example, if some blocks
stored hot data, they will be invoked by GC operation more frequently and these blocks
will have high erase cycle times. These blocks may be retired earlier, and this causes
the reliability problem of the flash memory. To solve this problem, many wear leveling
techniques have been proposed [14]-[24]. Wear leveling balances the erase cycle

between different blocks in the flash memory, and thus the life time of the flash

17 -

memory can be extended.

1.2.4 Bad block management

Flash memory contains early bad blocks and latter bad blocks [13]. When flash
memory is fabricated, some bad blocks exist, it is called early bad blocks. Generally,
the early bad blocks are about 1% of the total capacity of the flash memory. Due to the
erase operation, the flash memory produces latter bad blocks. Generally, flash memory
can tolerate early bad blocks and latter bad blocks within 1% and 5%, respectively.

To avoid data program/read to a bad block, it needs a policy to manage bad blocks,
and then the reliability of the flash merhlﬁ;y can be further improved. When flash
memory starts up, bad block mana}aggn{lfent._ \If'zll\l\gfi@cli each block to rebuild a bad block

L R S
table. Accordingly, bad bldzz'\%.m_@nage_r'n_"g_rt _Wiljl-kgep.-@@ting bad block table if any

blocks are broke. h'\? ! ' I =y

— == e - _4

I L S 1
ks

Yo o
1.3 Thesis Organization- -

In this thesis, we discuss about the file system contains a flash translation layer
(FTL), a garbage collection (GC) and a wear leveling. We propose a low-complexity
high-performance wear-leveling algorithm which named sequential garbage collection
(SGC) for flash memory system design. SGC algorithm can improve the lifetime of the

flash memory. The rest of the thesis is organized as follows.

In Chapter 2, we discuss about wear leveling type and methods. Two major types
of wear leveling: dynamic and static are discussed. We introduce wear leveling

algorithms which have been proposed in recent years.

In Chapter 3, the design for sequential garbage collection has been proposed. We
-18 -

propose a low-complexity high-performance wear-leveling algorithm which named
sequential garbage collection (SGC) for flash memory system. For verification, we also
build a simple model of the flash memory file system. This model contains: FTL (page
level mapping), GC operation and wear leveling. We rebuild algorithms of Greedy
garbage collection (GC) and static wear leveling (SW) to compare with the proposed
SGC algorithm. Chapter 3 also shows the experimental results of these algorithms,
besides we summarize the experimental results in term of erase count, overhead and

lifetime for each algorithm.

In Chapter 4, we use FPGA to implement the methods introduced in Chapter 3. It
can prove the proposed SGC algorithm is simple and easy to be implemented by

-'l l
hardware design. In addition, we also jod]ba{es about the resource cost with other
i _‘

-.-.-l; {f ¥

methods. e P ™

- - T, 1'_ . .1:'
E-r..‘__':_..__b_ Lt —— = e _1:.:_ -

L —— . . l‘\

In Chapter 5, we make a'-hcon(:.:h‘__l‘sion of'mié:__ti:lesisj and discuss about the further

b Sl 4
work. i L e F J i
o
{"ﬁ':""" M ,___:}1-,_

-19 -

Chapter 2

Related work of wear leveling

2.1 Dynamic wear leveling and static wear

leveling

In recent years, chip density of flash memory is growing up but the endurance of
flash memory is decline. Erase cycle of each block is about 10k times. Flash memory

-'l l
will retire very fast if we do nothing. “\\
. i

i Y
- . 2 . :
can be lelaEd_l,H’ltO static data and dynamic

e, ey

The data stored in the Eﬂaslﬁnemory

TTeen e ke

data. Static data contains operating:.sgfstelm fitey and uset files. Dynamic data contains

d e e F

log files. Similarly, wear leveling aléO'.lg'as,_tWQ"'ﬁiajoPl types: static wear leveling [23]
4 _{"; et - 5
and dynamic wear leveling [1413»37}76 compare Fg_\i}go wear leveling, dynamic wear

leveling and static wear leveling in this Chapter.

For example, we program a 4KB file into 2MB flash memory repeatedly. The flash
memory contains 100 blocks and each block is 2KB. Therefore, it means two logical
addresses are writing repeatedly. In addition, if we assume the endurance of each block
is 10000 times, and the request time including erase and program a block is about 0.10

second with the Samsung 2GB NAND flash memory.

In Eq. 2.1, we calculate a block erase and program times with the Samsung 2GB
NAND flash memory. In the datasheet of Samsung 2GB NAND flash memory, each

block erase time is 1.5ms and each page program time is 800us.

-20 -

A block erase and program times = 1.5 ms + (800us*128(page number of per

block))
=1.5ms + 102.4ms = 0.1039 second (2.1)

In Eq. 2.2, if we do not perform wear leveling and two physical blocks are erased
and programmed repeatedly. When we program a 4KB data into flash memory
repeatedly, the flash memory will break out in 34 minutes. This means that wear

leveling is a necessary technique to extend the life time of flash memory.
Life time of no wear leveling= 10,000 * 2(block) * 0.1039 (second time per block)
= 2078 seconds=34 minutes (2.2)

LA
2 N
Dynamic wear leveling only mo,ve{tlLl h‘y{lamic data in the flash memory. In Eq.

-.-.-

--,
e

20% of the flash memory, anthen bnlY 20'b'l|ocks arq; involved in wear-leveling. In
this testing, we have 100 blocki of the ﬂash memo?/ so dynamic data occupies 20

f y
blocks. L . N\
{:r_‘-n" . e }\.f-

Life time of dynamic wear leveling

= 10,000 * 20(block) * 0.1039 (second time per

block)
= 20780 seconds=5.66 hours (2.3)

Static wear leveling will move static data in the flash memory and thus all blocks

are involved in the wear-leveling. Eq. 2.3 shows the life time with static wear leveling.
Life time of static wear leveling

= 10,000 * 100(block) * 0.1039 (second time per

-21-

block)

= 103900 seconds=28.86 hours (2.4)

2.2 Survey of wear leveling algorithm

There are many wear-leveling algorithms have be proposed in prior studies to
solve the problem of GC operation and extend the lifetime of the flash memory. The
purpose of wear-leveling algorithm is evenly distributing block erases over the flash
memory, and then the endurance of the flash memory can be enhanced. The
performance of dynamic wear-leveling depends on hot data identification, and the cold
data always stay at their blocks regardless}olﬂ,\whether updating of hot data wear out the

other blocks. As a result, the endurance irhpro%ment is strongly dependent on how

L - \._
many blocks are already ocez'&?md by cold-data .._.-::i;i"f

_l . ;l
'1.
As follows, we define the\type of A_ta and b’locks Data can be divided into two

types: hot data mean the same deha has been upda,t?d {nore frequently. Cold data mean
data do not be written frequen‘[ly.{j Bd;ldock also hells twc? i[ypes: hot blocks mean the block
has been erased frequently. Cold blocks mean the block has been erased infrequently. If
the standard deviation of the block erase count is very large, it means the block erase

counts are not balanced. Oppositely, a small standard deviation means block erase

counts of the flash memory are balanced.

Before wear leveling action the hot data are stored in maximum erase count block
(hot block), the block will updated more frequently. So this block will be erased more

frequently, and makes some block have a very high erase count.

-22 -

2.2.1 Hot-cold swapping

In Hold-cold swapping [14], when the difference between the maximum block
erase count and minimum block erase count is larger than the specified threshold. Wear
leveling action will swap the data that have been stored in the maximum erase count
block and minimum erase count block. The hot data which stored in the hot blocks are
moved to cold blocks, therefore the cold block will be erased if next erase operation
executes. That can balance erase count of blocks in the flash memory.

Although this algorithm can balanceierb(se count in the flash memory, however it

AN

[
needs a threshold value to control -‘wheth'er tﬁ‘e wear leveling will be executed. If

AT T e
threshold is too large, flash ng‘e:mory yvﬂl evcecute ‘wear. le#q?l‘mg infrequently, thus it will

cause poor performance of wgflr levellngi_Ble&des (t";ns method will require high

‘a.
overhead when data are swapped, The szt 1mpol1;‘tar;t problem of this method is that,

I .-"
we cannot ensure the cold data” Wﬂl bé stored” 111:?6 hot block after wear leveling.
Unfortunately, hot block will be erased immediately if hot block is stored hot data after

swap. At this situation, hot-cold swapping algorithm cannot effectively balance erase

count in the flash memory.

2.2.2 Static-dynamic wear leveling
Static-dynamic wear leveling contains dynamic wear leveling [15], static wear
leveling and file allocation table (FAT) filter. In dynamic wear leveling: free physical
block is combined in a wear leveling pool. When new data are programed, block will be

allocated with a physical block address by round-robin policy. If there are not enough

-23 -

free physical blocks in wear leveling pool, dynamic wear leveling will copy valid data
to the last block in pool. In static wear leveling, when there have static files to be stored,
this method will ignore dynamic wear leveling and then uses the static wear leveling. It
will use hot cold swapping to achieve static wear leveling. In addition, it also
implements a FTA filter to monitor block to improve wear leveling.

Data need to be divided into static data and dynamic data in this method, but it
cannot correctly analyze data belong to which type. Therefore, it requires more

information to analyze the data and causes the high design complexity.

2.2.3 Two level of wear leveling

Two-level wear leveling is 1mplel_péq|e\d\n the FTL [16]. In first leveling: free

physical blocks will gather in Wﬁaﬂevelmg pooI amkstrmg with a chain. When new

.lr = -J
e

data come to be programed, fta.w'll be all“‘atpi‘:o the mlnfmum erase count block (cold
! i -] !
block). If wear leveling pool &bes \no't ‘lTa\?e' e'ho‘hgh: physical blocks, wear leveling

operation will reduce valid datq uftsthe mlmml.kt? erase count block. The chain of
. 74 . 1:.
e

physical blocks is stringing from the minimum erase count block (cold block) to the
maximum erase count block (hot block). In second leveling: if the difference between
maximum erase count and minimum erase count is larger than the specified threshold,
the static data will be moved to the free block. Then the cold blocks can be restored for
new data.

This method maintains average utilization rate for blocks in flash memory.
However, the specified threshold needs to be tuned in different applications. In addition,

two level algorithm needs to management the chain in the additional system memory.

_24 -

2.2.4 Erase pool

Erase pool algorithm composites an erase pool with free physical blocks [17].
When same logical address data need to be programed, it will be mapped to free blocks
in the erase pool. If block has been reached erase endurance limitation, it will be moved
to the outside block of the erase pool. Then it copies valid data to another free block.
Although the space will be reduced in erase pool, the capacity of the flash memory is
not affected. When the blocks of erase pool are exhausted, it means flash memory
reaches the end of life.

This method can detect the block which reaches the block erase endurance
limitation and then stops to use it. This method would extend the lifetime of flash

-'l l
memory but worse the flash memory utjk’zdti‘@.g:
. i N,

i |

e -,

- 2 B P—
aa, - Thoo®
"

Brellie,

2.2.5 O1d block protegtion—
Old block protection wear l'eve\lfrtl-gk;s ap‘phed tojlgrotect the block which reaches
maximum erase count [18]. Whg‘ﬁﬁhe j_l_J;st.-@rlas'e;__:gQiock is also the maximum erase
count block and the erase count is difference with the minimum erase count block is
larger than the specified threshold. The valid data in minimum erase count block will
be copied to just-erased block. When just-erased block also has the maximum erase
count block, it means that the hot data is stored in this block. Then this block will be
joined erase more quickly. Therefore we move the valid data in the minimum erase
count block to the just-erased block.
This method would move the cold data to the hot block, it can avoid just-erased
block being erased immediately. In addition, it can balance erase count of block in the

flash memory. However it also needs a threshold to maintain the wear leveling

performance.

-25-

2.2.6 Dual-pool

Dual pool algorithm is used to implement two-pool wear leveling [19]. Pools can
be divided in to the cold pool and hot pool; QLS , QES express two queues is strung
with hot pool and cold pool, H'Q) and H'(Q) are expressed maximum queue-head and
minimum queue-head. When the erase count difference between EC(H(QE$)) and
EC(H'(QES)) are larger than the specific threshold. In the first step, valid data in
H'(QES) move to other block that has free pages and erase block H'(QE%). Second,
valid data in H'(QES) move to block H'(QE%) and erase block H(QZS). Then H(QES
and H'(QE%) will be swapped to another pool. The most important thing in this method
is classified the blocks into the cold poqbgqlghe\hot pool. It can ensure which block has

F
involved wear leveling and w111 | not'be erased repeaMt short time.

1-'
.....
et

This method is 51m11ar‘\to hof col'd's gpmg meﬁlod Dual pool method can

! !
L

manage block and data are mo}’b rlgorous than ‘hot- cqfd swapping method. Dual pool

adjusts blocks belong to which ‘pool in every \f\qi‘lte;request For this reason, it can

-i,i £ Sl 'h.r-

maintain a small standard dev1at10n of the block erase counts, but it needs many

memory spaces to record information required for the algorithm.

2.2.7 Conditional threshold wear leveling

Conditional threshold wear leveling is used to maintain multi-channel flash
memory [20]. When erase operation is trigged and the erase count difference between
just-erased block and minimum erase count block is larger than the specific threshold,
Conditional threshold wear leveling will copy the valid data in minimum erase count
block to just-erased erase block. To reduce runtime of wear leveling, it uses the blocks

in different channel that can read and erase at the same time. So both just-erased block

-26 -

and minimum erase count block need to be in different channel. The threshold
definition is also different with previous methods. It has two levels definition of
threshold; the first level threshold will change with average erase count. In addition, the
second level threshold is a parameter for wear leveling.

This method is used to multi-channel and multi-chip flash memory architecture to
improve the erase time; because the management of blocks in multi-channel and
multi-chip are very difficult and complex. The just-erased block doesn’t guarantee to
contain hot data, and thus this algorithm may perform unnecessary data movement. In
addition, the second level threshold tuning will influence the performance of

wear-leveling.

. | N
2.2.8 Efficient garl;age collectien pollcy

1-'
.....
"'-u.-.

I _l ;
5\ ! -
I
This method using modlﬁcatlo}baware '(‘MO'DA) page allocation method to manage

block and create three lists of hptfélata Xorm d@ta and cold data. The priority for
garbage collection action is fror:; the hot hstland v;;lrm list to the cold list, and all
blocks have opportunity to invoke garbage collection. Therefore, it can guarantee that
all blocks have good performance of utilization in the flash memory.

This method has no policy for wear leveling, because the garbage collection action
also maintains good performance of wear leveling. However, it needs to define four
thresholds to control which block can join garbage collection policy. If we change the

application for the flash memory, those thresholds need to be redefined, otherwise it

cannot keep the same performance.

-27 -

2.2.9 Static wear leveling

Static wear leveling is used a bit table to record which block has been erased [22]
[23]. When there is difference between the number of total block erase count and the
number of block which has been erased during affter reset is larger than the specified
threshold, it will move the static data to the free block to balance the erase count in each
block. Therefore, a block erasing table (BET) is created to identify which block has
been erased after reset. Then, the static wear leveling will move valid data in the block
that has not been erased so far. This algorithm prevent cold data from staying at any
block for a long time, and then the maximum block erase count difference between any
two blocks can be minimized.

-'l l
This method can implement with’ }la\Qware approach rather than software
i _‘

i

approach because of it is very simpl€. However, tﬁe‘WQgr leveling threshold for various

e, - A

system environments can be Very dffferﬁﬁt.'Usiﬂ@.iﬁﬁﬁéqﬁately tuned parameters can

W [-

cause unexpectedly high wear l‘ey'elﬁg''?(_)\'_/__erhea{i and worse performance of
| L > |

wear-leveling. h" 7 o Q:. ;
P57 - N
i d;,. S g

2.2.10 Lazy wear leveling

Lazy wear leveling is used to analyze logical blocks and physical blocks [24]. The
latest update of logical block is record. Elder block means that the erase count of this
block is larger than the average count. Otherwise, it is a junior block. This algorithm is
used to erase the logical block which not updates recently and copies valid data to the
elder block. An automatically on-line threshold tuning algorithm is proposed in [24].

The proposed algorithm monitors dynamic disk workloads to adjust the duty-cycle
of wear-leveling, and thus the wear-leveling overhead and wear evenness can be

trade-off. However it requires much information to control the algorithm and it will

-28 -

increase the design complexity and it also requires large memory space to record

information.

2.3 Summary

Action of wear leveling needs extra execution time and memory space. Extra time
is consumed by coping cold data to hot block; Extra memory space is used to record
the information of wear leveling. Although wear leveling takes overhead and design
complexity, it can solve the early retire problem of the flash memory. So wear leveling
needs to trade-off both the performance ancl ’inrhead in flash memory system design.

i

We summarize wear leveling of -taxistin'g methods as follows. Three conditions are
.
T g .

wear leveling; third is where\Pthe datta t6_|place ”J}{flese conditions can improve
performance of wear leveling, a'gld exte‘ﬁd 11fet1.me of flash memory. However it also
increases cost of execution time élfrﬁ"rnerﬁoﬁ'spacé}‘"

Table 2.1 we compare the pervious algorithms. In table 2.1, threshold truing
expresses this wear leveling needs a threshold. Triggering condition expresses what
kind of situation in the flash memory needs to invoke wear leveling. Each wear leveling
operation requires for addition block erase and page copy. Overhead of each wear
leveling operation includes that in each wear leveling, the block needs to be erased and
whether the block which needs to be copied valid data and move to another block. Each
algorithm needs extra memory space to record information for wear leveling. However

memory space is an expensive cost for the embed system, so reduction memory space

is very important.

-29 -

Table 2.1: The comparison table of wear leveling algorithms

method Threshold Triggering condition Overhead of each wear | RAM space
tuning leveling operation
Hot-cold Yes Check the threshold between maximum | Block erase:2 EC
swapping erase count and minimum erase count Block copy:2 4096*17(bit)
Static- Yes periodically Block erase:2 EC + free_
dynamic Block copy:2 pool
4096*17(bit)+
4096
Two level Yes periodically Block erase:2 EC
jll l‘x\ Block copy:2 4096*17(bit)
Erase pool No Block r‘?phfimi:[_e__d _é:{gée c‘ounqt_\ Block erase:1 EC
., - A . T:;-; %, | Block copy:1 4096*17(bit)
Old-block | Yes On ‘gl-?ck erase | "_—| ;'f Block erase:1 EC
protection \:?) -_ T '{Ij Block copy:1 4096*17(bit)
Dual pool Yes After eal%h .}a:gitek‘ o Q:‘ *" Block erase:2 EC+EEC+hot
{‘:,:f:‘" st "--::‘;‘L‘ Block copy:2 _pool+cold p
ool
4096*17*2(bit
)+4096%2
Conditional | Yes After each erase Block erase:1 EC+EC_chann
threshold Block copy:1 €lavg
4096*17(bit)+
4*17
Efficient GC | Yes After each write Block erase:1 EC+ hot_pool
Block copy:1 +cold_pool+w
arm_pool
4096*17(bit)+
4096*3

-30 -

Static Yes After each erase Block erase:1 EC+BET

wear Block copy:1 4096*17(bit)+

leveling 4096

Lazy No(online After each erase Block erase:1 EC+

Wear tuning) Block copy:1 time logical

leveling page
4096*17(bit)+
4096*10

23] -

Chapter 3 Architecture and

implementation

3.1 Design of wear leveling

In this thesis, a low-complexity high-performance wear-leveling algorithm which
named sequential garbage collection (SGC) for flash memory system design is
presented. The proposed algorithm combines GC operation and wear-leveling into a
single process. In addition, the proposed SGC doesn’t require any tuning threshold

-'l l
parameter as compared as prior researgHeFI.‘TQus it can be applied to various systems

P, i %,

without prior knowledge of the.syStem -f_:_r}_vi[_c)rllinénk The low-complexity low-cost

. oW Lamt
e

SGC algorithm makes it ‘vis'""’eas&/f: o '-bi; Implemef};%ed by firmware-based or
| i » g

" -
e .

% »
hardware-based approaches. 7 .. —_

I L S 1
. i

) - ! -
In a flash memory system; the embedded“\\mlcro—controller has very limited
P A o W !
LTS
memory space, and the hardware and computing resources are constricted. Thus the
proposed SGC algorithm requires a low memory space and demands limited hardware

resources. The basic idea to combine GC operation and wear-leveling into a single

process is very simple that the blocks should be erased in a sequential manner.

-32 -

3.2 Sequential garbage collection

Algorithm 1

Algorithm 1 shows the pseudo code of the proposed SGC1 algorithm. In SGC1
algorithm, free block means the number of free blocks in the flash memory, and index
is the index number of the block which erased last time. If the number of free blocks
becomes one, the controller executes SGC1 algorithm and performs GC operation on
the selected block. GC operation copies valid pages to the free block and erases the
selected block.

The proposed SGC1 algorithm evenly distributes block erases over the entire flash
memory. Thus it has greatest wear-leveilji,ni pfifonnance. However, the GC operation

i

doesn’t consider the number of invalid pagies in the L\selected block, and therefore, the

=

i L W ;
i ra

e ey S
SGC1 algorithm may have ﬁ{}\iny._,exi;rafli_‘vjpg pages cop: }lgn worse case conditions.
L 1) J
) Nt
1

Algorithm 1: SGCI (Sequential Garbage Collection V1)

Input: free block, index
Output: null
1: if free block =1 then
2: index < (index+1) MOD BlockSize,
/* BlockSize is number of blocks in the flash */
3: GarbageCollection(index);
/*Request the garbage collection to erase the selected block and
copy valid pages to the free block™/
4: end

-33-

3.3 Sequential garbage collection

Algorithm 2

To reduce extra living page copy overhead of the SGC1 algorithm, a bit vector
which named invalid page flag (IPF) is added. The IPF records whether a block contains
more than 75% invalid pages. For example, if IPF[index] is equal to 1, then it means the
block with index number: index contains more than 75% invalid pages. Oppositely, if
IPF[index] is equal to 0, then it means the block has less than 75% invalid pages. The
IPF vector can be updated during the write operation, and each block requires only

one-bit flag. The GC operation will erase the blocks with IPF=1 with a higher priority.

Algorithm 2 shows the pseudo COdf/’%’i lﬂ}g proposed SGC2 algorithm. In SGC2

i _‘
algorithm, fcnt is the number of } >1n the IPE Vectordf fcnt is not zero, there are blocks

=

g

having more than 75% inva IZI pages’ In—addltlon seq a’n& index are the index numbers
for searching for the target bloc:kx:,for cﬂ11Jent GC opera‘fff)n If the number of free blocks
becomes one, the controller execl]ltgg SGC2 algozjghn"l and performs GC operation on
the selected block. In SGC2 algorlﬁim if fcnt 18 zer% there has no block with a higher
priority. Then the blocks are erased in a sequential manner (step 2-6). Otherwise, if fcnt
is not zero, there are blocks having more than 75% invalid pages. The SGC2 algorithm

searches for the block with IPF=1 and then performs GC operation on the selected block

(step 8-11).

The SGC1 algorithm erases blocks in a sequential manner but it may have many extra
living pages copy overhead. The SGC2 algorithm uses the IPF vector to reduce the
overhead in the SGC1 algorithm, but it requires some clock cycles to search for high
priority blocks. The proposed SGC1 and SGC2 algorithms evenly distributes block

erases over the entire flash memory, and thus the lifetime of the entire flash memory

-34 -

can be greatly lengthened. The proposed SGC algorithm requires a low memory space
and demands limited hardware resources, and thus it is easy to be implemented in the

flash memory system.

Algorithm?2 : SGC2 (Sequential Garbage Collection V2)

Input: free block, fent, seq, index, and IPF
Output: null
1: if free block =1 then

2: if fcnt =0 then
3: seq <—(seq+1) MOD BlockSize;
/* BlockSize is number of blocks in the flash™/
4: index <—seq;
5: GarbageCollection(index);

/* Request the garbage collection to erase the selected
block and copy valid pages to the free block™/

6: end
7: else
8: while [PF[index]=0 do
9: index <— (index+1) MOD BlockSize,
10: end
/* IPF=1 means more than 75% invalid pages
in the block */
11: GarbageCollection(index);
/* Request the garbage collection to erase the selected
block and copy valid pages to the free block™/
12: index < (index+1) MOD BlockSize,
13: end
14: end

-35-

3.4 Experimental results

3.4.1 Environment setup

Table 3.1: Setting for the simulation

Storage capacity 2GB MLC
Storage block number 4096
Page number per block 128
Per page size alm 4kb
V. NI N
l‘,{/ - i ‘\x_'
Endurance .- e = 10k-5k
R N RS
Page read -{ime [| — 60ms (‘2/:400 cycles)
Y - = .
N N
Page write ti@e N 800m§' (32,000 cycles)
| S A
-il,i;’r,.. e .-:?':K}_I'r-
Block erase timé. 15tns (60,000 cycle)

We build the cycle-accurate simulation environment of a 2GB flash memory to
verify the effectiveness of the proposed SGC algorithm. The simulation parameters are
listed in Table 3.1. As shown in Table 3.1, the erase operation takes much longer clock

cycles than the other operation.

For comparisons with existing wear-leveling algorithms, we rebuild the GC
operation with greedy algorithm and named as GA. In GA, GC operation will select
blocks that have the highest number of invalid pages, and thus GA doesn’t consider the

wear-leveling problem. We also rebuild the static wear-leveling algorithms [22] [23]
- 36 -

(with threshold=10 and threshold=100) and named as SW. In the simulation, totally
120GB data are written to verify the performance of wear-leveling algorithms. The

example for these wear leveling algorithms are shown in Fig.3.1 to Fig.3.4 .

Fig.3.1 is Greedy garbage collection, In_page means invalid page number in each
block and EC means count of the erase block. The Greedy garbage collection will erase
the block which has maximum number with In_page and copies the valid data to free
block. If hot data write into the same block, it will erase this block more frequently and

causec larger erase count.

Fig.3.2 is static wear leveling, ecnt means the total number of block erases
performed since the BET was reset, fcnt means the number of 1s in the BET, and BET

-'l l
means block erase table (the 0 in th{efxébdex‘lqeans the block has not be erased after
P, i _‘I
reset) and EC means erase _Cg_l_J.an'(;Ffl the ‘block. Th‘eh“stgtig wear leveling will erase a

Bre 4t - LR)

block that has not been erase\'c}-lls;é"far.., T .

T =y
.. Ry F
Fig.3.3 is the proposed S‘eli’Cl\algo\rith_m,_..SGCTI evenly distributes block erases
DN
over the entire flash memory. | ## \‘} '
{,‘:r:::,.. M ,_};—;_,_

Fig.3.4 is the proposed SGC2 algorithm, fcnt means the number of 1s in the IPF,
and IPF means 75% invalid page flag (1: a block contains more than 75% invalid
pages). SGC2 will search for the block with IPF=1 and then performs GC operation on
the selected block, if there are no block with IPF=1, we will recycle the block in

sequential.

-37 -

Garbage collection

(1
N
In_page=1 In_page=5 In=3 In_page=4 In_page=0
EC=5 EC=3 EC=4 EC=6 EC=0
Full Full Full Full Free
block block block block block
index
(2
N
In_page=1 In_page=0 In_page=3 In_page=4 In_page=0
EC=5 EC=4 EC=4 EC=6 EC=0
Full Free Full Full Free
block block block block block
,/;l lx
) l‘,{/ l \“x_'
/3/ 1____.-""J. -\ F 1\\._ ;
— In_page=1 “In_page=1 “In_page=3 .. In_page=5 In_page=1
EC=5 EC=4 | ' EC=4 | ; EC=6 EC=0
Full Free | Full Full Full
block block |- | block | % block block
freI 4 7 index
&5 - -\..__‘}"h_-!-
(4
N
In_page=1 In_page=0 In_page=3 In_page=0 In_page=1
EC=5 EC=4 EC=4 EC=7 EC=0
Full Free Full Free Full
block block block block block
(5
*/ In_page=1 In_page=5 In_page=3 In_page=0 In_page=1
EC=5 EC=4 EC=4 EC=7 EC=0
Full Full Full Free Full
block block block block block
index free

Fig.3.1: Greedy garbage collection

-38 -

Staic wearleveling

-

(%)
\

Fig.3.2: Static wear leveling

-39 .-

BET[0]=1 BET[1]=0 BET[2]=1 BET[3]=1 BET[4]=0 efntz_lj
EC=5 EC=3 EC=4 EC=6 EC=5 cnt=
Full Full Full Full Free
block block block block block

index
ecnt=16

BET[0]=1 BET[1]=1 BET[2)=1 BET|3]=1 BET[4]=0 font=d
EC=5 EC=4 EC=4 EC=6 EC=5 ont=
Full Free Full Full Free
block block block block block

-'I ‘-\
o
) e \\
3) _ -

,/ e g T ecnt=20
— BET[0]=1 BET[1]=1 " BET[2]=1 - * BET[3[=1 5 BET[4]=0 fented
EC=6 EC=4 - EC=6_ ' EC=7_ 7 EC=5 cn

Full Full 5 Full — Full Free
block block |=| block [.| block block
free i -
2 o L |
{idr_,,- -\..___}1!-
ecnt=21

BET[0]=1 BET[1]=1 BET[2]=1 BET[3]=1 BET[4]=1 font=5
EC=6 EC=4 EC=6 EC=7 EC=6 cnt=
Full Full Full Full Free
block block block block block

ecnt=0

BET[0]=0 BET[1]=0 BET[2]=0 BET|[3]=0 BET[4]=0 font=0
EC=6 EC=4 EC=6 EC=7 EC=6 ont=
Full Full Full Full Free
block block block block block

Sequential garbage collection 1

EC=0

EC=0

EC=0

EC=0

EC=1 EC=0 EC=0 EC=0 EC=0
Full Full
block block
free index
-'IL | ‘-\
Al
G\} ra Ii \
4
EC=1 EC=0
Full Full
block block
.
4
EC=1 EC=1 EC=1 EC=0 EC=0
Full Full Full Full Free
block block block block block
free index

- 40 -

Fig.3.3: Sequential garbage collection 1

Sequential garbage collection 2

‘)

N _
IPF[0]=0 IPF[1]=0 IPF[2]=1 IPF[3]=1 IPF[4]=0 fent=2
EC=5 EC=4 EC=4 EC=6 EC=5
Full block Full block Full block Full block Free block
index free
()
IPF[0]=0 IPF[1]=0 IPF[2]=0 IPF[3]=1 IPF[4]=0 fent=1
EC=5 Eq=4 EC=5 EC=6 EC=5
Full block Full block Free block Full block Free block
(3 /‘l i“*
J IPF[0]=0 IPF[1]=0 IPFTZ]:Ol' \ IPF[3]=1 IPF[4]=0 fent=1
EC=5 BC=4 . BCs5. . ECs6 EC=5
Full block Full block =~} Full block | * | Full block ‘ Free block
b {
N e o
Y — !
1 74 Wy
(4 /S
\ & g
IPF[0]=0 IPF[1]=0 IPF[2]=0 IPF[3]=0 IPF[4]=0 fent=0
EC=5 EC=4 EC=5 EC=7 EC=5
Full block Full block Free block Free block Free block
(5
\J fent=0
IPF[0]=0 IPF[1]=0 TPF[2]=0 IPF[3]=0 IPF[4]=0 -
EC=5 EC=4 Eq=5 EC=7 EC=5
Full block Full block Free block Full block Free block
w v
free index

Fig.3.4: Sequential garbage collection 2

_4] -

3.4.2 Lifetime of flash memory

Lifetime is an important issue of the flash memory due to the endurance of the
flash memory. To measure flash memory lifetime, we use max erase count to show the
flash memory lifetime, and a larger maximum erase count means the lifetime of the
flash memory is shorter. The maximum block erase count after writing 120GB data is
shown in Fig.3.5. In GA, greedy algorithm performs GC operation on the blocks with
highest number of invalid pages. Therefore it may often erase on the same block which
stored the hot data. The maximum block erase count for GA is 632 in this simulation. In
SW, when the difference between the maximum block erase count and minimum block
erase count is larger than the specified threshold, SW moves the static data to the hot

-'l l
block to balance the erase count in eacthIOFlli‘.\"{he maximum block erase count for SW
%

. i
i Y
is 210 with threshold value: 10 in.thiS simulation and-the maximum block erase count is
o Al s -~

E_'-r..‘:_':_..._b_ /__.-1 ! — E B ., ..I_:_._'__,_;._) .
reduced as compared to GA* The _-ngaxTiTlum_lfloék erase count for SW is 582 with
L oty B
threshold value: 100, and the maximum BTO(‘:K e'_:r-as"e cQﬁnt cannot be effective reduced

M- 1

I .' Fra
" g

because using a higher threshold I"\Livi_l’l,'}WOr‘s'en' th ﬁ%rfojrmance of wear-leveling.
/e NS

- e

The proposed SGC1 algorithmdwalways erases lflocks in a sequential manner, and
therefore it can achieve the lowest maximum block erase count which is 139 in this
simulation. However it may have many extra living pages copy overhead, and thus, the
proposed SGC2 algorithm uses the IPF vector to reduce the overhead in the SGC1
algorithm. The maximum block erase count of SGC2 is 157, and it is a little larger than

SGC1. The proposed SGC algorithm can effectively reduce the maximum block erase

count, and thus the lifetime of the flash memory can be greatly lengthened.

_42 -

700
632

t
)}
o0
[\

600

500

400

300

139

p—
S
S

maximum erase coun

\

N

Tk
T

4

GA SW(th=10) SW SGCl1 SGC2
(th=100)

S0 T
.

Fig.3.5: ariaximunt block erase count.

-

E——
}]
Brella, rn T LR i

= 7
| ' A

]

3.4.3 Average Blockﬁi'?@f‘ése_-(-_f_b’u:rlté

Fig.3.6 shows the nomalizd&fg;eragéhlockgﬁe count for four algorithms. SW
still uses the greedy algorithm to perform GC operation, but it requires extra GC
operations to balance the erase count in the blocks, thus the average erase count is larger
than GA. In SGC1, the efficiency in recycling the space occupied by invalid pages is not
as good as greedy algorithm, thus it causes many extra erase operations. Therefore,
SGC2 uses the IPF vector to reduce the overhead in SGC1, and then the average erase

count is greatly reduced.

-43 -

gmo 14§ 118.1
"5120 102.6 \ Q
§1oo 10& £ 100&5 \ \
g ¥ § \\ § § §
0NN N N N\

|7 ‘

3.4.4 Distribution of &l;ck”E-rasé:,;Counts

Fig. 3.7 shows the standard deviation of block erase count in four algorithms. The
SGC1 algorithm always erases blocks in a sequential manner, and thus it can achieve a
smallest standard deviation value. SGC2 uses the IPF vector to reduce the overhead in
SGCI1, and it also achieves a very small standard deviation as compared to SW. Fig.3.8
shows growing up of the standard deviation versus the amount of written data. As we
can expect, the standard deviation in SGC1 will not have any changes, and SGC2 also
achieves a very small standard deviation. However, in SW, the standard deviation is

growing up when the amount of written data is increased.

-44 -

250

208.6
E 200 Q
AN
E 100 § 89.8
-
0 GA SW(th=10) SW (th=100) SGC1 SGC2
Fig.3.7: sf_tgl}dafa” ézwatro?s;f blbclg_??se count

) Ny A .Y
o
§ —-SGC2
: SGCl1
E - SW
s ~GC

0 -

4 20 40 60 80 100 120 140 160
GB

Fig.3.8: changes in standard deviations

- 45 -

3.4.5 Extra overhead

Extra overhead of wear leveling includes: extra block erase and extra live-page
copy. As shown in Fig.3.9 and Fig.3.10, GA will collect the block which has maximum
invalid pages so it has lowest overhead of both block erase and page copying. SW is
bases on GA; if it is not triggered, SW and GA have the same performance in live-page
copy. If SW is with a high threshold (threshold=100), it will not perform wear leveling
action frequently, so it does not increase much overhead as compared with GC. The
SGCI1 algorithm always erases blocks in a sequential manner; it does not consider the
number of invalid pages in each block. Therefore, SGC1 has higher living page copy,
besides it will slow down the performance of the flash memory. The SGC2 algorithm

-'l l
erases the block that has more than 75%&1}4{&@ pages with a higher priority so it can
i _‘

i

SEEE R R

Fig.3.9: The increased ratio of block erase(%)

- 46 -

250

217.6

200

~
8)

(7o)

106.6

50

The increased ratio of Live page

coE)ylng
777/
/7/77/7/7/7/7/7////;

T

i

0
GA SW(th=10) SW SGCl1 SGC2
(th=100)
7 Ce— — 1
I L 1
U N

7 \
Fig.3.10: The incregsed ratio-of h?\?%xpage copying (%)

3.4.6 Total cycles for writing data

Fig.3.11 shows the total cycles for writing 120GB data in four algorithms. In
Fig.3.11, the “write” means the total cycles taken in page write operations, and “‘erase”
means the total cycles in erase operations. The “search” is the total cycles in searching
the block to be erased in each algorithm. The “live page copy” means the total cycles

spent in living pages copy.

In SGCI1, the efficiency in recycling the space occupied by invalid pages is not as

good as greedy algorithm, thus it requires more extra erase operations and results in

_47 -

more cycles spent in living pages copy. SGC2 uses the IPF vector to reduce the overhead

in SGCI, and it can reduce the total cycle time as compared to SGC1. Although the

proposed SGC2 algorithm has longer execution cycles than SW for writing 120GB data,

it is rare to continuously write so many data in a 2GB flash memory. As a result, the read

and write speed degradation will not be so worse in a real application.

3,000,000,000,000

2,500,000,000,000

2,000,000,000,000

1,500,000,000,000

1,000,000,000,000

cycle of total 120 GB write

A\
DO
DA\

500,000,000,000
0
GA SW(th=10) SW SGCl SGC2
(th=100)
= -

W search
OLive page copy
Eerase

@ write

Fig.3.11: Total cycles for writing 120GB data.

-48 -

3.5 Summary

Table 3.2 shows the summary for four methods tested in 120GB write request. GA
has great performance in recycling invalid pages. Thus it has both lower overhead and
higher speed for flash memory execution. However, it causes the flash memory retire
early with unbalanced block utilization. SW with GA algorithm can reduce the
overhead of living page copy. However, it needs more RAM space to manage the BET
table. SGC1 can achieve lowest maximum erase count and standard deviation.
Otherwise, SGCI has higher overhead in living page copy because it does not consider
number of invalid pages in the block, so it may erase the block which stored a lot of
valid pages. SGC2 improves the disadvantaEe of SGC1, and it can reduce the overhead

in SGC1. Although there are a 11ttle;m’€ré s\p maximum erase count and standard

deviation is SGC2,we still Q'hOOSC SGC2 for a ﬂash ﬁremory system for performance

'l.-
S

T I N 4
consideration. . & | — i
b Sl ¢
i w
Y -)
Table 3.2: Performance Comparlsb}ﬁ’ . l‘*\
hn‘.’,‘?‘"ﬂ = .. \}15
GA SW SGC1 SGC2
Average erase count 93.9 96.3 138.1 110.8
Max erase count 632 210 139 157
Standard deviation 208.6 249 0.3 11.2
Normalized living pages copy (%) 100 106.6 217.6 143.0
Total cycles for writing 120GB
1,661 1,707 2,471 1,958
data (x10°%)
Normalized total cycles for writing
100 102 148 117
120GB data (%)
RAM space (bit) 4096*17 4096*(17+1) 0 4096

- 49 -

Chapter 4 FPGA simulation result

We use the Socle Technology Corporation MDK-3D development board to
verify the proposed SGC algorithm. The CPU is ARM1176JZF and the frequency is
up to 1GHz. The AHB frequency is up to 200MHz and support the

NOR-flash/NAND-flash/DDR2.

Fig.4.1: MDK-3D board photo

We use Verilog code to rebuild the SGC algorithm. It contains 4096 blocks
and each block contains 128 pages. FTL is a complexity design and needs large
memory space to store mapping table, so we do not implement it in FPGA simulation.

Therefore, we produce PPAs to control our flash memory.

Fig.4.2 is the block diagram of our design in FPGA testing. Flash controller
consists with sequential garbage collection. Flash memory stores data and

information for flash controller. Test patterns use the bus to writing data into flash
-50-

controller and store in 2GB flash memory.

Test pattern (c code)

*
BUS

v
SGC
Flash controller

2GB
Flash memory

(Verilog code)

Fig.4.2: FPGA testing module

-'l l
A | N
Fig.4.3 is the block dlagram- of our. d681gn -11;1 FPGA Address and command

1-'
.....
e

translate into system controI‘Ier and memory controﬁer},.«respectlvely with AHB bus;

!
patterns are been stored into SRAM Aiiter ‘Eestmgr, ea.c‘fl block erase count in the flash

b \x

memory is translating into APH"Pqu’* b N 3'
{_}ﬂ‘_‘ ol oo ":;1;
A A
. System controller
2 y — SRAM 2
emory controller : 2
Z ‘ Flash o)
< as A
Flash controller memory
~~—

<

Fig.4.3: FPGA design module

In FPGA design, we rebuild a 2GB flash memory module to implement our
SGC algorithm design. There have same performance of FPGA simulation and C
simulation, therefore it can prove the algorithm of SGC can implement in hardware.

-51-

SGC algorithm can balance erase count of blocks also can implement in hardware.

22| Xiliroc - ISE - DAmihw\hw.ise: - [Design Summary] =% E= ==
1« File Edit View Project Seurce Process ‘Window Help (=)&) ()
DRFEF L 4bbEx e R PAXXLERIA RE DD AA? M & 1w HEZE SR ELNE 0 0O
1P| ZZETABBAON
e —7T WG pariEon VT TouRA =
Soumces for. | Implementafion. ~|| & DesignOverview
v =) Summary Device Utilization Summary =
5 €3 o5k LO-2H1T60 [2) 0B Properties Sice Logic Utilization Used Available Ttilization Note(s)
" e
EOA DR CREASIORY) [5) Module Level Utlizstion | = || Yuynpey of Slioe Rogishrs 1,318 69,120 %
1_myip - MYIE_TOP (MVIP_TOP.) [E) Timing Consrsints
U _ssvam_ofl - ssram_oil {ssrom. il) £) Pinout Report Nitbex veed o Fp Flops o8
sael - sl (el V20) 2] Clack Reort Tarmber of Slce LUTs 71,008 69,120 0%
{g seam - blkmemn_64:32 (blunem_64:32 xeo) =) Errors and Warnings uinber wsed a5 logic 21,024 69,120 0% &
[¥)sge1 - seel_d (sgel) [2) Symhesis Messages Humber using O6 output only 0,907
U _shbans_intecfooe_0) - AHEMS_Inerface (shbms._inkrfoce.v) [Translation Messages R o
U_shbis_inecface_L - AHEMS Inteifaee (shbms_intecface.v) = [£) Mep Messages ¢ ’
Ploce and Ronk Mesmges Marmber using 05 and 06 £
Soumes || Fle Snapshots Liby 2
o] ‘_“_J. = _I_&J_ il _I_@_ il | [2) Timing Messages Mumber wsed o5 exclusive route-thr 4
[E1 Bileen M 1| Munber of route-thrus (3 138,240 1%
Processsfor FRGA_TOP || — Nomber wsing 06 output only 5
@3 UsrConstrints 01 Enckle Message Flering Normber using 05 output orly 1
G- 0) Symtheszs - XST O Display Incrementsl Messages Skice Logic Distribution
= Implement Design Enhanised Desizn Summary Contents -
= 8 % e - ks D Wimber of aoupisd Shoss 13,662 17,280 B%
[E@?rormming Fis Goneration Report = Show Eerors Nomber of LUT Flip Flop poirs used 51,800
= #2(0) Contigure Terget Device o zxw g’mm\? i MNumber with an unnsed Flip Flop 2,582 51,900 4%
- s Failing Constrsint
S)@GE”E“‘! T T EOUTeRF 0] Show Clock Report Momber with an wnsed LOT 30872 51,500 5%
W Yep Coalignsiin frve:{ GHEACT) Nomber of fully vsed LUT-FF peirs 18,446 51,900 5% -
Processes
ﬂt ‘ L Design Summary sgel_vay
Genmerating Clock Report =
| Clock Net | Resource |Locked|Fanout|Net Skew(ns]|Hax Delay(ns)|
| HCLK_BUFGP |BUFGCTRL_X0Y25| No |1z346 | 0.565 1 1.861 I
| PCLK_BUFGP | BUFGCTRL_XOY¥3| No | 1| 0.000 | 1.502 I
* Net Skev is the difference betveen the minimwn and maximwd routing =
« = ol
[Conoly | @Ermos | y\ Wamings | EENTeIShel | jgg Find inFikes |
Ln 266 Col 32

-'I' l
Fig.4.4: FPGA ﬂa\@vare design
. i N,

-.-.-l; —
L .
B, e fme R N
Table 4.1: Device utilization\Symhlary"o'f'FP&l& implement.
; ; . 3 /;
Number of slice register \“:a L 49,318
Number of slice LUT Vol b 21,024
!;}' - N

{"&4‘_‘ - S "‘---._}-"‘-"

Because the performance results of FPGA implement is the same as C

simulation. It can prove that sequential garbage collection (SGC) methods can the

implemented by hardware.

-52 -

Chapter 5 Conclusion and future

work

In this thesis, a low-complexity high-performance wear-leveling algorithm for
flash memory system design is presented. The proposed SGC algorithm combines GC
operation and wear-leveling into a single process, and it doesn’t require any tuning for
threshold parameters. Simulation results show that the proposed SGC algorithm has the
lowest maximum block erase count and smallest standard deviation. In addition, the
low-complexity low-cost SGC algorithm makes it is easy to be implemented by
firmware-based or hardware-based appr Jg’ag{hﬁgThus the lifetime of the flash memory

can be greatly lengthened by the ,,proposed SGC algm@m

1-'
'''''
]

The SGC algorithm hab. hlgh ove‘h‘eageeds to b‘% 1mproved thus SGC2 can
W i
reduce 30 % overhead of SGC hBy reducmg ovefhead we can increase performance

of the flash memory. In the future,fwe can use %}C' algorithm to maintain standard
o e
Er g - L 1,_

deviation and addition other effective policy to reduce overhead in living page copy.

-53-

Reference

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

M-Systems, “Two Technologies Compared: NOR vs. NAND,”
http://139.138.48.19/pdf/NAND/MSystems/MSystems_ NOR_vs NAND.pdf

TOSHIBA, “NAND vs. NOR Flash Memory Technology Overview,”
http://www.maltiel-consulting.com/NAND_vs NOR_Flash Memory_Technolo

gy_Overview_Read Write Erase_speed for SLC MLC_semiconductor_consu

Iting_expert.pdf

GRUPP, L., DAVIS, J., AND SWANSON, S., “The bleak future of nand flash
memory,” http://static.usenix.org/events/fast/tech/full_papers/Grupp2-8-12.pdf

ELNEC, “NAND Flash Memorlgs” qlld\?irogrammmg NAND Flash Memories

Using ELNEC ‘Dev1ce Programmers,”
http://www.elnec. com@,wfan elnec nand ﬂash I'S&f »

T =
Samsung, “The S';ﬁnsung l: SLC. "4 NAND flash Advantage,”

http://www.psism.com/ SL(EI‘%%?VS“%ZOMLC pdf

YERERL Z‘\;u
TOSHIBA, “SLC toggle,”
http://www.semicon.toshiba.com.tw/product/memory/selection/nand/slc/toggle/i
ndex.html
Samsung Electronics, “K9GAGO8UOM 2Gx8bit NAND Flash Memory Data
Sheet,” 2006.

Intel, “Understanding the flash translation layer (FTL) specification,”
http://developer.intel.com, 2010.

T.-S. Chung, D.-J. Park, S. Park, D.-H. Lee, S.-W. Lee, and H.-J. Song, “A survey
of flash translation layer,” in Proceedings of Journal of systems Architecture
(JSA), Vol.55, pp- 332-343, May. 2009.

[10] Atsuo Kawaguchi, Shingo Nishioka, and Hiroshi Motoda, “A flash-

memory based file system, ” in Proceedings of USENIX Annual Technical
_54 -

Conference, Jun. 1995, pp. 155-164.

[11] Micron, “Wear-Leveling Techniques in NAND Flash Devices,”
http://www.micron.com/~/media/Documents/Products/Technical%20Note/NAN
D%20Flash/151tn2942 nand wear leveling.pdf

[12] Wear-Leveling and Life Span, “Wear-Leveling and Life Span,”
http://www.magicram.com/images/uploads/file/Wear%20Leveling%20Mechanis

m.pdf

[13] Micron, “Bad Block Management in NAND Flash Memory,”
http://www.micron.com/~/media/Documents/Products/Technical%20Note/NAN
D%20Flash/tn2959 bbm in nand flash.pdf

/’|\

[14] Lin-Pin Chang and Tm}]e‘r‘ Kuo,- “Efﬁcrent management for large-scale

flash-memory storage.u_gystems w1th-1=eseurce consprwratlon ” ACM Transactions
on Storage (TOS), vol. T 0. 4, pp 381—4118 Nov 5005

|
b \L ot a:’

| Lo .. 1
[15] M-Systems, “Tru%fli;&r W ari!Leveling Mechanism.”
http://csis.bits-pilani.ac.in/ fﬁéﬁ}tv/ su’ﬁ?i’a:rb/coiﬁ‘ées/old/ sprll/dstn/readings/sheet
s/trueffs.pdf

[16] STMicroelectronics, “Wear Leveling in Single Level Cell NAND Flash
Memories,”
http://www.eetasia.com/ARTICLES/2004NOV/A/2004NOV29 _MEM_AN09.P
DF?SOURCES=DOWNLOAD

[17] SanDisk, “Sandisk ~ Flash Memory Cards Wear Leveling,”
http://www.scribd.com/doc/7010332/SANDISK-Flash-Memory-Cards-Wear-Le

veling

[18] T. Gleixner, F. Haverkamp, and A. Bityutskiy, “UBI -Unsorted Block Images,”
http://linux-mtd.infradead.org/doc/ubidesign/ubidesign.pdf

-55-

[19]

[20]

[21]

[22]

[23]

[24]

Li-Pin Chang, “On efficient wear leveling for large-scale flash-memory storage
systems,” in Proceedings of ACM Symposium on Applied Computing (SAC), Mar.
2007, pp. 1126-1130.

Wen-Kai Hsieh and Hsi-Pin Ma, “Conditional threshold wear-leveling algorithm
for multi-channel NAND flash memory, ”
Symposium on VLSI Design, Automation, and Test (VLSI-DAT), Apr. 2010, pp.

147-150.

in Proceedings of International

Kee-Hoon Jang and Tae-Hee Han, “Efficient garbage collection policy and block
management method for NAND flash memory,” in Proceedings of International
Conference on Mechanical and Electronics Engineering (ICMEE), Aug. 2010, pp.
327-331.

Yuan-Hao Chang, Jen-Wei Hsieh, and Tei-Wei Kuo, “Improving flash
wear-leveling by proactively m /vut static data, ” IEEE Transactions on
Computers, vol. 59, no. 1 . PP- 5,3“65 010.

T T

Yuan-Hao Chang, Jen- WeIHsfeh and Tel-Wel Kué{“EEndurance enhancement of
flash-memory storage systems an eﬁ'lent stgﬁc wear leveling design,” in
Proceedings of ACM/IEE]??)eszgn Automatzon Gonference (DAC), Jun. 2007, pp.
212-217. y ;

' ; . :‘\};U
Li-Pin Chang and Li-Chun Huang, “A low-cost wear-leveling algorithm for
block-mapping solid-state disks,” in Proceedings of ACM SIGPLAN/SIGBED
Conference on Languages, Compilers, Tools and Theory for Embedded Systems
(LCTES), Apr. 2011, pp. 31-40.

[25] H. S. Lee, H. S. Yun, and D. H. Lee, “HFTL: hybrid flash translation layer based

[26]

on hot data identification for flash memory,” IEEE Trans. Consumer Electronics,
vol. 55, no. 4, pp. 2005-2011, Nov. 2009.

“NAND flash price”, http://www.cnyes.com/fc/metal/fc_flash.asp

- 56 -

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

