Ve Aty r‘]{&ﬁiﬁ{k\#—‘i;l 2 5 B L th
fF l*’m*ﬁg_@& ﬁt,} m'}}_,ﬁ‘.%‘;—m_#\g#,]
:

I L S |

"'l A
. 'i'.l..-l" ’.- ""‘;-\l'" 1 -:-\-\Cl..-:-
A Parity Check and Da{fa Cache Management Method to

Improve the Performance of a Solid-State Disk-Based RAID

g o2 wes
R EFYT EL

dEAR -FF- & <



B P EASEHATEREE
£ & £ X B ¥ %

AAFHEY ERIEL A
B A PrebM AR 2 X

(TRANKEE ERAEa R 2 FREAEY M AREEHRE
Heh B 32 M 4] DA Parity Check and Data Cache Management
Method to Improve the Performance of a Solid-State Disk-

Based RAID.

AELRA B R AR

15 W 7@%% %%
o] # _ézﬂ Lla




Ay EALRALEMBRXARELE

WL
B AR AMRZAX

(T8 A 7 2 3 ) A5 20 2R sk i 1 5] 2 77 FR 2 o) P 48 7C

BEER TR RREFEMBDA Parity Check and
Data Cache Management Method to Improve the
Performance of a Solid-State Disk-Based RAID.
BEEBREL  BORALTBRRRE -

]



a3 XA E
(AT ST N S T A S A4 B A 28 1+ (AR i O L A PR LA D
1D:100CCUD0392063
K#‘%ﬁéajﬁﬁ?ﬁ#EZE%X%?&#@AEMK%%%M%&__&M&E

AR SRS B B 2 SR -
SRR E ¢ _ L A A R R ;

A A A

&l
fE M © §EET Ching-Che Chung

LRI AR RIS EME) » RN EATFE IR Z R Lk
% B - FARSRFIED - LIRS R © SO 5 B A AR N\ SRR [
R - ESRSILZ o DABKGSE - SeRe (b = EF ISR SOEITESR - WEE AR AR
firfEs -

UEART ¢ ZEEE S A SR AR RIS » IR B AT E R
B B FIE » IR 2R - SO I EA S S AR B R R ABRRS
BB -

R b mva:ER) e

O #eATCBBas - BehY £ A BEMIK

gﬁw 2017 4 08 H 15 H:RAMNL 2017 & 08 H 15 HE&FK

PERE N © Ereh¥E +

EEsrgme: ot O Rl 4_8 B ISH




3t &

BiEhw ¥ o AP FAA S ARG ¢ T8 D] AR AL T 3R AT enE
W e ek AR AS c ARABRLE AR B T AR ORP
ﬁ%#ﬁﬂﬁ»ﬁﬁﬁ%ﬁ#oﬁ@ﬁ G A BRI GE PiE R S SRR R B D
o PR e ac T € 0 R I FAEA S § RSB E G LnE r e~k
F] AL

JE RS T SRR - FRRA S bRl PP 2o R R i g A o

O E A e BE R B A A e Aok B Bk PR R B AEaE
R FERFAGHAGFIREZFELI TGS R T EARE Aggds]y

L3

L\»\«

FiREARAR  FEAKRABId F - SFRRLEET TEY TR PE F

% = &

AR IIF AL AR » q”’bri\ T f- Al SRR A S S

N

‘-\\1-

%m%#wxfg %%ﬁkwmﬁé AR o HROE AR E

: . .
%g»ggﬂ@m@ﬂfi*ﬁ%%#qgﬁﬁﬁ g

;‘ | |_ _ I i |'Il
I
éﬁﬂ%%wwa,@p_éﬁﬁ%_@ﬁgwwaﬁ@ysz,Awg ;

[

T A 1

~.

.
G i¢°m}%?%%% % R R R e T
-ui;{, e - \;u
pER AR ﬁm%ﬁmwﬁm§%4§#FWmﬁﬁmawﬂnﬁﬁﬂwﬁﬁ,

PLb A EEIE G T E RARM A AT 0 X0 HH AR L iR Rfrit B o

Aipp el BRERFLAOERT o AT o APFEANFAL T

ek b T AP BT RN LA (FPGA)T 5k -



Abstract

In this thesis, we discuss the problems of Solid-State Disks (SSDs) with RAID scheme
and propose a parity check and data cache management method. The major components of
a SSD are a controller, flash chips and 1/O interfaces. SSDs have more advantages than
HDD, such as, shake resistance, small power consumption and faster performance. However,
SSDs have some drawbacks such as limited write times and the unit for write operation is a
page, but the unit for erase operation is a block. These drawbacks contribute to flash chip’s

characteristics.

SSDs also have some problems that never happened in the HDD. It is not suitable to
directly dispose SSDs to the RAID-5, or the 9er1]6;mance of SSDs and life cycle time of SSDs
will be decreased. In the RAID scheme the parlty |s gengated by every data exclusive-or with

the other data. The generation 6ﬁlparlty AnclLlﬁes readiopera’(;ens and write operations to the

SSDs. Whenever there is a new wrltegequest ln.the RAID spheme the parity must be generated

It

or updated and written it back to "$SDS The frequ\rjt.e“ parity update results in the poor

performance of SSDs and shortens the{fﬁfe time of SSpg”

This thesis combines the earlier methods and the proposed efficient buffer management
method with a cache. This proposed efficient buffer management method reduces both of
read operations and write operations for generating parities in RAID system. We also
summarize previous researches and RAID scheme in recent years. Moreover, we also

compare advantages and disadvantages in each RAID scheme.

In addition, we implement a RAID simulator and compare prior RAID architectures

with the proposed method. We also verify the proposed scheme in FPGA.
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Chapter 1

Introduction

1.1 Introduction to solid-state disks in the market

In the personal computer (PC) filed, the Central Processing Unit (CPU) has made a
great progress. The core number of a CPU is increased from single core to multi-core and
the performance is improved obviously. The improvement of other component in PC such
as, DRAM and video card are also obwou&b’es&&e&the hard disk drive (HDD). The HDD is

composed of platters and needs,aa head actuator meghanlsm Because the physical

E""n.. -\._ —

limitations, the HDD |mprovem€nt is nqt’ ewdenL_lln the rec’ent years, the solid-state disks

) r
(SSDs) becomes more popular in t\IE PC.mq_rket,.[l]- due{f:) the price of the flash chips are

L
acceptable. | 7 I\‘h
-..__:b"\_'s

P W
Now SSDs have already become the storage system in the ultrabook [2] which is a thin
and light weight notebook, we can find that lots of famous companies such as HP, Dell, and
Asus adopt SSDs in theirs products. With improvement of manufacturing process, the high
density and large capacity flash chips are developed so that the size of a SSD become smaller

as shown Fig. 1.1.

High Density| |High Density| |High Density| |High Density
Flash Chip Flash Chip Flash Chip Flash Chip

I: CONTROLLER

Fig. 1.1 The extreme small SSDs with high density NAND flash chips.
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1.2 Introduction to solid-state disk in the datacenter

Some companies such as Hitachi and Samsung propose solutions of SSDs for the
datacenter [3], [4]. The Hitachi [3] constructs the datacenter by Serial-Attached SCSI (SAS)
interface and Fibre Channel (FC) with SSDs. The [4] analyses the market of SSDs in the
datacenter in the future and indicates the challenges. The [4] mentions that challenges are
write reliability and price of SSDs. The power consumption is a big issue for the datacenter

[5]. The [5] explains and analyses that SSDs save the energy and enhance the performance.

In the big datacenter as shown in Fig. 1.2, they use traditional HDDs with redundant
array of independent disks (RAID) as the storage system due to the cheaper price. However,
the power consumption and heat d|SS|pat/or‘1 :are critical problems. To cool down the
datacenter, it requires to spend 40 pe,rrfent of the whole power consumption [6]. SSDs

o

cannot replace the HDDs |rf”"the: dataceriter even thou,gh SSDs have lower power
consumptions and have lower teweraturL E?ecalluse Sﬁbs price are too expensive as
compared to HDDs with the same capamty Therefore, there only a few companies develop
the RAID controller for SSDs. In -5;the future wheh the flash chips price decrease
substantially, the datacenter can use the SSDs as the storage system. The SSDs not only
reduce the costs of power consumptions but also increase the speed performance. In

addition, the datacenter always uses RAID technique to enhance performance and ensure

the data integrity.

Fig. 1.2 The picture of a datacenter
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1.3 Introduction to components of solid state disk

SSDs are made of many parallel flash chips and don’t have the head actuator
mechanism. All components of SSDs are all electronic, so SSDs have more advantages, for
example, shake resistance, lower power consumption and faster performance. However,
SSDs also have some issues that never happened on the HDD, such as limited write times

and write a page but erase a whole block.

The controller and flash chips are SSDs major components as shown in Fig. 1.3. The
controller is responsible to handle the data access and parity generation, wear-leveling,

garbage collection, and Error Checking and Correcting (ECC). Fig. 1.4 is the teardown of a

real product SSD. 5
PUINN
lll.—' .d \-\I‘I
Back side of SSDs =7 oo T Front side of SSDs
SATAINTERFACE ™ | ~—f | | SATAINTERFACE
PCB board \? " 1 \/ PCB board
'\ ~ J.II
L e B N CONTROLLER
Flash Chip Flash Chip Flash Chip Flash Chip
Flash Chip Flash Chip Flash Chip Flash Chip
Flash Chip Flash Chip Flash Chip Flash Chip
Flash Chip Flash Chip Flash Chip Flash Chip

Fig. 1.3 The front side and back side of SSDs.



1.4 Thesis overview

The rest of the thesis is organized as follows: Chapter 2 discusses the characteristic of
SSDs, flash memory, RAID architecture and related works. Chapter 3 describes a parity
check and data cache management method and operations. Chapter 4 discusses the
experimental results with a RAID-5 simulator. Chapter 5 shows the proposed design

verified by FGPA. Chapter 6 gives conclusions and future work for this thesis.

353911A1

TUETACE 3 IRIES TEISE (GI0= I =EE g =
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115

Fig. 1.4 The teardown of real products of SSDs [29], [30].



Chapter 2
Background & Related works

2.1 Background

2.1.1 Background of flash

The flash chips are divided into NOR type and NAND type. The NAND type flash
chips characteristic are very suitable for S E’é [7], because the price of NAND type is
cheaper than NOR type flash. There até many klnds pf NAND type flash chips, such as
Single- Level Cell (SLC), Mutf«l;evel Ce1IMLC) and TH—[;I@ Level Cell (TLC) etc. Their
difference is how many bits can bexgtored m_a ceT However the performance of both read

and write operations in the MLC are Worse than SLC [8;{ but the MLC has higher density

and cheaper price than SLC [8]. So maﬁy SSDs adopt I\)}T_C NAND flash chips to store data.

The flash memory has characteristics as follows:
® Small write and large erase

The page is a unit for write operation but a block is a unit for erase operation.
® Write once

When we write data to the address which has been written before, this address
must be erased firstly.

® Limited erase times

Each block of the flash have limited erase times.



For SSDs, the flash memory is basic components to store data. Now in the market, the
mobile devices like smartphone and tablet computer all adopt the flash memory as the
storage system rather than traditional HDD. The flash memory has some unfavorable
restrictions such as limited write times and erase before write. The minimum unit of write
operation is a page, but when there is no free page, the flash controller must erase a block to
recycle free pages. Before the controller erases a block, the controller must copy the valid

data in the block to another free block, this operation is called garbage collection (GC).

Table 2.1 shows that block erase time is ten times longer than page program time.
From above terrible restrictions, we can figure out that the total cycles of write operation,
erase block operation and garbage collection are very terrible. As a result, how to decrease
the number of write operations is very |m/pgfta|1NVhen the write operations are decreased,

the life time of flash memory is e%fended ahd Ihe pé‘rformance is improved. The same
e =

situations in SSDs, we can add \ache and Eﬁlcm.tl buffer n*fanagement method to decrease

S _,/‘
the write operations and erase operz;ﬁons — e

\ . /
| A J
Table 2.1 The simple{ségpificaﬁbns OENAND flash memories [9].

Hynix 32Gb NAND FLASH
Data integrity 100,000 Program/Erase cycles
Page read 25 us = 0.025 ms

Page program time | 200 us = 0.2 ms

Block erase time 2 ms




2.1.2 Background of SSDs

To overcome MLC flash chips worse performance as compared to SLC, the controller
plays an important role. The SSDs controller faces the upper operating system layer and
lower flash chips layer. For the upper layer, the SSDs controller must handle read or write
requests from the operating system. Besides, the SSDs controller must process the lower
flash chips layer such as wear-leveling, parity handler, and Flash Translation Layer (FTL)
simultaneously. The SSDs controller often adopts the ARM processor and maybe a

dual-core processor [10] so that it can handle the heavy loading.

Fig. 2.1 shows the block diagram of the SSD controller. This controller supports SLC
type and MLC type flash chips. The RAPEI"‘QQtroIIer shown in Fig. 2.1 is a RAID-5
A E

architecture. _,.J -

T

Fig. 2.1 The SSD controller of SandForce [11]



SSDs have exceptional characteristics such that sequential write speed is faster than
small random write. The speed gap difference between sequential write and small random
write is very huge [12], [13] as shown in Fig 2.2. Besides, frequently small random write
will attrit limited write times so that SSDs will be damaged very soon [12]. The operating
system or user softwares often have large amounts of small random write. As a result, small
random write can dominate the SSDs performance. We can add hardware buffers and
provide a software-based buffer management to extend the life cycle time of SSDs. A SSD
is consisted of parallel flash chips in a RAID-0 configuration. If we don’t have schemes to
maintain data integrity, if one flash chip failures, the whole SSDs will crash.

oA
Alls

100 Mbytes/s

80 Mbytes/s

44 Mbytes/s

Throughput (Mbytes/second)
T

520 Kbytes/s
Seq. Read Seq. Write 4K Rand. Read 4K Rand. Write

Fig. 2.2 The performance between sequential write and rand write [12]



2.1.3 Background of RAID

The RAID technique is commonly used in workstation, datacenter, and SSDs. RAID
technique not only raises the performance by parallel data access scheme but also makes
sure the data integrity by adding parity data. Fig. 2.3 shows the RAID-0 and RAID-1

architecture.

RAID-0 uses a block-level stripping, and data are written to different storage devices at
the same time. The RAID-0 performance is very fast, and it can make use of full capacity.
However, the reliability is awful due to that no redundant data to recover the whole storage
system when one disk is crashed. RAID-1 copies the data to two different devices in the
same time. If we use two storage devices,ﬁ'&;‘&\\/ﬁl\ilable capacity is only 50 percent of the

total capacity. The cost of RAID-1 is t-*QQ'!éXPQ_n'_é_i_\_/e_'“'r )

=" __,- e

S

\ -.

E""n.. T-

RAID-2 uses a bit-level strﬁapmg and erro.u_ollectloneﬁy hamming code. If one bit is

wrong, that bit can be recovered. H\Wever the hardware\f)glc scheme of error collection is

I"-. s -_— = .l'l
complicated. :| f{:f _ I\‘h [
L‘:C:_,- R - B“\_s
RAID O RAID 1
DO Dl Do Do
D> D3 D, D,
D, Ds Ds D,

Dz

Storage Storage Storage Storage
device_0O device_1 device O device_1

Fig. 2.3 The RAID 0 and RAID 1 architecture



RAID-3, RAID-4, and RAID-5 all use extra storage devices to store parity so that they
can tolerate one storage device failed. RAID-3 uses a byte-level stripping and parity data.
Both RAID-4 and RAID-5 use block-level stripping and parity data. The minimum number
of the storage devices is three. Among these three storage devices, two of them are
responsible for storing data and another one is for storing parity data in RAID-3 and

RAID-4.

The RAID-3 and RAID-4 dispose the parity to the fixed storage devices. Dispose the
parity to the fixed storage device causes the parity storage device becomes very busy all the
time. Because whenever data are updated or written to the storage device, the parity must be
calculated and updated. That means the storage device which stored the parity has a lot of
write operations as shown in Fig. 2.4. Ré,lB%!h'isg\oses the parity to every storage devices

f )

so that parity write operations ar_e_s__ea.’if?fteq .ir]_t_t_);ea\chpsfdrag_e devices, as shown in Fig. 2.5.

Errme o ot —_—— oo )
- o

T - “::,_ e !
y i’ o
L Rame
|I;‘J . f{k%
{?’ e N \\-\_:_
3N
Stripe 0 Do D; D> D; Po
Stripe 1 D, D, Ds D¢ P
Stripe 2 Dg D, Dg Dy P>
Stripe n I Dan I I D4n+1l I D4n+2l I Dan I | P“°/°4|
Storage Storage Storage Storage Storage
device_0 device_1 device_2 device_3 device_4

Fig. 2.4 The RAID-4 architecture
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This thesis uses the RAID-5 architecture. However, RAID-5 has a critical drawback
which is frequently parity writes. In Fig. 2.5, the parity Pq is generated by Dy © D; © D
@ Ds;. The @ represents the exclusive-or operator. When we update a data such as D, the
parity Po must be updated. Therefore no matter how large or small amount of data are
updated, the parity must be generated again and written to the storage device. The cost of
parity generation includes read operations which read data from the storage device and a

write operation.

RAID-5
-"' \
it =
Stripe 0 Do D, i || D2 D; Po
Stripe 1 Ds [|. || Ds j- D6 | ;- P D,
Stripe 2 Ds (o] Do |1 L P> -“':}T’ Ds D13
x = .
w,? -4 L- : \/‘
1 P |
[} : L . d .
stripen |L_Pan || |[Dans1|| || Dans2|| [[_Dan || [[_Pnos]
PP e o
Lo oy
Storage Storage Storage Storage Storage
device_0 device_1 device_2 device_3 device_4

Fig. 2.5 The RAID-5 architecture
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RAID-6 enhances the reliability from RAID-5. RAID-6 also uses block-level stripping
and two parities across each storage devices as shown in Fig. 2.6. RAID-6 needs one more
storage device to store more parity data, so the minimum number of storage devices is four.
When RAID-6 updates or writes a data, two parities must be calculated and updated. As a

result, the management of parity is more complex and spends more time.

RAID-6
Do D, D, Ds Qo Po
D4 Ds Ds Q. Py D;
Ds Dy Q || P2 D1o D1
-"ji “\\N
(@~ y "
A ‘
=, ] .
L Pan || [[_Dan -] Dansa |1 D4n+2|:;;| Dan || [[ Qnoes|
Storage Storage Y IStioxrage | lS_.t'co_l:*age"'l Storage Storage

device_0 device_0 N’} device_1 " ﬂevice _a;{ device_3 device_4
i 4w, TS ]

, | W
Fig. 2.6:The RAID-6'architecture
{"',i;«" e

" __\Cl.-:-
T
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RAID 10 also named RAID 1+0, the lower layer is RAID-1 and the upper layer is
RAID-0 as shown in Fig 2.7. Oppositely, the lower layer is RAID-0 and the upper is RAID
1 with RAID 01. Both RAID 01 and RAID 10 need at least four storage devices. Both of

theirs capacity utilization is 50 percent as shown in Fig. 2.7, so the costs are also very

expensive.
Raid 10 (Raid 1+0)
Raid 0
Raid 1 2| Raid 1
N
. '
Stripe 0 Do P Do 1= D; D,
e k "]
Stripe 1 Dy ||&ne D> [+ J{ Ds Ds
Stripe 2 D, \;": ; D, T Ds Ds
\:P o I L ._.' i /‘,
" " sl s ¥
ur N
Stripe n D2, H Dan “2"| Dan+1 D2n+1
Storage Storage Storage Storage
device_0 device_1 device_2 device_3

Fig. 2.7 RAID 10 schemes has 50 percent utilization of storage device.

The storage capacity utilization and performance in RAID-5 are acceptable. We adopt
the RAID-5 architecture due to above considerations. This thesis represents RAID-5 as n+1,
n represents the number of data storage devices and 1 is for parity store. For example, Fig.

2.5is a 4+1 RAID-5 architecture.
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2.2 The problem of SSDs-based RAID architecture

There are products with RAID-0 SSDs in the market. The speed performance of
RAID-O0 is very fast with no doubt, but the RAID-0 does not have the reliability. When one
of the RAID-0 SSDs is damaged, the entire storage system also crashes. For the reliability
consideration, the RAID-4 and RAID-5 are more suitable solutions, they have the parity to

recover data when one of the storage devices damages.

When we use RAID-4 or RAID-5 with SSDs, we must considerate the flash chip
features as shown in Table 2.1. Table 2.1 shows that the flash program speed is very slow.
The RAID-4 and RAID-5 has a critical issue that a large number of parity write operations.

That issue encumbers the entire storage syst/em Fpeed.

1“-\.

As long as RAID-4 and RAID,5 erte new data tﬁ‘e\parlty must be updated with read

P ol

operations to generate the new p\arlty The new_p_arlty WI|| W’rlte to the storage system. The

storage system must decrease the pé\nty generatlon overhef;ds and parity write times. Hence,
. J .'

we need an efficient SSDs parity q;;c{he managemen\t 'scheme to increase the speed of
M i N\

performance with reliability.
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2.3 The purpose of the thesis

This thesis combines the earlier methods and the proposed an efficient buffer
management method with a new cache. We implement a RAID-5 simulator, the simulation
results show that both read and write operations are decreased. The earlier method is partial
parity cache (PPC) architecture [14], we also use the PPC which represents the parity of

many data.

Therefore, we can reduce the chance of parity write by merging the parity data.
Besides, we add a special data buffer which keeps the old data. This special data buffer is

for partial parity generation so that we don’t need to read data from storage system during

/\\

An efficient buffer management method can reduéNhe times of parity write and the
E-u-_h - —

proposed data cache can reduce ff1e tlmes oF’ eadgperatlonsdurmg updating the parity data.

) | | -

parity update.

Simulations results show that the W\i’te performance |s |mproved by 76 percent as compared

R - '

to traditional RAID-5 architecture and, {s |mproved by\lg percent as compared to previous
& _5; el AN

partial parity architecture [14].

Section 2.4 and section 2.5 discuss the advantages and disadvantages of the previous

research.
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2.4 SSDs RAID architecture with redundant parity

When we directly dispose the SSDs to the RAID architecture, there will be lots of
problems [15] - [17]. The previous research [15] proposed the heterogeneous SSD-based
RAID-4, the wear leveling scheme for the SSD-based RAID-5, and the efficiency of erasure

codes schemes for SSD-based RAID-6.

For the RAID-4, [15] finds that parity disks write times are three times larger than the
average write times of the other disks. The experimental results show that the write
operations concentrate on the parity disk, so their solution uses a HDD to replace the SSD
parity disk as shown in Fig. 2.8. We can figure out that the SSD-based RAID-4 is not

suitable, because speed of SSDs write is tovlgiw and SSDs has limited write times.
)

01
i

arT! |

- —-"'{. .r-_--l‘ -\-“\‘"—-_ -
.!t':-_-:_':ﬂ--h_ L R \"--H __,-_:,'_l-:*,
ool ‘-._Hqterrog'e_nem}é RAID-4
(N
| /e Oy
Stripe O Do D1 D> Po
Stripe 1 D3 D4 Ds P,
Stripe 2 De D~ Dsg P,
Stripe n Dan Dan+1 Dan+2 Pnosa
SSD_0O SSD 1 SSD_2 Parity HDD

Fig. 2.8 The heterogeneous RAID-4 architecture
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For the RAID-5, [15] proposes wear leveling scheme which places the parity data
dynamically and creates a k-bit map table for recording the number of parity write times as
shown in Fig. 2.9. When one disk’s write time is larger than the specific value, the wear
leveling scheme will exchange that parity data with other parity data which has lower write
times. The wear leveling scheme only balance the SSDs write times, the root cause of the

frequently parity update problem that is not solved.

SSD_0 SSD_3
Po/O|O[0O]|O P;/1/1(0(1
0|1 or""-!-hu 0/0(1|0
"10]1|/0]0] -~ |x-|0/0]0]1
1[0 1j0]~ - [|..[0|0[1]0
N
/N

SSD_0 SSD_1 SSD_2 SSD_3

Fig. 2.9 The bitmap table of RAID-5 architecture
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For the RAID-6, [15] uses Reed-Solomon (RS) codes and EVENODD codes to
analysis which codes are suitable for SSDs. The experimental results show that RS codes
has better reliability, but the parity data calculations for RS codes are complex and have a
critical drawback in large amounts of write operations. By contrast, EVENODD codes is
more simple, because it only needs the exclusive-or to encode the parity and has small
amount of write operations. We can learn that concerns of the SSDs-based RAID

architecture are different from the HDD-based RAID.

To solve the frequently parity data write problem in RAID architecture, the prior
research add a parity buffer to reduce parity data write times. This way is called the delay
parity update scheme. The parity data is kept in the parity buffer until specific conditions

-"' \
met. The delay parity update scheme can geﬁnilQMreduce the parity write times.
In' 1 '\.!I

r
- - -

e oy 0w
e / —_ " :‘1_. .:..:---:e“ﬁ’
v oL Y
\’? ST, I_ B "__.' .'/‘

J - o Y
I 5 \.\.- d I
"..l .‘-_j-;: ’ : n—.\\:.x ..I'II
'{JJE::.- o | r\.-.___\\"l..-:-

T
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Both [18] and FRA [19] use the delay parity update scheme. They reduce the parity
data write times but the parity generation overhead is heavy. They must re-calculate the
parity data as long as the write requests coming. Table 2.2 is a comparison table of prior

approach.

The Partial Parity Cache PPC [14] also adopts the delay update scheme and the partial
parity to encode the parity. The PPC [14] generates a partial parity and stores it into the
cache. When the cache is full, the partial parity must be rebuilt to the full parity, and written

to the SSD.

The experimental results indicate that read operations for generating a parity are
decreased obviously. However, the parity write times are almost the same with other
o Y

A
approaches. When PPC updates data ythch'iaIre y exists in the storage device, PPC

P e
scheme often read old data and g{d‘_‘pantyﬁt,o lmdate.,parltyt';,.f )
-" / = " \.‘1_. .:..----:e“ﬁ’

T

1 L e |
Table 2.2‘1|'h9;cor'hparis'on.ql"\m‘ior research.
{-l"g’:.- ""‘;-\l'" 1 }\ﬁ.‘-}-

PPC [14] ) [18] FRA [19]
Raid architecture Raid-5 Raid-4 Raid-5
Encode parity scheme | Partial parity MDS General parity
Parity cache type Nvram Nvram RAM
Flash mapping method Page-level Page-level | Dual-mapping table
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2.5 Both of HDD and SSD RAID architecture

Some researches use SSDs and HDDs to construct the storage system [20] - [22]. Fig.
2.10 is the Hybrid Parity-based Disk Array (HPDA) architecture. The HPDA [20] use SSDs
to store data and two HDDs to store parity and to be a write buffer as shown in Fig. 2.10.
The SSDs and a HDD are constructed by RAID-4. The remainder space of the parity disk
HDD and another HDD are constructed by RAID-1 as a write buffer. If write requests are
sequential, these requests are distributed to the RAID-4. Oppositely, if the requests are
random access, the requests are written to the write buffer. When the 1/O is idle, the requests

which are in the write buffer are written back to the RAID-4.

HPDA /|5
12N
Illl.—' W \-\\I
_ - __  _ T il o
' o — | =
| N I
: Do D1 '\ D> [ ll Po
1] _Ds D, | Ds 1P
L Ds D7 %,DB 1] FPZ Write
: : ) 1 . buffer
I :
I I
: Dan Dan+1 D3n+2 | Prosa
I
: SSD 0 SSD 1 SSD 2 :
IT————-— == 1
| |
[ [
RAID-4 : Mirror Mirror :
| [
RAlD-1—>: :
e o e |
HDD HDD

Fig. 2.10 The HPDA architecture
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The I-CASH [21] uses the advantages of SSDS to build the hybrid storage architecture
as shown in Fig. 2.11. The read speed of SSDs is very fast, so the I-CASH usually reads by
SSDs and writes data by HDDs. The SSDs store the data’s reference information. The HDD
stores the data which combines reference information. When I-CASH writes data, the
I-CASH must read reference information from the SSDs and encode it with data to the
HDDs. When I-CASH read data, the I-CASH must decode the data from the HDDs with

references information from SSDs.

I-CASH /)C;PQtroller
v |i

SSD| .-|HDD|
sx?"' LN _I' ) /‘.-"
Reference -~ Delta,
:| fx’_f; - '{‘:\
N
HOST HOST
Write Read
\\ //
I-CASH |—>® LCASH
D
JAN
Ref Ref f V&
=5 e SSD HDD

Fig. 2.11 The I-CASH architecture.
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The RAF [22] also uses fast read speed characteristic of SSDs. The RAF uses one SSD
as a cache and four HDDs in the storage system as shown in Fig. 2.12. The RAF divides the
SSD into a write cache and a read cache. Both of read and write cache only store random
data, this is because that random access speed in the SSD is faster than the traditional HDD.
The sequential data are handled by HDD, since the sequential read or write speed of HDDs

are close to SSDs. Whatever read or write operations, the random data is cached by a SSD

and the sequential data is performed by HDDs.

Random data | Write Region | Read Region | <+— SSD

T A
LA
I,u'ff-‘ Ii \“'\‘
—~ y __ [y
=" F N oo
n""":-.:_"'_'_‘-_ 2 ) _: ' ‘jw 1.. _:.-::"--’"-,.-l
' i ' Z
Do | D, D> D;
D, | Ds : Ds D7
Sequential 11 AN
data Ds {J’E; Do \i Dio D11
D4n D4n+1 I:)4n+2 D4n+3
HDD HDD HDD HDD

Fig. 2.12 The RAF architecture.
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Chapter 3
Efficient buffer method with data

buffer scheme

The overall system architecture is shown in Fig. 3.1. The operation system layer sends
the read or write requests to the storage interface. The RAID controller handles buffer and
distributes data to the each SSDs. The RAID controller also manages the buffer and cache.
When the buffer or cache is full, the RAID,C'J(;[‘F‘FGU‘EF must handle this situation. We cannot
reduce the read or write requests 1 from rhz OpETatIOI’I syS‘ter_n Iayer but we can hold the data

E""n.. T-

in the buffer or the cache to redu\e the aqtua‘l’read&vnte tlmeé to the SSDs.
1 | i
hY _- |_ r_ W J -/,

The “partial” parity [14] can reipresent ‘the data strlpe even the partial parity contains
only a part of parity. For example, thgygare Po; P1, Po- Empartlal parities in the cache. These
partial parities can represent the stripes So~Si6. Each stripe has four data in 4+1 RAID-5
architecture, for example the data stripe contains Sp can accept Do~Dy4. It means that this

partial parity cache can merge the Do~Dss data. In [14], there are 16 partial parities in the

cache, it can merge 64 data.
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We use this characteristic to select the data which existing in the partial parity cache.
This method is called an efficient buffer method. The efficient buffer method tries to avoid
that the partial parity cache being full. When the partial parity cache is full, the partial parity
must be rebuilt to the full parity. To build the full parity, the RAID controller must read data
from storage devices and write back the full parity to the storage device. Therefore the

proposed efficient buffer method can greatly reduce the cost in the RAID system.
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3.1 Comparison with PPC [14]

We introduce the PPC [14] flowchart in Fig. 3.5 and it shows PPC operations from the
writé cache to the PPC. The host transmits the data to the storage devices. The RAID
controller determines whether the write cache is free or not. If yes, the data are stored in the
write cache, and for the host system the data transmission is complete. If not, the controller

must select the victim stripe and writes back them to the storage device.

The selection rule of the victim stripe is to find out which stripe in the write cache has
most data. When the stripe contains more data, these data can be written to the SSDs in

parallel. These victim data in the selected stripe are also used to generate the partial parity.

After generating the partial parity, the ,eérptrol]\er checks whether the PPC is free or not.

If yes, the partial parity will be ertten to the PPC and th&data in the selected stripe will be

E""n.. T-

written to the storage devices. When data are remgved fromjathe write cache, the write cache
| i

will have free space. If the PPC is n\ét frEe the RAID cont/oller will select the victim partial
. ' |'

parity by Least Recently Used (LHl;}falgorithm. A(te'r selecting the victim parity, the
Ly e -_\: 5

controller must rebuild the full parity. This operation may read the data which is not in the

partial parity ingredient. When the partial parity is removed from PPC, the PPC will have

free space.
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Writg data to the Is write cache
write cache free ?
Select the stripe which has
maximum number of pages from
the write cache
1. According to the selection of
pages to generate the partial parity
_42. Generate the partial parity maybe
__f’ read old data from storage devices
.-"/’i _.."' -y L ——
é:-'E_':_':_..J. o _:- ) § ..-:"_:1..;-.-:.
L
1. Save the partial parity to "‘
the PPC 2 Yes Is Parity buffer
2. Remove pages from write [ “4&+ 7 ™ free ?
cache to the storage device

1. Select the partial parity by LRU
algorithm

2. Rebuild the full parity that
maybe read old data from storage
devices

Fig. 3.5 The flowchart of PPC [14].
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Fig. 3.6 shows the flowchart of the proposed efficient buffer method. The major
difference between PPC [14] and our method is the data stripe selection in the write cache.
The victim stripe selection rule is that the stripe is in both PPC and the write cache will be
chosen firstly. This stripe must contain maximum number of pages. If the related partial
parity of the stripe exists in the PPC, we can merge the existing partial parity and don’t need
to request another for PPC space. When PPC space is full, it will need to compute the full
parity and writes back parity data to the storage device, thus the overhead is very huge. We
also use a data buffer to reduce the cost of the partial parity update, because the controller

maybe read data from the storage devices for updating the partial parity.

-"‘ \
P
- |_ \_‘
Illlff 1 \‘

- ) -- . - ""x\_
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L I F =y i
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: Is write cache free ?
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If the stripe which in both PPC and
the write cache has maximum
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[14]

At Y
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cache to the storage and
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Is partial parity
cache free ?

1. Select the partial parity by LRU
algorithm

2. Rebuild the full parity that
may read old data from the
storage devices

Fig. 3.6 The operation flowchart of proposed scheme.
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3.2 Overall Architecture

The proposed 4+1 RAID-5 architecture is shown in Fig. 3.2. We use SSDs to construct
the RAID-5 architecture. We propose an efficient buffer management scheme in the RAID-5

controller and a data buffer to reduce the cost of full parity generations.

The write cache holds the data from operating system until the write cache is full, and
Non-Volatile RAM (NVRAM) is used to be a write cache. The partial parity cache stores
the partial parity until the partial parity cache is full. We also use the NVRAM to be a
partial parity cache. The data buffer stores data from the write cache evictions. The data
stored in the data buffer can be reloaded from the SSDs, and therefore we use the SRAM or
DRAM to be a data buffer. A

AN
lll.—' .4 \".'
Both the write cache and partlaI parlty Cache areNVRAM When the system shuts

E""n.. T-

down unexpectedly, the data wh\ch is m the wm_tg caChe orffhe partial parity cache will be

- . J/
used to recover the data. \I? ——
N
] /’:;- .-.;: |I
Partial Raid-5
Parity Cache Controller
| Data Buffer I—l
Stripe O Do D1 D2 D3 Po
Stripe 1 D4 Ds Ds P1 D~
Stripe 2 Ds Do ) Ds D11
Stripe n | Dan | | D4n+1| | D4n+2| | Dun | | Pn%4|
SSD_0 SSD_ 1 SSD_2 SSD_3 SSD_4

Fig. 3.2 The proposed RAID-5 architecture
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3.3 The structure and size of each buffer and cache

Fig. 3.3 shows the data structure of two caches in the proposed RAID-5 controller. The
m represents the number of entries in the cache. Both partial parity cache and data buffer
has the same number of entries. T represents total data stripe number in the RAID-5, and n
represents the number of storage devices in the RAID. The size of one partial parity is one
page size. The n-bit field is used to represent the associate data with that partial parity. For
example, a 4-bit binary value “1100” for the stripe number (Sp) means that the partial parity

is generated with Do and D;. In addition, the Dy and D; are in the data buffer.

/ k
,."f’ l.j \'\
! . ",'_ .
— , b
.\---'h o \I \I -'-J
s o T —
k | _— i
\3 L L f/
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Fig. 3.3 The structure of the PPC and the data buffer

The data structure of the write cache is shown in Fig. 3.4. The data structure of the write
cache is similar to the partial parity cache. The major difference is that the write cache
contains data values in each entry. The n represents the number of storage devices in the

RAID. The size of data area is that n * page size.
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3.4 The operation of proposed buffer management

We discuss the operations with each cache in this section. The write cache stores the
data from the host system. When the write cache is full, the RAID controller will select the
victim stripe from the write cache. For example, Fig. 3.7 shows that we select the stripe So
to be a victim stripe, because the Sy contains the most number of data i.e. (three data). The

remainder stripe Ss and Sg are still stayed in the write cache to incorporate more data.

When the stripe Sy is selected, the controller performs the following operations. The

steps are as follows:

1. Generate the partial parity Py by Do, D2, and D3 and store ingredient bit to the

PPC. a_,/iir\_

2. Write Dy, D, and D3 tn:the corresponmng Iocat ,nf n data buffer.

R

N g N ,r
3. Write Dy, D, and D3 to the;corres;iandmg Iocatlpns in SSDs.

e
10

y e |
L ‘ J

Fig. 3.7 shows the condition wien“system IS reset,\thus there is no partial parity in the
PPC, so the RAID controller directly ({f;éates-a partial parlty. The partial parity Py is held in
the PPC and doesn’t write to the SSD. The partial parity Py has a great characteristic, the Py
can incorporate the Do, D,, D3 and even Ds. When Py is still in the PPC, there is no full

parity update cost for D t0 Da.

We don’t have any write full parity operations to the SSDs so far. The data buffer
always stores the newest data. No matter how the data exists in the data buffer, the new data

directly overwrite the data in the data buffer.
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Fig. 3.7 The operation of proposed scheme.
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Both PPC and write cache will not have enough free space as host system keeps access
the RAID, they are encountered frequently selections of victim stripes or partial parity
generations. Fig. 3.8 shows that how to use the partial parity to merge data. There are many
entries in the write buffer which contain three data. In addition, we assume there is only one

free space in the PPC.

In PPC [14], they will select any stripe which contains most of data to be a victim
stripe. If the S; are selected to be a victim stripe, the PPC will be full. When the PPC is full,
the controller will select the victim partial parity in the PPC by the LRU algorithm to
generate and write back full parity to the SSDs. Thus the proposed method will select S; as
a victim stripe since it both exists in the PPC and write buffer. If the controller selects
partial parity P7 to be a victim stripe, the paﬂnj ge.Qeratlon costs are two read and one write

l.

operation to the SSDs. The two read" operattorT ls that tMcontroller must read Dyg and D3y
Ermtitv,
from the SSDs to build the full p\arlty because th_e_furrent pé’rtlal parity P; is only related to
Dyg and D3g. The one write operatla?l is that_he generated full parity must be written to the
\ el j

SSDs. | A _ !
{JJE;:.- """-\l'" 1 }Eﬂl}?

The proposed efficient buffer method will check whether the data stripe in the write
buffer is also in the PPC or not. We will select the Sy rather than S; to be a victim stripe. The
stripe S; in the write cache can be merged with the P; in the PPC, so the partial parity P; can

update D’2g, D29, and D3; to be a new partial parity P;. The steps are as follows:
1. Update the new data to be a new P’;
P’7=P; & Do © D23 © Dy @ Dz (Dosg is from the data buffer)
2. Write D’ 23, D2, and D3, to the data buffer (D,g will be replaced by D’,g)

3. Write D’2g, D2g, and D33 to SSDs (in SSD_0, Dyg are overwritten by D’,g)
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Fig. 3.8 The operation of the proposed parity merge.
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The new partial parity P’; replaces the old partial parity P; and does not occupy a new
space in the PPC. Therefore, the PPC will not be full in this example and we can reduce the

number of full parity generation and write back parity data to the SSDs.

We compare the PPC [14] partial parity generation costs with the proposed efficient

buffer method as follows according to this example.

® PPC [14] costs : (Either S; or S7 is selected)
Two read operations from SSDs and one write operation to SSDs
® The proposed method costs,; (only S7 will be selected)
No costs g .
L LY )

" - . 5 ..-_"? 1"|
Our method can reduce the pa'(ity data write times fo the SSDs, and we use the PPC

2 : . .
characteristics and merge the data Wm’f‘{gxlstlng\partlail_x rity as many as possible.
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3.5 The overhead of write back full parity

Fig. 3.9 shows that all situations of the full parity write back cost. There are two

methods to rebuild the full parity as follows:

Method 1: Read the corresponding old data and old parity to rebuild the full parity.

Method 2: Read the other data which is not ingredient of the stripe.

When P’, writes back to the SDDs, the controller adopts the method 1 to rebuild the
full parity rather than method 2 in Fig. 3 9/ TLe\cgason is that the method 2 has three read

costs (read Dy, D1o, and Dy1) are mm’eThan method i cost. The full parity of P’; is P’2Dg

.s-v-h — = T

@Pz. \__ Y : I—.— . " If
oLl - 3

. ) |_ |’ _ ..: -/,
The controller will determine v(hlch method is efflc;ent However, the method 1 must

_,-\.
e

_—

record the old data and old parity pqsit;ion so-that. the%;ntroller can read the old data or old
parity successfully. When P’s and P’; must write back to SSDs, the controller will adopt
the method 2 to rebuild the full parity. The full parity of P’s is P’7© D@ Dy, and The full

parity of P’ is P’;®Das;.

The partial parity Py is the best case. There are no overheads to write P1o back to the

SSDs, because Pjg has all ingredients data, the partial parity is also the full parity.
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Ingredient bit of Parity

2 1|o|o|o| P';,=D'g

[

5 0(1|0[{1[P's=D",1®D's3

[

Overhead

read Dg and P, + 1 write

7 111(1]0 P'7=D'28€BD'29@D'30

read D,y and Dy, + 1 write

10 1(1]1

[y

P'10=D'40®D'41®D'5,® D's3

» read Ds; + 1 write

Partial Parity Cache

» No read overhead

Fig. 3.9 The overhead of write full parity back to SSDs.
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3.6 The recovery when SSDs failure

The SSDs may fail due to the limited erase times of the SSDs, and thus the life time of
SSDs is finite. When a SSD fails in the storage system, we can remove the failure SSD and

replace a new SSD with the same capacity, brand, and model.

The controller has two ways to recover the lost data. If the stored data which are part of
the partial parity, the controller must use the partial parity to recover the SSD, as shown in

Fig. 3.10. If not, the controller uses the original RAID-5 scheme to recover the data.

Partial Parity Cache _ l,, Recover D'og
fls
- ' ] x‘w.
P| 1 olilo PI =D| @D .1 \,\Ir )
7 7_ — 28 ;30_ - H‘\___ D'28= PI7@ DSO
-!51‘:::::. = h 1 e
".\ | i :__ /
< \ ey 4
T ¥
} r
Do A D, | D3 Po
. & S
D2s D3
D28 D41 D43
SSD 0 SSD 1 SSD 2 SSD_3 SSD 4

failure

Fig 3.10 Recovery data by partial parity cache
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Chapter 4

Experimental Results

4.1 Experiment preparation

We implement a RAID-5 simulator to evaluate the performance of the proposed RAID
controller, as shown in Fig. 4.1. The entire system consists of a RAID-5 simulator and a
SSD model. The RAID-5 simulator accepts the inputs which from the benchmark profiling
results. The RAID-5 controller determines}ie‘&{i\pe number, SSD number, and computes

parities. . -
P > H“\._ _

o r B

E""n.. -

The stripe number and SSD\number is geneLated by theffoglcal address divided by total
number of data storage devices, an\d th‘en the quottent aﬁa reminder is stripe number and
SSDs number, respectively. For exan;rite klf the IRAtE) fsystem is RAID-5 (4+1) and the
logical address is 2045. The 2045 is d\lVltjed hy 4, and then the quotient and reminder is 511
and 1, respectively. Therefore, the data (logical address is 2045) is written to the SSD_1 at
stripe Ss11. The RAID controller also manages the write cache, partial parity cache and the

data buffer.
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Profiling benchmark

inputs

l

Raid-5 Simulator

|

|

|

Y
SSD SSD SSD SSD SSD
Model Model Model Model Model
ffirxx
/ i '-.‘r
ol T . T
“Fig, 4.1 The RAID-5 simulator.
U J -
y 1 |. I __I o Il'l
) N o

-

Vo el
We profile two benchmarks: i'D;éne [27] and:ngstmark [28] as inputs. From the
'i',l.,l" ’.- ""f-\""l r\.-.___\\"l..-:-
profiling results, we use iozone and postmark as a sequential writing test and random

writing test, respectively.
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We assume the specification of our RAID system as follows:

1. SSD’s page size is 2KB.
2. The write cache is 16KB.
3. The data buffer and the PPC are 16KB.

4. All the comparisons are based on RAID-5 (4+1).

We use a small size of the write cache and the PPC, because we want to emphasis on
= I
. ol .
that the efficient buffer method can redug,e.{ﬁe_ov,qrhead without too much hardware costs.
In' 1 '\...r
We build four types of RAID storage$ystems asfollows:.
i»':::::_-_,- S -

B et}

o

.."-._ | I'._ | ] I /
0 Sifmians” o
I - |
1. RAID-5 (onlyhaspne"write'caqli)_f
LA
{..-l"i;«.- . = r\.-.___}"l.:-
2. FPC (RAID-5 and full parity cache)
3. PPC ( RAID-5 and Partial Parity Cache [14])

N

. The proposed (RAID-5, PPC, and a data buffer)
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4.2 The overhead of parity generation

The RAID-5 is the common scheme. The FPC uses a full parity scheme with a parity
cache. In Fig. 4.2 to Fig. 4.9, we normalize the number of read and write times to the SSDs

by the input total write requests (i.e. 4000).

Fig. 4.2 shows that the average write request overhead for generating the parities. We

analyze four types RAID schemes: RAID-5, FPC, PPC, and the proposed method.

The original RAID-5 scheme doesn’t have a parity cache so that the number of read times
and for generating the parities write times is highest. When the write cache in the RAID-5
scheme is full, the controller will select the victim data to write back to the SSDs. According to
the selection data, the controller will bund thé th\Qarlty and write back the full parity to the

SSDs directly. When the controller geﬂerates the fuII parlty\t needs to read the remainder data
.s-v..h — e

of the victim stripe, and these read o) operatlons are_th_e overhead/for full parity generation, so the
'H. r 3
I
number of read times is also hlgheglbln “the E\_’AID-,S--schei:nxe. Therefore, it is not suitable to
I"-. o . .l'l
dispose SSDs to the RAID-5 directly. | , ,», '“:K '
i _5; ﬂ_h{a

The FPC scheme has a full parity cache, the write times for the parities can be decreased

- “-. \'\-.

obviously in the FPC scheme, but the read times for full parity generation are almost the same
as the RAID-5 scheme. The reason is that the full parity generation in FPC is the same as the
RAID-5. The main difference between the FPC and RAID-5 is that the full parity stays in the
parity cache until the parity cache is full. The parity cache help to reduce the write times of the

parities, but read times are almost the same.
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“read Nwrite
1.4

1.2
1.0
0.8 —
0.6
0.4
0.2

0.0 1 | 1
RAID-5 FPC PPC Proposed

Fig. 4.2 The write request overhead for generating the parities (postmark)
(Normalized to 4000 write requests)

The PPC scheme adopts the partial par/i;y Fc\f:fme, and it can reduce the read times for
A0
parity generation. The write times of_,the/ parities are almost the same as the FPC scheme.
o b

o 2

- ”N
We can give two conclusions frém-above experimental resartﬁ?

[

N o . /
Y . ._x- |_ | -
1. The parity cache can redu\c}e the write times of pjé?ity data.
L
o 1/ N .
2. The partial parity schemegw,ggn decrease tb_@eb{,ead times for generating the full

parity.

The proposed scheme use an efficient buffer method with a data buffer to reduce both
read times and write times as shown in Fig. 4.2. The normalized write times for the parities
of RAID-5, FPC, PPC, and the proposed scheme is 0.66, 0.37, 0.37, and 0.32, respectively.
The proposed scheme decreases the number of write times for the parities by 13 percent and
51 percent respectively as compared to PPC and RAID-5. The normalized read times for
parity generation of RAID-5, FPC, PPC, and the proposed scheme is 1.31, 1.31, 1.068, and
0.65 respectively. The proposed scheme decreases the number of read times for parity

generation by 39 percent and 50 percent respectively, as compared to PPC and RAID-5.
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Fig. 4.3 shows the simulation results for iozone benchmark. The normalized write

times for the parity generation of RAID-5, FPC, PPC, and the proposed scheme is 0.3, 0.19,

0.19, and 0.18 respectively. The proposed scheme decreases the number of write times by 5

percent and 40 percent respectively as compared to PPC and RAID-5. The write times can

be decreased due to parity cache and the efficient buffer method.

1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0

read Nwrite

RAID-5

N N %\4

FPC PPC Proposed

i ™ |
= ! |

Fig. 4.3 The average write request overhead for generating the parities (iozone)

{vrz_;-' __.A’-'\,___ . _ .h‘\-"‘

(Normalized to 4000 write requests)
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The normalized read times for parity generation of RAID-5, FPC, PPC, and the
proposed scheme is 0.28, 0.28, 0.5, and 0.32 respectively. The proposed scheme can
effectively decrease the number of read times for parity generation by 36 percent as

compared to PPC.

However, the read times for parity generation of both PPC and the proposed scheme is
larger than FPC and RAID-5. The reason is that we use iozone benchmark as sequential
inputs. There are many re-write requests which are the files are already existed in the
storage system, so there are many partial parity update. The read times ingredients as

follows:

® The read times of PPC [14] :

- 5“5
partial parity update yfﬂliLéﬁty write back
{ A

Errms v,
=

® The read ting,es-d"f'i-he p.rijbééé_d_meth%ﬂ-;1_ 5

-

full parity W\I\”l.ite back - 3 f
)y Nl o
I Gl |
e

|I {:r i .l
The PPC’s read times are dividegjjnto .tw*o..parf‘s;}'{partial parity update and full parity
write back. The PPC’s read times is 0.5 which is the sum of 0.32 (partial parity update) and
0.18 (full parity write back). This is why we need to add a data buffer. The data buffer

removes the read times of partial parity update and the hardware cost is not too expensive.
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4.3 The entire performance

Fig. 4.4 shows that the 1/0O performance in each RAID type. The performance is

normalized to the original RAID-5 scheme. The performance of RAID-5, FPC, PPC, and

the proposed scheme is 1.0, 1.13, 1.47, and 1.76, respectively with postmark benchmark.

The 1/0 performance of the proposed scheme is improved by 76 percent and 19 percent as

compared to RAID-5 and PPC, respectively.

The detail analysis of the entire I/0 performance are listed as follows:

Wcycle

Dcycle
Rcycle

WHPcycle :
EBF
LRU

Tcycle

: The cycle spent in the write cache

: The cycle spent in the write back data and data buffer.

: The cycle spentdm the read operation for generating full

parity orqp ati \antlal parity.

The Ci/cle spent ln the erté*baek the full parity.

""n.. -\._
-

; Thg cyqle spent |‘rrl'he EfflClgnt Buffer Method.
~

e
: The oycle spenI in’ the Lea§t Recently Used method.

: Total (}%gfe of the. oper\ako

.'

In the proposed method, the total cycle can be expressed as

® Tcycle =

Wcycle + Dcycle + Reycle + WPcycle + EBF + LRU

In the PPC [14], the formula for the total cycle of operation is

® Tcycle =

Wcycle + Dcycle + Reycle + WPcycle + LRU

In addition, the total cycle of operation for RAID-5 and FPC:

® Tcycle =

Wocycle + Dcycle + Reycle + WPcycle
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Our scheme handles the random requests very well, because the parity merge will often
happen in the partial parity cache with random data input. The Rcycle and WPcycle of the
proposed approach are smaller than the PPC [14]. The random access request is more

important than sequential request.

The performance of the iozone benchmark (sequential access requests) in each RAID
type is nearly the same, because the controller almost selects whole ingredients data of the
stripe to write back to SSDs. For example, the controller selects 4 data: Dy, D1, Dy, and D3
to write back to SSDs. The 4 data: Dy, D1, D2, and D3 are written back to SSD_0, SSD 1,
SSD_2, and SSD_3 simultaneously. When controller selects the full data (4 data), both of
PPC and proposed scheme don’t need to rebuild the full parity, the overhead of generating
partial parity and full parity is the same. Thé i¥Mle and WPcycle in the each scheme are

.-'
almost the same in this case. Both _partial parrty andthé{ull parlty is Do®D1BD,PDs in

B o ,.._,1.

this example. Besides, the EBF\’I«s verY smaller_J)flzcause thé’ Efficient Buffer Method only

N ,,f
spends 1 or 2 cycles to manage the Bﬂffer o i '\I
\ .o )
L2 . Qh:

{..-l"i;«.- o ' r\.-.___}"l.-:-

Eiozone postmark

normalized to Raid-5
coocooRrRPrREEEN
ONDPDPOOOONPMPOOOO

RAID-5 FPC PPC Proposed

Fig. 4.4 The overall 1/0 performance

=49 -



4.4 Different parameters with proposed scheme

4.4.1 The stripe size

Fig. 4.5, Fig. 4.6, and Fig. 4.7 show the simulation with different stripe size. Both write
cache and partial parity cache are all 16 KB. The size of data buffer in the proposed

management method is the same with the stripe size.

Fig. 4.5 shows the comparisons of the average read times for generating the parity with
different stripe size. The read count of proposed scheme is smaller than the PPC scheme.
There are two reasons explain why the read count is smaller in the proposed scheme as

follows: A
PAIRN
IIII.—' - "k\l
1. The write times of the proposed scheme is smaller than PPC scheme as shown in

= i i =
Erenct-o v FESEEE T i)

e - e

Fig. 4.6. A TN
L S /
2. The proposed scheme addé\a datakt}uffef,fbr red;}cing the number of read times.
.I ,/i; '. . .-;: .'l

P s N )
Each write full parity back to SSPs operation mearis that the controller must build the
full parity. Then it may accompany with read data from the SSDs, so the read times are
affected by the number of write times. The data buffer avoids the read operations from

SSDs overhead for full parity generation.

-50 -



read_ppc read_proposed

1.4
1.2
1.0
0.8
0.6
0.4 ——

4+1 5+1 6+1 7+1

Fig. 4.5 The average read operation overhead for generating the parities generation

(postmark) (Normalized to 4000 write requests)
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Fig. 4.6 shows the comparisons of average write times for parity write back to SSDs
with different stripe size. When the stripe size is larger, the write times are decreased in PPC
and the proposed scheme. The reason is that the partial parity can merge more data. For
example, the partial parity Py in 4+1 scheme represents Dy to Ds. However, the partial parity
Py in 7+1 scheme represents Dy to D;. It means that possibilities of merging partial parities

are increased.

Write times of the proposed scheme are smaller than the PPC. This is due to the

proposed efficient buffer method as shown in Fig 3.6.

write_ppc write_proposed
0.4
0.3
0.2
0.1
00 | | |
4+1 5+1 6+1 7+1

Fig. 4.6 The average write operations overhead for generating the parities (postmark)

(Normalized to 4000 write requests)
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Fig. 4.7 shows 1/0 performance of the proposed scheme with different stripe size. The
performance is normalized to 4+1. The 1/O performance of 4+1, 5+1, 6+1, and 7+1 is 1,
1.15, 1.29, and 1.47 respectively. When the stripe size becomes larger, the 1/0 performance

is improved. The reasons are as follows:

1. Both read times and write times are decreased when the stripe size becomes

larger.

2. When stripe size becomes larger in the storage system, it means that the 1/0

parallelism is also better.

v performance

normalized to 4+1
coorkRrRPrEPEN
POOCOCONPMPOOOOO

o
N}

A\

o
o

4+1 5+1 6+1

Fig. 4.7 The overall 1/0 performance with different stripe size (postmark)
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Fig. 4.8(a) shows that the ratio of read operations of the PPC in postmark benchmark
(random writing requests). The numbers of read times which is for full parity write back to
SSDs is 0.73, 0.79, 0.64, and 0.51, respectively. The numbers of read times which is for
partial parity update to SSDs is 0.33, 0.40, 0.48, and 0.56 respectively. We can find that the
number of read times for partial parity update is increased gradually with a larger stripe size,
because the partial parity associates with more data with a wider data stripe. The partial
parity associate with more data means that there are more opportunities to merge data by

partial parity.

Fig. 4.8(b) shows that the ratio of read operations of the proposed scheme in postmark
benchmark. The proposed scheme adds a data buffer; therefore, there is no read operation

-‘" |
from the SSDs for parity update. r,;’f il “\_
In' 1 N

r
- - -

S

Fig. 4.9(a) shows the ragia"'c';‘ read’ fgp'eré'ﬁons o?“';ha PPC in iozone benchmark
(sequential writing requests). 'IjFre read tniﬁn_es_f'r ;ull parlty write back to SSDs with
different stripe size are 0.18, 0.64, ()53 and 0 34 respe?tlvely The number of read times
which is for partial parity update to s@ﬁ is 0:32, 0. 3:910?47 and 0.54 respectively. We find

that the read times for full parity generation in random writing requests are higher in

sequential writing requests.

In Fig 4.9(b), the proposed scheme uses a data buffer to avoid the read operation from

the SSD, and thus the total read times are reduced accordingly.
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read (full parity) read (merge partial parity)
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0.6 7
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Fig. 4.8. The analysis of read operations for generating the parities (postmark).

(@) PPC scheme. (b) Proposed scheme. (Normalized to 4000 write requests)
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Fig. 4.9. The analysis of read operations for generating the parities (iozone).

(a) PPC scheme. (b) Proposed scheme. (Normalized to 4000 write requests)
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4.4.2 Parity Cache size

Fig. 4.10 shows that average size of victim pages in the write cache with two
benchmark inputs. The different victim pages have the same stripe size. The ideal number of
victim page is four with 4+1 RAID-5 scheme, so the ideal number of victim pages with n+1

RAID scheme is n.

The RAID scheme uses the parallelism 1/O architecture well when the number of
selection victim pages is ideal number. Besides, there is no read operation for generating
full parity or partial parity in this case, because these victim pages only need to do

exclusive-or with each other.

il
The average size of victim pages with,'réq&)ﬁe\benchmark and Postmark benchmark are
i

‘u

3 pages and 1.3 pages, respectlvelyr “in |ozcme bench"mark the controller maybe need 1
E"---._ - — 1.

read operation for generating the full parfty ln ﬂ)_stmark beﬁchmark the controller maybe

r

need 2.7 read operations for generaﬁ’mg the full parlty Th/us the number of read operations

'\.

k ;
of the Postmark is larger than the |ozqr}e'»as shown in F‘tg 4 8 and Fig 4.9.

e
——Postmark  —=—lozone
4.0
8 35
© 30 —=—a—= o o o = = s
Q
B 2.5
a 2.0
E 1S rV—m——————————
£ 10
> 0.5
0.0 1 | 1 1 | 1 | | J
16 18 20 22 24 26 28 30 32
Partial Parity Cache size (KB)

Fig. 4.10 Numbers of victim pages with proposed 4+1 RAID-5 scheme
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4.4.3 Parity cache size and write cache size

Fig. 4.11 shows that read times and write times for parity generation with different
cache size (Postmark). Fig. 4.11(a) shows that the read times for parity generation of the
proposed scheme is always smaller than the PPC. The read times of the proposed scheme
are 0.65 and 0.16 with partial parity cache and write cache size at 16 KB and 32 KB
respectively. The read times of PPC scheme are 1.06 and 0.90 with partial parity cache and
writé cache size at 16 KB and 32 KB respectively. The reason is that larger partial parity
cache can store more partial parity data. When there are more partial data, we can merge
partial parity more efficient. In addition, the data buffer in the proposed scheme also helps

to reduce the read times for parity generatlon

VN
Fig. 4.11(b) shows that write tlme§ for fuII pé.ntx generation and write back to the

SSDs with different cache size® ‘Fﬁe proposed scheme cam;educe writes time even with a

smaller cache. As a result, we can\grocess lthe” wute ope_watlons well even when there are

limited hardware resources. With a I‘arger cache size, theﬁwrlte times can be reduced in the
| ‘\

PPC scheme and proposed scheme. I—H@vever W|th the b?’oposed efficient buffer scheme, the

write times of the proposed design can be always smaller than the PPC scheme.
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Fig. 4.11 The different of data buffer size and parity cache size with Postmark

(a) Read Times (b) Write Times (Normalized to 4000 write requests)
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Fig. 4.12 shows the simulation results with different partial parity cache size and a
fixed 16 KB write cache size. The times is decreased as the size of partial parity cache is
increased. Thus, we can only increase the size of partial parity cache to obtain better

performance.

Fig. 4.12(b) shows that the write times for parity generation of the proposed scheme
are all smaller than PPC scheme. We only need to add a larger partial parity cache as
compared the simulation results shown in Fig 4.11. The reason is with a larger write cache
we can only store more data when there are more data in the cache, the 1/0 performance is
not improved obviously. In addition, the efficient buffer method can manage the partial

parity very well.

-‘" 5“‘
r’;j 1SN
In' 1 \‘

T = T,
il <o -
ﬁ\"'";:-'::_"'_; " _':.- - -\,1 _:..::"_:',J-;‘:

oLl
\’? b I_ o i .'/‘
I - _ . |
, |,
i
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Fig. 4.12 The different of partial parity cache size with Postmark

(@) Read Times (b) Write Times (Normalized to 4000 write requests)
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4.4.4 \erification with FPGA

We use the Socle Technology Corporation MDK-3D development board to verify the

proposed efficient buffer management scheme. The specifications as follows:

® The CPU is ARM1176JZF and the frequency is up to 1GHz.
® The AHB frequency is up to 200MHz.
® Support the NOR-flash/NAND-flash/DDR2

® The ROM size is 4096x32 bytes.

We implement the RAID-5 and the proposed method in the FPGA. The measurement
results shows that both read and write times are reduced by the proposed method. The write

buffer, write cache, and data buffer are all 8}%’@}\13 to the size limitations in the FPGA. The
e .

™,

test pattern are 4096 random write req,ues/ts. _ -

= 5y
Erenle sk
i —

ARM 1176J I,:S C eode Té;t Pattern
Y\ ¢
Ly ,'

7 AHBMS |

I

RAM Test Pattern

!

L
RAID-5 SSD Controller

Xilink FPGAVirtex-5 | § §  § v ¥

SSD SSD SSD SSD SSD
Model Model || Model | | Model || Model

Fig. 4.13 The RAID architecture.
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4.4.5 The block diagram of the proposed method

Fig 4.14 shows the block diagram of the proposed efficient buffer management method.
The proposed efficient buffer management method is composed of a memory controller, a
system controller, a SRAM, a RAID-5 SSD controller, a write cache, a data buffer, and a
parity cache. The memory controller handles SRAM address, data, and read/write
operation of SRAM. If the value of the wen is O, it represents that the RAID-5 SSD
controller must read data from the SRAM. If the value of the wen is 1, it represents that the
RAID-5 SSD controller must write data to the SRAM. Firstly, the addresses of the SRAM
(Addr) and data (Din) are written to the SRAM by AHB interface. When the write operation
is finished, the RAID-5 SSD controller starts to read data from the SRAM. The RAID-5

SSD controller processes the data to the erﬂ; éLc\e data buffer, or parity cache.

= APB
b 'l
——m————
CLK 7
Addr SRAM
Wen
32 Dout
Y
o RAID-5 SSD Ful
Controller Read counter
" Write_counter
CLK 32 data | |3 parity
Reset Memory
controller | %2 N
Write | | Data | | Parity
Cache | | Buffer | | Cache
System Busy
controller

Fig 4.14 The block diagram of the proposed method
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4.4.6 The synthesis report and experimental results with FPGA

We synthesize the proposed scheme by Xilinx ISE 10.1 [23]. Table 2.3 shows the

number of slice registers and lookup table (LUTS) reported by ISE 10.1.

Table 2.3 Number of slice registers and LUTS.

RAID-5 The proposed method
Number of slice registers 211 390
Number of slice LUTSs 588 912

Fig 4.15 The picture of the FPGA
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We input the 4096 logical addresses to the FPGA. Fig 4.16 shows the results of
RAID-5 with FPGA. The write_counter and read_counter are used to record the write times
and read times respectively for full parity write back , partial parity update ,and full parity

generation. The number of write_counter and read_counter is 1610 and 2355, respectively.

o= &/ )
F1e Edit View Tawgzt Debug Taok Iiﬂp ll
Ded 'RE PEFBCESE & F K ©0%® P K. b Duenly
Seripts | <Mone> =5 5 5
(o} Home Page Dhuunﬁh
c»5:00008260 DEAS SVC #0xab | -
5:00009862 ETFE B 0x9962 <_sys_exit+0x06> f
5:00009564 00020026 <Data> ‘&' 0x00 0x02 0x00 ack raid 5.axf
rr fp status addr: |-# Load Image+Symbals
5:00009968 £39F0004 LDR £0,0%2974 <__re_fp status_addr+0x0C> E-Sources |From Image
5:0000996C E12FFFIE BX ir
5:00008970 E12FFFIE BX ir :j f
5:00009874 0000SDS8 <Data> Ox98 Ox9D Ox00 0x00
_l:t_laﬂﬂl&: '
$:00009978 ES9F0004 LDR *0,0x9984 <__rt_locale+0x0C>
5:0000997C E12FFF1E BX ir
5:00009980 E12FFF1E BX ir |
5:00009984 00009D54 <Data> 0xB4 0x9D 0x00 0x00 ¢| .
__do fflush:
< |
Name ‘ |\r‘alua
InKT iTL ¥ xit (void)
< | 3
| casmek | |wm.| [Werte | Waens | woend |

ogical Address[4077] = 15
agical Address[4078] = 18
ogical Address[4073] = 5
ogical Address[4080] = 27
jLogical Address[4081] = 11
[Logical Rddress[4082] = 35 I
Logical Address[4083] = 38
[Logical Address[4084] = 8
ogical Address[4085] = 37
Logical Address[4086] = 26
ogical Address[4087] = 31
ogical Address[4088] = 30
agical Address[4083] = 2
agical Address[4090] = 2
ogical Address[4091] = 24
ogical Address[4092] = 38
Logical Address[4093]) = 1
Logical Address[4094] = 3
[Logical Rddress[4095] = 22
----- RAID_5_SSD_CONTROLLE start to handle -----
;

rite counter = 1610
read counter = 2355

. =
L

Cod | 540 | FiFmd | #Log |

Fig 4.16 The experimental results of RAID-5 with FPGA
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Fig 4.17 show the results of the proposed management method with FPGA. The

number of write_counter and read counter is 1316 and 1324,

respectively. Both

write_counter and read_counter in the proposed management method are smaller than

RAID-5.

File Edit View

Target Debug Tools Help [

DFd *E »EA PG oF &5 & 5P P Fe Disenbly
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(o} Home Page | Disassembly |
C>5:00009960 __ DFAB__SVC #0xab |
5:00009962 ETFE B 0x9962 <_sys_exic+0x06>
5:00009964 00020026 <Data> ‘&' Ox00 OxD2 Ox00
_rt_fp_status_addr:
5:00009968 E59F0004 LDR 0, 0x9974 <_ rt_fp status_addr+0x0C>
5:0000996C E12FFF1E BX ir
5:00009970 E12FFF1E BX 1r
5:00009974 00009D98 <Data> Ox98 0x9D 0x00 0x00
_rt_locale:
5:00009978 ESSFO004 LDR r0, 0x9984 <__rt_locale+0x0C>
5:0000997C E12FFF1E BX ir
5:00009980 E12FFF1E BX 1r

5:00009984 00009DB4
do fflush:
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Ty o

|
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ogical Address[4078]
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ogical Address[4082]
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————— RAID_S5 SSD CONTROLLE start to handle -----
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read_counter = 1324

END
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Fig 4.17 The experimental results of the proposed management method with FPGA
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Chapter 5

Conclusion and Future Works

In this thesis, we propose an efficient buffer management method with a data buffer to
improve the performance of RAID with SSDs. There are many considerations for disposing
RAID with SSDs, because the characteristics of SSDs are different from traditional HDDs.
The partial parity cache can merge parity data. The efficient buffer method uses this
characteristic sufficiently, so the controller select the suitable victim data to prevent the
partial parity cache being full. When the pa,;t’ ail‘ pagty cache is full, the controller selects the

victim partial parity to write back and” Wlth read operat|6r1Qfor rebuilding the full parity. We

P ol

also add a data buffer to reduce the fuII parlty gengratlon ovefhead The cost of a data buffer

"\- r

is acceptable and the data buffer Eﬂn Teduce th,e ,..rerad 6E)erat|ons from our experimental
k . ' “
results. This proposed scheme decrea§és both of read\operatlons and write operations for

. j YRR
generating the parity data in the RAID system.

The RAID-5 scheme only tolerates one storage device failure. When we need one more
tolerances to storage devices failure, we must use more hardware cost in each cache. For
example, there are two parities in the RAID-6 scheme, the proposed scheme needs double
size of buffers and caches. The hardware cost is very expensive. Thus how to reduce the
hardware costs and maintain the performance well are difficult. That can be a further work

for a RAID-6 system.
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