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快速相位追蹤與高頻率倍數全數位鎖相

迴路設計與應用 

 

學生 : 柯鈞耀         指導教授 : 鍾菁哲 

國立中正大學資訊工程學系研究所 

 

摘要 

本論文探討開發應用於視訊系統的全數位時脈產生器，其主要功能是接收顯

示卡發出的水平同步訊號 (HSYNC)，並依據使用者設定的螢幕解析度，產生高

頻率像素時脈 (Pixel Clock) 來擷取視訊訊號資料。與傳統鎖相迴路相較，本論

文提出電路在高頻率倍數鎖相迴路應用上，有較佳的追蹤相位能力。此電路在大

量的雜訊干擾時，仍然可以擁有快速追蹤相位能力。並利用數位迴路的優點，可

避免在先進製程上產生漏電問題，且可降低晶片面積並避免使用外接元件 (如外

接電容，額外的石英震盪器)。並開發抵抗水平同步訊號雜訊干擾的數位濾波器，

以改善時脈產生器的輸出週期抖動。取樣時脈 (Pixel Clock) 的穩定度直接影響

到顯示畫面的品質。因此，如何在高頻率倍數下，產生一個穩定的時脈訊號，是

此電路設計的重點。本論文所提出的 ADPLL 將使標準元件庫 65nm 標準 CMOS

製程來製作晶片，驗證所提出的電路架構。 
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Abstract 

An All-Digital Phase-Locked Loop (ADPLL) for video capture application is 

presented in this dissertation. The major function of this ADPLL is to generate the 

high speed pixel clock from the horizontal synchronization signal (HSYNC) of the 

Person Computer (PC) graphics card according to the user-defined video resolution. 

When it is compared with conventional Phase-Locked Loop (PLL), the proposed 

design have better phase tracking ability than conventional PLLs in high frequency 

multiplication factor applications. And it can accept large reference clock jitter and 

still have fast phase tracking ability. The advantages of digital design can overcome 

the leakage problem in advanced CMOS process, reduce chip area and avoid to use 

external components (such as external capacitor and oscillator). The digital loop filter 

was developed to resist the jitter effects of reference clock and to reduce the period 

jitter of pixel clock. The stability of sampling clock (pixel clock) will have large 

effects on video quality. Thus how to generate a very stable, and small phase drift 

pixel clock, is the major design challenge in this dissertation. And the proposed 

ADPLL was implemented with standard cells on a standard 65nm CMOS process to 

verify the performance of the proposed architecture. 
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Chapter 1 Introduction 

1.1 Motivation 

The Phase-Locked Loop (PLL) is usually used for many applications, such as the 

frequency synthesizer, clock multiplier, clock and data recovery (CDR) and clock 

deskew. The PLL is also an indispensable module in System-on-a-Chip (SoC). But in 

reality, we can’t have a PLL meet all applications or any system specifications. For 

different applications and system specifications, PLL has to be redesigned according 

to the application features and different requirements, such as locking time, jitter 

suppression, frequency range, and multiplication factor. Therefore, PLL will be 

implemented with different architectures to meet the area and power consumption 

requirements in the specifications. 
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1.2 Design Challenges 

1.2.1 The Design Challenges in Conventional PLLs 

with Advanced Process 

 

Fig. 1.1 Analog PLL architecture 

For many years, conventional approaches [1-5] utilize charge-pump based 

structure to implement the PLL circuit. Fig. 1.1 shows the block diagram of this 

architecture. However, in advanced CMOS process, such as 65nm CMOS process, 

these conventional architectures will encounter great difficulties. In conventional PLL 

architectures, we will discuss three major design challenges in the following 

paragraphs. 

1. 

The most significant problem comes from the charge pump structure, because 

this structure has to store the control voltage (Vctrl) by capacitor to adjust the voltage 

controlled oscillator (VCO) and stabilize the output frequency. But to reduce chip area 
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and avoid using the special process (such as MIM capacitors), mostly the MOS 

capacitor is used. However, the transistor has serious leakage problem in deep 

submicron process. The leakage current in charge pump will cause ripple 

phenomenon and produces jitter on the output clock makes it difficult to design the 

PLL loop. Because this problem directly affects the jitter performance, the low 

leakage MOS capacitors are used in PLL to avoid the leakage problem. However, 

when using the low leakage MOS capacitors, it raises the overall operating voltage 

(from 1.0V to 1.2V in 65nm CMOS process), leading to increase the dynamic power 

consumption. 

2. 

Because the voltage in the 65nm CMOS process has been reduced to 1.0V, so 

when designs the gain value (KVCO) of the VCO, it needs to trade-off between the 

output frequency range and the gain value (KVCO). Therefore, it often needs to use the 

multi-frequency band technique to cut the VCO into several different working 

sections to resolve the problem in wide frequency range operation. But it also requires 

auxiliary circuit to do frequency band selection, resulting in the need for additional 

input control signals, and increasing the circuit costs. 

3. 

Basically when the PLL’s reference clock (fREF) is changed, the control voltage 

(Vctrl) will be charged or discharged with Up and Dn pulse, respectively, then the 

analog signal is filtered by the loop filter and transmitted to the VCO. Therefore, in 

some applications such as the high multiplication factor video clock generator, the 

reference clock frequency is very low (< 100kHz). Because the PLL loop refresh rate 
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is too low, due to the leakage problem of the MOS capacitors, the control voltage will 

have ripple phenomenon and resulting in unexpected period jitter. 

1.2.2 The Difficulties of the Phase Tracking in PLL 

 

Fig. 1.2 Jitter versus multiplication factor at fixed 240MHz output [5] 

Another problem in the conventional PLLs is the difficulty of the phase tracking. 

Fig. 1.2 shows the impact of the multiplication factor versus the period jitter and 

tracking jitter in the conventional PLL architecture [5]. The period jitter represents the 

variations of the output clock period, and the tracking jitter represents the phase error 

between the reference clock and output clock. In Fig. 1.2, the relation between the 

peak-to-peak period jitter and the frequency multiplication factor is not obvious. 

Regardless of how the frequency multiplication factor is (from 1 to 4096), the period 
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jitter is controlled less than 2% of the output clock period. On the contrary, in the 

conventional PLL architecture when the frequency multiplication factor is greater 

than 512, the peak-to-peak tracking jitter has been achieved 100% of the output clock 

period. In other words, the conventional PLL architecture is not suitable for the phase 

tracking in high frequency multiplication factor applications. One reason is that the 

conventional PLL architecture has ineffective phase tracking ability in high frequency 

multiplication factor applications. Another reason is, in such applications, most of the 

reference clocks have low frequency about kHz, and the loop refresh rate of the 

analog PLL is too low, so it will cause the leakage problem. 

1.3 Video Display System 

1.3.1 Video Display System Overview 

The proposed high frequency multiplication factor All-Digital Phase-Locked 

Loop (ADPLL) is applied to the current video display system. The reason for 

selecting the video display system as the ADPLL application is because that this 

application has many requirements such as the high frequency multiplication factor 

and the ability of the phase tracking. In currently applications, the video display 

system is the most demanding, the following have a brief introduction. 

 

Fig. 1.3 Video display system 
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Fig. 1.3 shows the simplified block diagram of the video display system. The 

analog video signals RGB (Red/Green/Blue), vertical synchronous (VSYNC) and 

horizontal synchronous (HSYNC) signals from the Random Access Memory 

Digital-to-Analog Converter (RAMDAC) of the Personal Computer (PC) graphics 

card are delivered to the RGB acquisition interface. The RGB acquisition interface 

converts the analog video signals (RGB) into digital signals by variable gain amplifier 

(VGA) and analog-to-digital converter (ADC). Then the digital signals from digital 

processor are sent to video display system. The sampling clock (PIXEL_CLK) of 

ADC is generated by the clock generator. In general, the clock generator is 

implemented by the PLL. The clock generator according to the resolution of the 

display system uses HSYNC signal as reference clock to generate high speed pixel 

clock (PIXEL_CLK). The horizontal resolution is proportional to the frequency 

multiplication factor. Fig. 1.4 shows HSYNC and pixel clock timing diagram. 

 

HSYNC Hback_porch Hdisplay (M pixel clock) Hfront_porch

Active Video

Htotal

HSYNC

Video
Data

PIXEL_CLK

 

Fig. 1.4 HSYNC and pixel clock timing diagram 
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Table 1.1 Monitor Timing Specifications 

Resolution 
Mode 

Active Total 

Refresh

Rate 

Horizontal 

Frequency 

Pixel 

Frequency 

1344×806 60 Hz  48.4 kHz 65.000 MHz 

1328×806 70 Hz  56.5 kHz 75.000 MHz 

1312×800 75 Hz  60.0 kHz 78.750 MHz 
XGA 1024×768 

1376×808 85 Hz  68.7 kHz 94.500 MHz 

1688×1066 60 Hz  64.0 kHz 108.000 MHz

1688×1066 75 Hz  80.0 kHz 135.000 MHzSXGA 1280×1024 

1728×1072 85 Hz  91.1 kHz 157.500 MHz

2160×1250 60 Hz  75.0 kHz 162.000 MHz

2160×1250 65 Hz  81.3 kHz 175.500 MHz

2160×1250 70 Hz  87.5 kHz 189.000 MHz

2160×1250 75 Hz  93.8 kHz 202.500 MHz

UXGA 1600×1200 

2160×1250 85 Hz 106.3 kHz 229.500 MHz

2080×1235 60 Hz  74.0 kHz 154.000 MHz

2592×1245 60 Hz  74.6 kHz 193.250 MHz

2608×1255 75 Hz  94.0 kHz 245.250 MHz
WUXGA 1920×1200 

2624×1262 85 Hz 107.2 kHz 281.250 MHz

 

Video Electronics Standards Association (VESA) [6] defines the monitor timing 

specification and the detailed information is listed in Table 1.1. In video display 

system the higher monitor resolution, the higher monitor quality. For example, in 

WUXGA mode, the reference clock frequency is 74.556kHz, the pixel clock 

frequency is 193.250MHz, so the frequency of the pixel clock is up to 2592 times 

higher than the frequency of the reference clock. Therefore, the frequency 

multiplication factor of the clock generator is 2592. The high speed pixel clock 

generated by the clock generator has to align the phase of HSYNC signal, otherwise 

the video signals will be distorted after ADC sampling. Fig. 1.5 shows the relation 

between the RGB signals and the phase of the pixel clock. The valid sampling interval 

must be in the stable region of RGB analog signals, otherwise the captured video 

signals by the ADC will be wrong. Therefore, the clock generator has to accurately 
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tune the frequency of the pixel clock, and it must reduce the phase error between the 

pixel clock and HSYNC. In general video display application, the specifications of the 

phase error must be less than one third of the pixel clock period [6-10]. Otherwise 

signals distortion will be very serious and the monitor will have a flickering 

phenomenon. From previous discussions, the conventional PLL architectures can not 

be directly applied to this video display application, because it can not achieve these 

requirements in the high frequency multiplication factor condition. 

 

Fig. 1.5 RGB analog signal and pixel clock timing diagram 

 

Table 1.2 HSYNC jitter measurement [9] 

Pixel Clock 

Frequency 
 40MHz 160MHz 240MHz 320MHz

Effective Jitter (ns) 1.03nS 1.09nS 0.95nS 1.06nS Radeon 

8500 Fraction of a pixel (%) 4.2% 17.3% 22.6% 33.5% 

Effective Jitter (ns) 360pS 380pS 400pS 450pS 
GeForce4 

Fraction of a pixel (%) 1.4% 6.1% 9.6% 14.1% 

Effective Jitter (ns) 160pS 120pS 90pS 110pS 
Parhelia-512 

Fraction of a pixel (%) 0.6% 2.0% 2.1% 3.5% 
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Table 1.2 shows the HSYNC jitter measurement results of several Personal 

Computer (PC) graphics cards measured by the UltraSharp Display Output 

Technology [9]. From Table 1.2, the HSYNC jitter of video display system may be as 

high as 1.06 ns and it is about 33.5% of the pixel clock period. Therefore, the 

conventional PLLs become more difficult to track the phase error. 

1.3.2 The Difficulties of High Multiplication Factor 

ADPLL Design 

T T T T T − Δ T − Δ T − Δ T T

δ Nδ− ×Δ

 

Fig. 1.6 The tracking jitter of high frequency multiplication factor 

In the current video display system, the frequency multiplication factor of the 

clock generator is up to 2592. In this high frequency multiplication factor applications, 

any output frequency error and the reference clock jitter will cause enormous phase 

error accumulation. Fig. 1.6 explains the tracking jitter problem in high frequency 

multiplication factor PLL. If we assume that the frequency multiplication factor is N, 

the resolution of DCO isΔ, and the original output pixel clock period is T. In the 

beginning, the phase error between the HSYNC and HSOUT is zero. After one 

HSYNC clock, the phase of HSYNC leads the phase of HSOUT slightly, and the 

accumulative phase error isδ. Then the controller tunes the DCO period from T to T-
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Δ to speed up the PLL frequency. Because the frequency multiplication factor N is a 

large number, so after one HSYNC clock the phase error will accumulate toδ-N．Δ. 

The phase error can not be reduced effectively and its amount is bigger than previous 

clock cycle. For example, if we assume that in WUXGA mode and the resolution of 

the DCO is 1ps, the frequency multiplication factor is 2592. After tuning the DCO 

step, the phase error will accumulate up to 2.592ns (=2592．1ps). Therefore, the 

conventional PLLs are not possible to have good performance in phase tracking in 

high frequency multiplication factor applications. 

1.3.3 The Impact of HSYNC Jitter Injection 

Because of the reference clock frequency is too low (31.5kHz to 106.3kHz), and 

the frequency multiplication factor is high, the PLL controller has to slightly adjust 

the DCO frequency, otherwise the phase error will be enlarged by the frequency 

multiplication factor N. In conventional PLLs, in order to stabilize the PLL loop, the 

step of the DCO has to be reduced. However, the reference clock (HSYNC) is not 

stable, and the period jitter of the reference clock period will up to 1.06ns [9]. When 

the reference clock has large jitter, the PLL has to track the phase error. However the 

DCO step is small after PLL is locked, so the phase tracking behavior will be slow. It 

causes the phase error can’t be reduced less than one third of the pixel clock period 

[6-10]. Therefore, the PLL has to solve this problem when the reference clock has 

large jitter, otherwise the phase error can’t meet the specification requirements.  
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1.4 Conventional PLLs Survey 

1.4.1  A Fractural-DLL Based Clock Generator for 

Video Application 

  

Init

PFD

Decision
ctrl

Div.
by N

Flip
Flop

Window
CP

Delay
ctrl

ckin

in1

in2

ckout ck2

ckout

mode

N

τ

 

Fig. 1.7 Fractural-DLL based clock generator [7] 

The fractural-DLL based clock generator is proposed by [7]. Fig. 1.7 shows the 

architecture of the fractural-DLL based clock generator. This clock generator uses 

analog phase and frequency detector (PFD), charge pump, and set/reset flip-flop to 

adjust the delay of delay cells. In the positive edge of the reference clock, the phase of 

high frequency reference clock is calibrated to avoid accumulating the phase error 

rapidly. The drawback of this architecture is that it needs a calibration circuit. Because 

when the reference clock has large jitter, the pixel clock perhaps may encounters with 
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glitch problem and the system will work incorrectly. Therefore, this architecture can’t 

apply to video display system with large input jitter condition. 

1.4.2 Video Capture PLL by Analog Bits Inc. 

H
SY

N
C

R
P

O
C

E
SS

IN
G

 

Fig. 1.8 Video capture PLL proposed by Analog Bits Inc. [8] 

Fig. 1.8 shows the video capture PLL proposed by Analog Bits Inc. [8]. This 

video capture PLL uses three PLLs as clock generator. The 5-phase reference PLL 

uses a stable external reference clock (crystal at 14.3MHz) to generate a 660MHz 

5-phase high speed clock. Then, this architecture uses 660MHz 5-phase high speed 

clock to control the 10-phase 28-bit NCO (Numerically Controlled Oscillator) to 

achieve phase tracking and frequency multiplication. In this architecture, it needs a 

GHz clock as the sampling clock. Because in this video display system, the 

requirement of the frequency is up to 230MHz in UXGA mode. In [8], it uses the 

multi-phase clock generator to avoid generating the GHz clock. However, this 

architecture requires a stable external oscillator or crystal, and three high speed PLLs 

will increase chip area and power consumption. 
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1.4.3 An ADPLL for Video Pixel Clock Generator 
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Fig. 1.9 Video pixel clock generator [10]  

The video pixel clock generator is proposed by [10]. Fig. 1.9 shows the 

architecture of video pixel clock generator. From Fig. 1.9 the system has two loops, 

one is in the fractional-N DCO component and the other is in the feedback path of the 

pixel clock. Therefore, this architecture has to add additional circuit to make loop 

consistency. The fractional-N DCO component is composed of the PFD, charge pump, 

VCO, and the fractional divider circuit. The fractional-N DCO architecture is 

equivalent to analog charge pump based PLL. Due to the VCO in the fractional-N 

DCO, so it will also have the same leakage problem in advanced process. However, 

the fractional-N DCO also needs a stable external reference clock. From the above 

discussions, the video pixel clock generator is not suitable for video display system in 

advanced process. 
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1.5 Summary 

Due to the design challenges in conventional PLLs, in recently, the All-Digital 

Phase-Locked Loops (ADPLLs) [11-16] have proposed to overcome the above 

problems. The feature of the ADPLL is that all digital control circuit. Therefore, when 

the system uses the digital controlled oscillator (DCO) to replace the voltage 

controlled oscillator (VCO), the leakage problem can be solved. For wide frequency 

range, the DCO uses the cascaded structure and all-digital controller, so the problem 

of the wide frequency range can also be solved. From the above discussions, the 

ADPLL will become more competitive and more essential in advanced process.  

For the difficulties of high multiplication factor ADPLL design has discussed in 

section 1.3.2. In the proposed ADPLL design, we will use first-order sigma-delta 

modulator (SDM) to improve the equivalent DCO resolution for reducing the 

extensive phase error between HSYNC and HSOUT. 

For the impact of HSYNC jitter injection has discussed in section 1.3.3. In the 

proposed ADPLL design, we will use the time-to-digital converter (TDC) in the 

proposed ADPLL to compensate the phase error caused by the HSYNC jitter. The 

TDC circuit will improve the overall performance, and also improve the phase 

tracking ability of the proposed ADPLL.   

1.6 Thesis Organization 

In this dissertation, we will design a fast phase tracking and high frequency 

multiplication ADPLL in 65nm CMOS process. 

In chapter 2, all the details of the proposed ADPLL clock generator, including the 

circuit architecture, and circuit techniques are presented. In chapter 3, we show the 
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experimental results of the proposed ADPLL and the chip implementation. Finally, we 

make conclusions and point out future works in chapter 4.
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Chapter 2 Architecture of Video 

Capture ADPLL 

2.1 System Architecture Overview 
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Fig. 2.1 The block diagram of proposed ADPLL architecture 

 Fig. 2.1 shows the block diagram of proposed ADPLL architecture. The 

proposed ADPLL is composed of seven blocks: Phase Frequency Detector (PFD), 

Time-to-Digital Converter (TDC), Sigma-Delta Modulator (SDM), Interpolation 

Digital Controlled Oscillator (DCO), ADPLL Controller, Digital Loop Filter, and 

Frequency Divider. 

The working principle of proposed ADPLL is described as follows. The signals 

of HSYNC, RESET, and DIV_M are system inputs. The DIV_M signal is according 
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to the specification of video display system to decide the frequency multiplication 

factor. Both signals HSYNC and HSOUT are sent to the PFD, then the PFD compares 

which signal is leading or lagging, and then it generates Up and Down information. 

Simultaneously, the TDC uses up and down information to quantify the phase error 

and generate the TDC code (tdc_code). According to up and down information, the 

ADPLL controller adjusts the DCO output frequency to reduce the phase error 

between HSYNC and HSOUT signals to achieve target frequency. The Sigma-Delta 

Modulator (SDM) block is added to enhance the equivalent resolution of the DCO. 

Therefore, the control code (dco_code) from the ADPLL controller is sent into the 

SDM as its control signal. Then the SDM generates control signals (int_dco_code) to 

control the Interpolation DCO. HSOUT is the output signal of the Frequency Divider.  

The rest of block structures are organized as follows. Section 2.2 describes the 

structure of the bang-bang PFD. Section 2.3 describes the DCO structure and the 

solution of the non-monotonic DCO. Section 2.4 and Section 2.5 describes the 

ADPLL controller and the system finite state machine. Then, section 2.6 discusses 

how to use dithering technology to improve the equivalent DCO resolution and its 

performance. Finally, Section 2.7 describes the structure of the time-to-digital 

converter (TDC) and how to use it to quantize the phase error between both HSYNC 

and HSOUT signals. 
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2.2 Phase and Frequency Detector 

2.2.1 Structure  

 

Fig. 2.2 The cell-based, three-state, bang-bang PFD architecture [12] 

The phase and frequency detector (PFD) is used to detect the phase error and the 

frequency error. The three-state bang-bang PFD [12] is used in the proposed ADPLL 

which is the cell-based design. Fig. 2.2 shows the bang-bang PFD architecture. The 

bang-bang PFD has three operation conditions. When HSOUT leads HSYNC, a low 

pulse is generated at flagD. On the contrary, when HSOUT lags HSYNC, a low pulse 

is generated at flagU. And the last operation is, when HSOUT falls into the dead zone 

of the PFD, both flagU and flagD signals remain at high logic level. The dead zone 

means the dead region of the PFD. That is the phase error can’t be distinguished 

between HSYNC and HSOUT. 
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Fig. 2.3 Digital pulse amplifier architecture [12] 

 Fig. 2.3 shows the digital pulse amplifier [12] architecture. The digital pulse 

amplifier is used to reduce the dead zone of the PFD. When the input low pulse signal 

send into the digital pulse amplifier, the output signal whose pulse width will be 

increased. It’s to meet the minimum pulse width requirement of the D-Flip/Flop’s 

reset pin. In our work, we use both output signals flagU and flagD from the PFD to 

generate a new signal named phase_clk. The phase_clk signal is used as the reference 

clock for the ADPLL controller block. 

2.2.2  Simulation Result 

 

Fig. 2.4 Simulation result of the bang-bang PFD 
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Table 2.1 The dead zone of the bang-bang PFD 

 Typical Case Fast Case  Worst Case 

Dead zone value (ps) 4  3  8  

 

Fig. 2.4 shows the simulation result of the bang-bang PFD by UltraSIM 

simulator. It is simulated on UltraSIM SPICE mode at worst case. In order to measure 

the PFD dead zone under different PVT variations, the simulation switches the phase 

error from HSYNC leading HSOUT for 15ps to HSYNC lagging HSOUT for 15ps. 

Table 2.1 shows the PFD dead zone under different PVT variations. 

2.3 Digital Controlled Oscillator 

The digital controlled oscillator (DCO) is the most critical component in the 

all-digital phase-locked loop (ADPLL). Because the DCO usually occupies almost 

50% area and power consumption of the ADPLL, and therefore how to design a DCO 

with lower power, smaller area and sufficient frequency resolution is very important 

while designing an ADPLL. 
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2.3.1 MUX-Type DCO structure 

2.3.1.1 Structure 

 

Fig. 2.5 The coarse-tuning stage of the MUX-type DCO. 

 

Fig. 2.5 shows the architecture of the MUX-type DCO. The MUX-type DCO is 

composed of the coarse-tuning stage and the fine-tuning stage. The coarse-tuning 

stage which has (2M-1) delay cells with (2M-1) multiplexers can provide 2M different 

delays. In order to generate a sufficient delay time in 65nm CMOS process, the delay 

cells which with larger MOS channel length in the cell-library are used to build up the 

coarse-tuning stage. And the two-input AND gates are added to each delay cell’s 

output to disable the unused cells to save power consumption. 
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Fig. 2.6 The fine-tuning stage of the proposed DCO. 

Fig. 2.6 shows the fine-tuning stage of the DCO. To achieve better DCO 

resolution, the digital-controlled varactors (DCVs) [11][20][24][26] are used in the 

fine-tuning stage. The fine-tuning stage has P buffers, in each buffer it connects to 

four NAND gates. When the fine-tuning control code (FINE[4*(P-1)-1:0]) is changed, 

the capacitance in the buffer’s output node is also changed. Therefore a high 

resolution, linear fine-tuning delay stage can be created. 

2.3.1.2 Problem of Non-monotonic DCO 

In order to achieve both wide frequency range and high resolution with smaller 

chip area and lower power consumption, the cascaded structure is often used in 

designing the DCO [11][20][24][26]. In these DCOs, the coarse-tuning stage, which 

uses large delay cells to achieve wide-range delay control, is accompanied with a 

fine-tuning stage to improve the resolution of the DCO. In this cascaded architecture, 

it is often needed to overlap the sub-frequency band to make sure that there will not 

have any frequency dead zone in the DCO. But this makes the DCO’s output 
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frequencies become non-monotonic with the DCO control codes. To alleviate the 

difficulty to design the ADPLL controller with these cascaded structure DCOs, the 

fine-tuning stage must have a delay controllable range larger than the delay step of 

previous coarse-tuning stage. However, it means that the coarse-tuning DCO control 

code must be determined in the frequency search mode, and it must be fixed after the 

frequency search is done. Then the ADPLL controller only adjusts the fine-tuning 

DCO control code to fine-tune the output frequency and to track the phase of the 

reference clock in a selected sub-frequency band. 

In these ADPLLs [11][20][24][26], the proposed DCOs still have monotonic 

response if the coarse-tuning DCO control code is fixed while tuning the fine-tuning 

DCO control code. But for high frequency multiplication applications, such as 

line-locked PLLs or spread spectrum clock generator (SSCG) applications [23][26], it 

often needs to change the coarse-tuning DCO control code after frequency search is 

done. However, when we switch the coarse-tuning DCO control code to the adjacent 

sub-frequency band, because there are overlapped region between adjacent 

sub-frequency bands, the output frequency will become non-monotonic with input 

DCO control code. Thus in [26], the auto-adjust algorithm is proposed to solve the 

non-monotonic problem during sub-frequency band transition in SSCG application. 

But the proposed auto-adjust algorithm [26] depends on the simulation results 

with PVT variations to decide a fixed compensation code. However, the overlapped 

region between adjacent sub-frequency bands will be changed with PVT variations. 

And this fixed compensation code must be designed for the worst-case. As a result, if 

the overlapped region is smaller than expectation, it will affect the DCO resolution 

and the jitter performance. 
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Therefore, it is difficult to design a monotonic MUX-type DCO. Non-monotonic 

or large resolution would take place and result in unstable loop tracking as shown in 

Fig. 2.7. 

 

Fig. 2.7 Non-monotonic DCO 

In order to solve the non-monotonic issue, the cell-based DCO with built-in 

self-calibration circuit (BISC) is describing in detail in section 2.3.2. 
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2.3.1.3 Simulation Result 

The MUX-type DCO is simulated with HSPICE. Fig. 2.8 shows the period of the 

DCO output clock versus coarse-tuning stage control code (0-63), when the 

fine-tuning stage control code is set to zero, and shows INL and DNL of the 

MUX-type DCO. 

The simulation parameters for each corner are process, voltage, and temperature, 

respectively. The circle represents the TT corner, 1.0 V, 25°C, the square represents 

the FF corner 1.1V, 0°C, and the upward-pointing triangle represents the SS corner, 

0.9V, 125°C, respectively.  

In TT corner, the DCO period range is from 1.639ns to 20.403ns, the DNL is 

±0.002962∆, and the INL is ±0.006001∆. In FF corner, the DCO period range is from 

1.192ns to 14.809ns, the DNL is ±0.003931∆, and the INL is ±0.00589∆. In SS corner, 

the DCO period range is from 2.607ns to 32.794ns , the DNL is ±0.002252∆, and the 

INL is ±0.00431∆. Three corners are shown in (a), (b), (c) , respectively. 
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(a) TT corner, DNL: ±0.002962∆, INL: ±0.006001∆, DCO range: 1.639ns ~ 20.403ns 

 

(b) FF corner, DNL: ±0.003931∆, INL: ±0.005896∆, DCO range: 1.192ns ~ 14.809ns 

(c) SS corner, DNL: ±0.002252∆, INL: ±0.004316∆, DCO range: 2.607ns ~ 32.794ns 

Fig. 2.8 Simulation of MUX-type DCO period versus coarse-tuning code 0 ~ 63 
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Fig. 2.9 Comparison of the MUX-type DCO period in PVT variations 

 

Table 2.2 Properties of the MUX-type DCO coarse-tuning stage 

 ULTRASIM S mode  Coarse-Tuning Stage Control Code : 0 ~ 63 

 Avg. Step  

(ps) 

Max Step 

(ps) 

Min Step 

(ps) 

Max Period 

(ns) 

Min Period 

(ns) 

TT corner 288.856 289.300 288.000 20.403 1.6391 

FF corner 209.178 210.000 208.800 14.809 1.192  

SS corner 465.951 467.000 465.000 32.794 2.607 

 

Fig. 2.9 shows the comparison of the MUX-type DCO period in PVT variations. 

Table 2.2 shows the properties of the MUX-type DCO coarse-tuning stage. The 

MUX-type DCO operation range is from 2.607ns to 14.809ns, covered in each corner. 
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Fig. 2.10 Simulation of MUX-type DCO period 

 

Table 2.3 Properties of the DCO fine-tuning stage 

ULTRASIM S mode  Fine-Tuning Stage Control Code : 0 ~ 31 

 Avg. Step  

(ps) 

Max Step 

(ps) 

Min Step 

(ps) 

Range  

(ns) 

Cover  

(ns) 

TT corner 18.248 21.000 16.000 565.684 276.824 

FF corner 14.175 16.000 12.000 439.439 230.268 

SS corner 26.865 30.000 23.000 832.816 366.878 

 

Fig. 2.10 shows the period of the MUX-type DCO in both coarse-tuning control 

code (0~63) and fine-tuning control code (0~31) under different PVT conditions. The 

average step of coarse-tuning stage delay is 288.856ps in TT corner, 209.178ps in FF 

corner, and 465.951ps in SS corner. The average step of fine-tuning stage delay is 
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18.248ps in TT corner, 14.175ps in FF corner, and 26.865ps in SS corner. The average 

range of fine-tuning stage delay is 565.684ps in TT corner, 439.439ps in FF corner, 

and 832.816ps in SS corner. The overlap delay is 276.824ps in TT corner, 230.268ps 

in FF corner, and 366.878ps in SS corner. Table 2.3 shows the properties of the DCO 

fine-tuning stage. We can see the range of fine-tuning stage is larger than one 

coarse-tuning stage delay step. 

2.3.2 A Built-In Self-Calibration Circuit for Monotonic 

DCO  

In this section, the cell-based DCO with built-in self-calibration (BISC) circuit to 

overcome the non-monotonic response problem in cascaded structure DCO is 

presented. The mechanism of self-calibration decides the compensation code for the 

DCO fine-tuning control codes when the coarse-tuning control codes are changed. 

The proposed self-calibration method can guarantee the monotonic response of the 

DCO, and therefore the advantages of using the cascaded structure DCOs can be 

retained. 
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2.3.2.1 Built-In Self-Calibration Circuit 

 

Fig. 2.11 The proposed DCO with built-in self-calibration circuit 

 

Fig. 2.11 shows the architecture of the proposed DCO with BISC circuit. The 

DCO control code (DCO_CODE) which inputs to the DCO is sent to the BISC 

controller to detect if there has changes in the coarse-tuning control code. Then the 

compensation code (Step[4:0]) for DCO fine-tuning control is added to the current 

input DCO control code to make sure that the monotonic response of the DCO during 

coarse-tuning control code transitions. 

In the cascaded structure DCOs [11][20][24][26], the DCO has the coarse-tuning 

stage and the fine-tuning stage. But in this architecture, it is often needed to overlap 

the sub-frequency band to make sure that there will not have any frequency dead zone 

in the DCO. Otherwise the output clock may have large cycle-to-cycle jitter while the 

DCO operates near the frequency dead zone. 
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Fig. 2.12 The compensation code when sub-frequency band is changed 

 

But if we overlap the sub-frequency band as shown in Fig. 2.12, it means that 

when the coarse-tuning DCO control code changes from the current code to the next 

coarse-tuning DCO control code, the output frequencies is not monotonically 

increasing. As a result, when the ADPLL controller adjusts the DCO control code 

from the coarse-band #(K) with fine-tuning control code (2N-1) to the next 

coarse-band #(K+1), because the fine-tuning control code should reset to zero, and 

therefore the output frequency becomes slower than in previous DCO control code 

(i.e. coarse-band #(K) with fine-tuning control code (2N-1)). And the ADPLL 

controller will encounter great difficulties in frequency tracking. 
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To avoid this phenomenon, compensation code should be added to the 

fine-tuning control code if there has changes in the coarse-tuning control code. In Fig. 

2.12, a compensation code (Step[4:0]) is added to the fine-tuning control code so that 

the monotonic response can be still retained. 

The compensation code (Step[4:0]) can be determined by circuit simulation with 

PVT variations. But if a fixed value compensation code is used in the ADPLL design, 

there will have too worse cycle-to-cycle jitter in worst-case conditions.  In this work, 

we copied parts of the DCO circuit shown in Fig. 2.11 and named as "Calibration 

DCO" with the phase detector (PD), and the BISC controller to generate the 

compensation code (Step[4:0]) for current operating conditions. The calibration 

circuit starts to work when system is reset. After the calibration is done for the DCO, 

the compensation code is determined and then the ADPLL starts its normal operation. 

The DCO control code is expressed in this format (coarse-tuning control code, 

fine-tuning control code). Two adjacent frequencies (K, 2N-1) and (K+1, Step) are 

used to do frequency comparison, where the fine-tuning control code has N-bit. The 

DCO control code (K, 2N-1) is applied to the DCO shown in Fig. 2.11 Then the DCO 

control codes (K+1, 0), (K+1, 1), … to  (K+1, X) are sequentially applied to the 

"Calibration DCO". The phase detector detects if the frequency of the "Calibration 

DCO" is higher than the DCO. Thus after several calibration cycles, the compensation 

code (Step[4:0]) can be found to guarantee the monotonic response of the DCO in 

ADPLL normal operation mode. 
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Fig. 2.13 The timing diagram of the proposed calibration circuit 

 

The timing diagram of the proposed calibration circuit is shown in Fig. 2.13. In 

Fig. 2.13, the BASE_CLK is the output clock of the DCO circuit and the 

COMP_CLK is the output clock of the "Calibration DCO". The signal 

"Disable_DCO" is used to disable both the DCO and the "Calibration DCO" after 

each frequency comparison so that the phase detector can be used to perform 

frequency comparison. The BASE_CLK and the COMP_CLK are sent to the phase 

detector. The phase detector compares the phase of these two clocks. In the beginning 

of the calibration process, because there has overlapped sub-frequency bands in the 

DCO, the COMP_CLK is lagged to the BASE_CLK. Then the BISC Controller keeps 

increasing the fine-tuning DCO control code of "Calibration DCO" until the 

COMP_CLK leads the BASE_CLK. Then the value X shown in Fig. 2.13 is saved as 

fine-tuning compensation code (Step[4:0]). 

After the calibration process is finished, the ADPLL returns to its normal mode. 

And the compensation code for DCO fine-tuning control code is added to current 

input DCO control code (DCO_CODE) to make sure that the monotonic response of 
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the DCO during coarse-tuning control code transitions. And if there has no change in 

the coarse-tuning control code, the input DCO control code is bypassed to the DCO. 

2.3.2.2 Test Chip Architecture 

The architecture of the proposed DCO in the test chip is mentioned in the 

previous section 2.2.1.1. 

 

Fig. 2.14 The phase detector in the calibration circuit [24] 

 

Fig. 2.14 shows the schematic of the phase detector [24] used in the calibration 

circuit. The principle of the phase detector is to determine which rising edge in the 

BASE_CLK or the COMP_CLK occurs later. This phase detector has a dead zone 

about 1ps in 65nm CMOS process which is sufficient to detect tiny frequency 

difference in frequency comparison. In this work, two additional inverters are added 

at the output port of the phase detector to increase the driving capacity. 
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The other circuits such as the BISC controller are written with hardware 

description language (HDL), and then the cell-based design flow is used to implement 

the full test chip. 

2.3.2.3 Experimental Result  

Table 2.4 shows the I/O PADs description of the proposed test chip, the 22 I/O 

PADs and 10 power PADs are used in this test chip. 

Table 2.4 I/O PADs description 

Input Bits Function 

REST 1 set chip to initial 

CLK 1 input reference clock 

DIV_M 1 divider multiplication factor 

COARSE_CODE 4 DCO Coarse-tuning stage control code 

FINE_CODE 5 DCO Fine-tuning stage control code 

Set the output step 

Value Step 

0 calibration up step 
STEP_SEL 1 

1 calibration down step 

Set the built-in self-calibration mode 

Value DCO Running Mode 

0 DCO auto upward running 

1 DCO auto downward running 

MODE 2 

2 DCO fixed code running 

Output Bits Function 

OUT_CLK 1 DCO output clock 

INIT_RUN_DCO_DOEN 1 BIST finish signal 

STEP 5 compensation code 

Power Pad Pairs Function 

VDDC+VSSC 1 CORE Power Pad 

VDDP+VSSP 4 Pad Power Pad 



 

 36

CON-
TROLLER

Calibration
DCO

DCO

Divider

Decoder

Decoder

 

Fig. 2.15 The microphotograph of the test chip 

Fig. 2.15 shows the microphotograph of the test chip. The test chip is 

implemented with a standard performance (SP) 65nm CMOS process. The design 

parameters of this test chip are determined as follows: M=6, N=5, P=9. It means that 

the proposed DCO has 64 coarse-tuning steps in the coarse-tuning stage and 32 

fine-tuning steps in the fine-tuning stage. 
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Table 2.5 Properties of the DCO 

 
Chip Meas.

PostSim 

 TT 

PostSim 

FF 

PostSim 

SS 

Coarse-Tuning Step (ps) 291.980 288.856 209.178 465.951 

Fine-Tuning Range (ps) 653.693 565.68 439.44 832.82 

Average Resolution (ps) 18.268 18.25 14.18 26.87 

Max. Frequency (MHz) 538.704 610.090 839.067 383.568 

Min. Frequency (MHz) 75.135 49.012 67.527 30.493 

Compensation code 21 17 18 15 

 

Table 2.5 shows the properties of the proposed DCO in chip measurement and in 

post-layout simulation with PVT variations. The compensation code varies with 

different PVT conditions. The fine-tuning range is always larger than coarse-tuning 

step with different PVT conditions. The measurement results show that the DCO can 

output frequency ranges from 75.135MHz to 538.704 MHz. And the resolution in the 

proposed DCO is about 18.268ps from chip measurement results. 

Fig. 2.16 shows the simulation results of DCO’s output period vs. DCO control 

code in the non-calibrated DCO with PVT variations. Because the sub-frequency band 

is overlapped, therefore the output period is not monotonically decreasing while the 

DCO control code is increasing. 

After the calibration process is done, the output period becomes monotonically 

decreasing while the DCO control code is increasing. Hence the proposed 

self-calibration circuit can make sure that the monotonic response of the DCO during 

DCO coarse-tuning control codes transitions as shown in Fig. 2.17. 



 

 38

 

Fig. 2.16 Output period of the non-calibrated DCO 

 

Fig. 2.17 Output period of the calibrated DCO 
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Fig. 2.18 Measured calibration circuit output result 

 

Table 2.6 Period of the DCO output Clock 

(Coarse-Tuning,Fine-Tuning) Period(ns) 

(14,00) 16.5017631 

(14,31) 15.8480704 

(15,00) 16.2097834 

… … 

(15,18) 15.8552763 

(15,19) 15.8413321 

(15,20) 15.8243584 

(15,21) 15.8079831 

(15,22) 15.7875566 

(15,23) 15.7757003 

 

Fig. 2.18 shows the calibration result measured by the Logic Analyzer. The 

compensation code (Step[4:0]) output by the proposed BISC circuit is 2110 in this case. 

And Table 2.6 shows the measurement results of the DCO output period. It shows that 

the output period at (15,21) is smaller than (14,31). Thus after the calibration with the 

proposed BISC circuit, the output period becomes monotonically decreasing while the 

DCO control code is increasing. Although the output period at (15,19) is already 

smaller than the output period at (14,31), we choose (15,21) as output to tolerate jitter 

effects of the DCO. 
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After calibration process is done, the BISC controller adds the compensation 

code (Step[4:0]) 2110 (101012) to the DCO control code if there has changes in the 

coarse-tuning control code. And it can make sure that the monotonic decreasing 

response of the DCO during DCO coarse-tuning control code transitions. 

 

Fig. 2.19 Measured jitter histogram operates at 64.489 MHz  

Fig. 2.19 shows the jitter measurement results of the DCO output clock. The 

root-mean-square jitter and peak-to-peak jitter at 64.489 MHz is 13.171ps and 

81.130ps, respectively. Table 2.7 summarizes the test chip performance. In Table 2.7, 

the interpolated DCO consumes large power consumption thus is not suitable for 

low-power applications. The proposed DCO with BISC circuit has smaller area and 

lower power consumption and is very suitable for ADPLL design. 
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Table 2.7 Performance summary 

Performance Indices This work [27] [25] 

Process 65nm CMOS 0.18μm CMOS 0.13μm CMOS 

Design Approach Cell-Based All-Digital All-Digital 

DCO Type Cascaded Interpolated Interpolated 

Supply (V) 1.0 1.8 1.28 

Frequency Range (MHz) 75.14 - 538.70 33 - 1040 300 - 1300 

rms Jitter (ps) 
13.171  

(@64.49MHz)

13.8 

(@950MHz) 

10.4 

(@950MHz) 

p-p Jitter (ps) 
81.130 

(@64.49MHz)

86.7 

(@950MHz) 

59 

(@950MHz) 

LSB Resolution (ps) 18.268 N/A 5.9 

Chip Area (mm2) 0.01 
0.32 (Chip)  

 0.06 (DCO) 
0.0075(DCO) 

Power (mW) 

0.142 

(@ 58.7MHz) 

0.205 

(@481.6MHz)

15.7 

(@1.04GHz) 

4.48 

(@ 950MHz) 

Performance Indices [26] [22] [11]  
Process 0.18μm CMOS 90nm CMOS 0.18μm CMOS 

Design Approach Cell-Based Cell-Based Cell-Based 

DCO Type Cascaded Cascaded Cascaded 

Supply (V) 1.8 1 1.8 

Frequency Range (MHz) 27 - 54 191 - 952 378 - 2400 

rms Jitter (ps) 
94 

(@54MHz) 

8.24 

(@952MHz) 

76 

(@134MHz) 

p-p Jitter (ps) N/A 
49.95 

(@952MHz) 

2000 

(@134Hz) 

LSB Resolution (ps) 1.1 1.47 65 (DCO1) 

Chip Area (mm2) 0.156 N/A 0.16 

Power (mW) 
1.2 

(@54MHz) 

0.14 

(@200MHz) 

15 

(@348MHz) 
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2.3.2.4 Conclusion 

In section 2.3.2, a monotonic DCO with built-in self-calibration circuit in 65nm 

CMOS technology is presented. The proposed DCO can output frequency ranges from 

75.135MHz to 538.704 MHz with low-power consumptions. The proposed calibration 

circuit can solve the non-monotonic problem in cascaded architecture DCOs when the 

coarse-tuning control code is changed thus is very suitable for ADPLL design in SoC 

applications. 

2.3.3 Interpolation-type DCO 

The previous section 2.3.1 proposed the MUX-type DCO, but this structure may 

encounters glitch problem and DCO non-monotonic issue. Section 2.3.2 then 

proposed the built-in self-calibration circuit to correct the non-monotonic response in 

the cascading DCO. Although this method can solve the non-monotonic problem, 

however, this method may require additional area, power and complex circuit. It 

increases the design cost and has a heavy burden on the designer. In this section, we 

will present another, more intuitive DCO architecture called the interpolation-type 

DCO to solve the problems encountered previously. 

Compared with the previous MUX-type DCO, the interpolation-type DCO using 

the interpolator circuit as fine-tuning stage in the two adjacent sub-frequency to 

generate the fine-tuning delay. So it doesn’t need to overlap the sub-frequency band to 

make sure that there will not have any frequency dead zone in the DCO. Because 

using the interpolator to generate fine-tuning delay, it can seamlessly switch the 
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control code in two adjacent sub-frequency delays. It can make sure that the output 

frequency has monotonic response. 

2.3.3.1 Structure 

 

Fig. 2.20 The architecture of the interpolation-type DCO 

Fig. 2.20 shows the architecture of the interpolation-type DCO. The 

interpolation-type DCO is composed of the coarse-tuning stage and the fine-tuning 

stage. The coarse-tuning stage which has 32(=25) delay cells with 33(=25+1) 

multiplexers can provide 32(=25) different delays. In order to generate a sufficient 

delay time in 65nm CMOS process, the delay cells in the cell-library are used to build 

up the coarse-tuning stage.  

In the coarse-tuning stage, the controller selects two adjacent branch delays as 

one coarse-tuning step and sends two branch delays to the fine-tuning stage by both 

signals O and E. 
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Fig. 2.21 The fine-tuning stage of the interpolation-type DCO [25] 

The interpolation-type DCO uses the interpolator circuit as its fine-tuning stage. 

The interpolator circuit [25] is shown in Fig. 2.21. The interpolator circuit receives the 

signals O, E, O_bar, E_bar from coarse-tuning stage as its input and generates output 

signal (PIXEL_CK) as DCO output clock. The interpolator circuit has 8 interpolator 

units in parallel to generate a sufficient equivalent resolution. The interpolator unit is 

composed of tri-state inverters and inverters. The fine-tuning signal controls the 

relative weight of two selected branches. Each interpolator unit has 8 (=2．22)(i.e.  

F[0],…, F[3], F[0] ,…, F[3] ) fine-tuning control signals and it can provide 4 

different delays. So the interpolator circuit has 64 (=2．22．23)(i.e. F[0],…, F[31], 

F[0] ,…, F[31] ) fine-tuning control signals and it can provide 32(=22 ．23) different 

delays in one fine-tuning stage. Table 2.8 shows the switching sequence of the 

interpolator circuit. Therefore, the resolution of the coarse-tuning stage is about 

550.129ps, and the resolution of the fine-tuning stage is about 17.188ps (550.129 / 

8．22 ) for the proposed delay cell in 65nm CMOS process. 



 

 45

Table 2.8 Interpolation Switching Sequence 

Seq F[0] F[1] F[2] F[3] F[4] … F[30] F[31] Fine-tuning step 

0 0 1 1 1 1 … 1 1 1/32．Tcoarse_step 

1 0 0 1 1 1 … 1 1 2/32．Tcoarse_step 

2 0 0 0 1 1 … 1 1 3/32．Tcoarse_step 

3 0 0 0 0 1 … 1 1 4/32．Tcoarse_step 

… … … … … … … … … … 

30 0 0 0 0 0 … 0 1 31/32．Tcoarse_step 

31 0 0 0 0 0 … 0 0 32/32．Tcoarse_step 

2.3.3.2 Simulation Result 

The interpolation-type DCO is simulated in post-layout simulation. Fig. 2.22 

shows the period of the DCO output clock versus coarse-tuning stage control code 

(0-31), when fine-tuning stage control code set to zero, and shows INL and DNL of 

the interpolation-type DCO. 

The simulations variables of each corner are process, voltage, and temperature, 

respectively. The circle represents the TT corner, 1.0 V, 25°C, the square represents 

the FF corner 1.1V, 0°C, and the upward-pointing triangle represents the SS corner, 

0.9V, 125°C, respectively.  

In TT corner, the DCO period range is from 1.131ns to 18.749ns, the DNL is 

±0.163∆, and the INL is ±0.193∆. In FF corner, the DCO period range is from 0.854ns 

to 14.798ns, the DNL is ±0.155∆, and the INL is ±0.195∆. In SS corner, the DCO 

period range is from 1.916ns to 30.492ns, the DNL is ±0.171∆, and the INL is 

±0.191∆. Three corners are shown in (a), (b), and (c), respectively. 
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(a) TT corner, DNL: ±0.163∆, INL: ±0.193∆, DCO range: 1.131ns ~ 18.749ns 

 

(b) FF corner, DNL: ±0.155∆, INL: ±0.195∆, DCO range: 0.854ns ~ 14.798ns 

 

(c) SS corner, DNL: ±0.171∆, INL: ±0.191∆, DCO range: 1.916ns ~ 30.492ns 

Fig. 2.22 Simulation of DCO period versus coarse-tuning code 0 ~ 31 
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Fig. 2.23 Comparison of the interpolation-type DCO period in PVT variations 

Fig. 2.23 shows the comparison of the DCO period in PVT variation. The DCO 

operation range is from 1.914ns to 14.798ns, covered in each corner. 
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Fig. 2.24 Simulation of interpolation-type DCO 

Fig. 2.24 shows the period of the interpolation-type DCO in both coarse-tuning 

control code (0~31) and fine-tuning control code (0~31) under different PVT 

variations. Table 2.9 shows the properties of the interpolation-type DCO. The average 

step of coarse-tuning stage delay is 550.129ps in TT corner, 435.619ps in FF corner, 

and 891.844ps in SS corner. The average range of fine-tuning stage delay is 

517.522ps in TT corner, 406.500ps in FF corner, and 846.494ps in SS corner. The 

average step of fine-tuning stage delay is 17.205ps in TT corner, 13.617ps in FF 

corner, and 27.907ps in SS corner. We can see the range of fine-tuning stage delay and 

the step of one coarse-tuning stage delay are almost equal. 
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Table 2.9 Properties of the interpolation-type DCO 

Post-Layout Simulation  DCO Control Code : 0 ~ 1023 

 

Avg.  

Coarse Step  

(ps) 

Max  

Coarse Step 

(ps) 

Min  

Coarse Step 

(ps) 

Max Period 

(ns) 

Min Period 

(ns) 

TT corner 550.129 635.100 460.600 18.749 1.131 

FF corner 435.619 501.500 368.000 14.798 0.854 

SS corner 891.884 1034.600 739.1000 30.492 1.916 

 

Avg.  

Fine Range  

(ps) 

Max  

Fine Range 

(ps) 

Min   

Fine Range 

(ps) 

Max 

Frequency 

(ns) 

Min 

Frequency 

(ns) 

TT corner 517.522 593.500 433.700 884.173 53.336 

FF corner 406.500 464.300 344.700 1171.235 67.577 

SS corner 846.494 976.200 700.600 522.0297 32.796 

 

Avg.  

Fine Step  

(ps) 

Max  

Fine Step 

(ps) 

Min   

Fine Step 

(ps) 

TT corner 17.205 45.400 5.000 

FF corner 13.617 33.500 4.000 

SS corner 27.907 77.900 6.400 
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2.4 ADPLL Controller 
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Fig. 2.25 The finite state machine of the ADPLL controller 

Fig. 2.25 shows the system states of proposed ADPLL controller. The algorithm 

of the controller will influence the overall tracking performance and the locking time. 

The proposed ADPLL has divided into six states, and these are Coarse SAR, 

Frequency Searching, Fine-Fraction SAR, Fast Phase Tracking, Lock, and Filter 

respectively. In the proposed ADPLL, the length of step code is 19 bits. The step code 

is composed of 5bits coarse-tuning code, 5bits fine-tuning code and 9bits 
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fraction-tuning code. In Fig. 2.25, the step code is expressed by {coarse-tuning code, 

fine-tuning code, fraction-tuning code}.  

 

Fig. 2.26 Timing diagram in Coarse SAR state and Frequency Searching state 

The first state is coarse successive approximation register (SAR) tuning stage. In 

this state, the controller accords to the reference clock frequency to find the 

approximate frequency. Whenever a change in phase polarity occurs, the step code is 

divided by 2 to reduce the tuning step. The average code from digital loop filter is 

loaded into the control code, restoring the baseline frequency. When the step code is 

reduced from {4,0,0} to {1,0,0}, the ADPLL controller enters into Frequency 

Searching state. The purpose of Frequency Searching state is to find the suitable 

coarse-tuning code. In this state, the step code is fixed to {1,0,0} for 16 clock cycles, 

and the digital loop filter will update the average code to find the best baseline 

frequency. Fig. 2.26 shows the timing diagram in both Coarse SAR state and 

Frequency Searching state. 
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Fig. 2.27 Timing diagram in Fine-Fraction SAR state 

 When the freq_count equal to zero, the controller enters into Fine-Fraction SAR 

state. In this state, the step code is be initialed to {0,16,0}, and the working principle 

is similar to Coarse SAR state. Both the fine-tuning code and the fraction-tuning code 

is changed until the step code is reduced to {0,0,1}, but the coarse-tuning code is 

changed when the frequency is located between two frequency bands. Then, the 

Sigma-Delta Modulator is turned on to dither the DCO fine-tuning code to improve 

the DCO equivalent resolution. Fig. 2.27 shows the timing diagram in Fine-Fraction 

SAR state. 

When the step code is reduced down to {0,0,1}, the controller enters to Fast 

Phase Tracking state to track the phase error between HSYNC and HSOUT. After this 

state, the TDC circuit is turned on to compensate the phase error when the reference 

clock has the instant input jitter. When the lock_count is equal to zero, the controller 

enters into the last state Lock, and then the ADPLL is lock. In these 6 states expect 

Filter state, when a change in phase polarity the controller will send current control 

code to filter to calculate baseline frequency control code. Finally, Fig. 2.28 shows the 

timing diagram of the ADPLL locking procedure. 
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Fig. 2.28 Timing diagram of the ADPLL locking procedure 

2.5 Digital Loop Filter 

 

Fig. 2.29 ADPLL Frequency tracking procedure 

The ADPLL continues tracking the frequency and the phase of the reference 

clock by changing the DCO control code. Fig 2.29 explains the tracking procedure 

and locking procedure of the ADPLL. In Region I, the ADPLL has large frequency 

error and phase error. After entering Region II, the ADPLL has small frequency error 
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and phase error, and the frequency tiny swings nearby the baseline frequency, as 

shown in Fig 2.29. However, when there has HSYNC jitter or supply noise, in Region 

II, the ADPLL loop will be unstable and has large noise in pixel clock. Therefore, the 

ADPLL has to keep tracking frequency for stabilizing the loop. The digital loop filter 

[28] is introduced to reduce these effects and makes the ADPLL output period jitter 

can be minimized and has a stable loop. 

... ...

...

 

Fig. 2.30 The digital loop filter structure [28] 

The digital loop filter [28] is shown in Fig. 2.30. The digital loop filter receives 

the dco_code_base from the ADPLL controller and is sent into the finite state machine 

of digital loop filter. In the beginning of the digital loop filter, the finite state machine 

latches K input into registers in K reference clock cycles. After initiation state, in each 

reference clock cycle the digital loop filter continuing latches the new dco_code_base 

into registers and renews the values which are stored in registers. The digital loop 

filter discards both maximum and minimum dco_code_base, and then generates the 

baseline frequency code avg_dco_code by averaging the C0,C1,…,CK+M-3. Therefore, 

the baseline frequency is updated by the digital loop filter. 
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When the ADPLL controller detects the phase polarity from the PFD, the 

controller sends the dco_code_base to the digital loop filter. Then, the digital loop 

filter updates the avg_dco_code and is sent back to the ADPLL controller to reduce 

the phase error and increase the stability of the ADPLL loop. 

2.6 Dithering Technology 

2.6.1 Dithering Theorem 

n2 cycles n1 cycles n2 cycles n1 cyclesn1 cycles

Time

Period

Time

Period

2
1

1 2

n
P

n n

× Δ+
+

1P + Δ

1P

1P

1P + Δ

 

Fig. 2.31 Dithering Technology 

The proposed ADPLL uses DCO dithering technology by Sigma-Delta 

Modulator (SDM) to improve the DCO equivalent resolution. Fig. 2.31 explains the 

dithering technology. The x axis is the time and y axis is the period of DCO output 

clock. In the top half of the figure, the DCO output generates n1 cycles of period P1, 

and generates n2 cycles of period P1+∆ in sequential. Hence, the average period of 
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the DCO is
1 1 ( 1 ) 2 2

1
1 2 1 2

P n P n n
P

n n n n

× + + Δ × × Δ= +
+ +

. By adjusting the value of n1 and n2, 

we can precisely control the average period of the DCO output cycle. By mixing the 

DCO output period P1 and period P1+∆, the DCO equivalent resolution has improved 

from the original ∆ to
1 2n n

Δ
+

, and the result is shown in the bottom half of the Fig. 

2.31. In video display applications, the frequency multiplication factor of clock 

generator is from 800 to 2592, hence, in one reference clock period (HSYNC) it has 

up to N = 2592 pixel clock cycles.  

The architecture of ADPLL with SDM can significantly improve the DCO 

equivalent resolution, which can reduce the phase error between the reference clock 

(HSYNC) and pixel clock of the last output time. Because the SDM is used, the real 

resolution of the DCO doesn’t need to be femto-second level. The DCO dithering 

technology makes the DCO circuit easier to be designed and reduces the circuit 

complexity. Therefore, the proposed ADPLL architecture will use the SDM with DCO 

circuit to solve the problem of the reference clock phase is difficult to tracked in high 

frequency multiplication factor PLL. 
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Fig. 2.32 Phase Error reduction by using dithering technology  

The proposed ADPLL uses DCO dithering technology to reduce the phase error 

between the reference clock (HSYNC) and pixel clock as shown in Fig. 2.32. In Fig. 

2.32, the frequency multiplication factor is M, and the DCO resolution is ∆. Suppose 

the ideal period of output pixel clock cycle is T+∆/2. In one reference clock (HSYNC), 

if we assume that the period of all pixel clock cycles are T, and according to the 

deviation of frequency, the phase error will continue to be accumulated. Before the 

next positive edge of reference clock (HSYNC), the total accumulated phase error 

becomes M．∆/2. Assume that using the SDM to control the DCO output period 

between T and T+∆ alternately, the accumulated phase error problem can be solved, 

and the phase error can be limited less than ∆/2. From the above discussion, the 

architecture of proposed ADPLL with the SDM will significantly improve the phase 

tracking ability than conventional PLLs. 
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2.6.2 Working Principle 

 

Fig. 2.33 The working principle of Sigma-Delta Modulator [29]  

 

 

Fig. 2.34 First-order Sigma-Delta Modulator 

In the proposed ADPLL, the first-order SDM is applied to implement the 

dithering technology. Fig. 2.33 shows the working principle of the dithering 

technology and Fig. 2.34 shows the architecture of the first-order SDM. After the 

ADPLL controller enters into the Fine-Fraction SAR state, the SDM is turned on, and 

the ADPLL controller sets the fractional code to control the SDM. Then the SDM 
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receives the fractional code to generate a series high speed integer code to tune the 

DCO frequency. According to the operation of SDM, the average of series high speed 

integer code is near to the fractional code. The SDM is triggered by high speed clock 

to over sample the data, and the ADPLL controller is triggered by low speed clock. 

Therefore, when the SDM is used, the DCO equivalent resolution has been improved, 

and the accumulation of the phase error can be decreased.  

2.6.3 Simulation Result 

Fig. 2.35 shows the simulation results of Sigma-Delta Modulation with different 

fractional bits. If we assume that the ADPLL with ideal input HSYNC clock (no 

HSYNC jitter) in WUXGA mode. The detailed information is listed in Table 2.10. 

From Table 2.10, the peak-to-peak phase error is 363.916ns with 0bit SDM, 0.786ns 

with 7bit SDM, 0.544ns with 8bit SDM, and 0.346ns with 9bit SDM, respectively. 

The simulation shows that when there are more SDM fractional bits, the better 

performance is. The reason is that when the fractional bit is increased, the equivalent 

DCO resolution will be decreased.  

 

Table 2.10 Peak-to-peak and average phase error with different SDM fractional bits in 

WUXGA mode 

 0 bit 7 bit 8 bit 9 bit 

Peak-to-Peak Phase Error (ns) 363.916 0.786 0.544 0.346 

Average Phase Error (ns) 157.525 0.353 0.222 0.093 
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(a) 0bit Sigma-Delta Modulation 

 

(b) 7bit Sigma-Delta Modulation 
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(c) 8bit Sigma-Delta Modulation 

 

(d) 9bit Sigma-Delta Modulation 

Fig. 2.35 Sigma-Delta Modulation with different fractional bits 
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2.7 Fast Phase Tracking Technology 

2.7.1 Time-to-Digital Converter for Fast Phase Tracking 

Although the proposed ADPLL uses the SDM DCO to significantly decrease the 

phase drift, but it still can not meet the specification requirements. For the impact of 

HSYNC jitter, we need an improvement circuit to further solve this problem. For the 

issue of the reference clock jitter, it caused the phase error between HSYNC and 

HSOUT and can’t be decreased. As a result in the proposed architecture of the 

ADPLL uses the time-to-digital converter (TDC) for fast phase tracking. 

PIXEL_CLK

TDC SDM-DCO

Controller

HSYNC

HSOUT

tdc_code
Phase align

shift 1 bit +
tdc_code_shift

tdc_code_frac

dco_code_base

Phase Error

T T+

 

Fig. 2.36 The TDC working principle 

Fig. 2.36 shows the working principle of the proposed TDC. When the ADPLL 

frequency searching is locked, the ADPLL controller enters the Fast Phase Tracking 

State. The first step is using the TDC to quantize the phase error between HSYNC and 
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HSOUT into a digital code (tdc_code). Then, the tdc_code is divided by two and then 

sent to SDM DCO. The SDM DCO will adjust the percentage of the T+Δ period and 

T period according to the phase error. The TDC can compensate the phase error 

caused by the reference clock jitter. Therefore, before the next positive edge of 

HSYNC, the phase error caused by the previous reference clock jitter has been 

completely compensated. So it can align the phase of HSYNC and HSOUT, and 

reduces the phase error of output. Moreover, because the phase error will be 

immediate compensated by TDC circuit before the next positive edge of HSYNC, the 

phase error will not accumulate to next clock cycle. Therefore, we can expect to 

significantly reduce the phase error in the non-ideal working environment. 

2.7.2 Structure 

 

Fig. 2.37 The entirety TDC structure  

Fig. 2.37 shows the entire TDC structure. The TDC is composed of two duplicate 

sub-TDCs and 2-to-1 multiplexer. The first sub-TDC is used to quantize the phase 

error when HSYNC is leading HSOUT. On the contrary, the second sub-TDC is used 

to quantize the phase error when HSYNC is lagging HSOUT. Then according to Up 
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and Down information from the PFD, the multiplexer selects which the outputs of 

sub-TDCs to be the TDC code (tdc_code).  

 

Fig. 2.38 The detailed structure of the sub-TDC  

The delay chain of buffers [30] is a well-known method to realize a TDC. 

However, the delay chain of buffers structure can’t quiltize the time interval smaller 

than a buffer delay. However, the resolution is limited by buffer delay and 

metastability window of the Flip-Flop. We modify the traditional TDC [30] , the detail 

circuit of the proposed sub-TDC is shown in Fig. 2.38. 

Input signal (pulse) passed through a string of non-inverting delay and the PD 

samples the output of each delay cell (Dcell) sent to the TDC decoder to generate the 

TDC code (tdc_code). To solve the problem of metastability window of flip-flop, the 

TDC replaces the Flip-Flop with phase detector (PD). The PD is discussed in section 

2.3.2.2, it can provide very small dead zone thus the resolution of the TDC can be 

improved. The advantages of the proposed TDC are better recognition rate and have 

fine resolution. 
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2.7.3 Problem of TDC Loop Gain and Interpolation-type 

DCO Solution 

TDC can significantly reduce the phase error between HSYNC and HSOUT. But 

how to use the TDC code (tdc_code) to compensate the phase error is an important 

issue. This is because the TDC and the DCO is not the same circuit, therefore they 

will have different resolution with PVT variations. As a result, we must find a way to 

map the TDC code to the DCO code in the controller, and we cannot directly add the 

TDC code to the DCO code. It has to determine a suitable gain called TDC loop gain 

to make the TDC code and the DCO code to be corresponding. In conventional 

approaches, the suitable TDC loop gain were decided by the circuit simulation and 

multiplied by the TDC quantification code to as the ideal TDC code.  

Based on the above mentioned problems, we do not want to determine the TDC 

loop gain by circuit simulation. To solve this problem, the proposed TDC uses the 

delay cell of interpolation-type DCO coarse-tuning stage to as the Dcell of two 

sub-TDCs circuit. Therefore, the issue of both the TDC circuit and the DCO circuit 

mismatch problem can be eliminated. Because the DCO is a loop system, the delay 

line will pass through the positive half cycle and negative half cycle, but the pulse 

signal in sub-TDCs circuit only passes through a single delay-line one time. Therefore, 

in the proposed TDC circuit, the value of tdc_code is divided by 2, and the controller 

can directly use this value to do operation. 
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2.7.4 Simulation Result 

The number of delay cells in sub-TDC circuit is very important. The length of 

delay chain will affect the entirety power consumption and area. In our work, we use 

different Dcells to compare which number of Dcell has minimum phase error in four 

view modes. In simulation parameters, the numbers of Dcell are 256, 128, 64, 32, 16, 

8, 4, 2, 1, and turn off TDC, respectively. Table 2.11 and Table 2.12 show the 

maximum phase error and average phase error in four display modes. The TDC is 

simulated in UltraSIM SPICE simulation. The simulation result shows that when it 

uses 16 Dcells to as its delay chain length, the phase error is more suitable in four 

display modes. Therefore, the proposed ADPLL uses 16 Dcells to form the delay 

chain of the sub-TDC circuit. 

Table 2.11 Maximum phase error of proposed ADPLL in XGA to WUXGA 

Maximum Phase Error 
(ns) 

1K Hits 
256 

Dcell 

128 

Dcell 

64 

Dcell

32 

Dcell

16 

Dcell

8 

Dcell

4 

Dcell

2 

Dcell 

1 

Dcell 

TDC

off 

XGA 2.25 1.84 2.19 1.90 2.57 5.36 3.20 3.73 4.52 4.52

SXGA 1.33 1.33 1.39 1.37 1.69 2.57 2.77 3.02 3.61 3.84

UXGA 14.07 7.67 4.77 3.16 2.02 2.08 2.74 3.79 4.74 4.74

WUXGA 14.29 7.33 6.26 2.28 1.99 2.50 2.87 3.69 3.88 1.73

 

Table 2.12 Average phase error of proposed ADPLL in XGA to WUXGA 

Average Phase Error 
(ns) 

1K Hits 
256 

Dcell 

128 

Dcell 

64 

Dcell

32 

Dcell

16 

Dcell

8 

Dcell

4 

Dcell

2 

Dcell 

1 

Dcell 

TDC

off 

XGA 0.53 0.48 0.53 0.54 0.54 0.59 0.69 0.78 0.98 0.98

SXGA 0.43 0.43 0.43 0.43 0.45 0.51 0.64 0.75 1.01 0.98

UXGA 10.77 5.14 2.08 0.88 0.60 0.51 0.61 0.77 1.08 1.08

WUXGA 8.58 2.06 0.83 0.63 0.50 0.51 0.61 0.77 0.90 0.90
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The TDC performance is shown in Table 2.13. In HSPICE simulation, the 

resolution in TT corner, FF corner, SS corner are 43.496ps, 32.120ps, and 69.078ps, 

respectively. 

Table 2.13 Summary of the TDC performance 

 TT Corner FF Corner SS Corner 

Resolution (ps) 43.496 32.120 69.078 

Range (ps) 704.820 518.587 1125.356 
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Chapter 3 Experimental Results 

3.1 Chip Implementation 

 

Fig. 3.1 Floorplanning and I/O planning 

Fig. 3.1 shows proposed ADPLL chip floorplanning and I/O planning, in the 

proposed chip 16 I/O PADs and 16 power PADs are used. Table 3.1 is the detail I/O 

description. 
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Table 3.1 Table I/O PADs description 

Input Bits Function 

RESET 1 Set chip to initial 

HSYNC 1 Input clock 

EN_CKOUT 1 Enable pixel clock to output 

EN_TDC_LOOP 1 Enable TDC loop to work 

Set the number bits of SDM fractional code 

Value Fractional Code 

0 9 bits Fractional Code 

1 8 bits Fractional Code 

2 7 bits Fractional Code 

SD_MODE 2 

3 SDM Turn Off 

Set the Multiplication Factor of ADPLL 

Value Multiplication Factor 

1 XGA 1376 

2 SXGA 1688 

3 UXGA 2160 

4 WUXGA 2592 

5 16 

6 32 

7 64 

8 128 

9 256 

10 512 

11 1024 

12 2048 

13 4096 

DIVM_MODE 4 

14 5600 

Output Bits Function 

HSYNCD 1 Reference clock 

FBCLKD 1 Feedback clock 

CKOUTD 1 Pixel clock 

FSM 2 Finite state machine state 

LOCK 1 Phase lock signal 

Power Pad Pairs Function 

VDDC+VSSC 3 CORE Power Pad 

VDDP+VSSP 5 Pad Power Pad 
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Fig. 3.2 The microphotograph of the proposed ADPLL chip 

The microphotograph of the proposed ADPLL chip is shown in Fig. 3.2. This 

chip is fabricated by UMC 65nm 1P10M standard performance (SP) CMOS process. 

The chip size is 910× 820 μm2 and the core size is 580× 490 μm2 . The layout is 

divided into four blocks there are phaseclk domain, dcoclk domain, TDCPFD, and 

DCO, respectively. The phaseclk domain block contains the ADPLL controller and 

the digital loop filter. The dcoclk domain block contains the decoder of the DCO, the 

Sigma-Delta Modulator, and the frequency divider. The TDCPFD block contains the 

time-to-digital converter (TDC), the Phase/Frequency Detector (PFD), and the Phase 

Detector (PD). The last block is the DCO block, which is placed nearby the dcoclk 

domain, because the DCO control signals run through the decoder to the DCO block.  
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3.2 Jitter Behavioral Models Discussion 

Because the reference clock (HSYNC) is not a stable clock, the jitter of HSYNC 

can be as high as 1.06ns [9], and it will affect the overall ADPLL performance. To 

discuss the influence of the reference clock jitter, four different jitter behavioral 

models are designed to simulate the actual jitter environment. According to the [9], 

four different jitter models are designed for worst case, and the peak-to-peak value of 

the reference clock (HSYNC) is set to ± 1.2 ns. In the following, the jitter behavioral 

models are divided into four categories. 

Type 1 : Normal distribution, Fast variation  

Type 2 : Normal distribution, Medium variation 

Type 3 : Normal distribution, Slow variation 

Type 4 : Uniform distribution, Irregular variation 

In the following, the “+” symbol represents the value of positive jitter, and the 

“-” symbol represents the value of negative jitter, respectively. In Type 1, the jitter 

variations is drastic changed and its jitter form is (+,-,+,-,…,+,-). In Type 2, the jitter 

form is (+,+,-,-,+,+,…,-,-). In Type 3, the jitter variations changes slowly and its jitter 

form is (+,+,+,+,-,-,-,-,+,+,+,+,…,-,-,-,-). In Type 4, the jitter is a irregular form. From 

Type 1 to Type 3, these distributions of jitter are normal distribution, but in Type 4 is 

uniform distribution. Fig. 3.3 shows the jitter histogram and jitter distribution. The 

proposed ADPLL uses this four type jitter models to do circuit simulation, and the 

simulation result is shown in Section 3.3.1.1. 
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(a) Type 1, Normal distribution, Fast variation 

 

(b) Type 2, Normal distribution, Medium variation 
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(c) Type 3, Normal distribution, Slow variation 

 

(d) Type 4, Uniform distribution, Irregular variation 

Fig. 3.3 Different jitter models and its distribution 
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3.3 Overall Simulation 

Table 3.2 The specification of proposed ADPLL 

Mode 
HSYNC Frequency 

(kHz) 

Multiplication 

 Factor 

Pixel Clock 

(PIXEL_CLK)  

Frequency (MHz) 

XGA 68.677 1376 94.500 

SXGA 79.976 1688 135.000 

UXGA 75.000 2160 192.000 

WUXGA 74.556 2592 193.250 

Table 3.2 shows the specification of proposed ADPLL. In proposed ADPLL, it 

will use these four modes to do circuit simulation, and these modes are XGA, SXGA, 

UXGA, and WUXGA, respectively. 

3.3.1 Simulation in Verilog Behavior Model 

3.3.1.1 Different Jitter Behavioral Models 

The phase error performance of proposed ADPLL is simulated in four jitter 

models. If we assume that the proposed ADPLL parameters are TDC on and SDM on 

with 1.2ns jitter. Fig. 3.4 and Fig. 3.5 show the comparison of both maximum and 

average phase error in different jitter behavioral models. However, from Fig. 3.4 to 

Fig. 3.5, the Type 4 jitter behavioral model has the worst performance in maximum 

and average phase error. The detailed information is listed in Table 3.3. Actually, the 

real HSYNC jitter environment is similar to Type 2 jitter behavioral model. Therefore, 

the phase error performance of proposed ADPLL is controlled less than 30% of the 

pixel clock period with Type 1 to Type 3 jitter behavioral models. But proposed 

ADPLL will simulate on the worst case by using the Type 4 jitter behavioral model. 
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Fig. 3.4 The comparison of the maximum phase error in different jitter models 

 

Fig. 3.5 The comparison of the average phase error in different jitter models 
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Table 3.3 Maximum and average phase error in different jitter behavioral models 

Maximum Phase Error 

Type 1 Type 2 Type 3 Type 4 Mode 

(ns) (%) (ns) (%) (ns) (%) (ns) (%) 

XGA 1.063 10.05 0.931 8.80 1.512 14.29 2.189 20.69

SXGA 0.897 12.11 0.931 12.57 1.056 14.26 1.898 25.62

UXGA 1.213 19.65 1.673 27.10 1.464 23.72 2.317 37.53

WUXGA 1.211 23.40 1.009 19.50 1.304 25.20 1.699 32.83

Average Phase Error 

Type 1 Type 2 Type 3 Type 4 Mode 

(ns) (%) (ns) (%) (ns) (%) (ns) (%) 

XGA 0.245 2.32 0.228 2.15 0.345 3.26 0.515 4.87 

SXGA 0.161 2.17 0.286 3.86 0.267 3.60 0.466 6.29 

UXGA 0.371 6.01 0.432 7.00 0.387 6.27 0.553 8.96 

WUXGA 0.232 4.48 0.235 4.54 0.275 5.31 0.480 9.28 

3.3.1.2 Time-to-Digital Converter  

 From Fig. 3.6 to Fig. 3.7 show the maximum phase error and average phase error 

between HSYNC and HSOUT without TDC. As well, in Fig. 3.8 and Fig. 3.9 show 

the result with TDC. In four figures, the left half shows the phase error versus 

different input jitters, and the right half shows the percentage of ideal pixel clock 

period versus different input jitters. 
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Fig. 3.6 Without TDC, the maximum phase error. 

 

Fig. 3.7 Without TDC, the average phase error. 
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Fig. 3.8 With TDC, the maximum phase error. 

 

Fig. 3.9 With TDC, the average phase error. 
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The detailed information is listed in Table 3.4 and Table 3.5. Table 3.4 and Table 

3.5 show the maximum phase error and the average phase error with and without 

TDC. In each table, the shadowed rows represent the system with TDC and 

unshadowed rows represent the system without TDC. For each data followed in 

parentheses represents the percentage of the ideal pixel clock. In WUXGA mode and 

without TDC, the maximum phase error is 3.90ns, and with TDC the maximum phase 

error is 1.70ns. Therefore, when the proposed ADPLL adopts the TDC to compensate 

the phase error, the phase error can be improved almost 45%, reduced from 75.29% to 

32.89%. 

Table 3.4 Maximum phase error with and without TDC in XGA to WUXGA 

(ns) TDC Jitter 1.2 ns Jitter 1.0 ns Jitter 0.2 ns Jitter 0.0 ns 

OFF 4.95 (46.78%) 3.99 (37.72%) 1.25 (11.80%) 0.85 (8.03%)
XGA 

ON 2.19 (20.69%) 1.45 (13.68%) 0.66 (6.24%) 0.54 (5.08%)

OFF 4.08 (55.04%) 3.95 (53.35%) 1.08 (14.61%) 0.70 (9.45%)
SXGA 

ON 1.90 (25.62%) 1.23 (16.58%) 0.43 (5.76%) 0.26 (3.51%)

OFF 3.67 (59.37%) 3.36 (54.43%) 1.73 (27.94%) 1.35 (21.89%)
UXGA 

ON 2.32 (37.53%) 1.86 (30.12%) 1.34 (21.63%) 0.89 (14.47%)

OFF 3.90 (75.29%) 3.18 (61.35%) 1.41 (27.23%) 0.81 (15.54%)
WUXGA 

ON 1.70 (32.89%) 1.30 (25.04%) 0.80 (15.48%) 0.35 (6.69%)

 

Table 3.5 Average phase error with and without TDC in XGA to WUXGA 

(ns) TDC Jitter 1.2 ns Jitter 1.0 ns Jitter 0.2 ns Jitter 0.0 ns 

OFF 1.04 (9.86%) 0.85 (8.07%) 0.33 (3.10%) 0.30 (2.81%)
XGA 

ON 0.51 (4.86%) 0.42 (4.01%) 0.18 (1.69%) 0.14 (1.35%)

OFF 0.97 (13.14%) 0.81 (10.91%) 0.25 (3.41%) 0.20 (2.72%)
SXGA 

ON 0.47 (6.29%) 0.37 (4.94%) 0.11 (1.47%) 0.07 (0.88%)

OFF 0.96 (15.56%) 0.81 (13.08%) 0.47 (7.59%) 0.41 (6.69%)
UXGA 

ON 0.55 (8.96%) 0.48 (7.83%) 0.34 (5.58%) 0.41 (6.67%)

OFF 0.96 (18.55%) 0.76 (14.67%) 0.35 (6.75%) 0.22 (4.28%)
WUXGA 

ON 0.48 (9.27%) 0.39 (7.59%) 0.17 (3.31%) 0.09 (1.80%)
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The comparison results of the ADPLL with and without TDC are shown in bar 

chart of Fig. 3.10 and Fig. 3.11. In the top half of both figures, these show the 

maximum phase error and the average phase error, and in the bottom of both figures 

show the percentage of ideal pixel clock period. The assumption jitter of this 

simulation is ± 1.2 ns. When the proposed ADPLL uses TDC to compensate the 

phase error, the performance of proposed ADPLL can be improved a lot. 

 

Fig. 3.10 Maximum phase error of proposed ADPLL with and without TDC 

 

Fig. 3.11 Average phase error of proposed ADPLL with and without TDC 
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Fig. 3.12 Jitter performance with and without TDC in XGA mode 

 

 

Fig. 3.13 Jitter performance with and without TDC in SXGA mode 
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Fig. 3.14 Jitter performance with and without TDC in UXGA mode 

 

Fig. 3.15 Jitter performance with and without TDC in WUXGA mode 

From Fig 3.12 to Fig. 3.15, these shows the tracking jitter performance of 

proposed ADPLL loop in different modes. The x axis is the clock cycle count and the 

y axis is the phase error. 
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3.3.1.3 Sigma-Delta Modulator 

The influence of proposed ADPLL with and without SDM is simulated in 

different display mode (XGA to WUXGA). In the top half of both Fig. 3.16 and Fig. 

3.17, these show the maximum phase error and average phase error, and in the bottom 

of both figures show the percentage of the ideal pixel clock period. 

 We assume that the proposed ADPLL turns on TDC, with 1.2ns jitter, with Type 

4 jitter behavioral model. From Fig. 3.16, in XGA view mode and without the SDM, 

the phase error is 7201ns (68054%), and it is decreased to 2.189ns (20.69%) with the 

SDM. When the proposed ADPLL uses SDM, the phase error has been extensively 

decreased. We can see that if SDM DCO is not used, the phase error can’t be tracked 

correctly. The detailed information is listed in Table 3.6. 

 

Fig. 3.16 Maximum phase error of the proposed ADPLL with and without SDM 
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Fig. 3.17 Average phase error of the proposed ADPLL with and without SDM 

 

 

Table 3.6 Maximum and average phase errors with and without SDM  

Maximum Phase Error Average Phase Error 

SDM OFF SDM ON SDM OFF SDM ON Mode 

(ns) (%) (ns) (%) (ns) (%) (ns) (%) 

XGA 7201.57 68054 2.189 20.69 2825.34 26699 0.515 4.87 

SXGA 303.617 4099 1.898 25.62 133.002 1795 0.466 6.29 

UXGA 299.803 4856 2.317 37.53 102.247 4856 0.553 8.96 

WUXGA 515.874 9968 1.699 32.83 228.509 4415 0.480 9.28 
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3.3.2 Simulation in AMS 

 

Fig. 3.18 Simulation mode of the proposed ADPLL 

 

Table 3.7 Simulation Mode of the proposed ADPLL components 

ADPLL Components Simulation Mode 
ADPLL Controller Verilog 

Sigma-Delta Modulation Verilog 

Digital Loop Filter Verilog 

Interpolation DCO Verilog 

Frequency Divider Verilog 

PFD HSPICE 

TDC HSPICE 
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Because the reference clock frequency of proposed ADPLL is very low 

(68.677kHz to 74.556kHz), and the maximum output frequency of the DCO is up to 

193.250MHz. In the circuit simulation, in order to accommodate the DCO simulation 

accuracy, the overall ADPLL simulation time will become very long and unacceptable. 

Therefore, a mixed-mode simulation is needed, the digital circuit and DCO use 

Verilog simulation, TDC, and PFD are used SPICE to do circuit simulation. The 

proposed ADPLL uses the Cadence AMS-Ultra simulator to do mixed-signal 

co-simulation to speed up the simulation time. Fig. 3.18 shows the simulation mode of 

the proposed ADPLL components and Table 3.7 shows the detailed simulation 

information. In AMS mixed-signal co-simulation, we divide the ADPLL components 

into HSPICE mode and Verilog mode. In the proposed AMS simulation, TDC, and 

PFD are simulated by SPICE and the other digital circuits and the DCO are simulated 

by NC-Verilog. The DCO is the most time consuming block in this AMS simulation, 

so the DCO must be simulated by NC-Verilog, or the simulation will become too long. 

This is because the DCO operation frequency is up to 193.250MHz, but the other 

circuit operates at reference clock rate which is hundred kHz. In order to maintain the 

accuracy of the DCO, we use the DCO post-layout simulation results to create the 

frequency look up table. Therefore, we can still have enough accuracy for DCO 

circuit in AMS mixed-signal co-simulation. We assume that the proposed ADPLL 

turns on both TDC and SDM, with 1.2ns jitter and with Type 4 jitter behavioral 

model. 
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Fig. 3.19 The maximum phase error in AMS simulation 

 

Fig. 3.20 The average phase error in AMS simulation 
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Table 3.8 Maximum and average phase errors in AMS simulation 

Maximum Phase Error (ns) Average Phase Error (ns) 
Mode 

(ns) (%) (ns) (%) 

XGA 2.571  24.30% 0.541   5.11% 

SXGA 1.685  22.75% 0.447   6.03% 

UXGA 2.020   32.72% 0.598   9.69% 

WUXGA 1.991   38.47% 0.500   9.66% 

Fig. 3.18 and Fig 3.19 show the result of maximum and average phase error in 

AMS simulation, and Table 3.7 shows the detailed information. In Fig. 3.18, the 

maximum phase error in four modes are 2.571ns (24.30%), 1.685ns (22.75%), 

2.020ns (32.72%), and 1.991ns (38.47%), respectively. Although the performance of 

the maximum phase error beyond one third of the pixel clock period requirement in 

both UXGA mode and WUXGA mode, but the performance of the average phase 

error is controlled in 0.500ns (9.66%) in WUXGA mode. To compare the simulation 

result between AMS simulation (Table 3.7) and Verilog simulation (Table 3.4 and 

Table 3.5), in AMS simulation, the average phase error performance is better than 

Verilog simulation, and the maximum phase error performance in both simulation are 

almost the same. 
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3.4 Chip Measurement 

 

(a) Without SDM 

 

(a) With SDM 

Fig. 3.21 The locking procedure of the ADPLL in 5600 multiplication factor 
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(a) The jitter histogram of the pixel clock in WUXGA mode (@193.26MHz) 

 

(b) The jitter histogram of the pixel clock in 5600 multiplication factor @527.06MHz) 

Fig. 3.22 The jitter histogram of the proposed ADPLL 
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Fig. 3.21 shows the locking procedure of the proposed ADPLL in 5600 

multiplication factor in Fast Phase Tracking state. In Fig. 3.21(a), the proposed 

ADPLL turns off the SDM, and in Fig. 3.21(b) the proposed ADPLL turns on the 

SDM. If the ADPLL turns off the SDM, the ADPLL has a large phase error between 

HSYNC and HSOUT. However, when the proposed turns on the SDM, the HSOUT 

almost aligns HSYNC. 

Fig. 3.22 shows the jitter measurement result of the pixel clock. The HSYNC 

signal in our measurement environment is very noisy. Both root-mean-square (rms) 

and peak-to-peak jitter of HSYNC signal are 39.03ps and 391.08ps respectively. The 

HSYNC jitter will affect the overall ADPLL performance. In Fig. 3.22(a), it shows 

measured jitter histogram operates at 193.26MHz in WUXGA mode. The rms jitter is 

29.71ps. In Fig. 3.22(b), it shows the measured jitter histogram operates at 

527.06MHz in 5600 multiplication factor. The rms jitter is 8.64ps. 

Table 3.9 Measurement Results of the proposed ADPLL 

Frequency Multiplication 

Factor 

1376 

(XGA) 

1688 

(SXGA) 

2160 

(UXGA)

2592 

(WUXGA) 

5600 

(TEST) 

HSYNC Period (μs) 14.56 12.50 13.33 13.41 10.24

HSYNC Freq. (kHz) 68.68 79.98 75.00 74.56 97.66

Pixel Clock Period (ns) 11.09 7.41 6.17 5.17 1.90

Pixel Clock Freq. (MHz) 90.14 134.97 161.98 193.26 527.06

Pixel Clock Jitterrms (ps) 78.31 41.12 33.94 29.71 8.64

Table 3.9 summarizes the measurement results of the proposed ADPLL. We 

measure five different modes, the multiplication factor are 1376, 1688, 2160, 2592, 

and 5600 respectively. The rms jitter in five different modes are 78.31ps, 41.12ps, 

33.94ps, 29.71, and 8.64ps respectively. In XGA mode, the pixel clock frequency is 

90.14MHz, and in TEST mode is up to 527.06MHz. 

 



 

 92

Table 3.10 Performance Comparisons 

Performance Indices Proposed TVLSI’09[32] JSSC’06 [11] 
Process 65nm CMOS 0.18μm CMOS 0.18μm CMOS 

Approach All-Digital All-Digital All-Digital 

 

Phase Align 

 

TDC-Based PFD Bang-bang PFD No 

Area 0.07mm2 0.14mm2 0.16mm2 

 

Power 

 

0.848mW 

(@193MHz) 

1.813mW 

(@520MHz) 

26.7mW 

(@600MHz) 

15mW 

(@378MHz) 

Input Range 35.71kHz~12.5MHz 30.3kHz~100MHz 19.26kHz~60MHz

Output Range 90.14~527.06MHz 62~616MHz 2.4~378MHz 

Multiplication Factor 16~5600 1~2046 4~13888 

 

JitterRMS 

 

78.31ps 

(@90.14MHz) 

8.64ps 

(@527.06MHz) 

7.28ps  

(@600MHz) 

76ps  

(@134.77MHz) 

Performance Indices JSSC’04 [31] JSSC’03 [12] [10] 
Process 0.6μm CMOS 0.35μm CMOS 0.13μm CMOS 

Approach Mixed-Mode All-Digital Mixed-Mode 

 

Phase Align 

 

TDC-Based PFD 

with external crystal
Bang-bang PFD 

TDC-Based PFD 

with external crystal

Area 1.8mm2 0.71mm2 0.2mm2 

 

Power 

 

180mW 
100mW 

(@500MHz) 
N/A 

Input Range N/A N/A N/A 

Output Range 10~80MHz 45~510MHz Max.1GHz 

Multiplication Factor N/A 1~255 1~4096 

 

JitterRMS 

 

40ps 

(@78MHz) 

22ps 

(@ 450MHz) 

32.4ps 

(@78.73MHz) 
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Table 3.10 summarizes the proposed ADPLL chip performance. In Table 3.10, 

[32] uses the bang-bang PFD to implement the ADPLL. This ADPLL only uses 

leading or lagging information from PFD to compensate the phase error. However, it 

assumes that the HSYNC is ideal, it doesn’t have reference jitter to affect the ADPLL 

performance. In Fig. 3.6, if peak-to-peak HSYNC jitter is up to 1.2ns and without 

TDC, [32] will have large phase error. So, this approach doesn’t have phase tracking 

ability when the reference signal has jitter. But in the proposed ADPLL, if we assume 

that the ADPLL doesn’t have HSYNC jitter interference (0ns HSYNC jitter) and turns 

off the TDC, the proposed ADPLL still have phase tracking ability. In [11][12], such 

ADPLLs are only frequency synthesizer, they don’t have phase tracking ability. In 

[10][31], those ADPLLs use TDC-based PFD to implement ADPLL, but they have to 

use external crystal for frequency search. Using the external crystal means that the 

design cost is increase, too. Therefore, the proposed ADPLL is implemented by 

TDC-based PFD. The proposed ADPLL has fast phase tracking ability and has small 

phase error when HSYNC has noisy interference.
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Chapter 4 Conclusion and Future 

Works 

In this dissertation, we proposed a fast phase tracking and high frequency 

multiplication factor ADPLL.  

The interpolation-type DCO is used to solve the DCO non-monotonic problem 

and to solve the problem of TDC loop gain. Therefore, we can control the DCO 

directly than using the built-in self-calibration circuit.  

  

The proposed ADPLL uses dithering technology to improve the equivalent DCO 

resolution to reduce the tracking jitter. The resolution is reduced from 17.205ns to 

33.604fs. Therefore, the design difficulty of high frequency multiplication factor 

ADPLL can be reduced. 

 

When the input has large jitter, the proposed ADPLL utilizes the TDC and the 

SDM to compensate the phase error. The maximum phase error is controlled less than 

1.991ns in WUXGA mode with the worst jitter model, when the ADPLL frequency 

multiplication factor is 2592.  

 

For this ADPLL, we tape-out two test chips to verify our proposed method and 

the circuit techniques. The first test chip is to solve the DCO non-monotonic problem, 

and the second test chip is implemented to verify the overall ADPLL performance for 

video display applications. Two test chips are implemented by UMC 65nm 1P10M 
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standard performance (SP) COMS process. The chip area including I/O Pads of 

proposed ADPLL is 910 × 820 mm2. 

 

Because the reference frequency is very low, the simulation time is too long and 

not unacceptable. In the future, we hope to create the more accurately model in RTL 

level to simulate the performance in post-layout simulation to reduce the simulation 

time. 

Although the interpolator circuit can solve the non-monotonic problem, but the 

linearity of the interpolator circuit is worst, and it will have more power consumption. 

Therefore, we hope to increase the linearity of the interpolator circuit in future. 

A built-in self test (BIST) circuit for PLLs is becoming an important issue, so we 

can use the BIST circuit to detect whether our design is work correctly. Therefore, we 

hope to design the BIST circuit for on-chip jitter measurement to increase the circuit 

testability in future.
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