

- 1 -

國 立 中 正 大 學

資訊工程學系研究所

碩 士 論 文

應用於快閃記憶體之高效能且低複雜度

之平面化設計技術

A Low-Complexity High-Performance

Wear-Leveling Algorithm for Flash Memory System

Design

 研 究 生 : 薛甯謐

 指導教授 : 鍾菁哲 博士

中華民國 一零一 年 七 月

- 2 -

摘要

 在此論文中 ，我們針對快閃記憶體中平面化技術提出討論，並重建 Greedy

垃圾收集方法及靜態平面化演算法作為與本論文所提出之高效能且低複雜度之

平面化設計技術（循序垃圾收集技術,SGC)的比較對象，用來延長快閃記憶體的

壽命及平衡其使用率。

 論文中包含目前現有的快閃記憶體的種類及優缺點，並介紹快閃記憶體中需

要哪些重要元件來維持讀寫速度及壽命。此外會介紹目前現有的平面化技術有哪

些類別，以及為什麼需要平面化技術，針對現有的各種平面化技術的優缺點來做

分析，並討論對於現在的快閃記憶體這些技術是否適用。

 本論文所提出之平面化技術稱為循序垃圾收集技術(SGC) ，所提出的循序垃

圾收集技術(SGC)比起現有的設計平面化能更加平均化且有較低的設計複雜度，

因此快閃記憶體的壽命可以隨之有效的延長；此外本論文提出之循序垃圾收集技

術不需要額外調整觸發平面化技術的門檻。本論文所提出的循序垃圾收集技術可

以輕易地使用軟體的方式去實現或是使用硬體的方式去實現。

 論文中將比較Greedy 垃圾收集方法及靜態平面化演算法及循序垃圾收集技

術這些種方法，並針對抹除次數中的最大值，標準差，平均抹除次數，以及抹除

時的額外開銷這些數據來比較。

 最後為了證明循序垃圾收集技術是可以輕易地在軟體及硬體環境上實現，使

用ＦＰＧＡ開發板來驗證方法是否可以在硬體上實現。

- 3 -

Abstract

 In this thesis, we discuss the techniques of wear leveling in the flash memory

system and also rebuild algorithm of Greedy garbage collection and static wear

leveling for comparison. Thus a low-complexity high-performance wear leveling is

proposed and it can extend lifetime of the flash memory and balance the utilization of

each block.

 This thesis analyzes the advantages and disadvantages in current wear leveling

techniques. Besides, we introduce the important issues to maintain read/program

performance and the lifetime in the flash memory. In addition, we will introduce the

current wear leveling methods, and discuss the complexity of these approaches.

 The proposed wear leveling algorithm is called sequential garbage collection

(SGC), SGC outperforms existing designs in terms of wear evenness and low design

complexity. The lifetime of the entire flash memory can be greatly lengthened by the

proposed SGC. In addition, the proposed SGC doesn’t require any tuning threshold

parameter. The low-complexity low-cost SGC makes it easy to be implemented by

firmware-based or hardware-based approaches.

 This thesis compares Greedy garbage collection, static wear leveling and

sequential garbage collection (SGC) in terms of maximum block erase count, the

standard deviation of the block erase count, average erase count and overhead of wear

leveling.

 Finally, to prove the sequential garbage collection (SGC) is easy to be

implemented by firmware-based or hardware-based approaches. We use the FPGA

board to implement the propose algorithm and verify the performance of the proposed

algorithm.

- 4 -

Contents

Chapter 1 Introduction .. - 8 -
1.1 Flash memory overview ... - 8 -
1.2 NAND flash memory system overview ... - 13 -

1.2.1 Flash translation layer ... - 14 -
1.2.2 Garbage collection .. - 16 -
1.2.3 Wear leveling .. - 17 -
1.2.4 Bad block management ... - 18 -

1.3 Thesis Organization .. - 18 -
Chapter 2 Related work of wear leveling ... - 20 -

2.1 Dynamic wear leveling and static wear leveling .. - 20 -
2.2 Survey of wear leveling algorithm ... - 22 -

2.2.1 Hot-cold swapping .. - 23 -
2.2.2 Static-dynamic wear leveling .. - 23 -
2.2.3 Two level of wear leveling .. - 24 -
2.2.4 Erase pool.. - 25 -
2.2.5 Old block protection ... - 25 -
2.2.6 Dual-pool .. - 26 -
2.2.7 Conditional threshold wear leveling ... - 26 -
2.2.8 Efficient garbage collection policy ... - 27 -
2.2.9 Static wear leveling ... - 28 -
2.2.10 Lazy wear leveling .. - 28 -

2.3 Summary .. - 29 -
Chapter 3 Architecture and implementation ... - 32 -

3.1 Design of wear leveling .. - 32 -
3.2 Sequential garbage collection Algorithm 1 ... - 33 -
3.3 Sequential garbage collection Algorithm 2 ... - 34 -
3.4 Experimental results.. - 36 -

3.4.1 Environment setup .. - 36 -
3.4.2 Lifetime of flash memory ... - 42 -
3.4.3 Average Block Erase Counts .. - 43 -
3.4.4 Distribution of Block Erase Counts .. - 44 -
3.4.5 Extra overhead .. - 46 -
3.4.6 Total cycles for writing data .. - 47 -

- 5 -

3.5 Summary ... - 49 -
Chapter 4 FPGA simulation result .. - 50 -
Chapter 5 Conclusion and future work ... - 53 -
Reference - 54 -

- 6 -

List of Figures

Fig. 1.1: The architecture of the flash memory. ... - 13 -
Fig.1.3: The flash memory system architecture. .. - 14 -
Fig.1.4: page level flash translation layer. ... - 16 -
Fig.3.1: Greedy garbage collection .. - 38 -
Fig.3.2: Static wear leveling .. - 39 -
Fig.3.3: Sequential garbage collection_1 ... - 40 -
Fig.3.4: Sequential garbage collection_2 ... - 41 -
Fig.3.5: maximum block erase count. .. - 43 -
Fig.3.6: Normalized average erase count. .. - 44 -
Fig.3.7: Standard deviations of block erase count ... - 45 -
Fig.3.8: changes in standard deviations ... - 45 -
Fig.3.9: The increased ratio of block erase(%) .. - 46 -
Fig.3.10: The increased ratio of Live page copying (%) ... - 47 -
Fig.3.11: Total cycles for writing 120GB data. .. - 48 -
Fig.4.1: MDK-3D board photo .. - 50 -
Fig.4.2: FPGA testing module ... - 51 -
Fig.4.3: FPGA design module .. - 51 -
Fig.4.4: FPGA hardware design ... - 52 -

- 7 -

List of Tables

Table 1.1: The comparison table of NAND flash memory and NOR flash memory; this

table is captured from the Website of

http://www.elnec.com/sw/an_elnec_nand_flash.pdf ... - 9 -
Table 1.2-1: The comparison table of SLC and MLC; this table is captured from the

Website of http://www.psism.com/SLC%20vs%20MLC.pdf .. - 11 -
Table 1.2-2: The comparison table of price and density; this table is captured from the

Website of http://www.cnyes.com/fc/metal/fc_flash.asp ... - 11 -
Table 2.1: The comparison table of wear leveling algorithms ... - 30 -
Table 3.1: Setting for the simulation .. - 36 -
Table 3.2: Performance Comparisons. ... - 49 -
Table 4.1: Device utilization summary of FPGA implement. .. - 52 -

- 8 -

Chapter 1

Introduction

1.1 Flash memory overview

In recent years, flash memory becomes an important storage system for embedded

systems, just like smart phones, PDAs, note books. Flash memory has many

advantages, such as low power consumption, high performance in read operation, and

better shock resistance than the conventional designs. However it also has some

disadvantages need to be improve like price, performance of write operation, and the

most important issue is the endurance of flash memory.

Flash memory can be divided into NOR flash memory and NAND flash memory

in the market [1] [2], and it becomes the most popular storage device in non-volatile

portable electronic device. NOR flash memory can execute-in-place (XIP) (random

access) because it can access each byte. Therefore, NOR flash memory has fast read

access time especially in small random data access (ex: 1MB-4MB). In the other hand,

the NAND flash memory erase time is faster than NOR flash memory, because the

size of erase blocks of NOR flash memory is larger than NAND flash memory. It

means NOR flash memory has longer execution time in the program/erase access.

However NOR flash memory also has disadvantages of poor chip density and high cost

per bit. NOR flash memory is usually used for code storage which often execution in

place such as simple home appliances, low-end mobile handsets and embedded designs.

On the other hand, NAND flash memory has been developed to become an high chip

density data storage and it reads/writes for I/O interference with page, so the write

- 9 -

access time is shorter than NOR flash memory, but the read access time is longer than

NOR flash memory. After the design trade-off, it was give up execute in place (XIP) to

become high density and small cell size storage devices. Table 1.1 Shows the

comparison of NAND and NOR flash memory.

Table 1.1: The comparison table of NAND flash memory and NOR flash memory; this

table is captured from the Website of

http://www.elnec.com/sw/an_elnec_nand_flash.pdf

 NAND NOR

Capacity*1 ~32Gbit ~1Gbit

Access method Sequential Random

Performance Fast read (serial access

cycle)

Fast write

Fast erase (approx.

2ms/block)*2

Fast read (random access)

Slow write

Slow erase (approx.

1s/block)*3

Life span 100,000-1,000,000 10,000-100,000

Price Low High

*1-By NAND flash manufactures materials(available at 01/2006)

*2-Toashiba TH85NVG1S3A(1 block is 16 kB)

*3-Intel StrataFlashP30family(1 block is 128 kB)

Many applications choose NAND flash memory to develope their design instead

of NOR flash memory [3] [4]. Because capacity and price are very important issues for

- 10 -

smart phones, solid-state disks (SSDs) and MP3 players.

NAND flash memory has two major types: single-level cell (SLC) and

multi-level-cell (MLC) [5] [6] [7]. SLC means per cell stores one bit information, it has

two states: 0(program) and 1(erase). SLC has higher speed and higher reliability than

MLC. On the other hand, MLC can contain more than one bit information so it has

large capacity. For example, 2-bit MLC has 4 states: 00, 01, 10 and 11 to store data.

Although MLC has lower speed and worse reliability, it has lower price with higher

capacity than SLC. Different applications will choose a suitable type NAND flash

memory for the system. Recently on the market TLC is developed, TLC means triple

level cell (3-bit cell) .Table 1.2-1 is the comparison for different types of NAND flash

memories.

Table 1.2-2 is the comparison table of price and density. Different types of NAND

flash have different price, SLC has higher price and lower chip density although it has

higher endurance cycle. Oppositely, TLC has very low price and highest chip density

as compared with SLC. Different applications require different types of NAND flash

memory. If TLC is chosen a very low endurance cycle of TLC requires a good policy

to handle the erase operation.

- 11 -

Table 1.2-1: The comparison table of SLC and MLC; this table is captured from the

Website of http://www.psism.com/SLC%20vs%20MLC.pdf

 SLC MLC

Voltage 3.3V/1.8V 3.3V

Technology/Chip Size 0.12um 0.16um

Page Size/Block Size 2KB/128KB 512B/32KB or

2KB/256KB

Access time (Max.) 25us 70us

Page Program Time(Typ.) 250us 1.2ms

Partial Program Yes No

Endurance 100k 10k

Write Data Rate 8MB/s+ 1.5MB/s

Table 1.2-2: The comparison table of price and density; this table is captured from the

Website of http://www.cnyes.com/fc/metal/fc_flash.asp

 SLC MLC TLC

Density 32GB 32GB 32GB

Price 44.3(US) 2.29(US) 1.93(US)

endurance 100K 5-10K 100-500

- 12 -

The functional block diagram for the Samsung K9GAG08X0M flash chip is

shown in Fig. 1.1 [8]. The NAND flash memory architecture of 2G*8bits flash chip

contains 8-bit I/O port to translate commands, data and addresses. If we want to

read/write data, it needs 5 cycles to translate the address data (2 cycles for the column

address and 3 cycles for the row address). A flash memory contains many blocks, and

each block is consisted of a fixed number of pages. In the Samsung 2G MLC chip, each

page is 4K bytes. A page is divided into data area and spare area, and data are stored in

data area and meta data of ECC are stored in the spare area. The data structure of flash

memory is shown in Fig. 1.2.

There are some special characteristics in the flash memory such as the unit of

read/program is a page and the unit of erase is a block and the speed in different

operations has great difference. The most important technique of the flash memory is

that it cannot be overwritten; it must be erased before new data can be stored.

- 13 -

 Fig. 1.1: The architecture of the flash memory.

Fig. 1.2: The data structure of flash memory

1.2 NAND flash memory system

overview

Fig.1.3 shows the NAND flash memory system architecture. Firstly, logical

page addresses are translated into physical page addresses by the flash translation layer

(FTL) [8] [9] [10]. Then data are programmed into the physical address of the flash

memory. When free space is not enough, garbage collection (GC) will start to collect

invalid data and release free space. When some blocks of the flash memory are used

more often, these blocks of the flash memory will be worn out more often and causes

the flash memory retired earlier. Thus, wear leveling is required to lengthen the life

- 14 -

time of the flash memory [11] [12]. A flash memory needs to manage which block

cannot be used, and this is called bad block management [13]. In a simple flash

memory system, we need a flash translation layer (FTL), a garbage collection (GC), a

wear leveling and a bad block management. These techniques can let user be easy to

use the flash memory and maintain the performance of the flash memory.

Fig.1.3: The flash memory system architecture.

1.2.1 Flash translation layer

NAND flash memory has many design bottlenecks. First, it cannot be overwritten,

it must be erased before new data can be stored in the same physical address. However,

erase operation usually takes several million-seconds. For performance consideration,

updates to data are usually handled in an out of place fashion, rather than directly

overwriting the old data. So data should be written to another page of the flash memory,

- 15 -

and the original page of the data is marked as an invalid page. To solve this problem,

flash translation layer (FTL) has been proposed. The FTL translates the logical page

address (LPA) into physical page address (PPA) of the flash memory chip. Many flash

translation layer mechanisms have been proposed such as the page level mapping

(FTL), the block level mapping (NFTL), and the hybrid mapping. Fig. 1.4 shows a

example operation of the page-level FTL, there have 5 write request (5,2,0,5,2) and

LPAs address (5,2) have be rewritten. In each action of FTL, LPA will be mapped in a

new PPA. In addition, the original PPA will be marked as invalid data. When data need

to be rewritten, FTL will find free PPAs to map instead of erasing the current physical

blocks. By using FTL, we can avoid the frequently erase the blocks. On the other hand,

the performance can be improved and the free spaces can be best allocated with FTL in

the flash memory. Although FTL has many advantages, but to record all the mapping

table needs a large memory space. According to above, NFTL [9] and hybrid-FTL [25]

approaches had been proposed. NFTL approach is proposed to solve the problem of

memory space for a mapping table, so it uses a block level mapping table. Therefore,

NFTL can decrease required memory space of the mapping table, but the flash memory

space utilization is not better than a page-level FTL. Finally hybrid-FTL [25] is

proposed which uses both page level and block level mapping.

- 16 -

Fig.1.4: page level flash translation layer.

1.2.2 Garbage collection

When data are written into the flash memory, the amount of free pages is reduced,

and thus the garbage collection (GC) is performed to recycle the spaces occupied by

invalid pages. The GC operation collects valid pages in the selected block, copies valid

pages to an another free block, and then it erases the selected block to recycle free

pages. Many approaches have be proposed, Greedy algorithm [10] is the most effective

algorithm to recycle blocks of the flash memory. The Greedy algorithm find the block

which has maximum invalid pages then erases it. Therefore Greedy algorithm has

minimum overhead in each GC operation. Fig.1.5 shows the operation of GC.

- 17 -

 Fig.1.5: The garbage collection operation.

1.2.3 Wear leveling

The bottleneck in a NAND flash memory is the endurance. Blocks of the NAND

flash memory have a limited erase cycle, the limitation of the MLC NAND flash

memory is about 10,000 times, and the SLC NAND flash memory is about 100,000

times. In addition, GC operation with Greedy algorithm may wear out some blocks of

flash memory chip due to the localities of data access. For example, if some blocks

stored hot data, they will be invoked by GC operation more frequently and these blocks

will have high erase cycle times. These blocks may be retired earlier, and this causes

the reliability problem of the flash memory. To solve this problem, many wear leveling

techniques have been proposed [14]-[24]. Wear leveling balances the erase cycle

between different blocks in the flash memory, and thus the life time of the flash

- 18 -

memory can be extended.

1.2.4 Bad block management

 Flash memory contains early bad blocks and latter bad blocks [13]. When flash

memory is fabricated, some bad blocks exist, it is called early bad blocks. Generally,

the early bad blocks are about 1% of the total capacity of the flash memory. Due to the

erase operation, the flash memory produces latter bad blocks. Generally, flash memory

can tolerate early bad blocks and latter bad blocks within 1% and 5%, respectively.

 To avoid data program/read to a bad block, it needs a policy to manage bad blocks,

and then the reliability of the flash memory can be further improved. When flash

memory starts up, bad block management will check each block to rebuild a bad block

table. Accordingly, bad block management will keep updating bad block table if any

blocks are broke.

1.3 Thesis Organization

In this thesis, we discuss about the file system contains a flash translation layer

(FTL), a garbage collection (GC) and a wear leveling. We propose a low-complexity

high-performance wear-leveling algorithm which named sequential garbage collection

(SGC) for flash memory system design. SGC algorithm can improve the lifetime of the

flash memory. The rest of the thesis is organized as follows.

In Chapter 2, we discuss about wear leveling type and methods. Two major types

of wear leveling: dynamic and static are discussed. We introduce wear leveling

algorithms which have been proposed in recent years.

 In Chapter 3, the design for sequential garbage collection has been proposed. We

- 19 -

propose a low-complexity high-performance wear-leveling algorithm which named

sequential garbage collection (SGC) for flash memory system. For verification, we also

build a simple model of the flash memory file system. This model contains: FTL (page

level mapping), GC operation and wear leveling. We rebuild algorithms of Greedy

garbage collection (GC) and static wear leveling (SW) to compare with the proposed

SGC algorithm. Chapter 3 also shows the experimental results of these algorithms,

besides we summarize the experimental results in term of erase count, overhead and

lifetime for each algorithm.

In Chapter 4, we use FPGA to implement the methods introduced in Chapter 3. It

can prove the proposed SGC algorithm is simple and easy to be implemented by

hardware design. In addition, we also compares about the resource cost with other

methods.

In Chapter 5, we make a conclusion of this thesis, and discuss about the further

work.

- 20 -

Chapter 2

Related work of wear leveling

2.1 Dynamic wear leveling and static wear

leveling

In recent years, chip density of flash memory is growing up but the endurance of

flash memory is decline. Erase cycle of each block is about 10k times. Flash memory

will retire very fast if we do nothing.

The data stored in the flash memory can be divided into static data and dynamic

data. Static data contains operating system files and user files. Dynamic data contains

log files. Similarly, wear leveling also has two major types: static wear leveling [23]

and dynamic wear leveling [14]. We compare of no wear leveling, dynamic wear

leveling and static wear leveling in this Chapter.

For example, we program a 4KB file into 2MB flash memory repeatedly. The flash

memory contains 100 blocks and each block is 2KB. Therefore, it means two logical

addresses are writing repeatedly. In addition, if we assume the endurance of each block

is 10000 times, and the request time including erase and program a block is about 0.10

second with the Samsung 2GB NAND flash memory.

In Eq. 2.1, we calculate a block erase and program times with the Samsung 2GB

NAND flash memory. In the datasheet of Samsung 2GB NAND flash memory, each

block erase time is 1.5ms and each page program time is 800s.

- 21 -

A block erase and program times = 1.5 ms + (800s*128(page number of per

block))

 = 1.5 ms + 102.4ms = 0.1039 second (2.1)

In Eq. 2.2, if we do not perform wear leveling and two physical blocks are erased

and programmed repeatedly. When we program a 4KB data into flash memory

repeatedly, the flash memory will break out in 34 minutes. This means that wear

leveling is a necessary technique to extend the life time of flash memory.

Life time of no wear leveling= 10,000 * 2(block) * 0.1039 (second time per block)

 = 2078 seconds=34 minutes (2.2)

 Dynamic wear leveling only moves the dynamic data in the flash memory. In Eq.

2.3, it calculates the life time with dynamic wear leveling, if the dynamic data occupied

20% of the flash memory, and then only 20 blocks are involved in wear-leveling. In

this testing, we have 100 blocks of the flash memory, so dynamic data occupies 20

blocks.

Life time of dynamic wear leveling

 = 10,000 * 20(block) * 0.1039 (second time per

block)

 = 20780 seconds=5.66 hours (2.3)

Static wear leveling will move static data in the flash memory and thus all blocks

are involved in the wear-leveling. Eq. 2.3 shows the life time with static wear leveling.

Life time of static wear leveling

 = 10,000 * 100(block) * 0.1039 (second time per

- 22 -

block)

 = 103900 seconds=28.86 hours (2.4)

2.2 Survey of wear leveling algorithm

There are many wear-leveling algorithms have be proposed in prior studies to

solve the problem of GC operation and extend the lifetime of the flash memory. The

purpose of wear-leveling algorithm is evenly distributing block erases over the flash

memory, and then the endurance of the flash memory can be enhanced. The

performance of dynamic wear-leveling depends on hot data identification, and the cold

data always stay at their blocks regardless of whether updating of hot data wear out the

other blocks. As a result, the endurance improvement is strongly dependent on how

many blocks are already occupied by cold data.

As follows, we define the type of data and blocks. Data can be divided into two

types: hot data mean the same data has been updated more frequently. Cold data mean

data do not be written frequently. Block also has two types: hot blocks mean the block

has been erased frequently. Cold blocks mean the block has been erased infrequently. If

the standard deviation of the block erase count is very large, it means the block erase

counts are not balanced. Oppositely, a small standard deviation means block erase

counts of the flash memory are balanced.

Before wear leveling action the hot data are stored in maximum erase count block

(hot block), the block will updated more frequently. So this block will be erased more

frequently, and makes some block have a very high erase count.

- 23 -

2.2.1 Hot-cold swapping

 In Hold-cold swapping [14], when the difference between the maximum block

erase count and minimum block erase count is larger than the specified threshold. Wear

leveling action will swap the data that have been stored in the maximum erase count

block and minimum erase count block. The hot data which stored in the hot blocks are

moved to cold blocks, therefore the cold block will be erased if next erase operation

executes. That can balance erase count of blocks in the flash memory.

 Although this algorithm can balance erase count in the flash memory, however it

needs a threshold value to control whether the wear leveling will be executed. If

threshold is too large, flash memory will execute wear leveling infrequently, thus it will

cause poor performance of wear leveling. Besides this method will require high

overhead when data are swapped. The most important problem of this method is that,

we cannot ensure the cold data will be stored into hot block after wear leveling.

Unfortunately, hot block will be erased immediately if hot block is stored hot data after

swap. At this situation, hot-cold swapping algorithm cannot effectively balance erase

count in the flash memory.

2.2.2 Static-dynamic wear leveling

 Static-dynamic wear leveling contains dynamic wear leveling [15], static wear

leveling and file allocation table (FAT) filter. In dynamic wear leveling: free physical

block is combined in a wear leveling pool. When new data are programed, block will be

allocated with a physical block address by round-robin policy. If there are not enough

- 24 -

free physical blocks in wear leveling pool, dynamic wear leveling will copy valid data

to the last block in pool. In static wear leveling, when there have static files to be stored,

this method will ignore dynamic wear leveling and then uses the static wear leveling. It

will use hot cold swapping to achieve static wear leveling. In addition, it also

implements a FTA filter to monitor block to improve wear leveling.

 Data need to be divided into static data and dynamic data in this method, but it

cannot correctly analyze data belong to which type. Therefore, it requires more

information to analyze the data and causes the high design complexity.

2.2.3 Two level of wear leveling

 Two-level wear leveling is implemented in the FTL [16]. In first leveling: free

physical blocks will gather in wear leveling pool and string with a chain. When new

data come to be programed, it will be allocated to the minimum erase count block (cold

block). If wear leveling pool does not have enough physical blocks, wear leveling

operation will reduce valid data in the minimum erase count block. The chain of

physical blocks is stringing from the minimum erase count block (cold block) to the

maximum erase count block (hot block). In second leveling: if the difference between

maximum erase count and minimum erase count is larger than the specified threshold,

the static data will be moved to the free block. Then the cold blocks can be restored for

new data.

 This method maintains average utilization rate for blocks in flash memory.

However, the specified threshold needs to be tuned in different applications. In addition,

two level algorithm needs to management the chain in the additional system memory.

- 25 -

2.2.4 Erase pool

 Erase pool algorithm composites an erase pool with free physical blocks [17].

When same logical address data need to be programed, it will be mapped to free blocks

in the erase pool. If block has been reached erase endurance limitation, it will be moved

to the outside block of the erase pool. Then it copies valid data to another free block.

Although the space will be reduced in erase pool, the capacity of the flash memory is

not affected. When the blocks of erase pool are exhausted, it means flash memory

reaches the end of life.

 This method can detect the block which reaches the block erase endurance

limitation and then stops to use it. This method would extend the lifetime of flash

memory but worse the flash memory utilization.

2.2.5 Old block protection

 Old block protection wear leveling is applied to protect the block which reaches

maximum erase count [18]. When the just-erased block is also the maximum erase

count block and the erase count is difference with the minimum erase count block is

larger than the specified threshold. The valid data in minimum erase count block will

be copied to just-erased block. When just-erased block also has the maximum erase

count block, it means that the hot data is stored in this block. Then this block will be

joined erase more quickly. Therefore we move the valid data in the minimum erase

count block to the just-erased block.

 This method would move the cold data to the hot block, it can avoid just-erased

block being erased immediately. In addition, it can balance erase count of block in the

flash memory. However it also needs a threshold to maintain the wear leveling

performance.

- 26 -

2.2.6 Dual-pool

 Dual pool algorithm is used to implement two-pool wear leveling [19]. Pools can

be divided in to the cold pool and hot pool; ܳு௉ா஼ , ܳ஼௉ா஼ express two queues is strung

with hot pool and cold pool, H+ܳ) and H-(ܳ) are expressed maximum queue-head and

minimum queue-head. When the erase count difference between EC(H+(ܳு௉ா஼)) and

EC(H+(ܳ஼௉ா஼)) are larger than the specific threshold. In the first step, valid data in

H+(ܳு௉ா஼) move to other block that has free pages and erase block H+(ܳு௉ா஼). Second,

valid data in H-(ܳ஼௉ா஼) move to block H+(ܳு௉ா஼) and erase block H-(ܳ஼௉ா஼). Then H-(ܳ஼௉ா஼)

and H+(ܳு௉ா஼) will be swapped to another pool. The most important thing in this method

is classified the blocks into the cold pool or the hot pool. It can ensure which block has

involved wear leveling and will not be erased repeatly at short time.

 This method is similar to hot-cold swapping method. Dual pool method can

manage block and data are more rigorous than hot-cold swapping method. Dual pool

adjusts blocks belong to which pool in every write request. For this reason, it can

maintain a small standard deviation of the block erase counts, but it needs many

memory spaces to record information required for the algorithm.

2.2.7 Conditional threshold wear leveling

 Conditional threshold wear leveling is used to maintain multi-channel flash

memory [20]. When erase operation is trigged and the erase count difference between

just-erased block and minimum erase count block is larger than the specific threshold,

Conditional threshold wear leveling will copy the valid data in minimum erase count

block to just-erased erase block. To reduce runtime of wear leveling, it uses the blocks

in different channel that can read and erase at the same time. So both just-erased block

- 27 -

and minimum erase count block need to be in different channel. The threshold

definition is also different with previous methods. It has two levels definition of

threshold; the first level threshold will change with average erase count. In addition, the

second level threshold is a parameter for wear leveling.

 This method is used to multi-channel and multi-chip flash memory architecture to

improve the erase time; because the management of blocks in multi-channel and

multi-chip are very difficult and complex. The just-erased block doesn’t guarantee to

contain hot data, and thus this algorithm may perform unnecessary data movement. In

addition, the second level threshold tuning will influence the performance of

wear-leveling.

2.2.8 Efficient garbage collection policy

 Efficient garbage collection policy divides data and blocks into three types [21].

This method using modification-aware (MODA) page allocation method to manage

block and create three lists of hot data, worm data and cold data. The priority for

garbage collection action is from the hot list and warm list to the cold list, and all

blocks have opportunity to invoke garbage collection. Therefore, it can guarantee that

all blocks have good performance of utilization in the flash memory.

 This method has no policy for wear leveling, because the garbage collection action

also maintains good performance of wear leveling. However, it needs to define four

thresholds to control which block can join garbage collection policy. If we change the

application for the flash memory, those thresholds need to be redefined, otherwise it

cannot keep the same performance.

- 28 -

2.2.9 Static wear leveling

 Static wear leveling is used a bit table to record which block has been erased [22]

[23]. When there is difference between the number of total block erase count and the

number of block which has been erased during affter reset is larger than the specified

threshold, it will move the static data to the free block to balance the erase count in each

block. Therefore, a block erasing table (BET) is created to identify which block has

been erased after reset. Then, the static wear leveling will move valid data in the block

that has not been erased so far. This algorithm prevent cold data from staying at any

block for a long time, and then the maximum block erase count difference between any

two blocks can be minimized.

 This method can implement with hardware approach rather than software

approach because of it is very simple. However, the wear leveling threshold for various

system environments can be very different. Using inadequately tuned parameters can

cause unexpectedly high wear leveling overhead and worse performance of

wear-leveling.

2.2.10 Lazy wear leveling

 Lazy wear leveling is used to analyze logical blocks and physical blocks [24]. The

latest update of logical block is record. Elder block means that the erase count of this

block is larger than the average count. Otherwise, it is a junior block. This algorithm is

used to erase the logical block which not updates recently and copies valid data to the

elder block. An automatically on-line threshold tuning algorithm is proposed in [24].

 The proposed algorithm monitors dynamic disk workloads to adjust the duty-cycle

of wear-leveling, and thus the wear-leveling overhead and wear evenness can be

trade-off. However it requires much information to control the algorithm and it will

- 29 -

increase the design complexity and it also requires large memory space to record

information.

2.3 Summary

 Action of wear leveling needs extra execution time and memory space. Extra time

is consumed by coping cold data to hot block; Extra memory space is used to record

the information of wear leveling. Although wear leveling takes overhead and design

complexity, it can solve the early retire problem of the flash memory. So wear leveling

needs to trade-off both the performance and overhead in flash memory system design.

 We summarize wear leveling of existing methods as follows. Three conditions are

defined: first is what time need to do wear leveling; second is which block needs to do

wear leveling; third is where the data to place. These conditions can improve

performance of wear leveling, and extend lifetime of flash memory. However it also

increases cost of execution time and memory space.

 Table 2.1 we compare the pervious algorithms. In table 2.1, threshold truing

expresses this wear leveling needs a threshold. Triggering condition expresses what

kind of situation in the flash memory needs to invoke wear leveling. Each wear leveling

operation requires for addition block erase and page copy. Overhead of each wear

leveling operation includes that in each wear leveling, the block needs to be erased and

whether the block which needs to be copied valid data and move to another block. Each

algorithm needs extra memory space to record information for wear leveling. However

memory space is an expensive cost for the embed system, so reduction memory space

is very important.

- 30 -

Table 2.1: The comparison table of wear leveling algorithms

method Threshold

tuning

Triggering condition Overhead of each wear

leveling operation

RAM space

Hot-cold

swapping

Yes

Check the threshold between maximum

erase count and minimum erase count

Block erase:2

Block copy:2

EC

4096*17(bit)

Static-

dynamic

Yes

periodically Block erase:2

Block copy:2

EC + free_

pool

4096*17(bit)+

4096

Two level Yes

periodically Block erase:2

Block copy:2

EC

4096*17(bit)

Erase pool No

Block reach limited erase count Block erase:1

Block copy:1

EC

4096*17(bit)

Old-block

protection

Yes

On block erase Block erase:1

Block copy:1

EC

4096*17(bit)

Dual pool Yes

After each write Block erase:2

Block copy:2

EC+EEC+hot

_pool+cold_p

ool

4096*17*2(bit

)+4096*2

Conditional

threshold

Yes

After each erase Block erase:1

Block copy:1

EC+EC_chann

elavg

4096*17(bit)+

4*17

Efficient GC Yes

After each write Block erase:1

Block copy:1

EC+ hot_pool

+cold_pool+w

arm_pool

4096*17(bit)+

4096*3

- 31 -

Static

wear

leveling

Yes

After each erase Block erase:1

Block copy:1

EC+BET

4096*17(bit)+

4096

Lazy

Wear

leveling

No(online

tuning)

After each erase Block erase:1

Block copy:1

EC+

time_logical

page

4096*17(bit)+

4096*10

- 32 -

Chapter 3 Architecture and

implementation

3.1 Design of wear leveling

In this thesis, a low-complexity high-performance wear-leveling algorithm which

named sequential garbage collection (SGC) for flash memory system design is

presented. The proposed algorithm combines GC operation and wear-leveling into a

single process. In addition, the proposed SGC doesn’t require any tuning threshold

parameter as compared as prior researches. Thus it can be applied to various systems

without prior knowledge of the system environment. The low-complexity low-cost

SGC algorithm makes it is easy to be implemented by firmware-based or

hardware-based approaches.

 In a flash memory system, the embedded micro-controller has very limited

memory space, and the hardware and computing resources are constricted. Thus the

proposed SGC algorithm requires a low memory space and demands limited hardware

resources. The basic idea to combine GC operation and wear-leveling into a single

process is very simple that the blocks should be erased in a sequential manner.

- 33 -

3.2 Sequential garbage collection

Algorithm 1

 Algorithm 1 shows the pseudo code of the proposed SGC1 algorithm. In SGC1

algorithm, free_block means the number of free blocks in the flash memory, and index

is the index number of the block which erased last time. If the number of free blocks

becomes one, the controller executes SGC1 algorithm and performs GC operation on

the selected block. GC operation copies valid pages to the free block and erases the

selected block.

 The proposed SGC1 algorithm evenly distributes block erases over the entire flash

memory. Thus it has greatest wear-leveling performance. However, the GC operation

doesn’t consider the number of invalid pages in the selected block, and therefore, the

SGC1 algorithm may have many extra living pages copy in worse case conditions.

- 34 -

3.3 Sequential garbage collection

Algorithm 2

 To reduce extra living page copy overhead of the SGC1 algorithm, a bit vector

which named invalid page flag (IPF) is added. The IPF records whether a block contains

more than 75% invalid pages. For example, if IPF[index] is equal to 1, then it means the

block with index number: index contains more than 75% invalid pages. Oppositely, if

IPF[index] is equal to 0, then it means the block has less than 75% invalid pages. The

IPF vector can be updated during the write operation, and each block requires only

one-bit flag. The GC operation will erase the blocks with IPF=1 with a higher priority.

Algorithm 2 shows the pseudo code of the proposed SGC2 algorithm. In SGC2

algorithm, fcnt is the number of “1” in the IPF vector. If fcnt is not zero, there are blocks

having more than 75% invalid pages. In addition, seq and index are the index numbers

for searching for the target block for current GC operation. If the number of free blocks

becomes one, the controller executes SGC2 algorithm and performs GC operation on

the selected block. In SGC2 algorithm, if fcnt is zero, there has no block with a higher

priority. Then the blocks are erased in a sequential manner (step 2-6). Otherwise, if fcnt

is not zero, there are blocks having more than 75% invalid pages. The SGC2 algorithm

searches for the block with IPF=1 and then performs GC operation on the selected block

(step 8-11).

The SGC1 algorithm erases blocks in a sequential manner but it may have many extra

living pages copy overhead. The SGC2 algorithm uses the IPF vector to reduce the

overhead in the SGC1 algorithm, but it requires some clock cycles to search for high

priority blocks. The proposed SGC1 and SGC2 algorithms evenly distributes block

erases over the entire flash memory, and thus the lifetime of the entire flash memory

- 35 -

can be greatly lengthened. The proposed SGC algorithm requires a low memory space

and demands limited hardware resources, and thus it is easy to be implemented in the

flash memory system.

- 36 -

3.4 Experimental results

3.4.1 Environment setup

Table 3.1: Setting for the simulation

Storage capacity 2GB MLC

Storage block number 4096

Page number per block 128

Per page size 4kb

Endurance 10k-5k

Page read time 60ms (2,400 cycles)

Page write time 800ms (32,000 cycles)

Block erase time 1.5ms (60,000 cycle)

 We build the cycle-accurate simulation environment of a 2GB flash memory to

verify the effectiveness of the proposed SGC algorithm. The simulation parameters are

listed in Table 3.1. As shown in Table 3.1, the erase operation takes much longer clock

cycles than the other operation.

For comparisons with existing wear-leveling algorithms, we rebuild the GC

operation with greedy algorithm and named as GA. In GA, GC operation will select

blocks that have the highest number of invalid pages, and thus GA doesn’t consider the

wear-leveling problem. We also rebuild the static wear-leveling algorithms [22] [23]

- 37 -

(with threshold=10 and threshold=100) and named as SW. In the simulation, totally

120GB data are written to verify the performance of wear-leveling algorithms. The

example for these wear leveling algorithms are shown in Fig.3.1 to Fig.3.4 .

Fig.3.1 is Greedy garbage collection, In_page means invalid page number in each

block and EC means count of the erase block. The Greedy garbage collection will erase

the block which has maximum number with In_page and copies the valid data to free

block. If hot data write into the same block, it will erase this block more frequently and

cause larger erase count.

 Fig.3.2 is static wear leveling, ecnt means the total number of block erases

performed since the BET was reset, fcnt means the number of 1s in the BET, and BET

means block erase table (the 0 in the table means the block has not be erased after

reset) and EC means erase count of the block. The static wear leveling will erase a

block that has not been erased so far.

 Fig.3.3 is the proposed SGC1 algorithm. SGC1 evenly distributes block erases

over the entire flash memory.

 Fig.3.4 is the proposed SGC2 algorithm, fcnt means the number of 1s in the IPF,

and IPF means 75% invalid page flag (1: a block contains more than 75% invalid

pages). SGC2 will search for the block with IPF=1 and then performs GC operation on

the selected block, if there are no block with IPF=1, we will recycle the block in

sequential.

- 38 -

1

Garbage collection

Full
block

Full
block

Full
block

Full
block

Free
block

In_page=1
EC=5

In_page=5
EC=3

In=3
EC=4

In_page=4
EC=6

In_page=0
EC=0

index free

2

Full
block

Free
block

Full
block

Full
block

Free
block

In_page=1
EC=5

In_page=0
EC=4

In_page=3
EC=4

In_page=4
EC=6

In_page=0
EC=0

3

Full
block

Free
block

Full
block

Full
block

Full
block

In_page=1
EC=5

In_page=1
EC=4

In_page=3
EC=4

In_page=5
EC=6

In_page=1
EC=0

free index

4

Full
block

Free
block

Full
block

Free
block

Full
block

In_page=1
EC=5

In_page=0
EC=4

In_page=3
EC=4

In_page=0
EC=7

In_page=1
EC=0

5

Full
block

Full
block

Full
block

Free
block

Full
block

In_page=1
EC=5

In_page=5
EC=4

In_page=3
EC=4

In_page=0
EC=7

In_page=1
EC=0

index free

Fig.3.1: Greedy garbage collection

- 39 -

1

Staic wearleveling

Full
block

Full
block

Full
block

Full
block

Free
block

BET[0]=1
EC=5

BET[1]=0
EC=3

BET[2]=1
EC=4

BET[3]=1
EC=6

BET[4]=0
EC=5

index Free

2

Full
block

Free
block

Full
block

Full
block

Free
block

BET[0]=1
EC=5

BET[1]=1
EC=4

BET[2]=1
EC=4

BET[3]=1
EC=6

BET[4]=0
EC=5

ecnt=15
fcnt=3

3

Full
block

Full
block

Full
block

Full
block

Free
block

BET[0]=1
EC=6

BET[1]=1
EC=4

BET[2]=1
EC=6

BET[3]=1
EC=7

BET[4]=0
EC=5

free index

4

Full
block

Full
block

Full
block

Full
block

Free
block

BET[0]=1
EC=6

BET[1]=1
EC=4

BET[2]=1
EC=6

BET[3]=1
EC=7

BET[4]=1
EC=6

ecnt=20
fcnt=4

ecnt=16
fcnt=4

Full
block

Full
block

Full
block

Full
block

Free
block

BET[0]=0
EC=6

BET[1]=0
EC=4

BET[2]=0
EC=6

BET[3]=0
EC=7

BET[4]=0
EC=6

5

ecnt=21
fcnt=5

ecnt=0
fcnt=0

Fig.3.2: Static wear leveling

- 40 -

Fig.3.3: Sequential garbage collection_1

- 41 -

Fig.3.4: Sequential garbage collection_2

- 42 -

3.4.2 Lifetime of flash memory

 Lifetime is an important issue of the flash memory due to the endurance of the

flash memory. To measure flash memory lifetime, we use max erase count to show the

flash memory lifetime, and a larger maximum erase count means the lifetime of the

flash memory is shorter. The maximum block erase count after writing 120GB data is

shown in Fig.3.5. In GA, greedy algorithm performs GC operation on the blocks with

highest number of invalid pages. Therefore it may often erase on the same block which

stored the hot data. The maximum block erase count for GA is 632 in this simulation. In

SW, when the difference between the maximum block erase count and minimum block

erase count is larger than the specified threshold, SW moves the static data to the hot

block to balance the erase count in each block. The maximum block erase count for SW

is 210 with threshold value: 10 in this simulation and the maximum block erase count is

reduced as compared to GA. The maximum block erase count for SW is 582 with

threshold value: 100, and the maximum block erase count cannot be effective reduced

because using a higher threshold will worsen the performance of wear-leveling.

 The proposed SGC1 algorithm always erases blocks in a sequential manner, and

therefore it can achieve the lowest maximum block erase count which is 139 in this

simulation. However it may have many extra living pages copy overhead, and thus, the

proposed SGC2 algorithm uses the IPF vector to reduce the overhead in the SGC1

algorithm. The maximum block erase count of SGC2 is 157, and it is a little larger than

SGC1. The proposed SGC algorithm can effectively reduce the maximum block erase

count, and thus the lifetime of the flash memory can be greatly lengthened.

- 43 -

Fig.3.5: maximum block erase count.

3.4.3 Average Block Erase Counts

 Fig.3.6 shows the normalized average block erase count for four algorithms. SW

still uses the greedy algorithm to perform GC operation, but it requires extra GC

operations to balance the erase count in the blocks, thus the average erase count is larger

than GA. In SGC1, the efficiency in recycling the space occupied by invalid pages is not

as good as greedy algorithm, thus it causes many extra erase operations. Therefore,

SGC2 uses the IPF vector to reduce the overhead in SGC1, and then the average erase

count is greatly reduced.

632

210

582

139 157

0

100

200

300

400

500

600

700

GA SW(th=10) SW
(th=100)

SGC1 SGC2

m
ax

im
u

m
 e

ra
se

 c
ou

n
t

- 44 -

Fig.3.6: Normalized average erase count.

3.4.4 Distribution of Block Erase Counts

 Fig. 3.7 shows the standard deviation of block erase count in four algorithms. The

SGC1 algorithm always erases blocks in a sequential manner, and thus it can achieve a

smallest standard deviation value. SGC2 uses the IPF vector to reduce the overhead in

SGC1, and it also achieves a very small standard deviation as compared to SW. Fig.3.8

shows growing up of the standard deviation versus the amount of written data. As we

can expect, the standard deviation in SGC1 will not have any changes, and SGC2 also

achieves a very small standard deviation. However, in SW, the standard deviation is

growing up when the amount of written data is increased.

100 102.6 100.25

147.2

118.1

0

20

40

60

80

100

120

140

160

GA SW(th=10) SW (th=100) SGC1 SGC2

av
er

ag
e

er
as

e

co
u

n
t(

%
)

- 45 -

Fig.3.7: Standard deviations of block erase count

Fig.3.8: changes in standard deviations

208.6

24.9

89.8

0.3
11.2

0

50

100

150

200

250

GA SW(th=10) SW (th=100) SGC1 SGC2

S
ta

n
d

ar
d

 d
ev

ia
ti

on

0

32

4 20 40 60 80 100 120 140 160
GB

st
an

d
ar

d
 d

ev
ia

ti
on

SGC2

SGC1

SW

GC

- 46 -

3.4.5 Extra overhead

 Extra overhead of wear leveling includes: extra block erase and extra live-page

copy. As shown in Fig.3.9 and Fig.3.10, GA will collect the block which has maximum

invalid pages so it has lowest overhead of both block erase and page copying. SW is

bases on GA; if it is not triggered, SW and GA have the same performance in live-page

copy. If SW is with a high threshold (threshold=100), it will not perform wear leveling

action frequently, so it does not increase much overhead as compared with GC. The

SGC1 algorithm always erases blocks in a sequential manner; it does not consider the

number of invalid pages in each block. Therefore, SGC1 has higher living page copy,

besides it will slow down the performance of the flash memory. The SGC2 algorithm

erases the block that has more than 75% invalid pages with a higher priority so it can

decrease the overhead with each erase.

 Fig.3.9: The increased ratio of block erase(%)

100 102.6 100.25

147.2

118.1

0

20

40

60

80

100

120

140

160

GA SW(th=10) SW
(th=100)

SGC1 SGC2

in
cr

ea
se

 r
at

io
 o

f
b

lo
ck

er
as

e
 (

%
)

- 47 -

Fig.3.10: The increased ratio of Live page copying (%)

3.4.6 Total cycles for writing data

Fig.3.11 shows the total cycles for writing 120GB data in four algorithms. In

Fig.3.11, the “write” means the total cycles taken in page write operations, and “erase”

means the total cycles in erase operations. The “search” is the total cycles in searching

the block to be erased in each algorithm. The “live page copy” means the total cycles

spent in living pages copy.

In SGC1, the efficiency in recycling the space occupied by invalid pages is not as

good as greedy algorithm, thus it requires more extra erase operations and results in

100
106.6 100.7

217.6

143

0

50

100

150

200

250

GA SW(th=10) SW
(th=100)

SGC1 SGC2

T
h

e
in

cr
ea

se
d

 r
at

io
 o

f
L

iv
e

p
ag

e
co

p
yi

n
g

(%
)

- 48 -

more cycles spent in living pages copy. SGC2 uses the IPF vector to reduce the overhead

in SGC1, and it can reduce the total cycle time as compared to SGC1. Although the

proposed SGC2 algorithm has longer execution cycles than SW for writing 120GB data,

it is rare to continuously write so many data in a 2GB flash memory. As a result, the read

and write speed degradation will not be so worse in a real application.

Fig.3.11: Total cycles for writing 120GB data.

0

500,000,000,000

1,000,000,000,000

1,500,000,000,000

2,000,000,000,000

2,500,000,000,000

3,000,000,000,000

GA SW(th=10) SW
(th=100)

SGC1 SGC2

cy
cl

e
of

 t
ot

al
 1

20
 G

B
 w

ri
te

search

Live page copy

erase

write

- 49 -

3.5 Summary

 Table 3.2 shows the summary for four methods tested in 120GB write request. GA

has great performance in recycling invalid pages. Thus it has both lower overhead and

higher speed for flash memory execution. However, it causes the flash memory retire

early with unbalanced block utilization. SW with GA algorithm can reduce the

overhead of living page copy. However, it needs more RAM space to manage the BET

table. SGC1 can achieve lowest maximum erase count and standard deviation.

Otherwise, SGC1 has higher overhead in living page copy because it does not consider

number of invalid pages in the block, so it may erase the block which stored a lot of

valid pages. SGC2 improves the disadvantage of SGC1, and it can reduce the overhead

in SGC1. Although there are a little increase in maximum erase count and standard

deviation is SGC2,we still choose SGC2 for a flash memory system for performance

consideration.

Table 3.2: Performance Comparisons.

 GA SW SGC1 SGC2

Average erase count 93.9 96.3 138.1 110.8

Max erase count 632 210 139 157

Standard deviation 208.6 24.9 0.3 11.2

Normalized living pages copy (%) 100 106.6 217.6 143.0

Total cycles for writing 120GB

data (109)
1,661 1,707 2,471 1,958

Normalized total cycles for writing

120GB data (%)
100 102 148 117

RAM space (bit) 4096*17 4096*(17+1) 0 4096

- 50 -

Chapter 4 FPGA simulation result

 We use the Socle Technology Corporation MDK-3D development board to

verify the proposed SGC algorithm. The CPU is ARM1176JZF and the frequency is

up to 1GHz. The AHB frequency is up to 200MHz and support the

NOR-flash/NAND-flash/DDR2.

Fig.4.1: MDK-3D board photo

 We use Verilog code to rebuild the SGC algorithm. It contains 4096 blocks

and each block contains 128 pages. FTL is a complexity design and needs large

memory space to store mapping table, so we do not implement it in FPGA simulation.

Therefore, we produce PPAs to control our flash memory.

 Fig.4.2 is the block diagram of our design in FPGA testing. Flash controller

consists with sequential garbage collection. Flash memory stores data and

information for flash controller. Test patterns use the bus to writing data into flash

- 51 -

controller and store in 2GB flash memory.

Fig.4.2: FPGA testing module

 Fig.4.3 is the block diagram of our design in FPGA. Address and command

translate into system controller and memory controller respectively with AHB bus;

patterns are been stored into SRAM. After testing, each block erase count in the flash

memory is translating into APH bus.

Fig.4.3: FPGA design module

 In FPGA design, we rebuild a 2GB flash memory module to implement our

SGC algorithm design. There have same performance of FPGA simulation and C

simulation, therefore it can prove the algorithm of SGC can implement in hardware.

- 52 -

SGC algorithm can balance erase count of blocks also can implement in hardware.

Fig.4.4: FPGA hardware design

Table 4.1: Device utilization summary of FPGA implement.

Number of slice register 49,318

Number of slice LUT 21,024

 Because the performance results of FPGA implement is the same as C

simulation. It can prove that sequential garbage collection (SGC) methods can the

implemented by hardware.

- 53 -

Chapter 5 Conclusion and future

work

 In this thesis, a low-complexity high-performance wear-leveling algorithm for

flash memory system design is presented. The proposed SGC algorithm combines GC

operation and wear-leveling into a single process, and it doesn’t require any tuning for

threshold parameters. Simulation results show that the proposed SGC algorithm has the

lowest maximum block erase count and smallest standard deviation. In addition, the

low-complexity low-cost SGC algorithm makes it is easy to be implemented by

firmware-based or hardware-based approaches. Thus the lifetime of the flash memory

can be greatly lengthened by the proposed SGC algorithm.

 The SGC algorithm has high overhead needs to be improved, thus SGC2 can

reduce 30 % overhead of SGC1. By reducing overhead, we can increase performance

of the flash memory. In the future, we can use SGC algorithm to maintain standard

deviation and addition other effective policy to reduce overhead in living page copy.

- 54 -

Reference

[1] M-Systems, “Two Technologies Compared: NOR vs. NAND,”

http://139.138.48.19/pdf/NAND/MSystems/MSystems_NOR_vs_NAND.pdf

[2] TOSHIBA, “NAND vs. NOR Flash Memory Technology Overview,”

http://www.maltiel-consulting.com/NAND_vs_NOR_Flash_Memory_Technolo

gy_Overview_Read_Write_Erase_speed_for_SLC_MLC_semiconductor_consu

lting_expert.pdf

[3] GRUPP, L., DAVIS, J., AND SWANSON, S., “The bleak future of nand flash

 memory,” http://static.usenix.org/events/fast/tech/full_papers/Grupp2-8-12.pdf

[4] ELNEC, “NAND Flash Memories and Programming NAND Flash Memories

Using ELNEC Device Programmers,”

http://www.elnec.com/sw/an_elnec_nand_flash.pdf

[5] Samsung, “The Samsung SLC NAND flash Advantage,”

http://www.psism.com/SLC%20vs%20MLC.pdf

[6] TOSHIBA, “SLC toggle,”

http://www.semicon.toshiba.com.tw/product/memory/selection/nand/slc/toggle/i

ndex.html

[7] Samsung Electronics, “K9GAG08U0M 2G8bit NAND Flash Memory Data

 Sheet,” 2006.

[8] Intel, “Understanding the flash translation layer (FTL) specification,”

 http://developer.intel.com, 2010.

[9] T.-S. Chung, D.-J. Park, S. Park, D.-H. Lee, S.-W. Lee, and H.-J. Song, “A survey

 of flash translation layer,” in Proceedings of Journal of systems Architecture

 (JSA), Vol.55, pp. 332-343, May. 2009.

[10] Atsuo Kawaguchi, Shingo Nishioka, and Hiroshi Motoda, “A flash-

 memory based file system, ” in Proceedings of USENIX Annual Technical

- 55 -

 Conference, Jun. 1995, pp. 155-164.

[11] Micron, “Wear-Leveling Techniques in NAND Flash Devices,”

http://www.micron.com/~/media/Documents/Products/Technical%20Note/NAN

D%20Flash/151tn2942_nand_wear_leveling.pdf

[12] Wear-Leveling and Life Span, “Wear-Leveling and Life Span,”

http://www.magicram.com/images/uploads/file/Wear%20Leveling%20Mechanis

m.pdf

[13] Micron, “Bad Block Management in NAND Flash Memory,”

http://www.micron.com/~/media/Documents/Products/Technical%20Note/NAN

D%20Flash/tn2959_bbm_in_nand_flash.pdf

[14] Lin-Pin Chang and Tei-Wei Kuo, “Efficient management for large-scale

flash-memory storage systems with resource conservation, ” ACM Transactions

on Storage (TOS), vol. 1, no. 4, pp. 381-418, Nov. 2005.

[15] M-Systems, “TrufFFSr Wear-Leveling Mechanism.”

http://csis.bits-pilani.ac.in/faculty/sundarb/courses/old/spr11/dstn/readings/sheet

s/trueffs.pdf

[16] STMicroelectronics, “Wear Leveling in Single Level Cell NAND Flash

Memories,”

http://www.eetasia.com/ARTICLES/2004NOV/A/2004NOV29_MEM_AN09.P

DF?SOURCES=DOWNLOAD

[17] SanDisk, “Sandisk Flash Memory Cards Wear Leveling,”

http://www.scribd.com/doc/7010332/SANDISK-Flash-Memory-Cards-Wear-Le

veling

[18] T. Gleixner, F. Haverkamp, and A. Bityutskiy, “UBI -Unsorted Block Images,”

 http://linux-mtd.infradead.org/doc/ubidesign/ubidesign.pdf

- 56 -

[19] Li-Pin Chang, “On efficient wear leveling for large-scale flash-memory storage

systems,” in Proceedings of ACM Symposium on Applied Computing (SAC), Mar.

2007, pp. 1126-1130.

[20] Wen-Kai Hsieh and Hsi-Pin Ma, “Conditional threshold wear-leveling algorithm

for multi-channel NAND flash memory, ” in Proceedings of International

Symposium on VLSI Design, Automation, and Test (VLSI-DAT), Apr. 2010, pp.

147-150.

[21] Kee-Hoon Jang and Tae-Hee Han, “Efficient garbage collection policy and block

management method for NAND flash memory,” in Proceedings of International

Conference on Mechanical and Electronics Engineering (ICMEE), Aug. 2010, pp.

327-331.

[22] Yuan-Hao Chang, Jen-Wei Hsieh, and Tei-Wei Kuo, “Improving flash

 wear-leveling by proactively moving static data, ” IEEE Transactions on

 Computers, vol. 59, no. 1, pp. 53-65, Jan. 2010.

[23] Yuan-Hao Chang, Jen-Wei Hsieh, and Tei-Wei Kuo, “Endurance enhancement of

flash-memory storage systems: an efficient static wear leveling design,” in

Proceedings of ACM/IEEE Design Automation Conference (DAC), Jun. 2007, pp.

212-217.

[24] Li-Pin Chang and Li-Chun Huang, “A low-cost wear-leveling algorithm for

block-mapping solid-state disks,” in Proceedings of ACM SIGPLAN/SIGBED

Conference on Languages, Compilers, Tools and Theory for Embedded Systems

(LCTES), Apr. 2011, pp. 31-40.

[25] H. S. Lee, H. S. Yun, and D. H. Lee, “HFTL: hybrid flash translation layer based

 on hot data identification for flash memory,” IEEE Trans. Consumer Electronics,

 vol. 55, no. 4, pp. 2005-2011, Nov. 2009.

[26] “NAND flash price”, http://www.cnyes.com/fc/metal/fc_flash.asp

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

