
 

 

國 立 中 正 大 學 

資訊工程學系研究所 

 

碩 士 論 文 

 

可應用於改善固態硬碟磁碟陣列之存取效能的

同位元檢查碼及資料的快取管理機制 

 

A Parity Check and Data Cache Management Method to 

Improve the Performance of a Solid-State Disk-Based RAID 

 

研 究 生 : 許皓翔 

指導教授 : 鍾菁哲 博士 

中華民國 一百零一 年 七 月 

 



 



 
 



 



 

i 

摘要 

在這篇論文中，我們探討了固態硬碟在磁碟陣列中所遇到的問題並且提出新的快

取管理機制和適合的同位元檢查碼。固態硬碟主要元件有控制器、平行架構的快閃記

憶體和輸出輸入的介面所組成。固態硬碟有出色的特點像是讀取速度快、抵抗震動的

能力很好和較低的耗電量，但是固態硬碟也有些缺點像是有限的寫入次數和寫入的最

小單位是分頁但是抹除卻是一整個區塊，這些缺點主因是快閃記憶體的特性造成。 

由於固態硬碟的缺點是傳統硬碟所沒有的，如果直接把固態硬碟直接用在磁碟陣

列架構中，會導致固態硬碟的效能無法發揮且可能造成使用壽命減短。在磁碟陣列中

含有同位元檢查碼，同位元檢查碼是由每一筆資料彼此透過互斥運算所得到的值，同

位元檢查碼涉及到讀取固態硬碟和寫入固態硬碟的動作，在一般傳統的磁碟陣列架構

中，每一筆新的資料寫入就會伴隨新的同位元檢查碼產生和寫入，頻繁的同位元檢查

碼寫入會導致磁碟陣列系統效能下降和固態硬碟使用壽命下降。 

為了解決上述問題，使得固態硬碟能在磁碟陣列中發揮應有的效能，我們參考了

前人的方法並與本論文的快取管理機制做結合，在本論文所提出的快取管理機制可以

同時減少產生同位元檢查碼所需的讀取次數和同位元檢查碼寫回固態硬碟中的次數，

此外我們整理了近年來相關的論文研究，並且討論先前研究的優點和缺點。 

我們自己建立一個磁碟陣列的模擬平台，在這平台上我們實踐先前研究的方法並

且和本方法做比較，另外我們也透過可程式化閘陣列(FPGA)平台來做驗證。 

  



 

ii 

Abstract 

In this thesis, we discuss the problems of Solid-State Disks (SSDs) with RAID scheme 

and propose a parity check and data cache management method. The major components of  

a SSD are a controller, flash chips and I/O interfaces. SSDs have more advantages than 

HDD, such as, shake resistance, small power consumption and faster performance. However, 

SSDs have some drawbacks such as limited write times and the unit for write operation is a 

page, but the unit for erase operation is a block. These drawbacks contribute to flash chip’s 

characteristics. 

  SSDs also have some problems that never happened in the HDD. It is not suitable to 

directly dispose SSDs to the RAID-5, or the performance of SSDs and life cycle time of SSDs 

will be decreased. In the RAID scheme, the parity is generated by every data exclusive-or with 

the other data. The generation of parity includes read operations and write operations to the 

SSDs. Whenever there is a new write request in the RAID scheme, the parity must be generated 

or updated and written it back to SSDs. The frequent parity update results in the poor 

performance of SSDs and shortens the life time of SSDs. 

This thesis combines the earlier methods and the proposed efficient buffer management 

method with a cache. This proposed efficient buffer management method reduces both of 

read operations and write operations for generating parities in RAID system. We also 

summarize previous researches and RAID scheme in recent years. Moreover, we also 

compare advantages and disadvantages in each RAID scheme. 

In addition, we implement a RAID simulator and compare prior RAID architectures 

with the proposed method. We also verify the proposed scheme in FPGA.  
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For SSDs, the flash memory is basic components to store data. Now in the market, the 

mobile devices like smartphone and tablet computer all adopt the flash memory as the 

storage system rather than traditional HDD. The flash memory has some unfavorable 

restrictions such as limited write times and erase before write. The minimum unit of write 

operation is a page, but when there is no free page, the flash controller must erase a block to 

recycle free pages. Before the controller erases a block, the controller must copy the valid 

data in the block to another free block, this operation is called garbage collection (GC).  

Table 2.1 shows that block erase time is ten times longer than page program time. 

From above terrible restrictions, we can figure out that the total cycles of write operation, 

erase block operation and garbage collection are very terrible. As a result, how to decrease 

the number of write operations is very important. When the write operations are decreased, 

the life time of flash memory is extended and the performance is improved. The same 

situations in SSDs, we can add cache and efficient buffer management method to decrease 

the write operations and erase operations. 

Table 2.1 The simple specifications of NAND flash memories [9]. 
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RAID-3, RAID-4, and RAID-5 all use extra storage devices to store parity so that they 

can tolerate one storage device failed. RAID-3 uses a byte-level stripping and parity data. 

Both RAID-4 and RAID-5 use block-level stripping and parity data. The minimum number 

of the storage devices is three. Among these three storage devices, two of them are 

responsible for storing data and another one is for storing parity data in RAID-3 and 

RAID-4.  

The RAID-3 and RAID-4 dispose the parity to the fixed storage devices. Dispose the 

parity to the fixed storage device causes the parity storage device becomes very busy all the 

time. Because whenever data are updated or written to the storage device, the parity must be 

calculated and updated. That means the storage device which stored the parity has a lot of 

write operations as shown in Fig. 2.4. RAID-5 disposes the parity to every storage devices 

so that parity write operations are separated into each storage devices, as shown in Fig. 2.5. 

 

 

Fig. 2.4 The RAID-4 architecture 
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This thesis uses the RAID-5 architecture. However, RAID-5 has a critical drawback 

which is frequently parity writes. In Fig. 2.5, the parity P0 is generated by D0 ♁ D1 ♁ D2 

♁ D3. The ♁ represents the exclusive-or operator. When we update a data such as D1, the 

parity P0 must be updated. Therefore no matter how large or small amount of data are 

updated, the parity must be generated again and written to the storage device. The cost of 

parity generation includes read operations which read data from the storage device and a 

write operation. 

 

 

Fig. 2.5 The RAID-5 architecture 
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RAID-6 enhances the reliability from RAID-5. RAID-6 also uses block-level stripping 

and two parities across each storage devices as shown in Fig. 2.6. RAID-6 needs one more 

storage device to store more parity data, so the minimum number of storage devices is four. 

When RAID-6 updates or writes a data, two parities must be calculated and updated. As a 

result, the management of parity is more complex and spends more time. 

 

 

Fig. 2.6 The RAID-6 architecture 
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RAID 10 also named RAID 1+0, the lower layer is RAID-1 and the upper layer is 

RAID-0 as shown in Fig 2.7. Oppositely, the lower layer is RAID-0 and the upper is RAID 

1 with RAID 01. Both RAID 01 and RAID 10 need at least four storage devices. Both of 

theirs capacity utilization is 50 percent as shown in Fig. 2.7, so the costs are also very 

expensive. 

 

 

Fig. 2.7 RAID 10 schemes has 50 percent utilization of storage device. 

 

The storage capacity utilization and performance in RAID-5 are acceptable. We adopt 

the RAID-5 architecture due to above considerations. This thesis represents RAID-5 as n+1, 

n represents the number of data storage devices and 1 is for parity store. For example, Fig. 

2.5 is a 4+1 RAID-5 architecture. 
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For the RAID-5, [15] proposes wear leveling scheme which places the parity data 

dynamically and creates a k-bit map table for recording the number of parity write times as 

shown in Fig. 2.9. When one disk’s write time is larger than the specific value, the wear 

leveling scheme will exchange that parity data with other parity data which has lower write 

times. The wear leveling scheme only balance the SSDs write times, the root cause of the 

frequently parity update problem that is not solved. 

 

 

Fig. 2.9 The bitmap table of RAID-5 architecture  
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For the RAID-6, [15] uses Reed-Solomon (RS) codes and EVENODD codes to 

analysis which codes are suitable for SSDs. The experimental results show that RS codes 

has better reliability, but the parity data calculations for RS codes are complex and have a 

critical drawback in large amounts of write operations. By contrast, EVENODD codes is 

more simple, because it only needs the exclusive-or to encode the parity and has small 

amount of write operations.  We can learn that concerns of the SSDs-based RAID 

architecture are different from the HDD-based RAID. 

To solve the frequently parity data write problem in RAID architecture, the prior 

research add a parity buffer to reduce parity data write times. This way is called the delay 

parity update scheme. The parity data is kept in the parity buffer until specific conditions 

met. The delay parity update scheme can definitely reduce the parity write times. 
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Both [18] and FRA [19] use the delay parity update scheme. They reduce the parity 

data write times but the parity generation overhead is heavy. They must re-calculate the 

parity data as long as the write requests coming. Table 2.2 is a comparison table of prior 

approach. 

The Partial Parity Cache PPC [14] also adopts the delay update scheme and the partial 

parity to encode the parity. The PPC [14] generates a partial parity and stores it into the 

cache. When the cache is full, the partial parity must be rebuilt to the full parity, and written 

to the SSD.     

The experimental results indicate that read operations for generating a parity are 

decreased obviously. However, the parity write times are almost the same with other 

approaches. When PPC updates data which already exists in the storage device, PPC 

scheme often read old data and old parity to update parity. 

 

Table 2.2 The comparison of prior research. 
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The I-CASH [21] uses the advantages of SSDS to build the hybrid storage architecture 

as shown in Fig. 2.11. The read speed of SSDs is very fast, so the I-CASH usually reads by 

SSDs and writes data by HDDs. The SSDs store the data’s reference information. The HDD 

stores the data which combines reference information. When I-CASH writes data, the 

I-CASH must read reference information from the SSDs and encode it with data to the 

HDDs. When I-CASH read data, the I-CASH must decode the data from the HDDs with 

references information from SSDs.  
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Fig. 2.11 The I-CASH architecture. 
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The RAF [22] also uses fast read speed characteristic of SSDs. The RAF uses one SSD 

as a cache and four HDDs in the storage system as shown in Fig. 2.12. The RAF divides the 

SSD into a write cache and a read cache. Both of read and write cache only store random 

data, this is because that random access speed in the SSD is faster than the traditional HDD. 

The sequential data are handled by HDD, since the sequential read or write speed of HDDs 

are close to SSDs. Whatever read or write operations, the random data is cached by a SSD 

and the sequential data is performed by HDDs. 

 

 

Fig. 2.12 The RAF architecture. 
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Fig. 3.1 The overall of system architecture 

 

We use this characteristic to select the data which existing in the partial parity cache. 

This method is called an efficient buffer method. The efficient buffer method tries to avoid 

that the partial parity cache being full. When the partial parity cache is full, the partial parity 

must be rebuilt to the full parity. To build the full parity, the RAID controller must read data 

from storage devices and write back the full parity to the storage device. Therefore the 

proposed efficient buffer method can greatly reduce the cost in the RAID system. 
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Fig. 3.5 The flowchart of PPC [14]. 
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Fig. 3.6 shows the flowchart of the proposed efficient buffer method. The major 

difference between PPC [14] and our method is the data stripe selection in the write cache. 

The victim stripe selection rule is that the stripe is in both PPC and the write cache will be 

chosen firstly. This stripe must contain maximum number of pages. If the related partial 

parity of the stripe exists in the PPC, we can merge the existing partial parity and don’t need 

to request another for PPC space. When PPC space is full, it will need to compute the full 

parity and writes back parity data to the storage device, thus the overhead is very huge. We 

also use a data buffer to reduce the cost of the partial parity update, because the controller 

maybe read data from the storage devices for updating the partial parity.  
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Fig. 3.6 The operation flowchart of proposed scheme. 
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Fig. 3.3 The structure of the PPC and the data buffer 

The data structure of the write cache is shown in Fig. 3.4. The data structure of the write 

cache is similar to the partial parity cache. The major difference is that the write cache 

contains data values in each entry. The n represents the number of storage devices in the 

RAID. The size of data area is that n * page size. 
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Fig. 3.4 The structure of the write cache. 
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Fig. 3.7 The operation of proposed scheme. 
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Both PPC and write cache will not have enough free space as host system keeps access 

the RAID, they are encountered frequently selections of victim stripes or partial parity 

generations. Fig. 3.8 shows that how to use the partial parity to merge data. There are many 

entries in the write buffer which contain three data. In addition, we assume there is only one 

free space in the PPC.  

In PPC [14], they will select any stripe which contains most of data to be a victim 

stripe. If the S1 are selected to be a victim stripe, the PPC will be full. When the PPC is full, 

the controller will select the victim partial parity in the PPC by the LRU algorithm to 

generate and write back full parity to the SSDs. Thus the proposed method will select S7 as 

a victim stripe since it both exists in the PPC and write buffer. If the controller selects 

partial parity P7 to be a victim stripe, the parity generation costs are two read and one write 

operation to the SSDs. The two read operation is that the controller must read D29 and D31 

from the SSDs to build the full parity, because the current partial parity P7 is only related to 

D28 and D30. The one write operation is that the generated full parity must be written to the 

SSDs. 

The proposed efficient buffer method will check whether the data stripe in the write 

buffer is also in the PPC or not. We will select the S7 rather than S1 to be a victim stripe. The 

stripe S7 in the write cache can be merged with the P7 in the PPC, so the partial parity P7 can 

update D’28, D29, and D31 to be a new partial parity P7. The steps are as follows: 

1. Update the new data to be a new P’7 

P’7 = P7 ♁ D28 ♁ D’28 ♁ D29 ♁ D31 (D28 is from the data buffer)  

2. Write D’28, D29, and D31 to the data buffer (D28 will be replaced by D’28) 

3. Write D’28, D29, and D31 to SSDs (in SSD_0, D28 are overwritten by D’28) 
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Fig. 3.8 The operation of the proposed parity merge. 
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The new partial parity P’7 replaces the old partial parity P7 and does not occupy a new 

space in the PPC. Therefore, the PPC will not be full in this example and we can reduce the 

number of full parity generation and write back parity data to the SSDs. 

We compare the PPC [14] partial parity generation costs with the proposed efficient 

buffer method as follows according to this example. 

 

 PPC [14] costs : (Either S1 or S7 is selected)  

Two read operations from SSDs and one write operation to SSDs 

 The proposed method costs : (only S7 will be selected) 

No costs 

 

Our method can reduce the parity data write times to the SSDs, and we use the PPC 

characteristics and merge the data with existing partial parity as many as possible. 
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Fig. 3.9 The overhead of write full parity back to SSDs. 
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Fig. 4.1 The RAID-5 simulator. 

 

We profile two benchmarks: iozone [27] and postmark [28] as inputs. From the 

profiling results, we use iozone and postmark as a sequential writing test and random 

writing test, respectively. 
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We assume the specification of our RAID system as follows: 

 

1. SSD’s page size is 2KB. 

2. The write cache is 16KB. 

3. The data buffer and the PPC are 16KB. 

4. All the comparisons are based on RAID-5 (4+1). 

   

We use a small size of the write cache and the PPC, because we want to emphasis on 

that the efficient buffer method can reduce the overhead without too much hardware costs. 

We build four types of RAID storage systems as follows: 

 

1. RAID-5      (only has one write cache) 

2. FPC         (RAID-5 and full parity cache) 

3. PPC         ( RAID-5 and Partial Parity Cache [14] ) 

4. The proposed  (RAID-5, PPC, and a data buffer)  
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The normalized read times for parity generation of RAID-5, FPC, PPC, and the 

proposed scheme is 0.28, 0.28, 0.5, and 0.32 respectively. The proposed scheme can 

effectively decrease the number of read times for parity generation by 36 percent as 

compared to PPC. 

However, the read times for parity generation of both PPC and the proposed scheme is 

larger than FPC and RAID-5. The reason is that we use iozone benchmark as sequential 

inputs. There are many re-write requests which are the files are already existed in the 

storage system, so there are many partial parity update. The read times ingredients as 

follows: 

 The read times of PPC [14] : 

partial parity update + full parity write back 

 The read times of the proposed method : 

full parity write back 

 

The PPC’s read times are divided into two parts: partial parity update and full parity 

write back. The PPC’s read times is 0.5 which is the sum of 0.32 (partial parity update) and 

0.18 (full parity write back). This is why we need to add a data buffer. The data buffer 

removes the read times of partial parity update and the hardware cost is not too expensive. 
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Our scheme handles the random requests very well, because the parity merge will often 

happen in the partial parity cache with random data input. The Rcycle and WPcycle of the 

proposed approach are smaller than the PPC [14]. The random access request is more 

important than sequential request. 

The performance of the iozone benchmark (sequential access requests) in each RAID 

type is nearly the same, because the controller almost selects whole ingredients data of the 

stripe to write back to SSDs. For example, the controller selects 4 data: D0, D1, D2, and D3 

to write back to SSDs. The 4 data: D0, D1, D2, and D3 are written back to SSD_0, SSD_1, 

SSD_2, and SSD_3 simultaneously. When controller selects the full data (4 data), both of 

PPC and proposed scheme don’t need to rebuild the full parity, the overhead of generating 

partial parity and full parity is the same. The Rcycle and WPcycle in the each scheme are 

almost the same in this case. Both partial parity and the full parity is D0♁D1♁D2♁D3 in 

this example. Besides, the EBF is very smaller, because the Efficient Buffer Method only 

spends 1 or 2 cycles to manage the buffer. 
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Fig. 4.8(a) shows that the ratio of read operations of the PPC in postmark benchmark 

(random writing requests). The numbers of read times which is for full parity write back to 

SSDs is 0.73, 0.79, 0.64, and 0.51, respectively. The numbers of read times which is for 

partial parity update to SSDs is 0.33, 0.40, 0.48, and 0.56 respectively. We can find that the 

number of read times for partial parity update is increased gradually with a larger stripe size, 

because the partial parity associates with more data with a wider data stripe. The partial 

parity associate with more data means that there are more opportunities to merge data by 

partial parity.  

Fig. 4.8(b) shows that the ratio of read operations of the proposed scheme in postmark 

benchmark. The proposed scheme adds a data buffer; therefore, there is no read operation 

from the SSDs for parity update. 

Fig. 4.9(a) shows the ratio of read operations of the PPC in iozone benchmark 

(sequential writing requests). The read times for full parity write back to SSDs with 

different stripe size are 0.18, 0.64, 0.53, and 0.34 respectively. The number of read times 

which is for partial parity update to SSDs is 0.32, 0.39, 0.47, and 0.54 respectively. We find 

that the read times for full parity generation in random writing requests are higher in 

sequential writing requests. 

In Fig 4.9(b), the proposed scheme uses a data buffer to avoid the read operation from 

the SSD, and thus the total read times are reduced accordingly. 
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(b) 

Fig. 4.11 The different of data buffer size and parity cache size with Postmark 

 (a) Read Times (b) Write Times (Normalized to 4000 write requests) 
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Fig. 4.12 shows the simulation results with different partial parity cache size and a 

fixed 16 KB write cache size. The times is decreased as the size of partial parity cache is 

increased. Thus, we can only increase the size of partial parity cache to obtain better 

performance.     

Fig. 4.12(b) shows that the write times for parity generation of the proposed scheme 

are all smaller than PPC scheme. We only need to add a larger partial parity cache as 

compared the simulation results shown in Fig 4.11. The reason is with a larger write cache 

we can only store more data when there are more data in the cache, the I/O performance is 

not improved obviously. In addition, the efficient buffer method can manage the partial 

parity very well.  
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(b) 

Fig. 4.12 The different of partial parity cache size with Postmark     

(a) Read Times (b) Write Times (Normalized to 4000 write requests) 
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