

國 立 中 正 大 學

資訊工程研究所碩士論文

快速相位追蹤與高頻率倍數

全數位鎖相迴路設計與應用

Fast Phase Tracking and High Frequency Multiplication

Factor All-Digital Phase-Locked Loop

and Its Applications

 研究生： 柯鈞耀

 指導教授： 鍾菁哲 博士

中華民國 九十九 年 七 月

 i

快速相位追蹤與高頻率倍數全數位鎖相

迴路設計與應用

學生 : 柯鈞耀 指導教授 : 鍾菁哲

國立中正大學資訊工程學系研究所

摘要

本論文探討開發應用於視訊系統的全數位時脈產生器，其主要功能是接收顯

示卡發出的水平同步訊號 (HSYNC)，並依據使用者設定的螢幕解析度，產生高

頻率像素時脈 (Pixel Clock) 來擷取視訊訊號資料。與傳統鎖相迴路相較，本論

文提出電路在高頻率倍數鎖相迴路應用上，有較佳的追蹤相位能力。此電路在大

量的雜訊干擾時，仍然可以擁有快速追蹤相位能力。並利用數位迴路的優點，可

避免在先進製程上產生漏電問題，且可降低晶片面積並避免使用外接元件 (如外

接電容，額外的石英震盪器)。並開發抵抗水平同步訊號雜訊干擾的數位濾波器，

以改善時脈產生器的輸出週期抖動。取樣時脈 (Pixel Clock) 的穩定度直接影響

到顯示畫面的品質。因此，如何在高頻率倍數下，產生一個穩定的時脈訊號，是

此電路設計的重點。本論文所提出的 ADPLL 將使標準元件庫 65nm 標準 CMOS

製程來製作晶片，驗證所提出的電路架構。

 ii

Fast Phase Tracking and High Frequency

Multiplication Factor All-Digital Phase-Locked Loop

and Its Applications

Student: Chiun-Yao Ko Advisor: Dr. Ching-Che Chung

Department of Computer Science and Information Engineering,

National Chung Cheng University

Abstract

An All-Digital Phase-Locked Loop (ADPLL) for video capture application is

presented in this dissertation. The major function of this ADPLL is to generate the

high speed pixel clock from the horizontal synchronization signal (HSYNC) of the

Person Computer (PC) graphics card according to the user-defined video resolution.

When it is compared with conventional Phase-Locked Loop (PLL), the proposed

design have better phase tracking ability than conventional PLLs in high frequency

multiplication factor applications. And it can accept large reference clock jitter and

still have fast phase tracking ability. The advantages of digital design can overcome

the leakage problem in advanced CMOS process, reduce chip area and avoid to use

external components (such as external capacitor and oscillator). The digital loop filter

was developed to resist the jitter effects of reference clock and to reduce the period

jitter of pixel clock. The stability of sampling clock (pixel clock) will have large

effects on video quality. Thus how to generate a very stable, and small phase drift

pixel clock, is the major design challenge in this dissertation. And the proposed

ADPLL was implemented with standard cells on a standard 65nm CMOS process to

verify the performance of the proposed architecture.

 iii

Acknowledgements

I would like to express the deepest appreciation to my Professor Ching-Che

Chung, who has the attitude and the substance of a genius: he continually and

convincingly conveyed a spirit of adventure in regard to research and scholarship, and

an excitement in regard to teaching. Without his guidance and persistent help this

dissertation would not have been possible.

I would like to thank my parents and girl friend Jessy for their love and support

while I am depressed for awhile. Finally, I thank all the friends I’ve met over two

years at National Chung Cheng University. I learned a great deal from each of you,

none of which I can remember now.

 iv

Contents

Chapter 1 Introduction ...1

1.1 Motivation..1

1.2 Design Challenges ...2

1.2.1 The Design Challenges in Conventional PLLs with Advanced Process

..2

1.2.2 The Difficulties of the Phase Tracking in PLL4

1.3 Video Display System..5

1.3.1 Video Display System Overview ..5

1.3.2 The Difficulties of High Multiplication Factor ADPLL Design...........9

1.3.3 The Impact of HSYNC Jitter Injection ...10

1.4 Conventional PLLs Survey ..11

1.4.1 A Fractural-DLL Based Clock Generator for Video Application........11

1.4.2 Video Capture PLL by Analog Bits Inc. ...12

1.4.3 An ADPLL for Video Pixel Clock Generator13

1.5 Summary ..14

1.6 Thesis Organization ...14

Chapter 2 Architecture of Video Capture ADPLL...16

2.1 System Architecture Overview ..16

2.2 Phase and Frequency Detector...18

2.2.1 Structure ..18

2.2.2 Simulation Result..19

2.3 Digital Controlled Oscillator..20

2.3.1 MUX-Type DCO structure ...21

2.3.1.1 Structure...21

2.3.1.2 Problem of Non-monotonic DCO..22

2.3.1.3 Simulation Result...25

2.3.2 A Built-In Self-Calibration Circuit for Monotonic DCO....................29

2.3.2.1 Built-In Self-Calibration Circuit ..30

2.3.2.2 Test Chip Architecture ...34

2.3.2.3 Experimental Result...35

2.3.2.4 Conclusion ...42

2.3.3 Interpolation-type DCO ..42

2.3.3.1 Structure...43

2.3.3.2 Simulation Result...45

2.4 ADPLL Controller..50

2.5 Digital Loop Filter ...53

 v

2.6 Dithering Technology ..55

2.6.1 Dithering Theorem..55

2.6.2 Working Principle ...58

2.6.3 Simulation Result..59

2.7 Fast Phase Tracking Technology..62

2.7.1 Time-to-Digital Converter for Fast Phase Tracking............................62

2.7.2 Structure ..63

2.7.3 Problem of TDC Loop Gain and Interpolation-type DCO Solution...65

2.7.4 Simulation Result..66

Chapter 3 Experimental Results...68

3.1 Chip Implementation ...68

3.2 Jitter Behavioral Models Discussion ...71

3.3 Overall Simulation ...74

3.3.1 Simulation in Verilog Behavior Model ...74

3.3.1.1 Different Jitter Behavioral Models ..74

3.3.1.2 Time-to-Digital Converter ...76

3.3.1.3 Sigma-Delta Modulator ...83

3.3.2 Simulation in AMS ...85

3.4 Chip Measurement ...89

Chapter 4 Conclusion and Future Works ...94

Reference ...96

 vi

List of Figures
Fig. 1.1 Analog PLL architecture...2

Fig. 1.2 Jitter versus multiplication factor at fixed 240MHz output [5]4

Fig. 1.3 Video display system ..5

Fig. 1.4 HSYNC and pixel clock timing diagram..6

Fig. 1.5 RGB analog signal and pixel clock timing diagram...8

Fig. 1.6 The tracking jitter of high frequency multiplication factor9

Fig. 1.7 Fractural-DLL based clock generator [7] ...11

Fig. 1.8 Video capture PLL proposed by Analog Bits Inc. [8].....................................12

Fig. 1.9 Video pixel clock generator [10] ..13

Fig. 2.1 The block diagram of proposed ADPLL architecture.....................................16

Fig. 2.2 The cell-based, three-state, bang-bang PFD architecture [12]18

Fig. 2.3 Digital pulse amplifier architecture [12] ..19

Fig. 2.4 Simulation result of the bang-bang PFD ..19

Fig. 2.5 The coarse-tuning stage of the MUX-type DCO..21

Fig. 2.6 The fine-tuning stage of the proposed DCO...22

Fig. 2.7 Non-monotonic DCO ...24

Fig. 2.8 Simulation of MUX-type DCO period versus coarse-tuning code 0 ~ 6326

Fig. 2.9 Comparison of the MUX-type DCO period in PVT variations......................27

Fig. 2.10 Simulation of MUX-type DCO period ...28

Fig. 2.11 The proposed DCO with built-in self-calibration circuit..............................30

Fig. 2.12 The compensation code when sub-frequency band is changed....................31

Fig. 2.13 The timing diagram of the proposed calibration circuit33

Fig. 2.14 The phase detector in the calibration circuit [24] ...34

Fig. 2.15 The microphotograph of the test chip...36

Fig. 2.16 Output period of the non-calibrated DCO ..38

Fig. 2.17 Output period of the calibrated DCO ...38

Fig. 2.18 Measured calibration circuit output result ..39

Fig. 2.19 Measured jitter histogram operates at 64.489 MHz40

Fig. 2.20 The architecture of the interpolation-type DCO...43

Fig. 2.21 The fine-tuning stage of the interpolation-type DCO [25]44

Fig. 2.22 Simulation of DCO period versus coarse-tuning code 0 ~ 31......................46

Fig. 2.23 Comparison of the interpolation-type DCO period in PVT variations.........47

Fig. 2.24 Simulation of interpolation-type DCO ...48

Fig. 2.25 The finite state machine of the ADPLL controller50

Fig. 2.26 Timing diagram in Coarse SAR state and Frequency Searching state51

Fig. 2.27 Timing diagram in Fine-Fraction SAR state...52

 vii

Fig. 2.28 Timing diagram of the ADPLL locking procedure.......................................53

Fig. 2.29 ADPLL Frequency tracking procedure...53

Fig. 2.30 The digital loop filter structure [28] ...54

Fig. 2.31 Dithering Technology ...55

Fig. 2.32 Phase Error reduction by using dithering technology57

Fig. 2.33 The working principle of Sigma-Delta Modulator [29]58

Fig. 2.34 First-order Sigma-Delta Modulator ..58

Fig. 2.35 Sigma-Delta Modulation with different fractional bits61

Fig. 2.36 The TDC working principle..62

Fig. 2.37 The entirety TDC structure...63

Fig. 2.38 The detailed structure of the sub-TDC ...64

Fig. 3.1 Floorplanning and I/O planning ...68

Fig. 3.2 The microphotograph of the proposed ADPLL chip70

Fig. 3.3 Different jitter models and its distribution ...73

Fig. 3.4 The comparison of the maximum phase error in different jitter models75

Fig. 3.5 The comparison of the average phase error in different jitter models75

Fig. 3.6 Without TDC, the maximum phase error..77

Fig. 3.7 Without TDC, the average phase error. ..77

Fig. 3.8 With TDC, the maximum phase error...78

Fig. 3.9 With TDC, the average phase error...78

Fig. 3.10 Maximum phase error of proposed ADPLL with and without TDC80

Fig. 3.11 Average phase error of proposed ADPLL with and without TDC................80

Fig. 3.12 Jitter performance with and without TDC in XGA mode81

Fig. 3.13 Jitter performance with and without TDC in SXGA mode81

Fig. 3.14 Jitter performance with and without TDC in UXGA mode..........................82

Fig. 3.15 Jitter performance with and without TDC in WUXGA mode......................82

Fig. 3.16 Maximum phase error of the proposed ADPLL with and without SDM83

Fig. 3.17 Average phase error of the proposed ADPLL with and without SDM84

Fig. 3.18 Simulation mode of the proposed ADPLL ...85

Fig. 3.19 The maximum phase error in AMS simulation...87

Fig. 3.20 The average phase error in AMS simulation ..87

Fig. 3.21 The locking procedure of the ADPLL in 5600 multiplication factor89

Fig. 3.22 The jitter histogram of the proposed ADPLL...90

 viii

List of Tables
Table 1.1 Monitor Timing Specifications ..7

Table 1.2 HSYNC jitter measurement [9]..8

Table 2.1 The dead zone of the bang-bang PFD..20

Table 2.2 Properties of the MUX-type DCO coarse-tuning stage27

Table 2.3 Properties of the DCO fine-tuning stage..28

Table 2.4 I/O PADs description ...35

Table 2.5 Properties of the DCO..37

Table 2.6 Period of the DCO output Clock..39

Table 2.7 Performance summary ...41

Table 2.8 Interpolation Switching Sequence ...45

Table 2.9 Properties of the interpolation-type DCO ..49

Table 2.10 Peak-to-peak and average phase error with different SDM fractional bits in

WUXGA mode...59

Table 2.11 Maximum phase error of proposed ADPLL in XGA to WUXGA.............66

Table 2.12 Average phase error of proposed ADPLL in XGA to WUXGA66

Table 2.13 Summary of the TDC performance..67

Table 3.1 Table I/O PADs description..69

Table 3.2 The specification of proposed ADPLL ..74

Table 3.3 Maximum and average phase error in different jitter behavioral models76

Table 3.4 Maximum phase error with and without TDC in XGA to WUXGA79

Table 3.5 Average phase error with and without TDC in XGA to WUXGA...............79

Table 3.6 Maximum and average phase errors with and without SDM.......................84

Table 3.7 Simulation Mode of the proposed ADPLL components85

Table 3.8 Maximum and average phase errors in AMS simulation.............................88

Table 3.9 Measurement Result of the proposed ADPLL ...91

Table 3.10 Performance Comparisons ...92

 1

Chapter 1 Introduction

1.1 Motivation

The Phase-Locked Loop (PLL) is usually used for many applications, such as the

frequency synthesizer, clock multiplier, clock and data recovery (CDR) and clock

deskew. The PLL is also an indispensable module in System-on-a-Chip (SoC). But in

reality, we can’t have a PLL meet all applications or any system specifications. For

different applications and system specifications, PLL has to be redesigned according

to the application features and different requirements, such as locking time, jitter

suppression, frequency range, and multiplication factor. Therefore, PLL will be

implemented with different architectures to meet the area and power consumption

requirements in the specifications.

 2

1.2 Design Challenges

1.2.1 The Design Challenges in Conventional PLLs

with Advanced Process

Fig. 1.1 Analog PLL architecture

For many years, conventional approaches [1-5] utilize charge-pump based

structure to implement the PLL circuit. Fig. 1.1 shows the block diagram of this

architecture. However, in advanced CMOS process, such as 65nm CMOS process,

these conventional architectures will encounter great difficulties. In conventional PLL

architectures, we will discuss three major design challenges in the following

paragraphs.

1.

The most significant problem comes from the charge pump structure, because

this structure has to store the control voltage (Vctrl) by capacitor to adjust the voltage

controlled oscillator (VCO) and stabilize the output frequency. But to reduce chip area

 3

and avoid using the special process (such as MIM capacitors), mostly the MOS

capacitor is used. However, the transistor has serious leakage problem in deep

submicron process. The leakage current in charge pump will cause ripple

phenomenon and produces jitter on the output clock makes it difficult to design the

PLL loop. Because this problem directly affects the jitter performance, the low

leakage MOS capacitors are used in PLL to avoid the leakage problem. However,

when using the low leakage MOS capacitors, it raises the overall operating voltage

(from 1.0V to 1.2V in 65nm CMOS process), leading to increase the dynamic power

consumption.

2.

Because the voltage in the 65nm CMOS process has been reduced to 1.0V, so

when designs the gain value (KVCO) of the VCO, it needs to trade-off between the

output frequency range and the gain value (KVCO). Therefore, it often needs to use the

multi-frequency band technique to cut the VCO into several different working

sections to resolve the problem in wide frequency range operation. But it also requires

auxiliary circuit to do frequency band selection, resulting in the need for additional

input control signals, and increasing the circuit costs.

3.

Basically when the PLL’s reference clock (fREF) is changed, the control voltage

(Vctrl) will be charged or discharged with Up and Dn pulse, respectively, then the

analog signal is filtered by the loop filter and transmitted to the VCO. Therefore, in

some applications such as the high multiplication factor video clock generator, the

reference clock frequency is very low (< 100kHz). Because the PLL loop refresh rate

 4

is too low, due to the leakage problem of the MOS capacitors, the control voltage will

have ripple phenomenon and resulting in unexpected period jitter.

1.2.2 The Difficulties of the Phase Tracking in PLL

Fig. 1.2 Jitter versus multiplication factor at fixed 240MHz output [5]

Another problem in the conventional PLLs is the difficulty of the phase tracking.

Fig. 1.2 shows the impact of the multiplication factor versus the period jitter and

tracking jitter in the conventional PLL architecture [5]. The period jitter represents the

variations of the output clock period, and the tracking jitter represents the phase error

between the reference clock and output clock. In Fig. 1.2, the relation between the

peak-to-peak period jitter and the frequency multiplication factor is not obvious.

Regardless of how the frequency multiplication factor is (from 1 to 4096), the period

 5

jitter is controlled less than 2% of the output clock period. On the contrary, in the

conventional PLL architecture when the frequency multiplication factor is greater

than 512, the peak-to-peak tracking jitter has been achieved 100% of the output clock

period. In other words, the conventional PLL architecture is not suitable for the phase

tracking in high frequency multiplication factor applications. One reason is that the

conventional PLL architecture has ineffective phase tracking ability in high frequency

multiplication factor applications. Another reason is, in such applications, most of the

reference clocks have low frequency about kHz, and the loop refresh rate of the

analog PLL is too low, so it will cause the leakage problem.

1.3 Video Display System

1.3.1 Video Display System Overview

The proposed high frequency multiplication factor All-Digital Phase-Locked

Loop (ADPLL) is applied to the current video display system. The reason for

selecting the video display system as the ADPLL application is because that this

application has many requirements such as the high frequency multiplication factor

and the ability of the phase tracking. In currently applications, the video display

system is the most demanding, the following have a brief introduction.

Fig. 1.3 Video display system

 6

Fig. 1.3 shows the simplified block diagram of the video display system. The

analog video signals RGB (Red/Green/Blue), vertical synchronous (VSYNC) and

horizontal synchronous (HSYNC) signals from the Random Access Memory

Digital-to-Analog Converter (RAMDAC) of the Personal Computer (PC) graphics

card are delivered to the RGB acquisition interface. The RGB acquisition interface

converts the analog video signals (RGB) into digital signals by variable gain amplifier

(VGA) and analog-to-digital converter (ADC). Then the digital signals from digital

processor are sent to video display system. The sampling clock (PIXEL_CLK) of

ADC is generated by the clock generator. In general, the clock generator is

implemented by the PLL. The clock generator according to the resolution of the

display system uses HSYNC signal as reference clock to generate high speed pixel

clock (PIXEL_CLK). The horizontal resolution is proportional to the frequency

multiplication factor. Fig. 1.4 shows HSYNC and pixel clock timing diagram.

HSYNC Hback_porch Hdisplay (M pixel clock) Hfront_porch

Active Video

Htotal

HSYNC

Video
Data

PIXEL_CLK

Fig. 1.4 HSYNC and pixel clock timing diagram

 7

Table 1.1 Monitor Timing Specifications

Resolution
Mode

Active Total

Refresh

Rate

Horizontal

Frequency

Pixel

Frequency

1344×806 60 Hz 48.4 kHz 65.000 MHz

1328×806 70 Hz 56.5 kHz 75.000 MHz

1312×800 75 Hz 60.0 kHz 78.750 MHz
XGA 1024×768

1376×808 85 Hz 68.7 kHz 94.500 MHz

1688×1066 60 Hz 64.0 kHz 108.000 MHz

1688×1066 75 Hz 80.0 kHz 135.000 MHzSXGA 1280×1024

1728×1072 85 Hz 91.1 kHz 157.500 MHz

2160×1250 60 Hz 75.0 kHz 162.000 MHz

2160×1250 65 Hz 81.3 kHz 175.500 MHz

2160×1250 70 Hz 87.5 kHz 189.000 MHz

2160×1250 75 Hz 93.8 kHz 202.500 MHz

UXGA 1600×1200

2160×1250 85 Hz 106.3 kHz 229.500 MHz

2080×1235 60 Hz 74.0 kHz 154.000 MHz

2592×1245 60 Hz 74.6 kHz 193.250 MHz

2608×1255 75 Hz 94.0 kHz 245.250 MHz
WUXGA 1920×1200

2624×1262 85 Hz 107.2 kHz 281.250 MHz

Video Electronics Standards Association (VESA) [6] defines the monitor timing

specification and the detailed information is listed in Table 1.1. In video display

system the higher monitor resolution, the higher monitor quality. For example, in

WUXGA mode, the reference clock frequency is 74.556kHz, the pixel clock

frequency is 193.250MHz, so the frequency of the pixel clock is up to 2592 times

higher than the frequency of the reference clock. Therefore, the frequency

multiplication factor of the clock generator is 2592. The high speed pixel clock

generated by the clock generator has to align the phase of HSYNC signal, otherwise

the video signals will be distorted after ADC sampling. Fig. 1.5 shows the relation

between the RGB signals and the phase of the pixel clock. The valid sampling interval

must be in the stable region of RGB analog signals, otherwise the captured video

signals by the ADC will be wrong. Therefore, the clock generator has to accurately

 8

tune the frequency of the pixel clock, and it must reduce the phase error between the

pixel clock and HSYNC. In general video display application, the specifications of the

phase error must be less than one third of the pixel clock period [6-10]. Otherwise

signals distortion will be very serious and the monitor will have a flickering

phenomenon. From previous discussions, the conventional PLL architectures can not

be directly applied to this video display application, because it can not achieve these

requirements in the high frequency multiplication factor condition.

Fig. 1.5 RGB analog signal and pixel clock timing diagram

Table 1.2 HSYNC jitter measurement [9]

Pixel Clock

Frequency
 40MHz 160MHz 240MHz 320MHz

Effective Jitter (ns) 1.03nS 1.09nS 0.95nS 1.06nS Radeon

8500 Fraction of a pixel (%) 4.2% 17.3% 22.6% 33.5%

Effective Jitter (ns) 360pS 380pS 400pS 450pS
GeForce4

Fraction of a pixel (%) 1.4% 6.1% 9.6% 14.1%

Effective Jitter (ns) 160pS 120pS 90pS 110pS
Parhelia-512

Fraction of a pixel (%) 0.6% 2.0% 2.1% 3.5%

 9

Table 1.2 shows the HSYNC jitter measurement results of several Personal

Computer (PC) graphics cards measured by the UltraSharp Display Output

Technology [9]. From Table 1.2, the HSYNC jitter of video display system may be as

high as 1.06 ns and it is about 33.5% of the pixel clock period. Therefore, the

conventional PLLs become more difficult to track the phase error.

1.3.2 The Difficulties of High Multiplication Factor

ADPLL Design

T T T T T − Δ T − Δ T − Δ T T

δ Nδ− ×Δ

Fig. 1.6 The tracking jitter of high frequency multiplication factor

In the current video display system, the frequency multiplication factor of the

clock generator is up to 2592. In this high frequency multiplication factor applications,

any output frequency error and the reference clock jitter will cause enormous phase

error accumulation. Fig. 1.6 explains the tracking jitter problem in high frequency

multiplication factor PLL. If we assume that the frequency multiplication factor is N,

the resolution of DCO isΔ, and the original output pixel clock period is T. In the

beginning, the phase error between the HSYNC and HSOUT is zero. After one

HSYNC clock, the phase of HSYNC leads the phase of HSOUT slightly, and the

accumulative phase error isδ. Then the controller tunes the DCO period from T to T-

 10

Δ to speed up the PLL frequency. Because the frequency multiplication factor N is a

large number, so after one HSYNC clock the phase error will accumulate toδ-N．Δ.

The phase error can not be reduced effectively and its amount is bigger than previous

clock cycle. For example, if we assume that in WUXGA mode and the resolution of

the DCO is 1ps, the frequency multiplication factor is 2592. After tuning the DCO

step, the phase error will accumulate up to 2.592ns (=2592．1ps). Therefore, the

conventional PLLs are not possible to have good performance in phase tracking in

high frequency multiplication factor applications.

1.3.3 The Impact of HSYNC Jitter Injection

Because of the reference clock frequency is too low (31.5kHz to 106.3kHz), and

the frequency multiplication factor is high, the PLL controller has to slightly adjust

the DCO frequency, otherwise the phase error will be enlarged by the frequency

multiplication factor N. In conventional PLLs, in order to stabilize the PLL loop, the

step of the DCO has to be reduced. However, the reference clock (HSYNC) is not

stable, and the period jitter of the reference clock period will up to 1.06ns [9]. When

the reference clock has large jitter, the PLL has to track the phase error. However the

DCO step is small after PLL is locked, so the phase tracking behavior will be slow. It

causes the phase error can’t be reduced less than one third of the pixel clock period

[6-10]. Therefore, the PLL has to solve this problem when the reference clock has

large jitter, otherwise the phase error can’t meet the specification requirements.

 11

1.4 Conventional PLLs Survey

1.4.1 A Fractural-DLL Based Clock Generator for

Video Application

Init

PFD

Decision
ctrl

Div.
by N

Flip
Flop

Window
CP

Delay
ctrl

ckin

in1

in2

ckout ck2

ckout

mode

N

τ

Fig. 1.7 Fractural-DLL based clock generator [7]

The fractural-DLL based clock generator is proposed by [7]. Fig. 1.7 shows the

architecture of the fractural-DLL based clock generator. This clock generator uses

analog phase and frequency detector (PFD), charge pump, and set/reset flip-flop to

adjust the delay of delay cells. In the positive edge of the reference clock, the phase of

high frequency reference clock is calibrated to avoid accumulating the phase error

rapidly. The drawback of this architecture is that it needs a calibration circuit. Because

when the reference clock has large jitter, the pixel clock perhaps may encounters with

 12

glitch problem and the system will work incorrectly. Therefore, this architecture can’t

apply to video display system with large input jitter condition.

1.4.2 Video Capture PLL by Analog Bits Inc.

H
SY

N
C

R
P

O
C

E
SS

IN
G

Fig. 1.8 Video capture PLL proposed by Analog Bits Inc. [8]

Fig. 1.8 shows the video capture PLL proposed by Analog Bits Inc. [8]. This

video capture PLL uses three PLLs as clock generator. The 5-phase reference PLL

uses a stable external reference clock (crystal at 14.3MHz) to generate a 660MHz

5-phase high speed clock. Then, this architecture uses 660MHz 5-phase high speed

clock to control the 10-phase 28-bit NCO (Numerically Controlled Oscillator) to

achieve phase tracking and frequency multiplication. In this architecture, it needs a

GHz clock as the sampling clock. Because in this video display system, the

requirement of the frequency is up to 230MHz in UXGA mode. In [8], it uses the

multi-phase clock generator to avoid generating the GHz clock. However, this

architecture requires a stable external oscillator or crystal, and three high speed PLLs

will increase chip area and power consumption.

 13

1.4.3 An ADPLL for Video Pixel Clock Generator

coarse
TDC

DCO
(FN-PLL)

/M
counter

PFD

coarse
filter

fine
filter

fine
TDC

hsync

fbck

* direction

*

error

XTAL (CKL)

CKH

Pixel clock

(ref_clk)

Fig. 1.9 Video pixel clock generator [10]

The video pixel clock generator is proposed by [10]. Fig. 1.9 shows the

architecture of video pixel clock generator. From Fig. 1.9 the system has two loops,

one is in the fractional-N DCO component and the other is in the feedback path of the

pixel clock. Therefore, this architecture has to add additional circuit to make loop

consistency. The fractional-N DCO component is composed of the PFD, charge pump,

VCO, and the fractional divider circuit. The fractional-N DCO architecture is

equivalent to analog charge pump based PLL. Due to the VCO in the fractional-N

DCO, so it will also have the same leakage problem in advanced process. However,

the fractional-N DCO also needs a stable external reference clock. From the above

discussions, the video pixel clock generator is not suitable for video display system in

advanced process.

 14

1.5 Summary

Due to the design challenges in conventional PLLs, in recently, the All-Digital

Phase-Locked Loops (ADPLLs) [11-16] have proposed to overcome the above

problems. The feature of the ADPLL is that all digital control circuit. Therefore, when

the system uses the digital controlled oscillator (DCO) to replace the voltage

controlled oscillator (VCO), the leakage problem can be solved. For wide frequency

range, the DCO uses the cascaded structure and all-digital controller, so the problem

of the wide frequency range can also be solved. From the above discussions, the

ADPLL will become more competitive and more essential in advanced process.

For the difficulties of high multiplication factor ADPLL design has discussed in

section 1.3.2. In the proposed ADPLL design, we will use first-order sigma-delta

modulator (SDM) to improve the equivalent DCO resolution for reducing the

extensive phase error between HSYNC and HSOUT.

For the impact of HSYNC jitter injection has discussed in section 1.3.3. In the

proposed ADPLL design, we will use the time-to-digital converter (TDC) in the

proposed ADPLL to compensate the phase error caused by the HSYNC jitter. The

TDC circuit will improve the overall performance, and also improve the phase

tracking ability of the proposed ADPLL.

1.6 Thesis Organization

In this dissertation, we will design a fast phase tracking and high frequency

multiplication ADPLL in 65nm CMOS process.

In chapter 2, all the details of the proposed ADPLL clock generator, including the

circuit architecture, and circuit techniques are presented. In chapter 3, we show the

 15

experimental results of the proposed ADPLL and the chip implementation. Finally, we

make conclusions and point out future works in chapter 4.

 16

Chapter 2 Architecture of Video

Capture ADPLL

2.1 System Architecture Overview

PFD SDM

TDC

ADPLL
Controller

Digital
Loop Filter

Frequency
Divider

Interpolation
DCO

HSYNC

HSOUT

up

down

int_dco_code

PIXEL_CLK

Frequency
Divider 8

dco_code

tdc_code

PIXEL_CLK_div8

avg_dco_code

DIV_M

19

19

10
7

13

Fig. 2.1 The block diagram of proposed ADPLL architecture

 Fig. 2.1 shows the block diagram of proposed ADPLL architecture. The

proposed ADPLL is composed of seven blocks: Phase Frequency Detector (PFD),

Time-to-Digital Converter (TDC), Sigma-Delta Modulator (SDM), Interpolation

Digital Controlled Oscillator (DCO), ADPLL Controller, Digital Loop Filter, and

Frequency Divider.

The working principle of proposed ADPLL is described as follows. The signals

of HSYNC, RESET, and DIV_M are system inputs. The DIV_M signal is according

 17

to the specification of video display system to decide the frequency multiplication

factor. Both signals HSYNC and HSOUT are sent to the PFD, then the PFD compares

which signal is leading or lagging, and then it generates Up and Down information.

Simultaneously, the TDC uses up and down information to quantify the phase error

and generate the TDC code (tdc_code). According to up and down information, the

ADPLL controller adjusts the DCO output frequency to reduce the phase error

between HSYNC and HSOUT signals to achieve target frequency. The Sigma-Delta

Modulator (SDM) block is added to enhance the equivalent resolution of the DCO.

Therefore, the control code (dco_code) from the ADPLL controller is sent into the

SDM as its control signal. Then the SDM generates control signals (int_dco_code) to

control the Interpolation DCO. HSOUT is the output signal of the Frequency Divider.

The rest of block structures are organized as follows. Section 2.2 describes the

structure of the bang-bang PFD. Section 2.3 describes the DCO structure and the

solution of the non-monotonic DCO. Section 2.4 and Section 2.5 describes the

ADPLL controller and the system finite state machine. Then, section 2.6 discusses

how to use dithering technology to improve the equivalent DCO resolution and its

performance. Finally, Section 2.7 describes the structure of the time-to-digital

converter (TDC) and how to use it to quantize the phase error between both HSYNC

and HSOUT signals.

 18

2.2 Phase and Frequency Detector

2.2.1 Structure

Fig. 2.2 The cell-based, three-state, bang-bang PFD architecture [12]

The phase and frequency detector (PFD) is used to detect the phase error and the

frequency error. The three-state bang-bang PFD [12] is used in the proposed ADPLL

which is the cell-based design. Fig. 2.2 shows the bang-bang PFD architecture. The

bang-bang PFD has three operation conditions. When HSOUT leads HSYNC, a low

pulse is generated at flagD. On the contrary, when HSOUT lags HSYNC, a low pulse

is generated at flagU. And the last operation is, when HSOUT falls into the dead zone

of the PFD, both flagU and flagD signals remain at high logic level. The dead zone

means the dead region of the PFD. That is the phase error can’t be distinguished

between HSYNC and HSOUT.

 19

Fig. 2.3 Digital pulse amplifier architecture [12]

 Fig. 2.3 shows the digital pulse amplifier [12] architecture. The digital pulse

amplifier is used to reduce the dead zone of the PFD. When the input low pulse signal

send into the digital pulse amplifier, the output signal whose pulse width will be

increased. It’s to meet the minimum pulse width requirement of the D-Flip/Flop’s

reset pin. In our work, we use both output signals flagU and flagD from the PFD to

generate a new signal named phase_clk. The phase_clk signal is used as the reference

clock for the ADPLL controller block.

2.2.2 Simulation Result

Fig. 2.4 Simulation result of the bang-bang PFD

 20

Table 2.1 The dead zone of the bang-bang PFD

 Typical Case Fast Case Worst Case

Dead zone value (ps) 4 3 8

Fig. 2.4 shows the simulation result of the bang-bang PFD by UltraSIM

simulator. It is simulated on UltraSIM SPICE mode at worst case. In order to measure

the PFD dead zone under different PVT variations, the simulation switches the phase

error from HSYNC leading HSOUT for 15ps to HSYNC lagging HSOUT for 15ps.

Table 2.1 shows the PFD dead zone under different PVT variations.

2.3 Digital Controlled Oscillator

The digital controlled oscillator (DCO) is the most critical component in the

all-digital phase-locked loop (ADPLL). Because the DCO usually occupies almost

50% area and power consumption of the ADPLL, and therefore how to design a DCO

with lower power, smaller area and sufficient frequency resolution is very important

while designing an ADPLL.

 21

2.3.1 MUX-Type DCO structure

2.3.1.1 Structure

Fig. 2.5 The coarse-tuning stage of the MUX-type DCO.

Fig. 2.5 shows the architecture of the MUX-type DCO. The MUX-type DCO is

composed of the coarse-tuning stage and the fine-tuning stage. The coarse-tuning

stage which has (2M-1) delay cells with (2M-1) multiplexers can provide 2M different

delays. In order to generate a sufficient delay time in 65nm CMOS process, the delay

cells which with larger MOS channel length in the cell-library are used to build up the

coarse-tuning stage. And the two-input AND gates are added to each delay cell’s

output to disable the unused cells to save power consumption.

 22

Fig. 2.6 The fine-tuning stage of the proposed DCO.

Fig. 2.6 shows the fine-tuning stage of the DCO. To achieve better DCO

resolution, the digital-controlled varactors (DCVs) [11][20][24][26] are used in the

fine-tuning stage. The fine-tuning stage has P buffers, in each buffer it connects to

four NAND gates. When the fine-tuning control code (FINE[4*(P-1)-1:0]) is changed,

the capacitance in the buffer’s output node is also changed. Therefore a high

resolution, linear fine-tuning delay stage can be created.

2.3.1.2 Problem of Non-monotonic DCO

In order to achieve both wide frequency range and high resolution with smaller

chip area and lower power consumption, the cascaded structure is often used in

designing the DCO [11][20][24][26]. In these DCOs, the coarse-tuning stage, which

uses large delay cells to achieve wide-range delay control, is accompanied with a

fine-tuning stage to improve the resolution of the DCO. In this cascaded architecture,

it is often needed to overlap the sub-frequency band to make sure that there will not

have any frequency dead zone in the DCO. But this makes the DCO’s output

 23

frequencies become non-monotonic with the DCO control codes. To alleviate the

difficulty to design the ADPLL controller with these cascaded structure DCOs, the

fine-tuning stage must have a delay controllable range larger than the delay step of

previous coarse-tuning stage. However, it means that the coarse-tuning DCO control

code must be determined in the frequency search mode, and it must be fixed after the

frequency search is done. Then the ADPLL controller only adjusts the fine-tuning

DCO control code to fine-tune the output frequency and to track the phase of the

reference clock in a selected sub-frequency band.

In these ADPLLs [11][20][24][26], the proposed DCOs still have monotonic

response if the coarse-tuning DCO control code is fixed while tuning the fine-tuning

DCO control code. But for high frequency multiplication applications, such as

line-locked PLLs or spread spectrum clock generator (SSCG) applications [23][26], it

often needs to change the coarse-tuning DCO control code after frequency search is

done. However, when we switch the coarse-tuning DCO control code to the adjacent

sub-frequency band, because there are overlapped region between adjacent

sub-frequency bands, the output frequency will become non-monotonic with input

DCO control code. Thus in [26], the auto-adjust algorithm is proposed to solve the

non-monotonic problem during sub-frequency band transition in SSCG application.

But the proposed auto-adjust algorithm [26] depends on the simulation results

with PVT variations to decide a fixed compensation code. However, the overlapped

region between adjacent sub-frequency bands will be changed with PVT variations.

And this fixed compensation code must be designed for the worst-case. As a result, if

the overlapped region is smaller than expectation, it will affect the DCO resolution

and the jitter performance.

 24

Therefore, it is difficult to design a monotonic MUX-type DCO. Non-monotonic

or large resolution would take place and result in unstable loop tracking as shown in

Fig. 2.7.

Fig. 2.7 Non-monotonic DCO

In order to solve the non-monotonic issue, the cell-based DCO with built-in

self-calibration circuit (BISC) is describing in detail in section 2.3.2.

 25

2.3.1.3 Simulation Result

The MUX-type DCO is simulated with HSPICE. Fig. 2.8 shows the period of the

DCO output clock versus coarse-tuning stage control code (0-63), when the

fine-tuning stage control code is set to zero, and shows INL and DNL of the

MUX-type DCO.

The simulation parameters for each corner are process, voltage, and temperature,

respectively. The circle represents the TT corner, 1.0 V, 25°C, the square represents

the FF corner 1.1V, 0°C, and the upward-pointing triangle represents the SS corner,

0.9V, 125°C, respectively.

In TT corner, the DCO period range is from 1.639ns to 20.403ns, the DNL is

±0.002962∆, and the INL is ±0.006001∆. In FF corner, the DCO period range is from

1.192ns to 14.809ns, the DNL is ±0.003931∆, and the INL is ±0.00589∆. In SS corner,

the DCO period range is from 2.607ns to 32.794ns , the DNL is ±0.002252∆, and the

INL is ±0.00431∆. Three corners are shown in (a), (b), (c) , respectively.

 26

(a) TT corner, DNL: ±0.002962∆, INL: ±0.006001∆, DCO range: 1.639ns ~ 20.403ns

(b) FF corner, DNL: ±0.003931∆, INL: ±0.005896∆, DCO range: 1.192ns ~ 14.809ns

(c) SS corner, DNL: ±0.002252∆, INL: ±0.004316∆, DCO range: 2.607ns ~ 32.794ns

Fig. 2.8 Simulation of MUX-type DCO period versus coarse-tuning code 0 ~ 63

 27

Fig. 2.9 Comparison of the MUX-type DCO period in PVT variations

Table 2.2 Properties of the MUX-type DCO coarse-tuning stage

 ULTRASIM S mode Coarse-Tuning Stage Control Code : 0 ~ 63

 Avg. Step

(ps)

Max Step

(ps)

Min Step

(ps)

Max Period

(ns)

Min Period

(ns)

TT corner 288.856 289.300 288.000 20.403 1.6391

FF corner 209.178 210.000 208.800 14.809 1.192

SS corner 465.951 467.000 465.000 32.794 2.607

Fig. 2.9 shows the comparison of the MUX-type DCO period in PVT variations.

Table 2.2 shows the properties of the MUX-type DCO coarse-tuning stage. The

MUX-type DCO operation range is from 2.607ns to 14.809ns, covered in each corner.

 28

Fig. 2.10 Simulation of MUX-type DCO period

Table 2.3 Properties of the DCO fine-tuning stage

ULTRASIM S mode Fine-Tuning Stage Control Code : 0 ~ 31

 Avg. Step

(ps)

Max Step

(ps)

Min Step

(ps)

Range

(ns)

Cover

(ns)

TT corner 18.248 21.000 16.000 565.684 276.824

FF corner 14.175 16.000 12.000 439.439 230.268

SS corner 26.865 30.000 23.000 832.816 366.878

Fig. 2.10 shows the period of the MUX-type DCO in both coarse-tuning control

code (0~63) and fine-tuning control code (0~31) under different PVT conditions. The

average step of coarse-tuning stage delay is 288.856ps in TT corner, 209.178ps in FF

corner, and 465.951ps in SS corner. The average step of fine-tuning stage delay is

 29

18.248ps in TT corner, 14.175ps in FF corner, and 26.865ps in SS corner. The average

range of fine-tuning stage delay is 565.684ps in TT corner, 439.439ps in FF corner,

and 832.816ps in SS corner. The overlap delay is 276.824ps in TT corner, 230.268ps

in FF corner, and 366.878ps in SS corner. Table 2.3 shows the properties of the DCO

fine-tuning stage. We can see the range of fine-tuning stage is larger than one

coarse-tuning stage delay step.

2.3.2 A Built-In Self-Calibration Circuit for Monotonic

DCO

In this section, the cell-based DCO with built-in self-calibration (BISC) circuit to

overcome the non-monotonic response problem in cascaded structure DCO is

presented. The mechanism of self-calibration decides the compensation code for the

DCO fine-tuning control codes when the coarse-tuning control codes are changed.

The proposed self-calibration method can guarantee the monotonic response of the

DCO, and therefore the advantages of using the cascaded structure DCOs can be

retained.

 30

2.3.2.1 Built-In Self-Calibration Circuit

Fig. 2.11 The proposed DCO with built-in self-calibration circuit

Fig. 2.11 shows the architecture of the proposed DCO with BISC circuit. The

DCO control code (DCO_CODE) which inputs to the DCO is sent to the BISC

controller to detect if there has changes in the coarse-tuning control code. Then the

compensation code (Step[4:0]) for DCO fine-tuning control is added to the current

input DCO control code to make sure that the monotonic response of the DCO during

coarse-tuning control code transitions.

In the cascaded structure DCOs [11][20][24][26], the DCO has the coarse-tuning

stage and the fine-tuning stage. But in this architecture, it is often needed to overlap

the sub-frequency band to make sure that there will not have any frequency dead zone

in the DCO. Otherwise the output clock may have large cycle-to-cycle jitter while the

DCO operates near the frequency dead zone.

 31

Fastest
(K,2N-1)

Slowest
(K,0)

Coarse-band #(K)

Coarse-band #(K+1)

Slowest
(K+1,0)

Fastest
(K+1,2N-1)

* (coarse-tuning , fine-tuning stage)

Fastest
(K+1,2N-1)

Fastest
(K,2N-1)

Slowest
(K,0)

Coarse-band #(K)

Coarse-band #(K+1)

Slowest
(K+1,0) (K+1,Step)

Step

Fig. 2.12 The compensation code when sub-frequency band is changed

But if we overlap the sub-frequency band as shown in Fig. 2.12, it means that

when the coarse-tuning DCO control code changes from the current code to the next

coarse-tuning DCO control code, the output frequencies is not monotonically

increasing. As a result, when the ADPLL controller adjusts the DCO control code

from the coarse-band #(K) with fine-tuning control code (2N-1) to the next

coarse-band #(K+1), because the fine-tuning control code should reset to zero, and

therefore the output frequency becomes slower than in previous DCO control code

(i.e. coarse-band #(K) with fine-tuning control code (2N-1)). And the ADPLL

controller will encounter great difficulties in frequency tracking.

 32

To avoid this phenomenon, compensation code should be added to the

fine-tuning control code if there has changes in the coarse-tuning control code. In Fig.

2.12, a compensation code (Step[4:0]) is added to the fine-tuning control code so that

the monotonic response can be still retained.

The compensation code (Step[4:0]) can be determined by circuit simulation with

PVT variations. But if a fixed value compensation code is used in the ADPLL design,

there will have too worse cycle-to-cycle jitter in worst-case conditions. In this work,

we copied parts of the DCO circuit shown in Fig. 2.11 and named as "Calibration

DCO" with the phase detector (PD), and the BISC controller to generate the

compensation code (Step[4:0]) for current operating conditions. The calibration

circuit starts to work when system is reset. After the calibration is done for the DCO,

the compensation code is determined and then the ADPLL starts its normal operation.

The DCO control code is expressed in this format (coarse-tuning control code,

fine-tuning control code). Two adjacent frequencies (K, 2N-1) and (K+1, Step) are

used to do frequency comparison, where the fine-tuning control code has N-bit. The

DCO control code (K, 2N-1) is applied to the DCO shown in Fig. 2.11 Then the DCO

control codes (K+1, 0), (K+1, 1), … to (K+1, X) are sequentially applied to the

"Calibration DCO". The phase detector detects if the frequency of the "Calibration

DCO" is higher than the DCO. Thus after several calibration cycles, the compensation

code (Step[4:0]) can be found to guarantee the monotonic response of the DCO in

ADPLL normal operation mode.

 33

Fig. 2.13 The timing diagram of the proposed calibration circuit

The timing diagram of the proposed calibration circuit is shown in Fig. 2.13. In

Fig. 2.13, the BASE_CLK is the output clock of the DCO circuit and the

COMP_CLK is the output clock of the "Calibration DCO". The signal

"Disable_DCO" is used to disable both the DCO and the "Calibration DCO" after

each frequency comparison so that the phase detector can be used to perform

frequency comparison. The BASE_CLK and the COMP_CLK are sent to the phase

detector. The phase detector compares the phase of these two clocks. In the beginning

of the calibration process, because there has overlapped sub-frequency bands in the

DCO, the COMP_CLK is lagged to the BASE_CLK. Then the BISC Controller keeps

increasing the fine-tuning DCO control code of "Calibration DCO" until the

COMP_CLK leads the BASE_CLK. Then the value X shown in Fig. 2.13 is saved as

fine-tuning compensation code (Step[4:0]).

After the calibration process is finished, the ADPLL returns to its normal mode.

And the compensation code for DCO fine-tuning control code is added to current

input DCO control code (DCO_CODE) to make sure that the monotonic response of

 34

the DCO during coarse-tuning control code transitions. And if there has no change in

the coarse-tuning control code, the input DCO control code is bypassed to the DCO.

2.3.2.2 Test Chip Architecture

The architecture of the proposed DCO in the test chip is mentioned in the

previous section 2.2.1.1.

Fig. 2.14 The phase detector in the calibration circuit [24]

Fig. 2.14 shows the schematic of the phase detector [24] used in the calibration

circuit. The principle of the phase detector is to determine which rising edge in the

BASE_CLK or the COMP_CLK occurs later. This phase detector has a dead zone

about 1ps in 65nm CMOS process which is sufficient to detect tiny frequency

difference in frequency comparison. In this work, two additional inverters are added

at the output port of the phase detector to increase the driving capacity.

 35

The other circuits such as the BISC controller are written with hardware

description language (HDL), and then the cell-based design flow is used to implement

the full test chip.

2.3.2.3 Experimental Result

Table 2.4 shows the I/O PADs description of the proposed test chip, the 22 I/O

PADs and 10 power PADs are used in this test chip.

Table 2.4 I/O PADs description

Input Bits Function

REST 1 set chip to initial

CLK 1 input reference clock

DIV_M 1 divider multiplication factor

COARSE_CODE 4 DCO Coarse-tuning stage control code

FINE_CODE 5 DCO Fine-tuning stage control code

Set the output step

Value Step

0 calibration up step
STEP_SEL 1

1 calibration down step

Set the built-in self-calibration mode

Value DCO Running Mode

0 DCO auto upward running

1 DCO auto downward running

MODE 2

2 DCO fixed code running

Output Bits Function

OUT_CLK 1 DCO output clock

INIT_RUN_DCO_DOEN 1 BIST finish signal

STEP 5 compensation code

Power Pad Pairs Function

VDDC+VSSC 1 CORE Power Pad

VDDP+VSSP 4 Pad Power Pad

 36

CON-
TROLLER

Calibration
DCO

DCO

Divider

Decoder

Decoder

Fig. 2.15 The microphotograph of the test chip

Fig. 2.15 shows the microphotograph of the test chip. The test chip is

implemented with a standard performance (SP) 65nm CMOS process. The design

parameters of this test chip are determined as follows: M=6, N=5, P=9. It means that

the proposed DCO has 64 coarse-tuning steps in the coarse-tuning stage and 32

fine-tuning steps in the fine-tuning stage.

 37

Table 2.5 Properties of the DCO

Chip Meas.

PostSim

 TT

PostSim

FF

PostSim

SS

Coarse-Tuning Step (ps) 291.980 288.856 209.178 465.951

Fine-Tuning Range (ps) 653.693 565.68 439.44 832.82

Average Resolution (ps) 18.268 18.25 14.18 26.87

Max. Frequency (MHz) 538.704 610.090 839.067 383.568

Min. Frequency (MHz) 75.135 49.012 67.527 30.493

Compensation code 21 17 18 15

Table 2.5 shows the properties of the proposed DCO in chip measurement and in

post-layout simulation with PVT variations. The compensation code varies with

different PVT conditions. The fine-tuning range is always larger than coarse-tuning

step with different PVT conditions. The measurement results show that the DCO can

output frequency ranges from 75.135MHz to 538.704 MHz. And the resolution in the

proposed DCO is about 18.268ps from chip measurement results.

Fig. 2.16 shows the simulation results of DCO’s output period vs. DCO control

code in the non-calibrated DCO with PVT variations. Because the sub-frequency band

is overlapped, therefore the output period is not monotonically decreasing while the

DCO control code is increasing.

After the calibration process is done, the output period becomes monotonically

decreasing while the DCO control code is increasing. Hence the proposed

self-calibration circuit can make sure that the monotonic response of the DCO during

DCO coarse-tuning control codes transitions as shown in Fig. 2.17.

 38

Fig. 2.16 Output period of the non-calibrated DCO

Fig. 2.17 Output period of the calibrated DCO

 39

Fig. 2.18 Measured calibration circuit output result

Table 2.6 Period of the DCO output Clock

(Coarse-Tuning,Fine-Tuning) Period(ns)

(14,00) 16.5017631

(14,31) 15.8480704

(15,00) 16.2097834

… …

(15,18) 15.8552763

(15,19) 15.8413321

(15,20) 15.8243584

(15,21) 15.8079831

(15,22) 15.7875566

(15,23) 15.7757003

Fig. 2.18 shows the calibration result measured by the Logic Analyzer. The

compensation code (Step[4:0]) output by the proposed BISC circuit is 2110 in this case.

And Table 2.6 shows the measurement results of the DCO output period. It shows that

the output period at (15,21) is smaller than (14,31). Thus after the calibration with the

proposed BISC circuit, the output period becomes monotonically decreasing while the

DCO control code is increasing. Although the output period at (15,19) is already

smaller than the output period at (14,31), we choose (15,21) as output to tolerate jitter

effects of the DCO.

 40

After calibration process is done, the BISC controller adds the compensation

code (Step[4:0]) 2110 (101012) to the DCO control code if there has changes in the

coarse-tuning control code. And it can make sure that the monotonic decreasing

response of the DCO during DCO coarse-tuning control code transitions.

Fig. 2.19 Measured jitter histogram operates at 64.489 MHz

Fig. 2.19 shows the jitter measurement results of the DCO output clock. The

root-mean-square jitter and peak-to-peak jitter at 64.489 MHz is 13.171ps and

81.130ps, respectively. Table 2.7 summarizes the test chip performance. In Table 2.7,

the interpolated DCO consumes large power consumption thus is not suitable for

low-power applications. The proposed DCO with BISC circuit has smaller area and

lower power consumption and is very suitable for ADPLL design.

 41

Table 2.7 Performance summary

Performance Indices This work [27] [25]

Process 65nm CMOS 0.18μm CMOS 0.13μm CMOS

Design Approach Cell-Based All-Digital All-Digital

DCO Type Cascaded Interpolated Interpolated

Supply (V) 1.0 1.8 1.28

Frequency Range (MHz) 75.14 - 538.70 33 - 1040 300 - 1300

rms Jitter (ps)
13.171

(@64.49MHz)

13.8

(@950MHz)

10.4

(@950MHz)

p-p Jitter (ps)
81.130

(@64.49MHz)

86.7

(@950MHz)

59

(@950MHz)

LSB Resolution (ps) 18.268 N/A 5.9

Chip Area (mm2) 0.01
0.32 (Chip)

 0.06 (DCO)
0.0075(DCO)

Power (mW)

0.142

(@ 58.7MHz)

0.205

(@481.6MHz)

15.7

(@1.04GHz)

4.48

(@ 950MHz)

Performance Indices [26] [22] [11]
Process 0.18μm CMOS 90nm CMOS 0.18μm CMOS

Design Approach Cell-Based Cell-Based Cell-Based

DCO Type Cascaded Cascaded Cascaded

Supply (V) 1.8 1 1.8

Frequency Range (MHz) 27 - 54 191 - 952 378 - 2400

rms Jitter (ps)
94

(@54MHz)

8.24

(@952MHz)

76

(@134MHz)

p-p Jitter (ps) N/A
49.95

(@952MHz)

2000

(@134Hz)

LSB Resolution (ps) 1.1 1.47 65 (DCO1)

Chip Area (mm2) 0.156 N/A 0.16

Power (mW)
1.2

(@54MHz)

0.14

(@200MHz)

15

(@348MHz)

 42

2.3.2.4 Conclusion

In section 2.3.2, a monotonic DCO with built-in self-calibration circuit in 65nm

CMOS technology is presented. The proposed DCO can output frequency ranges from

75.135MHz to 538.704 MHz with low-power consumptions. The proposed calibration

circuit can solve the non-monotonic problem in cascaded architecture DCOs when the

coarse-tuning control code is changed thus is very suitable for ADPLL design in SoC

applications.

2.3.3 Interpolation-type DCO

The previous section 2.3.1 proposed the MUX-type DCO, but this structure may

encounters glitch problem and DCO non-monotonic issue. Section 2.3.2 then

proposed the built-in self-calibration circuit to correct the non-monotonic response in

the cascading DCO. Although this method can solve the non-monotonic problem,

however, this method may require additional area, power and complex circuit. It

increases the design cost and has a heavy burden on the designer. In this section, we

will present another, more intuitive DCO architecture called the interpolation-type

DCO to solve the problems encountered previously.

Compared with the previous MUX-type DCO, the interpolation-type DCO using

the interpolator circuit as fine-tuning stage in the two adjacent sub-frequency to

generate the fine-tuning delay. So it doesn’t need to overlap the sub-frequency band to

make sure that there will not have any frequency dead zone in the DCO. Because

using the interpolator to generate fine-tuning delay, it can seamlessly switch the

 43

control code in two adjacent sub-frequency delays. It can make sure that the output

frequency has monotonic response.

2.3.3.1 Structure

Fig. 2.20 The architecture of the interpolation-type DCO

Fig. 2.20 shows the architecture of the interpolation-type DCO. The

interpolation-type DCO is composed of the coarse-tuning stage and the fine-tuning

stage. The coarse-tuning stage which has 32(=25) delay cells with 33(=25+1)

multiplexers can provide 32(=25) different delays. In order to generate a sufficient

delay time in 65nm CMOS process, the delay cells in the cell-library are used to build

up the coarse-tuning stage.

In the coarse-tuning stage, the controller selects two adjacent branch delays as

one coarse-tuning step and sends two branch delays to the fine-tuning stage by both

signals O and E.

 44

Fig. 2.21 The fine-tuning stage of the interpolation-type DCO [25]

The interpolation-type DCO uses the interpolator circuit as its fine-tuning stage.

The interpolator circuit [25] is shown in Fig. 2.21. The interpolator circuit receives the

signals O, E, O_bar, E_bar from coarse-tuning stage as its input and generates output

signal (PIXEL_CK) as DCO output clock. The interpolator circuit has 8 interpolator

units in parallel to generate a sufficient equivalent resolution. The interpolator unit is

composed of tri-state inverters and inverters. The fine-tuning signal controls the

relative weight of two selected branches. Each interpolator unit has 8 (=2．22)(i.e.

F[0],…, F[3], F[0] ,…, F[3]) fine-tuning control signals and it can provide 4

different delays. So the interpolator circuit has 64 (=2．22．23)(i.e. F[0],…, F[31],

F[0] ,…, F[31]) fine-tuning control signals and it can provide 32(=22 ．23) different

delays in one fine-tuning stage. Table 2.8 shows the switching sequence of the

interpolator circuit. Therefore, the resolution of the coarse-tuning stage is about

550.129ps, and the resolution of the fine-tuning stage is about 17.188ps (550.129 /

8．22) for the proposed delay cell in 65nm CMOS process.

 45

Table 2.8 Interpolation Switching Sequence

Seq F[0] F[1] F[2] F[3] F[4] … F[30] F[31] Fine-tuning step

0 0 1 1 1 1 … 1 1 1/32．Tcoarse_step

1 0 0 1 1 1 … 1 1 2/32．Tcoarse_step

2 0 0 0 1 1 … 1 1 3/32．Tcoarse_step

3 0 0 0 0 1 … 1 1 4/32．Tcoarse_step

… … … … … … … … … …

30 0 0 0 0 0 … 0 1 31/32．Tcoarse_step

31 0 0 0 0 0 … 0 0 32/32．Tcoarse_step

2.3.3.2 Simulation Result

The interpolation-type DCO is simulated in post-layout simulation. Fig. 2.22

shows the period of the DCO output clock versus coarse-tuning stage control code

(0-31), when fine-tuning stage control code set to zero, and shows INL and DNL of

the interpolation-type DCO.

The simulations variables of each corner are process, voltage, and temperature,

respectively. The circle represents the TT corner, 1.0 V, 25°C, the square represents

the FF corner 1.1V, 0°C, and the upward-pointing triangle represents the SS corner,

0.9V, 125°C, respectively.

In TT corner, the DCO period range is from 1.131ns to 18.749ns, the DNL is

±0.163∆, and the INL is ±0.193∆. In FF corner, the DCO period range is from 0.854ns

to 14.798ns, the DNL is ±0.155∆, and the INL is ±0.195∆. In SS corner, the DCO

period range is from 1.916ns to 30.492ns, the DNL is ±0.171∆, and the INL is

±0.191∆. Three corners are shown in (a), (b), and (c), respectively.

 46

(a) TT corner, DNL: ±0.163∆, INL: ±0.193∆, DCO range: 1.131ns ~ 18.749ns

(b) FF corner, DNL: ±0.155∆, INL: ±0.195∆, DCO range: 0.854ns ~ 14.798ns

(c) SS corner, DNL: ±0.171∆, INL: ±0.191∆, DCO range: 1.916ns ~ 30.492ns

Fig. 2.22 Simulation of DCO period versus coarse-tuning code 0 ~ 31

 47

Fig. 2.23 Comparison of the interpolation-type DCO period in PVT variations

Fig. 2.23 shows the comparison of the DCO period in PVT variation. The DCO

operation range is from 1.914ns to 14.798ns, covered in each corner.

 48

Fig. 2.24 Simulation of interpolation-type DCO

Fig. 2.24 shows the period of the interpolation-type DCO in both coarse-tuning

control code (0~31) and fine-tuning control code (0~31) under different PVT

variations. Table 2.9 shows the properties of the interpolation-type DCO. The average

step of coarse-tuning stage delay is 550.129ps in TT corner, 435.619ps in FF corner,

and 891.844ps in SS corner. The average range of fine-tuning stage delay is

517.522ps in TT corner, 406.500ps in FF corner, and 846.494ps in SS corner. The

average step of fine-tuning stage delay is 17.205ps in TT corner, 13.617ps in FF

corner, and 27.907ps in SS corner. We can see the range of fine-tuning stage delay and

the step of one coarse-tuning stage delay are almost equal.

 49

Table 2.9 Properties of the interpolation-type DCO

Post-Layout Simulation DCO Control Code : 0 ~ 1023

Avg.

Coarse Step

(ps)

Max

Coarse Step

(ps)

Min

Coarse Step

(ps)

Max Period

(ns)

Min Period

(ns)

TT corner 550.129 635.100 460.600 18.749 1.131

FF corner 435.619 501.500 368.000 14.798 0.854

SS corner 891.884 1034.600 739.1000 30.492 1.916

Avg.

Fine Range

(ps)

Max

Fine Range

(ps)

Min

Fine Range

(ps)

Max

Frequency

(ns)

Min

Frequency

(ns)

TT corner 517.522 593.500 433.700 884.173 53.336

FF corner 406.500 464.300 344.700 1171.235 67.577

SS corner 846.494 976.200 700.600 522.0297 32.796

Avg.

Fine Step

(ps)

Max

Fine Step

(ps)

Min

Fine Step

(ps)

TT corner 17.205 45.400 5.000

FF corner 13.617 33.500 4.000

SS corner 27.907 77.900 6.400

 50

2.4 ADPLL Controller

Phase polarity

Ph
as

e
po

la
rit

y

Phase polarity

Phase polarity

Average code

A
ve

ra
ge

 c
od

e

A
verage code

Average code

P
hase polarity

A
verage code

Fig. 2.25 The finite state machine of the ADPLL controller

Fig. 2.25 shows the system states of proposed ADPLL controller. The algorithm

of the controller will influence the overall tracking performance and the locking time.

The proposed ADPLL has divided into six states, and these are Coarse SAR,

Frequency Searching, Fine-Fraction SAR, Fast Phase Tracking, Lock, and Filter

respectively. In the proposed ADPLL, the length of step code is 19 bits. The step code

is composed of 5bits coarse-tuning code, 5bits fine-tuning code and 9bits

 51

fraction-tuning code. In Fig. 2.25, the step code is expressed by {coarse-tuning code,

fine-tuning code, fraction-tuning code}.

Fig. 2.26 Timing diagram in Coarse SAR state and Frequency Searching state

The first state is coarse successive approximation register (SAR) tuning stage. In

this state, the controller accords to the reference clock frequency to find the

approximate frequency. Whenever a change in phase polarity occurs, the step code is

divided by 2 to reduce the tuning step. The average code from digital loop filter is

loaded into the control code, restoring the baseline frequency. When the step code is

reduced from {4,0,0} to {1,0,0}, the ADPLL controller enters into Frequency

Searching state. The purpose of Frequency Searching state is to find the suitable

coarse-tuning code. In this state, the step code is fixed to {1,0,0} for 16 clock cycles,

and the digital loop filter will update the average code to find the best baseline

frequency. Fig. 2.26 shows the timing diagram in both Coarse SAR state and

Frequency Searching state.

 52

Fig. 2.27 Timing diagram in Fine-Fraction SAR state

 When the freq_count equal to zero, the controller enters into Fine-Fraction SAR

state. In this state, the step code is be initialed to {0,16,0}, and the working principle

is similar to Coarse SAR state. Both the fine-tuning code and the fraction-tuning code

is changed until the step code is reduced to {0,0,1}, but the coarse-tuning code is

changed when the frequency is located between two frequency bands. Then, the

Sigma-Delta Modulator is turned on to dither the DCO fine-tuning code to improve

the DCO equivalent resolution. Fig. 2.27 shows the timing diagram in Fine-Fraction

SAR state.

When the step code is reduced down to {0,0,1}, the controller enters to Fast

Phase Tracking state to track the phase error between HSYNC and HSOUT. After this

state, the TDC circuit is turned on to compensate the phase error when the reference

clock has the instant input jitter. When the lock_count is equal to zero, the controller

enters into the last state Lock, and then the ADPLL is lock. In these 6 states expect

Filter state, when a change in phase polarity the controller will send current control

code to filter to calculate baseline frequency control code. Finally, Fig. 2.28 shows the

timing diagram of the ADPLL locking procedure.

 53

Fig. 2.28 Timing diagram of the ADPLL locking procedure

2.5 Digital Loop Filter

Fig. 2.29 ADPLL Frequency tracking procedure

The ADPLL continues tracking the frequency and the phase of the reference

clock by changing the DCO control code. Fig 2.29 explains the tracking procedure

and locking procedure of the ADPLL. In Region I, the ADPLL has large frequency

error and phase error. After entering Region II, the ADPLL has small frequency error

 54

and phase error, and the frequency tiny swings nearby the baseline frequency, as

shown in Fig 2.29. However, when there has HSYNC jitter or supply noise, in Region

II, the ADPLL loop will be unstable and has large noise in pixel clock. Therefore, the

ADPLL has to keep tracking frequency for stabilizing the loop. The digital loop filter

[28] is introduced to reduce these effects and makes the ADPLL output period jitter

can be minimized and has a stable loop.

... ...

...

Fig. 2.30 The digital loop filter structure [28]

The digital loop filter [28] is shown in Fig. 2.30. The digital loop filter receives

the dco_code_base from the ADPLL controller and is sent into the finite state machine

of digital loop filter. In the beginning of the digital loop filter, the finite state machine

latches K input into registers in K reference clock cycles. After initiation state, in each

reference clock cycle the digital loop filter continuing latches the new dco_code_base

into registers and renews the values which are stored in registers. The digital loop

filter discards both maximum and minimum dco_code_base, and then generates the

baseline frequency code avg_dco_code by averaging the C0,C1,…,CK+M-3. Therefore,

the baseline frequency is updated by the digital loop filter.

 55

When the ADPLL controller detects the phase polarity from the PFD, the

controller sends the dco_code_base to the digital loop filter. Then, the digital loop

filter updates the avg_dco_code and is sent back to the ADPLL controller to reduce

the phase error and increase the stability of the ADPLL loop.

2.6 Dithering Technology

2.6.1 Dithering Theorem

n2 cycles n1 cycles n2 cycles n1 cyclesn1 cycles

Time

Period

Time

Period

2
1

1 2

n
P

n n

× Δ+
+

1P + Δ

1P

1P

1P + Δ

Fig. 2.31 Dithering Technology

The proposed ADPLL uses DCO dithering technology by Sigma-Delta

Modulator (SDM) to improve the DCO equivalent resolution. Fig. 2.31 explains the

dithering technology. The x axis is the time and y axis is the period of DCO output

clock. In the top half of the figure, the DCO output generates n1 cycles of period P1,

and generates n2 cycles of period P1+∆ in sequential. Hence, the average period of

 56

the DCO is
1 1 (1) 2 2

1
1 2 1 2

P n P n n
P

n n n n

× + + Δ × × Δ= +
+ +

. By adjusting the value of n1 and n2,

we can precisely control the average period of the DCO output cycle. By mixing the

DCO output period P1 and period P1+∆, the DCO equivalent resolution has improved

from the original ∆ to
1 2n n

Δ
+

, and the result is shown in the bottom half of the Fig.

2.31. In video display applications, the frequency multiplication factor of clock

generator is from 800 to 2592, hence, in one reference clock period (HSYNC) it has

up to N = 2592 pixel clock cycles.

The architecture of ADPLL with SDM can significantly improve the DCO

equivalent resolution, which can reduce the phase error between the reference clock

(HSYNC) and pixel clock of the last output time. Because the SDM is used, the real

resolution of the DCO doesn’t need to be femto-second level. The DCO dithering

technology makes the DCO circuit easier to be designed and reduces the circuit

complexity. Therefore, the proposed ADPLL architecture will use the SDM with DCO

circuit to solve the problem of the reference clock phase is difficult to tracked in high

frequency multiplication factor PLL.

 57

. . .

. . .

. . .

. . .

T+∆/2 T+∆/2 T+∆/2 T+∆/2 T+∆/2T+∆/2T+∆/2

T T T T T T T T T T T

T+∆ T T+∆ T T+∆ T+∆TT+∆T

Period

Time

Time

Period

∆/2

M．∆/2

HSYNC

Ideal
Pixel clock

Real
Pixel clock

No
Dithering

Technology
Phase Error

Dithering
Technology
Phase Error

Dithering
Technology
Pixel Clock

Fig. 2.32 Phase Error reduction by using dithering technology

The proposed ADPLL uses DCO dithering technology to reduce the phase error

between the reference clock (HSYNC) and pixel clock as shown in Fig. 2.32. In Fig.

2.32, the frequency multiplication factor is M, and the DCO resolution is ∆. Suppose

the ideal period of output pixel clock cycle is T+∆/2. In one reference clock (HSYNC),

if we assume that the period of all pixel clock cycles are T, and according to the

deviation of frequency, the phase error will continue to be accumulated. Before the

next positive edge of reference clock (HSYNC), the total accumulated phase error

becomes M．∆/2. Assume that using the SDM to control the DCO output period

between T and T+∆ alternately, the accumulated phase error problem can be solved,

and the phase error can be limited less than ∆/2. From the above discussion, the

architecture of proposed ADPLL with the SDM will significantly improve the phase

tracking ability than conventional PLLs.

 58

2.6.2 Working Principle

Fig. 2.33 The working principle of Sigma-Delta Modulator [29]

Fig. 2.34 First-order Sigma-Delta Modulator

In the proposed ADPLL, the first-order SDM is applied to implement the

dithering technology. Fig. 2.33 shows the working principle of the dithering

technology and Fig. 2.34 shows the architecture of the first-order SDM. After the

ADPLL controller enters into the Fine-Fraction SAR state, the SDM is turned on, and

the ADPLL controller sets the fractional code to control the SDM. Then the SDM

 59

receives the fractional code to generate a series high speed integer code to tune the

DCO frequency. According to the operation of SDM, the average of series high speed

integer code is near to the fractional code. The SDM is triggered by high speed clock

to over sample the data, and the ADPLL controller is triggered by low speed clock.

Therefore, when the SDM is used, the DCO equivalent resolution has been improved,

and the accumulation of the phase error can be decreased.

2.6.3 Simulation Result

Fig. 2.35 shows the simulation results of Sigma-Delta Modulation with different

fractional bits. If we assume that the ADPLL with ideal input HSYNC clock (no

HSYNC jitter) in WUXGA mode. The detailed information is listed in Table 2.10.

From Table 2.10, the peak-to-peak phase error is 363.916ns with 0bit SDM, 0.786ns

with 7bit SDM, 0.544ns with 8bit SDM, and 0.346ns with 9bit SDM, respectively.

The simulation shows that when there are more SDM fractional bits, the better

performance is. The reason is that when the fractional bit is increased, the equivalent

DCO resolution will be decreased.

Table 2.10 Peak-to-peak and average phase error with different SDM fractional bits in

WUXGA mode

 0 bit 7 bit 8 bit 9 bit

Peak-to-Peak Phase Error (ns) 363.916 0.786 0.544 0.346

Average Phase Error (ns) 157.525 0.353 0.222 0.093

 60

(a) 0bit Sigma-Delta Modulation

(b) 7bit Sigma-Delta Modulation

 61

(c) 8bit Sigma-Delta Modulation

(d) 9bit Sigma-Delta Modulation

Fig. 2.35 Sigma-Delta Modulation with different fractional bits

 62

2.7 Fast Phase Tracking Technology

2.7.1 Time-to-Digital Converter for Fast Phase Tracking

Although the proposed ADPLL uses the SDM DCO to significantly decrease the

phase drift, but it still can not meet the specification requirements. For the impact of

HSYNC jitter, we need an improvement circuit to further solve this problem. For the

issue of the reference clock jitter, it caused the phase error between HSYNC and

HSOUT and can’t be decreased. As a result in the proposed architecture of the

ADPLL uses the time-to-digital converter (TDC) for fast phase tracking.

PIXEL_CLK

TDC SDM-DCO

Controller

HSYNC

HSOUT

tdc_code
Phase align

shift 1 bit +
tdc_code_shift

tdc_code_frac

dco_code_base

Phase Error

T T+

Fig. 2.36 The TDC working principle

Fig. 2.36 shows the working principle of the proposed TDC. When the ADPLL

frequency searching is locked, the ADPLL controller enters the Fast Phase Tracking

State. The first step is using the TDC to quantize the phase error between HSYNC and

 63

HSOUT into a digital code (tdc_code). Then, the tdc_code is divided by two and then

sent to SDM DCO. The SDM DCO will adjust the percentage of the T+Δ period and

T period according to the phase error. The TDC can compensate the phase error

caused by the reference clock jitter. Therefore, before the next positive edge of

HSYNC, the phase error caused by the previous reference clock jitter has been

completely compensated. So it can align the phase of HSYNC and HSOUT, and

reduces the phase error of output. Moreover, because the phase error will be

immediate compensated by TDC circuit before the next positive edge of HSYNC, the

phase error will not accumulate to next clock cycle. Therefore, we can expect to

significantly reduce the phase error in the non-ideal working environment.

2.7.2 Structure

Fig. 2.37 The entirety TDC structure

Fig. 2.37 shows the entire TDC structure. The TDC is composed of two duplicate

sub-TDCs and 2-to-1 multiplexer. The first sub-TDC is used to quantize the phase

error when HSYNC is leading HSOUT. On the contrary, the second sub-TDC is used

to quantize the phase error when HSYNC is lagging HSOUT. Then according to Up

 64

and Down information from the PFD, the multiplexer selects which the outputs of

sub-TDCs to be the TDC code (tdc_code).

Fig. 2.38 The detailed structure of the sub-TDC

The delay chain of buffers [30] is a well-known method to realize a TDC.

However, the delay chain of buffers structure can’t quiltize the time interval smaller

than a buffer delay. However, the resolution is limited by buffer delay and

metastability window of the Flip-Flop. We modify the traditional TDC [30] , the detail

circuit of the proposed sub-TDC is shown in Fig. 2.38.

Input signal (pulse) passed through a string of non-inverting delay and the PD

samples the output of each delay cell (Dcell) sent to the TDC decoder to generate the

TDC code (tdc_code). To solve the problem of metastability window of flip-flop, the

TDC replaces the Flip-Flop with phase detector (PD). The PD is discussed in section

2.3.2.2, it can provide very small dead zone thus the resolution of the TDC can be

improved. The advantages of the proposed TDC are better recognition rate and have

fine resolution.

 65

2.7.3 Problem of TDC Loop Gain and Interpolation-type

DCO Solution

TDC can significantly reduce the phase error between HSYNC and HSOUT. But

how to use the TDC code (tdc_code) to compensate the phase error is an important

issue. This is because the TDC and the DCO is not the same circuit, therefore they

will have different resolution with PVT variations. As a result, we must find a way to

map the TDC code to the DCO code in the controller, and we cannot directly add the

TDC code to the DCO code. It has to determine a suitable gain called TDC loop gain

to make the TDC code and the DCO code to be corresponding. In conventional

approaches, the suitable TDC loop gain were decided by the circuit simulation and

multiplied by the TDC quantification code to as the ideal TDC code.

Based on the above mentioned problems, we do not want to determine the TDC

loop gain by circuit simulation. To solve this problem, the proposed TDC uses the

delay cell of interpolation-type DCO coarse-tuning stage to as the Dcell of two

sub-TDCs circuit. Therefore, the issue of both the TDC circuit and the DCO circuit

mismatch problem can be eliminated. Because the DCO is a loop system, the delay

line will pass through the positive half cycle and negative half cycle, but the pulse

signal in sub-TDCs circuit only passes through a single delay-line one time. Therefore,

in the proposed TDC circuit, the value of tdc_code is divided by 2, and the controller

can directly use this value to do operation.

 66

2.7.4 Simulation Result

The number of delay cells in sub-TDC circuit is very important. The length of

delay chain will affect the entirety power consumption and area. In our work, we use

different Dcells to compare which number of Dcell has minimum phase error in four

view modes. In simulation parameters, the numbers of Dcell are 256, 128, 64, 32, 16,

8, 4, 2, 1, and turn off TDC, respectively. Table 2.11 and Table 2.12 show the

maximum phase error and average phase error in four display modes. The TDC is

simulated in UltraSIM SPICE simulation. The simulation result shows that when it

uses 16 Dcells to as its delay chain length, the phase error is more suitable in four

display modes. Therefore, the proposed ADPLL uses 16 Dcells to form the delay

chain of the sub-TDC circuit.

Table 2.11 Maximum phase error of proposed ADPLL in XGA to WUXGA

Maximum Phase Error
(ns)

1K Hits
256

Dcell

128

Dcell

64

Dcell

32

Dcell

16

Dcell

8

Dcell

4

Dcell

2

Dcell

1

Dcell

TDC

off

XGA 2.25 1.84 2.19 1.90 2.57 5.36 3.20 3.73 4.52 4.52

SXGA 1.33 1.33 1.39 1.37 1.69 2.57 2.77 3.02 3.61 3.84

UXGA 14.07 7.67 4.77 3.16 2.02 2.08 2.74 3.79 4.74 4.74

WUXGA 14.29 7.33 6.26 2.28 1.99 2.50 2.87 3.69 3.88 1.73

Table 2.12 Average phase error of proposed ADPLL in XGA to WUXGA

Average Phase Error
(ns)

1K Hits
256

Dcell

128

Dcell

64

Dcell

32

Dcell

16

Dcell

8

Dcell

4

Dcell

2

Dcell

1

Dcell

TDC

off

XGA 0.53 0.48 0.53 0.54 0.54 0.59 0.69 0.78 0.98 0.98

SXGA 0.43 0.43 0.43 0.43 0.45 0.51 0.64 0.75 1.01 0.98

UXGA 10.77 5.14 2.08 0.88 0.60 0.51 0.61 0.77 1.08 1.08

WUXGA 8.58 2.06 0.83 0.63 0.50 0.51 0.61 0.77 0.90 0.90

 67

The TDC performance is shown in Table 2.13. In HSPICE simulation, the

resolution in TT corner, FF corner, SS corner are 43.496ps, 32.120ps, and 69.078ps,

respectively.

Table 2.13 Summary of the TDC performance

 TT Corner FF Corner SS Corner

Resolution (ps) 43.496 32.120 69.078

Range (ps) 704.820 518.587 1125.356

 68

Chapter 3 Experimental Results

3.1 Chip Implementation

Fig. 3.1 Floorplanning and I/O planning

Fig. 3.1 shows proposed ADPLL chip floorplanning and I/O planning, in the

proposed chip 16 I/O PADs and 16 power PADs are used. Table 3.1 is the detail I/O

description.

 69

Table 3.1 Table I/O PADs description

Input Bits Function

RESET 1 Set chip to initial

HSYNC 1 Input clock

EN_CKOUT 1 Enable pixel clock to output

EN_TDC_LOOP 1 Enable TDC loop to work

Set the number bits of SDM fractional code

Value Fractional Code

0 9 bits Fractional Code

1 8 bits Fractional Code

2 7 bits Fractional Code

SD_MODE 2

3 SDM Turn Off

Set the Multiplication Factor of ADPLL

Value Multiplication Factor

1 XGA 1376

2 SXGA 1688

3 UXGA 2160

4 WUXGA 2592

5 16

6 32

7 64

8 128

9 256

10 512

11 1024

12 2048

13 4096

DIVM_MODE 4

14 5600

Output Bits Function

HSYNCD 1 Reference clock

FBCLKD 1 Feedback clock

CKOUTD 1 Pixel clock

FSM 2 Finite state machine state

LOCK 1 Phase lock signal

Power Pad Pairs Function

VDDC+VSSC 3 CORE Power Pad

VDDP+VSSP 5 Pad Power Pad

 70

Fig. 3.2 The microphotograph of the proposed ADPLL chip

The microphotograph of the proposed ADPLL chip is shown in Fig. 3.2. This

chip is fabricated by UMC 65nm 1P10M standard performance (SP) CMOS process.

The chip size is 910× 820 μm2 and the core size is 580× 490 μm2 . The layout is

divided into four blocks there are phaseclk domain, dcoclk domain, TDCPFD, and

DCO, respectively. The phaseclk domain block contains the ADPLL controller and

the digital loop filter. The dcoclk domain block contains the decoder of the DCO, the

Sigma-Delta Modulator, and the frequency divider. The TDCPFD block contains the

time-to-digital converter (TDC), the Phase/Frequency Detector (PFD), and the Phase

Detector (PD). The last block is the DCO block, which is placed nearby the dcoclk

domain, because the DCO control signals run through the decoder to the DCO block.

 71

3.2 Jitter Behavioral Models Discussion

Because the reference clock (HSYNC) is not a stable clock, the jitter of HSYNC

can be as high as 1.06ns [9], and it will affect the overall ADPLL performance. To

discuss the influence of the reference clock jitter, four different jitter behavioral

models are designed to simulate the actual jitter environment. According to the [9],

four different jitter models are designed for worst case, and the peak-to-peak value of

the reference clock (HSYNC) is set to ± 1.2 ns. In the following, the jitter behavioral

models are divided into four categories.

Type 1 : Normal distribution, Fast variation

Type 2 : Normal distribution, Medium variation

Type 3 : Normal distribution, Slow variation

Type 4 : Uniform distribution, Irregular variation

In the following, the “+” symbol represents the value of positive jitter, and the

“-” symbol represents the value of negative jitter, respectively. In Type 1, the jitter

variations is drastic changed and its jitter form is (+,-,+,-,…,+,-). In Type 2, the jitter

form is (+,+,-,-,+,+,…,-,-). In Type 3, the jitter variations changes slowly and its jitter

form is (+,+,+,+,-,-,-,-,+,+,+,+,…,-,-,-,-). In Type 4, the jitter is a irregular form. From

Type 1 to Type 3, these distributions of jitter are normal distribution, but in Type 4 is

uniform distribution. Fig. 3.3 shows the jitter histogram and jitter distribution. The

proposed ADPLL uses this four type jitter models to do circuit simulation, and the

simulation result is shown in Section 3.3.1.1.

 72

(a) Type 1, Normal distribution, Fast variation

(b) Type 2, Normal distribution, Medium variation

 73

(c) Type 3, Normal distribution, Slow variation

(d) Type 4, Uniform distribution, Irregular variation

Fig. 3.3 Different jitter models and its distribution

 74

3.3 Overall Simulation

Table 3.2 The specification of proposed ADPLL

Mode
HSYNC Frequency

(kHz)

Multiplication

 Factor

Pixel Clock

(PIXEL_CLK)

Frequency (MHz)

XGA 68.677 1376 94.500

SXGA 79.976 1688 135.000

UXGA 75.000 2160 192.000

WUXGA 74.556 2592 193.250

Table 3.2 shows the specification of proposed ADPLL. In proposed ADPLL, it

will use these four modes to do circuit simulation, and these modes are XGA, SXGA,

UXGA, and WUXGA, respectively.

3.3.1 Simulation in Verilog Behavior Model

3.3.1.1 Different Jitter Behavioral Models

The phase error performance of proposed ADPLL is simulated in four jitter

models. If we assume that the proposed ADPLL parameters are TDC on and SDM on

with 1.2ns jitter. Fig. 3.4 and Fig. 3.5 show the comparison of both maximum and

average phase error in different jitter behavioral models. However, from Fig. 3.4 to

Fig. 3.5, the Type 4 jitter behavioral model has the worst performance in maximum

and average phase error. The detailed information is listed in Table 3.3. Actually, the

real HSYNC jitter environment is similar to Type 2 jitter behavioral model. Therefore,

the phase error performance of proposed ADPLL is controlled less than 30% of the

pixel clock period with Type 1 to Type 3 jitter behavioral models. But proposed

ADPLL will simulate on the worst case by using the Type 4 jitter behavioral model.

 75

Fig. 3.4 The comparison of the maximum phase error in different jitter models

Fig. 3.5 The comparison of the average phase error in different jitter models

 76

Table 3.3 Maximum and average phase error in different jitter behavioral models

Maximum Phase Error

Type 1 Type 2 Type 3 Type 4 Mode

(ns) (%) (ns) (%) (ns) (%) (ns) (%)

XGA 1.063 10.05 0.931 8.80 1.512 14.29 2.189 20.69

SXGA 0.897 12.11 0.931 12.57 1.056 14.26 1.898 25.62

UXGA 1.213 19.65 1.673 27.10 1.464 23.72 2.317 37.53

WUXGA 1.211 23.40 1.009 19.50 1.304 25.20 1.699 32.83

Average Phase Error

Type 1 Type 2 Type 3 Type 4 Mode

(ns) (%) (ns) (%) (ns) (%) (ns) (%)

XGA 0.245 2.32 0.228 2.15 0.345 3.26 0.515 4.87

SXGA 0.161 2.17 0.286 3.86 0.267 3.60 0.466 6.29

UXGA 0.371 6.01 0.432 7.00 0.387 6.27 0.553 8.96

WUXGA 0.232 4.48 0.235 4.54 0.275 5.31 0.480 9.28

3.3.1.2 Time-to-Digital Converter

 From Fig. 3.6 to Fig. 3.7 show the maximum phase error and average phase error

between HSYNC and HSOUT without TDC. As well, in Fig. 3.8 and Fig. 3.9 show

the result with TDC. In four figures, the left half shows the phase error versus

different input jitters, and the right half shows the percentage of ideal pixel clock

period versus different input jitters.

 77

Fig. 3.6 Without TDC, the maximum phase error.

Fig. 3.7 Without TDC, the average phase error.

 78

Fig. 3.8 With TDC, the maximum phase error.

Fig. 3.9 With TDC, the average phase error.

 79

The detailed information is listed in Table 3.4 and Table 3.5. Table 3.4 and Table

3.5 show the maximum phase error and the average phase error with and without

TDC. In each table, the shadowed rows represent the system with TDC and

unshadowed rows represent the system without TDC. For each data followed in

parentheses represents the percentage of the ideal pixel clock. In WUXGA mode and

without TDC, the maximum phase error is 3.90ns, and with TDC the maximum phase

error is 1.70ns. Therefore, when the proposed ADPLL adopts the TDC to compensate

the phase error, the phase error can be improved almost 45%, reduced from 75.29% to

32.89%.

Table 3.4 Maximum phase error with and without TDC in XGA to WUXGA

(ns) TDC Jitter 1.2 ns Jitter 1.0 ns Jitter 0.2 ns Jitter 0.0 ns

OFF 4.95 (46.78%) 3.99 (37.72%) 1.25 (11.80%) 0.85 (8.03%)
XGA

ON 2.19 (20.69%) 1.45 (13.68%) 0.66 (6.24%) 0.54 (5.08%)

OFF 4.08 (55.04%) 3.95 (53.35%) 1.08 (14.61%) 0.70 (9.45%)
SXGA

ON 1.90 (25.62%) 1.23 (16.58%) 0.43 (5.76%) 0.26 (3.51%)

OFF 3.67 (59.37%) 3.36 (54.43%) 1.73 (27.94%) 1.35 (21.89%)
UXGA

ON 2.32 (37.53%) 1.86 (30.12%) 1.34 (21.63%) 0.89 (14.47%)

OFF 3.90 (75.29%) 3.18 (61.35%) 1.41 (27.23%) 0.81 (15.54%)
WUXGA

ON 1.70 (32.89%) 1.30 (25.04%) 0.80 (15.48%) 0.35 (6.69%)

Table 3.5 Average phase error with and without TDC in XGA to WUXGA

(ns) TDC Jitter 1.2 ns Jitter 1.0 ns Jitter 0.2 ns Jitter 0.0 ns

OFF 1.04 (9.86%) 0.85 (8.07%) 0.33 (3.10%) 0.30 (2.81%)
XGA

ON 0.51 (4.86%) 0.42 (4.01%) 0.18 (1.69%) 0.14 (1.35%)

OFF 0.97 (13.14%) 0.81 (10.91%) 0.25 (3.41%) 0.20 (2.72%)
SXGA

ON 0.47 (6.29%) 0.37 (4.94%) 0.11 (1.47%) 0.07 (0.88%)

OFF 0.96 (15.56%) 0.81 (13.08%) 0.47 (7.59%) 0.41 (6.69%)
UXGA

ON 0.55 (8.96%) 0.48 (7.83%) 0.34 (5.58%) 0.41 (6.67%)

OFF 0.96 (18.55%) 0.76 (14.67%) 0.35 (6.75%) 0.22 (4.28%)
WUXGA

ON 0.48 (9.27%) 0.39 (7.59%) 0.17 (3.31%) 0.09 (1.80%)

 80

The comparison results of the ADPLL with and without TDC are shown in bar

chart of Fig. 3.10 and Fig. 3.11. In the top half of both figures, these show the

maximum phase error and the average phase error, and in the bottom of both figures

show the percentage of ideal pixel clock period. The assumption jitter of this

simulation is ± 1.2 ns. When the proposed ADPLL uses TDC to compensate the

phase error, the performance of proposed ADPLL can be improved a lot.

Fig. 3.10 Maximum phase error of proposed ADPLL with and without TDC

Fig. 3.11 Average phase error of proposed ADPLL with and without TDC

 81

Fig. 3.12 Jitter performance with and without TDC in XGA mode

Fig. 3.13 Jitter performance with and without TDC in SXGA mode

 82

Fig. 3.14 Jitter performance with and without TDC in UXGA mode

Fig. 3.15 Jitter performance with and without TDC in WUXGA mode

From Fig 3.12 to Fig. 3.15, these shows the tracking jitter performance of

proposed ADPLL loop in different modes. The x axis is the clock cycle count and the

y axis is the phase error.

 83

3.3.1.3 Sigma-Delta Modulator

The influence of proposed ADPLL with and without SDM is simulated in

different display mode (XGA to WUXGA). In the top half of both Fig. 3.16 and Fig.

3.17, these show the maximum phase error and average phase error, and in the bottom

of both figures show the percentage of the ideal pixel clock period.

 We assume that the proposed ADPLL turns on TDC, with 1.2ns jitter, with Type

4 jitter behavioral model. From Fig. 3.16, in XGA view mode and without the SDM,

the phase error is 7201ns (68054%), and it is decreased to 2.189ns (20.69%) with the

SDM. When the proposed ADPLL uses SDM, the phase error has been extensively

decreased. We can see that if SDM DCO is not used, the phase error can’t be tracked

correctly. The detailed information is listed in Table 3.6.

Fig. 3.16 Maximum phase error of the proposed ADPLL with and without SDM

 84

Fig. 3.17 Average phase error of the proposed ADPLL with and without SDM

Table 3.6 Maximum and average phase errors with and without SDM

Maximum Phase Error Average Phase Error

SDM OFF SDM ON SDM OFF SDM ON Mode

(ns) (%) (ns) (%) (ns) (%) (ns) (%)

XGA 7201.57 68054 2.189 20.69 2825.34 26699 0.515 4.87

SXGA 303.617 4099 1.898 25.62 133.002 1795 0.466 6.29

UXGA 299.803 4856 2.317 37.53 102.247 4856 0.553 8.96

WUXGA 515.874 9968 1.699 32.83 228.509 4415 0.480 9.28

 85

3.3.2 Simulation in AMS

Fig. 3.18 Simulation mode of the proposed ADPLL

Table 3.7 Simulation Mode of the proposed ADPLL components

ADPLL Components Simulation Mode
ADPLL Controller Verilog

Sigma-Delta Modulation Verilog

Digital Loop Filter Verilog

Interpolation DCO Verilog

Frequency Divider Verilog

PFD HSPICE

TDC HSPICE

 86

Because the reference clock frequency of proposed ADPLL is very low

(68.677kHz to 74.556kHz), and the maximum output frequency of the DCO is up to

193.250MHz. In the circuit simulation, in order to accommodate the DCO simulation

accuracy, the overall ADPLL simulation time will become very long and unacceptable.

Therefore, a mixed-mode simulation is needed, the digital circuit and DCO use

Verilog simulation, TDC, and PFD are used SPICE to do circuit simulation. The

proposed ADPLL uses the Cadence AMS-Ultra simulator to do mixed-signal

co-simulation to speed up the simulation time. Fig. 3.18 shows the simulation mode of

the proposed ADPLL components and Table 3.7 shows the detailed simulation

information. In AMS mixed-signal co-simulation, we divide the ADPLL components

into HSPICE mode and Verilog mode. In the proposed AMS simulation, TDC, and

PFD are simulated by SPICE and the other digital circuits and the DCO are simulated

by NC-Verilog. The DCO is the most time consuming block in this AMS simulation,

so the DCO must be simulated by NC-Verilog, or the simulation will become too long.

This is because the DCO operation frequency is up to 193.250MHz, but the other

circuit operates at reference clock rate which is hundred kHz. In order to maintain the

accuracy of the DCO, we use the DCO post-layout simulation results to create the

frequency look up table. Therefore, we can still have enough accuracy for DCO

circuit in AMS mixed-signal co-simulation. We assume that the proposed ADPLL

turns on both TDC and SDM, with 1.2ns jitter and with Type 4 jitter behavioral

model.

 87

Fig. 3.19 The maximum phase error in AMS simulation

Fig. 3.20 The average phase error in AMS simulation

 88

Table 3.8 Maximum and average phase errors in AMS simulation

Maximum Phase Error (ns) Average Phase Error (ns)
Mode

(ns) (%) (ns) (%)

XGA 2.571 24.30% 0.541 5.11%

SXGA 1.685 22.75% 0.447 6.03%

UXGA 2.020 32.72% 0.598 9.69%

WUXGA 1.991 38.47% 0.500 9.66%

Fig. 3.18 and Fig 3.19 show the result of maximum and average phase error in

AMS simulation, and Table 3.7 shows the detailed information. In Fig. 3.18, the

maximum phase error in four modes are 2.571ns (24.30%), 1.685ns (22.75%),

2.020ns (32.72%), and 1.991ns (38.47%), respectively. Although the performance of

the maximum phase error beyond one third of the pixel clock period requirement in

both UXGA mode and WUXGA mode, but the performance of the average phase

error is controlled in 0.500ns (9.66%) in WUXGA mode. To compare the simulation

result between AMS simulation (Table 3.7) and Verilog simulation (Table 3.4 and

Table 3.5), in AMS simulation, the average phase error performance is better than

Verilog simulation, and the maximum phase error performance in both simulation are

almost the same.

 89

3.4 Chip Measurement

(a) Without SDM

(a) With SDM

Fig. 3.21 The locking procedure of the ADPLL in 5600 multiplication factor

 90

(a) The jitter histogram of the pixel clock in WUXGA mode (@193.26MHz)

(b) The jitter histogram of the pixel clock in 5600 multiplication factor @527.06MHz)

Fig. 3.22 The jitter histogram of the proposed ADPLL

 91

Fig. 3.21 shows the locking procedure of the proposed ADPLL in 5600

multiplication factor in Fast Phase Tracking state. In Fig. 3.21(a), the proposed

ADPLL turns off the SDM, and in Fig. 3.21(b) the proposed ADPLL turns on the

SDM. If the ADPLL turns off the SDM, the ADPLL has a large phase error between

HSYNC and HSOUT. However, when the proposed turns on the SDM, the HSOUT

almost aligns HSYNC.

Fig. 3.22 shows the jitter measurement result of the pixel clock. The HSYNC

signal in our measurement environment is very noisy. Both root-mean-square (rms)

and peak-to-peak jitter of HSYNC signal are 39.03ps and 391.08ps respectively. The

HSYNC jitter will affect the overall ADPLL performance. In Fig. 3.22(a), it shows

measured jitter histogram operates at 193.26MHz in WUXGA mode. The rms jitter is

29.71ps. In Fig. 3.22(b), it shows the measured jitter histogram operates at

527.06MHz in 5600 multiplication factor. The rms jitter is 8.64ps.

Table 3.9 Measurement Results of the proposed ADPLL

Frequency Multiplication

Factor

1376

(XGA)

1688

(SXGA)

2160

(UXGA)

2592

(WUXGA)

5600

(TEST)

HSYNC Period (μs) 14.56 12.50 13.33 13.41 10.24

HSYNC Freq. (kHz) 68.68 79.98 75.00 74.56 97.66

Pixel Clock Period (ns) 11.09 7.41 6.17 5.17 1.90

Pixel Clock Freq. (MHz) 90.14 134.97 161.98 193.26 527.06

Pixel Clock Jitterrms (ps) 78.31 41.12 33.94 29.71 8.64

Table 3.9 summarizes the measurement results of the proposed ADPLL. We

measure five different modes, the multiplication factor are 1376, 1688, 2160, 2592,

and 5600 respectively. The rms jitter in five different modes are 78.31ps, 41.12ps,

33.94ps, 29.71, and 8.64ps respectively. In XGA mode, the pixel clock frequency is

90.14MHz, and in TEST mode is up to 527.06MHz.

 92

Table 3.10 Performance Comparisons

Performance Indices Proposed TVLSI’09[32] JSSC’06 [11]
Process 65nm CMOS 0.18μm CMOS 0.18μm CMOS

Approach All-Digital All-Digital All-Digital

Phase Align

TDC-Based PFD Bang-bang PFD No

Area 0.07mm2 0.14mm2 0.16mm2

Power

0.848mW

(@193MHz)

1.813mW

(@520MHz)

26.7mW

(@600MHz)

15mW

(@378MHz)

Input Range 35.71kHz~12.5MHz 30.3kHz~100MHz 19.26kHz~60MHz

Output Range 90.14~527.06MHz 62~616MHz 2.4~378MHz

Multiplication Factor 16~5600 1~2046 4~13888

JitterRMS

78.31ps

(@90.14MHz)

8.64ps

(@527.06MHz)

7.28ps

(@600MHz)

76ps

(@134.77MHz)

Performance Indices JSSC’04 [31] JSSC’03 [12] [10]
Process 0.6μm CMOS 0.35μm CMOS 0.13μm CMOS

Approach Mixed-Mode All-Digital Mixed-Mode

Phase Align

TDC-Based PFD

with external crystal
Bang-bang PFD

TDC-Based PFD

with external crystal

Area 1.8mm2 0.71mm2 0.2mm2

Power

180mW
100mW

(@500MHz)
N/A

Input Range N/A N/A N/A

Output Range 10~80MHz 45~510MHz Max.1GHz

Multiplication Factor N/A 1~255 1~4096

JitterRMS

40ps

(@78MHz)

22ps

(@ 450MHz)

32.4ps

(@78.73MHz)

 93

Table 3.10 summarizes the proposed ADPLL chip performance. In Table 3.10,

[32] uses the bang-bang PFD to implement the ADPLL. This ADPLL only uses

leading or lagging information from PFD to compensate the phase error. However, it

assumes that the HSYNC is ideal, it doesn’t have reference jitter to affect the ADPLL

performance. In Fig. 3.6, if peak-to-peak HSYNC jitter is up to 1.2ns and without

TDC, [32] will have large phase error. So, this approach doesn’t have phase tracking

ability when the reference signal has jitter. But in the proposed ADPLL, if we assume

that the ADPLL doesn’t have HSYNC jitter interference (0ns HSYNC jitter) and turns

off the TDC, the proposed ADPLL still have phase tracking ability. In [11][12], such

ADPLLs are only frequency synthesizer, they don’t have phase tracking ability. In

[10][31], those ADPLLs use TDC-based PFD to implement ADPLL, but they have to

use external crystal for frequency search. Using the external crystal means that the

design cost is increase, too. Therefore, the proposed ADPLL is implemented by

TDC-based PFD. The proposed ADPLL has fast phase tracking ability and has small

phase error when HSYNC has noisy interference.

 94

Chapter 4 Conclusion and Future

Works

In this dissertation, we proposed a fast phase tracking and high frequency

multiplication factor ADPLL.

The interpolation-type DCO is used to solve the DCO non-monotonic problem

and to solve the problem of TDC loop gain. Therefore, we can control the DCO

directly than using the built-in self-calibration circuit.

The proposed ADPLL uses dithering technology to improve the equivalent DCO

resolution to reduce the tracking jitter. The resolution is reduced from 17.205ns to

33.604fs. Therefore, the design difficulty of high frequency multiplication factor

ADPLL can be reduced.

When the input has large jitter, the proposed ADPLL utilizes the TDC and the

SDM to compensate the phase error. The maximum phase error is controlled less than

1.991ns in WUXGA mode with the worst jitter model, when the ADPLL frequency

multiplication factor is 2592.

For this ADPLL, we tape-out two test chips to verify our proposed method and

the circuit techniques. The first test chip is to solve the DCO non-monotonic problem,

and the second test chip is implemented to verify the overall ADPLL performance for

video display applications. Two test chips are implemented by UMC 65nm 1P10M

 95

standard performance (SP) COMS process. The chip area including I/O Pads of

proposed ADPLL is 910 × 820 mm2.

Because the reference frequency is very low, the simulation time is too long and

not unacceptable. In the future, we hope to create the more accurately model in RTL

level to simulate the performance in post-layout simulation to reduce the simulation

time.

Although the interpolator circuit can solve the non-monotonic problem, but the

linearity of the interpolator circuit is worst, and it will have more power consumption.

Therefore, we hope to increase the linearity of the interpolator circuit in future.

A built-in self test (BIST) circuit for PLLs is becoming an important issue, so we

can use the BIST circuit to detect whether our design is work correctly. Therefore, we

hope to design the BIST circuit for on-chip jitter measurement to increase the circuit

testability in future.

 96

Reference

[1] Che-Fu Liang, Shin-Hua Chen, and Shen-Iuan Liu, “A Digital Calibration

Technique for Charge Pumps in Phase-Locked Systems,” in IEEE Journal of

Solid-State Circuits, Vol. 43, pp. 390-398, Feb. 2008.

[2] Ashok Sqaminathan, Kevin J. Wang, and Ian Galton, “A Wide-Bandwidth

2.4GHz ISM Band Fractional-N PLL With Adaptive Phase Noise Cancellation,”

in IEEE Journal of Solid-State Circuits, Vol. 42, pp. 2639-2650, Dec. 2007.

[3] Kyoungho Woo, Yong Liu, Eunsoo Nam, and Donhee Ham, “Fast-Lock Hybrid

PLL Combining Fractional-N and Integer-N Modes of Differing Bandwidths,”

in IEEE Journal of Solid-State Circuits, Vol. 43, pp. 379-389, Feb. 2008.

[4] Akinori Matsumoto, Shiro Sakiyama, Yusuke Tokunaga, Takashi Morie, and

Shiro Dosho, “A Design Method and Developments of a Low-Power and

High-Resolution Multiphase Generation System,” in IEEE Journal of

Solid-State Circuits, Vol. 43, pp. 831-843, Apr. 2008.

[5] John G. Maneatis, Jaeha Kim, Iain McClatchie, Jay Maxey, and Manjusha

Shankaradas, “Self-Biased High-Bandwidth Low-Jitter 1-40-4096 Multiplier

Clock Generator PLL,” in IEEE Journal of Solid-State Circuits, Vol. 38, pp.

1795-1803, Nov. 2003.

[6] “Monitor Timing Specifications,” in VESA and Industry Standards and

Guidelines for Computer Display Version 1.0, Revision 10, Oct. 2004.

[7] Jean-Baptiste Bequeret, Yann Deval, Olivier Mazouffre, Anne Spataro, Pascal

Fouillat, Eric Benoit, and Jean Mendoza, “Clock Generator using factorial DLL

for Video Applications,” in Proceeding of IEEE Conference on Custom

Integrated Circuits, pp. 485-488, May. 2001.

[8] Analog Bits, “Video Capture PLL for HDTV and high-end flat panel monitor,”

in Datasheet. (http://www.analogbits.com/pdf/Video_Capture_PLL.pdf)

[9] Matrox Graphics, “UltraSharp Display Output Technology,” in User Guides.

(http://www.watch.impress.co.jp/pc/docs/2002/0515/us_displ.pdf)

[10] Guang-jun Xie, and Cheng Wang, “An All-Digital PLL for Video pixel Clock

Regeneration Applications,” in Proceeding of WRI Congress on Computer

Science and Information Engineering, Vol. 3, pp. 392-396, 2009.

[11] Pao-Lung Chen, Ching-Che Chung, and Chen-Yi Lee, “A Clock Generation

with Cascaded Dynamic Frequency Counting Loops for Wide Multiplication

Range Applications,” in IEEE Journal of Solid-State Circuits, Vol. 41, pp.

1275-1285, Jun. 2006.

[12] Ching-Che Chung, and Chen-Yi Lee, “An all-digital phase-locked loop for

 97

high-speed clock generation,” in IEEE Journal of Solid-State Circuits, Vol. 38,

pp. 347-351, Feb. 2003.

[13] Jose A. Tierno Alexander V. Rylyakov, and Daniel J. Friedman, “A Wide Power

Supply Range, Wide Tuning Range, All Static CMOS All Digital PLL in 65nm

SOI,” in IEEE Journal of Solid-State Circuits, Vol. 43, pp. 42-51, Jan. 2008.

[14] Robert Bogdan Staszewski, Chih-Ming Hung, Dirk Leipold, and Poras T.

Balsara, “A First Multigigahertz Digitally Controlled Oscillator for Wireless

Application,” in IEEE Transactions on Microwave Theory and Techniques, Vol.

51, pp. 2154-2164, Nov. 2003.

[15] Robert Bogdan Staszewski, Khurram Muhammad, Dirk Leipold, Chih-Ming

Hung, Yo-Chuol Ho, John L. Wallberg, Chan Fernando, Ken Maggio, Roman

Staszewski, Tom Jung, Jinseok Koh, Soji John, Irene Yuanying Deng, Vivek

Sarda, Oscar Moreira-Tamayo, Valerian Mayega, Ran Katz, Ofer Friedman,

Oren Eytan Eliezer, Elida de-Obaldia, and Poras T. Balsara, “All-Digital TX

Frequency Synthesizer and Discrete-Time Receiver for Bluetooth Radio in

130-nm CMOS,” in IEEE Journal of Solid-State Circuits, Vol. 39, pp.

2278-2290, Dec. 2004.

[16] Jim Dunning, Gerald Garcia, Jim Lundberg, and Ed Nuckolls, “An All-Digital

Phase-Locked Loop with 50-Cycle Lock Time Suitable for High Performance

Microprocessors,” in IEEE Journal of Solid-State Circuits, Vol. 30, pp. 412-422,

Apr. 1995.

[17] Abhijith Arakali, Srikanth Gondi, and Pavan Kumar Hanumolu, “Low Power

Supply Regulation Techniques for Ring Oscillators in Phase-Locked Loops

Using a Split-Tuned Architecture,” in IEEE Journal of Solid-State Circuit, Vol.

44, pp. 2169–2181, Aug. 2009.

[18] Chao-Ching Hung, and Shen-Iuan Liu, “A Leakage-Compensated PLL in 65-nm

CMOS Technology,” in IEEE Transaction on Circuits and System II: Express

Briefs, Vol. 56, pp. 525-529, Jul. 2009.

[19] Thomas Olsson, and Peter Nilsson, “A digitally controlled PLL for SoC

applications,” in IEEE Journal of Solid-State Circuit, Vol. 39, pp. 751-760, May

2004.

[20] Robert Bogdan Staszewski, Chih-Ming Hung, Dirk Leipold, and Poras T.

Balsara, “A first multigigahertz digitally controlled oscillator for wireless

applications,” in IEEE Transactions on Microwave Theory and Techniques, Vol.

51, pp. 2154-2164, Nov. 2003.

[21] Pao-Lung Chen, Ching-Che Chung, and Chen-Yi Lee, “A portable digitally

controlled oscillator using novel varactors,” in IEEE Transaction on Circuits

and System II: Express Briefs, Vol. 52, pp. 233-237, May 2005.

 98

[22] Duo Sheng, Ching-Che Chung, and Chen-Yi Lee, “An Ultra-Low-Power and

Portable Digitally Controlled Oscillator for SoC Applications,” in IEEE

Transaction on Circuits and System II: Express Briefs, Vol. 54, pp. 954-958,

May 2007.

[23] Duo Sheng, Ching-Che Chung, and Chen-Yi Lee, “An all digital spread

spectrum clock generator with programmable spread ratio for SoC

applications,” in Proceeding of IEEE Asia Pacific Conference on Circuits and

Systems (APCCAS), pp. 850-853, Nov. 2008.

[24] Hsuan-Jung Hsu, Chun-Chieh Tu, and Shi-Yu Huang, “A high-resolution

all-digital phase-locked loop with its application to built-in speed grading for

memory,” in Proceeding of IEEE Symposium on VLSI Design Automation and

Test (VLSI-DAT), pp. 267-270, Apr. 2008.

[25] Byoung-Mo Moon, Young-June Park, and Deog-Kyoon Jeong, “Monotonic

Wide-Range Digitally Controlled Oscillator Compensated for Supply Voltage

Variation,” in IEEE Transaction on Circuits and System II: Express Briefs, Vol.

55, pp. 1036-1040, Oct. 2008.

[26] Duo Sheng, Ching-Che Chung, and Chen-Yi Lee, “A Low-Power and Portable

Spread Spectrum Clock Generator for SoC Applications,” accepted by IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, 2010.

[27] Kwang-Hee Choi, Jung-Bum Shin, Jae-Yoon Sim, and Hong-June Park, “An

Interpolating Digitally Controlled Oscillator for a Wide-Range All-Digital

PLL,” in IEEE Transaction on Circuits and System II: Express Briefs, Vol. 56,

pp. 2055-2063, Sep. 2009.

[28] Chen-Yi Lee, and Ching-Che Chung, “Digital Loop Filter for All-Digital

Phase-Locked Loop Design,” US patent 7,696,832 B1, Apr.13, 2010.

[29] Robert Bogdan Staszewski, Dirk Leipold, Chih-Ming Hung, and Poras T.

Balsara, “A first digitally-controlled oscillator in a deep-submicron CMOS

process for multi-GHz wireless applications,” in Proceeding of IEEE Radio

Frequency Integrated Circuits (RFIC) Symposium, pp. 81–84, June 2003.

[30] Robert Bogdan Staszewski, Sudheer Vemulapalli, Prasant Vallur, John Wallberg,

and Poras T. Balsara, “1.3V 20ps time-to-digital converters for frequency

synthesis in 90-nm CMOS,” in IEEE Transaction on Circuits and System II:

Express Briefs, Vol. 53, pp. 220-224, Mar. 2006.

[31] Liming Xiu, Wen Li, Jason Meiners, Rajitha Padakanti, “A novel all digital PLL

with software adaptive filter,” in IEEE Journal of Solid-State Circuits, Vol. 39,

pp. 476-483, Mar. 2004.

[32] Hsuan-Jung Hsu, and Shi-Yu Huang, “A Low-Jitter ADPLL via a Suppressive

Digital Filter and an Interpolation-Based Locking Scheme,” in IEEE

 99

Transactions on Very Large Scale Integration (VLSI) Systems, 2010.

	00_封面
	01_論文審訂同意書
	02_授權書
	03_chiunyao_thesis_merge

