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摘要 

深度信念網絡(DBN)架構在本篇論文中被使用，首先以 MNIST 資料庫做網

路架構的功能驗證，往後將會套用聲音辨識的相關資料庫應用。在訓練模型的萃

取與硬體驗證中，使用 Matlab 模擬來取得滿意的辨識結果，以此決定出合適的

網路大小與層數。接著將訓練好的模型存入ROM中並整合到提出的硬體架構中。

利用 MNIST 的測試資料對硬體架構進行準確度的驗證。 

隨著人工智慧發展，語音辨識與深度學習的相關研究逐漸熱門。伴隨高齡化

社會，聽覺輔具的應用也備受到注目。聽覺輔具搭配深度學習的應用也逐漸普及，

傳統的聽覺輔輔具容易受到環境音場的影響，無法提供合適的聲音補償。此外，

聽覺輔具需要長時間配戴，輔具的設計需要輕薄且低耗電，因此在聽覺輔具中對

環境音場使用深度學習，以此提高對環境音場的抵抗提供合適的聽覺補償，而且

一個合適得聽覺補償可以被應用。使用特殊應用積體電路(ASIC)來實作是設計聽

覺輔具的趨勢而且聽覺輔具設備能達到輕量且低功耗。 

因此在未來我們會使用聲音辨識的相關資料庫，並且減少硬體對外部記憶體

的存取次數、動態調整運算的精準度、降低 MACs 的使用次數來降低整體運算會

在未來的工作中逐步研究。 

 

 

 

 

 

 

 

關鍵字: 深度信念網絡(DBN) 
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Abstract 

 The deep belief network (DBN) is implemented in this thesis. First, the MNIST 

database is used as a functional verification of the network architecture. Later, the 

relevant database applications for voice identification will be applied. In the training 

model extraction and hardware verification, the Matlab simulation is performed to 

determine the appropriate network size and layers which can achieve satisfactory 

identification results. Subsequently, the trained model is stored in ROMs and integrated 

into the proposed hardware architecture. Then the test data of the MNIST database are 

used to verify the accuracy of the DBN hardware circuit. 

With the development of artificial intelligence, researches on speech recognition 

and deep learning become increasingly popular. With the aging society, the hearing aids 

also attracting attention. Traditional hearing aids are susceptible to environmental 

sounds. In addition, the hearing aids need to be wore for a long time, and the design of 

the assistive devices needs to be light and low-power consumption. Therefore, deep 

learning is used for the environmental sound field in the hearing aids to improve the 

resistance to the environmental sound field, and suitable hearing compensation can be 

applied. Using application specific IC (ASIC) to implement audio equipment for 

hearing aids can achieve lightweight and low-power consumption, and is a trend in the 

design of hearing aids. 

To future, the relevant database applications for voice identification will be applied. 

Furthermore, reducing the access times of the external memory, dynamically adjust the 

accuracy of calculations and reducing the number of MACs to reduce the power 

consumption of the overall operation will be gradually studied in the future works. 

 

Keywords: deep belief network (DBN) 
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Chapter 1 Introduction 

1.1Introduction to Neural Network 

The neural network is a technology had been discussed for a long time. The 

neural network can be traced back to 1940. In the other word, the neural network 

is a quite historical research. From 1940, the neural network has been concerned 

by a large number of research scholars.  

McCulloch, W., and Pitts first published a concept of neural network in 1943. 

However, the weight arrays must be established manually, the neural network 

cannot be proposed an effective training method. The technology of neural 

network only is discussed at that time. 

Frank Rosenblatt proposed a much-need training algorithm called 

backpropagation. This is an algorithm that can automatically build a neural 

network weight array. However, this algorithm is quite slow. With increasing 

number of layers, backpropagation algorithm will be slower. Though 

backpropagation algorithm helped the development of the neural network in early 

1980 and 1990, in the multilayer neural network, it still cannot have proposed an 

effective training method. Neural network again becomes a discussed technology. 

In 2006, Hinton proposed a new method to improve the training of neural 

network. High-speed graphics processing units (GPU) speeds up the multilayer 

neural network training. This new method makes today’s researchers feel the 

benefits of deep neural networks and use deep neural networks to help people in 

many applications. 
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A neural network architecture has at least one input layer and one output layer, 

as shown in Figure 1.1. When a pattern inputs to the neural network, the neural 

network will synchronously output a set of a pattern. The input layer and the output 

layer through the hidden layer to calculation a set of a pattern. 

 

 

Figure 1.1 General neural network architecture 

 

The neural network inside is composed of independent and interconnected 

neurons. As shown in Figure 1.2, each neuron is calculated by inputs and weights, 

then outputs the value after an activation function. The input of a neuron may be 

another neuron’s output or an external input of the neural network. These inputs 

are usually expressed by floating-point or binary values. The binary value will use 

1 and 0 to represent true and false, in some applications, +1 and -1 are used to 

represent true and false. 
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Figure 1.2 Calculation of a neuron’s output 

The neuron will multiply each input with the weight, and then adds these 

multiplication results to the activation function. The operation of a neuron to 

calculate the output is shown in Equation 1.1. 

 

𝑓(𝑥𝑖 , ω𝑖) = ϕ(∑(𝑥𝑖 ⋅ ω𝑖))

𝑖

 (1.1) 

Where the variable 𝑥𝑖  and the variable ω𝑖  represent the input value and 

weight value of the neuron, respectively and ϕ is the activation function. 

The variable 𝑖 is the number of the input and weight, the number of both 

variables must be same.  
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The fully connected network can be seen in the various neural networks, 

as shown in Figure 1.3. The name of the fully connected network is named 

based on the number of hidden layers. The fully connected network shown in 

Figure 1.3 is a two-hidden-layer fully connected network. The hidden layer 

of the general neural network is between zero and two layers. In deep neural 

network, it will have more than two hidden layers. 

 

Figure 1.3 A two-hidden-layer fully connected network 

Neurons are basic components in the neural network. The common 

neurons are the input neurons, output neurons, hidden neurons and bias 

neurons. As mentioned before, the input neuron will pass data to the next 

neuron of the next layer. The output neuron will accept the data from a neuron 

in the last layer. There are two important characteristics of the hidden node, 

one is hidden neuron only accept data from other neurons as input data, like 

input neurons or other hidden neurons. The other is hidden neuron only passes 

the data to output neuron or other hidden neurons. The hidden neurons can 
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help neural network to understand the information of the input data and form 

the output, but the hidden neurons are not directly connected input data or 

output data. 

The bias neuron can help neural network learn input data faster. The 

function of the bias neuron is similar to the input neuron but the output of the 

bias neuron is a fixed value. Because the output of bias neuron is constant 

value, the bias neuron will not be connected to the previous layer. Figure 1.4 

shows a two-hidden-layers neural network with bias neurons. 

 

Figure 1.4 A two-hidden-layers fully connected neural network with bias neurons 
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The choice of the activation function is important because the activation 

function affects how one formats the input data. The activation function is 

used to establish the scope of the output neuron. Among them, sigmoid 

function, hyperbolic tangent function and Rectified Linear Units (ReLU) are 

the most common used functions. 

The sigmoid activation function is most commonly used in feedforward 

neural networks. As shown in Equation 1.2 and Figure 1.5, using sigmoid 

activation function can ensure that the values stay within a relatively small 

range. The output values of sigmoid function are limited to 0 to 1. 

 

ϕ(𝑥) =
1

1 + ⅇ−𝑥
 (1. 2) 

 

Figure 1.5 sigmoid activation function [32] 
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The hyperbolic tangent function is similar to the sigmoid function. The 

sigmoid function restricts the output value within 0 and 1, and the hyperbolic 

tangent function limits the output value between -1 and +1, as shown in 

Equation 1.3 and Figure 1.6. Hyperbolic tangent activation function has 

better performance than sigmoid activation function in some applications. 

 ϕ(𝑥) = tanh⁡(𝑥) (1. 3) 

 

Figure 1.6 Hyperbolic tangent activation function [32] 

ReLU was proposed by Yee-Whye Teh and Hinton, and it was quickly 

adopted in recent years. Due to the superior performance of ReLU in training 

results, most of the current researches adopt ReLU as an activation function. 

Equation 1.4 shows the ReLU function. 

 ϕ(𝑥) = max⁡(0, 𝑥) (1. 4) 
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Unlike sigmoid function or the hyperbolic tangent function, ReLU does 

not limit values within -1 to 1. In Figure 1.7, it can be seen why ReLU is 

superior to the other activation function in training process. The non-

saturating function makes it easier to train the deep neural network with many 

layers. 

 

Figure 1.7 ReLU activation function [32] 

 

Neural networks are often used for data regression or data classification. 

The main goal of data regression is to predict the target results from input 

data. For example, we want to use a vehicle’s information to calculate how 

many gallons of gasoline the vehicle consumes per mile (miles per gallon, 

MPG).  
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The possible vehicle data includes the weight of the vehicle, the 

horsepower, the number of cylinders and the amount of exhaust gas (hybrid 

power or gasoline), the output data is the speculated MPG value. Then we 

can use the neural network with a lot of vehicle data to train the neural 

network with known vehicle MPG values. In this example, we use a neural 

network to create a non-linear model between the input data and the output 

data. After training process, when we input a vehicle’s information, we can 

predict the vehicle’s MPG through a trained neural network model. 

The goal of classification is using a neural network to assign input data 

to specific categories. For example, suppose we want to identify the flower 

of unknown species (class A, class B, Class C). The input data are petal length, 

petal width, calyx length, and calyx width. Each output neuron represents a 

class. We can use a large amount of species data and known corresponding 

output answers to train the neural network. After establishing a nonlinear 

model between the input data and the output data. If we suppose the output 

answer of the neural network is [H1, H2, H3] = [0.9, 0.2, 0.4]. Then, after the 

softmax function, as shown in Equation 1.5, the output data are converted to 

[Y1, Y2, Y3] = [0.4755,0.2361,0.2884]. The variable 𝑖  in Equation 1.5 

means the number of output neuron. 

 ϕ𝑖 =
ⅇH𝑖

∑ ⅇH𝑖
𝑖

 (1. 5) 

Subsequently, the probability that the classification result is class A is 

0.4755, the probability of class B is 0.2361, and the probability of class C is 

0.2884. This example shows that the flower we want to recognize has the 

highest probability to be class A. 
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In next section, we will discuss the common neural networks, like the 

restricted Boltzmann machine (RBM), deep belief net (DBN) and 

convolutional neural network (CNN), and we will briefly introduce those 

neural networks. 
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1.2 Introduction to RBM, DBN and CNN 

In the past few years, the restricted Boltzmann machine (RBM), are 

applied to many applications, such as image recognition and sound analysis. 

The Boltzmann machine is a neural network architecture that can represent a 

probability distribution. The Boltzmann machine uses the sample distribution 

of the target to learn important features of the target. When using the 

Boltzmann machine, the calculation requirement is very high.  

However, by limiting the network topology, we can simplify learning 

issues and then forms RBMs. A RBM has a visible layer containing visible 

units and a hidden layer containing hidden units, as shown in Figure 1.8. 

 

 

Figure 1.8 The architecture of RBM 
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In RBM, all units are connected to units in other layers, but units in the 

same layer are not connected to each other. The connection in the RBM is 

non-directional, and the value of each unit is binary states. 

From [33], the probability of each hidden unit being 1 can be expressed 

as Equation 1.6, where σ is sigmoid function. Similarly, because RBM is the 

symmetric network with no directionality, the probability of 1 for each visible 

unit can be expressed as Equation 1.7. 

 𝑝(H𝑖 = 1|v) = σ(∑(𝜔𝑖𝑗𝑣𝑗 + 𝑐𝑖)

𝑚

𝑗=1

) (1. 6) 

 𝑝(V𝑗 = 1|h) = σ(∑(𝜔𝑖𝑗ℎ𝑖 + 𝑏𝑗)

𝑛

𝑖=1

) (1. 7) 

From the above, the trained RBM will have the joint probability 

distribution of the (𝑣,ℎ) state. In other words, RBM can be used to observe 

the dependency of input and output. 
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When the aforementioned RBMs are stacked, we can form a deep neural 

network named as deep belief neural network (DBN). The hidden layer of 

RBM #1 is connected to the visible layer of RBM #2 and hidden layer of 

RBM #2 is connected to the visible layer of RBM #3, as shown in Figure 1.9. 

 

Figure 1.9 Greedy layer-wise learning in a deep belief network (DBN) 

 

After training process, DBN established a multi-layer non-linear feature 

detector through the dependency of the multiple layers of the visible units 

and hidden units. In DBN, only the top two layers are non-directional RBM, 

and other layers are directed belief networks, as shown in Figure 1.10. 
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Figure 1.10 Hybrid model of the DBN after greedy layer-wise learning 

The Convolutional Neural Network (CNN) is the most commonly used 

neural network architecture for image recognition today. CNN consists of 

many stacked layers including convolution layers, fully connected layers, 

non-linearity layers, and pooling layers, as shown in Figure 1.11. 
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The convolution layer extracts high-level features from the input data, 

as shown in Figure 1.11(a). The FC layer will convert the input linearly, and 

it is used usually in the final stage of the CNN architecture, as shown in 

Figure 1.11(b). The nonlinear layer is used to increase the fitting ability of a 

neural network. The most commonly used activation function in CNN is 

ReLU, as shown in Figure 1.11(c). The Pooling layer is used to reduce the 

size and computation of the feature map of the next layer and maintain the 

invariability of the data transformation, as shown in Figure 1.11(d).  Figure 

1.12 shows an actual CNN architecture application. In [2], CNN is used to 

recognize the human face. 

 

Figure 1.11 Typical layers in CNN [2] 
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Figure 1.12 A practical CNN model for face alignment [2] 

In addition to the basic network architecture and applications mentioned 

above, there are many new innovative network architectures are proposed to 

solve problems in all aspects. In neural network design, memory bandwidth 

efficiency can be achieved by compressing weights or by binarizing weights, 

the performance of the neural network improves but requires a little sacrifice 

in accuracy [9, 29]. 

In hardware development, many people use FPGAs to implement many 

neural network architectures [2, 13, 24]. FPGAs are used to verify the 

possibility of neural network development in hardware, but the use of FPGA 

development is affected by the on-chip memory size and the off-chip 

bandwidth limitation, both of which are the major factor for achieving high 

performance.  
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1.3 CPU, GPU, FPGA and ASIC 

Implementation of Neural Networks 

A neural network requires huge computing resource. As the number of 

neural network layers increases, the more computing power are demanding. 

From the research of AlexNet, an eight-layer network architecture in 2012, to 

ResNET, which introduced a 150-layer network architecture in 2015, 

computational complexity grows at geometric multiples, and the demand for 

computations increases explosively. 

The most commonly used computing resource today including CPU, 

GPU, FPGA, and ASIC. In the neural network operation, a large number of 

parallel calculations and a large number of floating-point matrix operations 

are required. 

The CPU architecture cannot fully exploit the computational needs of 

neural networks. Therefore, the current mainstream neural network will 

choose GPU, FPGA or ASIC as the main computing resource. 

GPU is a processor specially designed for processing image operations. 

It is suitable for complex mathematical and geometric operations, and it also 

has superior performance in parallel operations. This feature is exactly in line 

with the computational requirements of neural networks, so most of the 

researches, GPU is the preferred choice. 
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FPGA is a platform that can repeatedly be compiled according to the 

needs of the user. FPGA has the characteristics of higher efficiency and lower 

power consumption than GPU.  

However, in order to maintain the flexibility, FPGA have many 

programmable circuits, so the operating frequency is restricted and the cost 

cannot be as low as compared with ASIC. Due to the low power consumption 

and repeat compilation of FPGAs, many researchers still use FPGAs as the 

main operating resource. 

ASIC is a dedicated integrated circuit. In recent years, there are many 

chips designed specifically for a certain architecture, such as TPU, NPU, and 

VPU. From the performance, area, power consumption, ASIC has obvious 

advantages to FPGA or GPU. 

Table 1.1 Comparison of GPU, FPGA and ASIC 

 efficiency flexibility Production cost Power consumption 

GPU middle high middle high 

FPGA low middle high middle 

ASIC high low low low 

Since the current neural network architectures are kept improving, the 

architecture of the neural network keeps changing. ASIC is not as flexible as 

GPU or FPGA in such applications, Table 1.1 summaries the comparison 

between GPU, FPGA, and ASIC. 
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The recently developed ASIC, TPU, from Google is 15 times higher 

performance than traditional GPU, and with low production costs ASIC still 

has sufficient advantages in the development of neural network technology. 

The mainstream of today's neural network computing is the use of GPUs 

with cloud computing. However, with the popularity of neural network-like 

applications, data transmitted through the internet may be stolen. The neural 

network application platform will gradually move toward the edge devices. 

Since training the neural network requires a large number of complex 

calculations, the trend is to train the neural network model at first through the 

cloud computing or GPUs. Then ASIC is used to perform inference process 

based on trained models to achieve personalized applications. 
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1.4 Related Works 

In [34], an Altera Stratix III FPGA with a DDR2 SDRAM SODIMM 

was used to implement the RBM architecture. Figure 1.13 shows the RBM 

modules in [34], the RBM module is distributed to different groups. Each 

RBM contains a set of multiplying arrays, embedded RAMs, and logic 

elements. Weight values and neuron data are distributed in each group, and 

each group handles part of the network. Under the proposed architecture, if 

placement and routing are not effectively implemented, they are susceptible 

to wire delay. The proposed architecture is compared with the neural 

networks runs with Matlab, and there has a significant acceleration both in 

single-precision and double-precision calculations, as shown in Figure 1.14.  

 

Figure 1.13 RBM module detail [34] 
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Figure 1.14 The speedup as compared with Matlab [34] 

In [35], the stochastic number generator generates a set of evenly 

distributed stochastic streams, as shown in Figure 1.15. It uses the stochastic 

number generator to process the input data and weight values, and then 

performs calculations for each neural unit, as shown in Figure 1.16. The 

proposed architecture is implemented in the Opal Kelly Kintex 7350-4lOT 

FPGA to convert different bits of input data and weight values. To compare 

with the input data and weight values represented by 64-bit floating-point 

numbers for classification accuracy, the accuracy results are shown in Figure 

1.17. 

 

Figure 1.15 Stochastic Number Generator [35] 
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Figure 1.16 Architecture for Computing a Single Hidden Unit [35] 

 

Figure 1.17 The classification accuracy on the MNIST testing dataset with different 

computation precision for the network [35] 
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To improve the speed performance of the DBN, [36] uses FPGAs serial 

connections, as shown in Figure 1.18. Through the sharing of resources in 

each FPGA, computational allocation and parallel operations increase the 

overall performance. However, the speed up of the proposed architecture is 

limited by the performance of the FPGA board itself. 

 

Figure 1.18 Block diagram for the quad-FPGA system [36] 

In [37], four contributions are presented to enhance the performance of 

the RBM, Neuron computation unit (NCU) is shown in Figure 1.19, low 

power neuron binarizer (LPBN) is shown in Figure 1.20, user-defined 

connection map (UDCM) is shown in Figure 1.21, and early stopping (ES) 

mechanism.  
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The NCU has two modes of operation, inner products for hidden neuron 

generation from the visible layer, and linear summation for visible neuron 

reconstruction from the hidden layer. LPBN is a switch used to determine the 

RBM learning mode. UDCM can skip unnecessary data access and 

calculations for the entire system to improve performance. The ES 

mechanism will terminate the learning process to reduce the training time. In 

summary, UDCN and ES mechanism can reduce the computation time. NCU 

and LPNB can reduce the cost of hardware implementation. 

 

Figure 1.19 Architecture of the NCU with dual operation modes [37] 
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Figure 1.20 Architecture of the proposed low power neuron binarizer [37] 

 

 
Figure 1.21 Architecture of the proposed UDCM module [37] 
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1.5  Motivation and Application Description 

This thesis uses the MNIST handwritten database as the usage data, and 

uses MNIST to understand the operation of DNN. Learning how to design 

deep network architectures under ASIC flow through the MNIST database 

and a four layers DBN network. It is expected that the experience of this 

research can be applied to the design of other network architectures, with a 

voice-related database for identification. 

With the technological development of speech recognition and natural 

language understanding, research topics related to intelligent speech have 

also attracted attention. In addition, with the aging of society, related 

applications of intelligent speech and hearing aids have also become a serious 

research topic. 

The traditional hearing aids are easily affected by the sound field in 

different environment, hearing aids are not ideal for auditory compensation. 

Therefore, it is necessary to use a neural network to perform deep 

learning on the sound fields in different environment and to acquire and 

identify features of the sound field for a long period to achieve customized 

auditory compensation. 

In this thesis, we will use MNIST handwriting database as the dataset to 

understand the operation of DNN. Learning how to design the deep neural 

network architecture under ASIC flow with MNIST database and the DBN 

with four layers will be used for this application. 

Subsequently, the experience of designing DNN ASIC can be used to 

apply to other neural network architectures such as hearing aids applications. 
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1.6 Neural network and SVM 

In the early image or speech recognition, the gradient vanish formed by 

the neural network architecture caused the depth of the architecture cannot to 

break through the three layers. In addition, the calculation time of neural 

network is quite long and the SVM is better handled than the neural network 

in the shallow network between the two layers, so traditional the image or 

speech recognition was dominated by the SVM architecture. 

Until 2006, Hinton proposes RBM architecture and DBN network 

architecture. Forward and backward conduction of data through RBM to 

capture the characteristics of the data and solve the problem of gradient 

vanish. Then, by stacking RBMs to build a multi-layer deep network 

architecture DBN, machine learning using a neural network-like architecture 

becomes mainstream. 

1.7  Chapter Organization 

The Chapter 1 briefly discusses the components of a neural network and 

the common neural network architecture. The common elements in the neural 

network are also introduced in this chapter. 

The remaining thesis are organized as follows: The Chapter 2 describes 

the hardware architecture of the implementation. The Chapter 3 shows the 

simulation results of real hardware architecture. Finally, in Chapter 4, we will 

make a conclusion and discuss what can be improved in the future works. 
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Chapter 2 Architecture of DBN 

hardware 

2.1 Architecture overview 

In this thesis, the proposed architecture uses the MNIST database. The 

MNIST database is a large database of handwritten digits and a benchmark for 

computer vision applications. MNIST is composed of 0 to 9, total 10 kinds of 

hand-written digits. As shown in Figure 2.1, each digit contains 28×28 gray-scale 

pixels, which are often used to train image processing systems. The MNIST 

database contains 60,000 training digits and 10,000 test digits. 

 

Figure 2.1 Samples from the MNIST [3] 

The proposed architecture focused on the inference phase not the training 
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phase, so the proposed architecture uses the Deep Belief Networks (DBN) toolbox 

provided by Mohammad Ali Keyvenrad [38] to train the DBN network. Figure 2.2 

shows the flow to train the DBN.  

The DBN is trained by the Matlab toolbox. The DBN designed in Matlab is 

trained and fine-tune by the training data. After training in Matlab is done, the 

weight values and bias values of each layer can be extracted and saved as text files. 

The obtained weight values and bias values are stored in the ROMs and integrated 

into the proposed DBN hardware. Finally, the proposed DBN circuit uses the same 

test data to verify the proposed DBN hardware identification capabilities. In 

Matlab simulation, double-precision is used in numerical calculations. This 

method is not possible to be used in low-power hardware implementation. 

Therefore, in design of the proposed architecture, the range of weight values and 

the fractional bit requirements simulated by Matlab is observed to determine the 

bits requirement in hardware design to retain the accuracy. 

In the training process, the architecture mentioned in [40] and [19] were 

considered. In the process of finding out the suitable DBN model by adjusting the 

precision of the input data and the precision of unit calculation. After finding out 

the model, the model will be written in text file from Matlab. Because of the data 

in the model are quite huge, the proposed architecture uses ROM to store the model. 

Finally, through the test data to verify the accuracy of the classification results. 
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In the verification process, the correct results of each layer’s output were 

calculated by Matlab code firstly. Then the test model in hardware design will use 

these results to verify the correctness of DBN hardware. The unit calculation in 

Matlab using the floating-point numbers, but the proposed architecture using 

fixed-point numbers in each unit calculation. There are some errors between 

floating-point calculation results and fixed-point calculation results. However, 

those errors can be suppressed after the sigmoid activation function.  

 

Figure 2.2 Model training and hardware verification 

The activation function (sigmoid) can be implemented using a look-up table 

or a polynomial. The accuracy of the look-up table method and the Taylor series 

are compared using Matlab. As shown in Figure 2.3, the correct rate of the 

classification result of using the floating-point sigmoid function training is about 

96.2%. The correct rate obtained by using the lookup table is 96.1%. Taylor series 

method with a 10 order polynomial shown in Equation 2.1 only achieves a correct 

rate 92.2%. Based on Matlab simulation, the sigmoid function is implemented with 

the look-up table method. 
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Figure 2.3 The comparison of look up table and Taylor series. 
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2.2 Architecture of DBN 

The DBN neural network architecture used in MNIST database handwriting 

digits detecting is 784×256×256×256×10, totally has four layers, as shown in 

Figure 2.4. The input neurons of the first layer are 784 because the image size of 

the handwritten digits in MNIST database is 28×28. The last layer has 10 output 

neurons because the proposed design wants to classify the input image from 0 to 

9. The size of the weighted array is dependent on the number of neurons in the 

network architecture. Because each layer of the DBN is fully connected, the 

weight array sizes in each layer are 784×256, 256×256, 256×256 and 256×10, 

respectively. 

To determine the suitable number of layers in the network architecture and 

the number of units between each layer, in the first, the size of the network 

architecture used by Hinton [40] is used. After setting the network architecture to 

784×500×500×2000×10 and processing the training, the recognition accurate rate 

is 96.37%. Later found in [19], they use the same number of network layers, but 

use a smaller network architecture 784×256×256×256×10. In [19], the correct rate 

of classification is 99.6%. After using the same network size as [19] without other 

adjustments, classification accuracy reached 98.2%. 

Through the above training and model selection process, a better 

classification model can be obtained with a smaller network architecture, and the 

number of units that need to be used is greatly reduced, and the amount of 

computation required inside the neural network is also reduced. Therefore, the 

DBN network architecture is determined as 784×256×256×256×10. 
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Figure 2.4 The architecture of the DBN module 
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2.3 Hardware architecture 

The proposed DBN first verision hardware architecture is shown in 

Figure 2.5. The input are MNIST handwritten digits. Each image has 784 

pixels, the input registers are used to store one image data. Addition, 49 

ROMs are used to store weight values and one ROM is used to store bias 

values. The data in the ROMs are stored sequentially, as shown in Figure 2.6. 

The State machine will control the different layer calculation by four Layer 

valid signals and one Visible valid signal and uses one Out valid signal to 

control when the Unit REG sends the max unit to MAX_REG. The sigmoid 

activation function is implemented with lookup a table with 1024 entries. 

 

Figure 2.5 Overall block diagram of the first version architecture 
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Figure 2.6 The address arrangement in each ROM in the first version architecture 

The proposed architecture uses Input REG to store one image data. The 

state machine sends the read data addresses to 32 Weight ROMs and one Bias 

ROM and then stores the read out data in Weight REG and Bias REG before 

MAC operations. The Input REG, Weight REG, and Bias REG can be directly 

accessed by the Processing unit. When the processing unit finishes the MAC 

computing, the summation result is sent to the Unit REG. The Unit REG 

sends the data to the Sigmoid lookup table for computing activation function 

output. The activation function output data are stored in the Sigmoid unit 

REG and will be the input data for the next layer. After the calculation of the 

current layer is completed, the Processing unit will start to calculate the next 

layer. When the final layer computation is finished, the State machine sends 

a signal to Unit REG to send the max unit of the last layer to the MAX_REG 
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for comparison. The MAX_REG search the maximum results and sends out 

corresponding digit as the classification output. 

In the proposed architecture, the sigmoid function is implemented with 

a segmented look-up table, as shown in Figure 2.7. By dividing the sigmoid 

function into different intervals, the index value of each interval contains a 4-

bit integer and a different number of decimal bits according to the interval. 

When the x value is 0 to 1 or the x value is 0 to -1, the index value consists 

of a 4-bit integer and a 6-bit decimal number. When the x value is 1 to 2 or 

the x value is -1 to -2, the index value consists of a 4-bit integer and a 5-bit 

decimal number. When the x value is 2 to 3 or the x value is -2 to -3, the index 

value consists of a 4-bit integer and a 4-bit decimal number. When the x value 

is 3 to 4 or the x value is -3 to -4, the index value consists of a 4-bit integer 

and a 3-bit decimal number. When the x value is 4 to 5 or the x value is -4 to 

-5, the index value consists of a 4-bit integer and a 2-bit decimal number. 

When the x value is greater than 5 or the x value is less than -5, the index 

value consists of a 4-bit integer and a 1-bit decimal number. Then, the input 

will be converted by the above mentioned into a fixed-point number with 4-

bit integer part and 12-bit decimal part. 
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Figure 2.7 The proposed segmented sigmoid function look-up table 
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The proposed architecture action is divided into five parts, as shown in 

Figure 2.8. The proposed architecture inputs the image through the 

Visible_valid signal and calculates the different layer by the different 

Layer_valid signal. Finally, the output is controlled by the Out_valid signal. 

The next Visible_valid signal rises and receives the next picture. 

 

Figure 2.8 Timing diagram of the first version architecture 

Figure 2.9 shows the details timing of the input data. The input data are 

stored in Input REG via Visible_valid. Figure 2.10 shows the first layer 

weight read in. When Layer1_valid is rises, Layer1_address will start sending 

addresses to 32 ROMs. After Weight REG obtain weight value by setup1 

signal, the first layer units start to calculate. 

 

Figure 2.9 Timing diagram of input image in the first version architecture 
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Figure 2.10 Timing diagram of first layer weight values in the first version 

architecture 

Figure 2.11 shows the second layer weight read in. When Layer2_valid 

rises, Layer2_address will start to send addresses to 8 ROMs. After Weight 

REG obtain weight values by setup2 signal, the second layer units start to 

compute. 

 

Figure 2.11 Timing diagram of second layer weight values in the first version 

architecture 

Similarly, when Layer3_valid rises, as shown in Figure 2.12, 

Layer3_address will start to send addresses to 8 ROMs. When Weight REG 

obtains weight values by setup3 signal, the third layer units start to compute. 

 

Figure 2.12 Timing diagram of third layer weight values in the first version 

architecture 
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When Layer4_valid rises, as shown in Figure 2.13, Layer4_address will 

start to send addresses to a ROMs. After Weight REG obtains weight values 

by setup4 signal, the fourth layer units start to calculate. When all calculations 

are completed, Out_valid will rise and the fourth layer units send results to 

MAX_REG, as shown in Figure 2.14. The next Visible_valid rise to input the 

next image. 

 

Figure 2.13 Timing diagram of fourth layer weight values in the first version 

architecture 

 

Figure 2.14 Timing diagram of output result and input next image in the first version 

architecture 

From the architecture, the critical path of this architecture will appear in 

the multiplication and addition operations in each layer. In the first layer, 784 

MACs and one adder tree are performed in one cycle, and critical path the 

delay is quite long. There are also 256 MAC and one adder tree delay in other 

layer calculations. 
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There are many registers and MAC units being used in the above 

architecture. From experience of the first version, the new architecture is 

proposed, as shown in Figure 2.15. Separating each layer in the architecture, 

each layer also separates the access to the weight values. The first layer only 

accesses the ROM_W1_1 to ROM_W1_32, the second layer only accesses 

the ROM_W2_1 to ROM_W2_8, the third layer only accesses the 

ROM_W3_1 to ROM_W3_8, and the fourth layer only accesses the 

ROM_W4_1. Because of the ROM complier has the smallest memory size 

limitative, all bias values are store in the same ROM. Each layer will access 

the bias values from the same ROM. The weight and bias values address 

arrangement in each ROM is shown in Figure 2.16. With such an architecture, 

both redundant registers are removed and the used MAC units are reduced 

for circuit area consideration. 

 

Figure 2.15 Overall block diagram of the second version architecture 
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Figure 2.16 The address arrangement in each ROM in the second version architecture 

The detail block diagram of the first layer is shown in Figure 2.17. State 

machine controls data input into Input REG. Then, state machine sends the 

first layer to use the weight address and bias address to ROM _W1_1 to 

ROM_W1_32 and ROM_Bias. Then, ROM _W1_1 to ROM_W1_32 and the 

ROM_Bias return the corresponding data to the MAC unit and the MAC unit 

calculates 32 multiplications in parallel. Unit REG stores and returns data to 

MAC for accumulation. When the MAC operatives of 256 units in the first 

layer is completed, the state machine sends Out_valid signal to control the 

Unit REG sends data to the L1_sigmoid_table for activation function 

computation and output the first layer’s output to the L2. 
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Figure 2.17 First layer block diagram of the second version architecture 

The detail block diagram of the second layer is shown in Figure 2.18. 

State machine controls data input into Input REG. Then, state machine sends 

weight address and bias address to ROM _W2_1 to ROM_W2_8 and the 

ROM_Bias. Then, ROM _W2_1 to ROM_W2_8 and the ROM_Bias return 

the corresponding data to the MAC unit and the MAC unit calculates eight 

multiplications in parallel. Unit REG stores and returns data to MAC for 

accumulation. When the MAC operatives of 256 units in the second layer is 

completed, the state machine sends Out_valid to control the Unit REG sends 

data to the L2_sigmoid_table for activation function computation and output 

the second layer’s output to the L3. 
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Figure 2.18 Second layer block diagram of the second version architecture 

The detail block diagram of the third layer is shown in Figure 2.19. State 

machine controls data input into Input REG. Then, state machine sends 

weight address and bias address to ROM _W3_1 to ROM_W3_8 and the 

ROM_Bias. Then, ROM _W3_1 to ROM_W3_8 and the ROM_Bias return 

the corresponding data to the MAC unit and the MAC unit calculates eight 

multiplications in parallel. Unit REG stores and returns data to MAC for 

accumulation. When the MAC operatives of 256 units in the third layer is 

completed, the state machine sends Out_valid to control the Unit REG sends 

data to the L3_sigmoid_table for activation function computation and output 

the third layer’s output to the L4. 
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Figure 2.19 Third layer block diagram of the second version architecture 

The detail block diagram of the fourth layer is shown in Figure 2.20. 

State machine controls data input into Input REG. Then, state machine sends 

the fourth layer to use the weight address and bias address to the ROM _W4 

and the ROM_Bias. The ROM _W4 and the ROM_Bias return the 

corresponding data to the MAC of the fourth layer and calculate one unit at a 

time. Unit REG store and return data to MAC for accumulation. When the 

fourth layer of 10 units is completed, the state machine sends Out_valid to 

send the Unit REG data to the MAX_REG to select the largest unit and output. 

 
Figure 2.20 Fourth layer block diagram of the second version architecture 

In the second version architecture, the number of MAC units and 
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registers are reduced. Therefore, the main problem in the first version, the 

circuit area cost, and the critical path of design can be further improved. 

The timing diagram of the second version is shown in Figure 2.21. 

Because the last layer in the second version integrates the maximum value 

searching unit, the second version uses four stages to calculate the output. 

As shown in Figure 2.22, the input of the first layer input into 

Input_REG sequentially when the In_valid signal rises. Subsequently, MAC 

unit calculates the units of different parts through the switching of STATE. 

Each part has 32 units in calculated simultaneously. The first layer calculates 

256 units through eight times operations. Unit_REG adds bias value when 

STATE is 8. Then, Unit_REG sends results to the L1_sigmoid_table with 

Out_valid. Finally, the data are sent to the next layer after L1_sigmoid_table. 

In the Equation 2.2 to 2.4, the v represents the Input_REG, the w represents 

the return value from ROM_W1_1 to ROM_W1_32, the 𝑢 represents the 

Unit_REG. Take the first two states in the first layer for example, Equation 

2.2 and Equation 2.3 show the unit to be calculated in the state 0 and state 1, 

respectively. Equation 2.4 shows all units are added with bias values 
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Figure 2.21 Timing diagram of the second version architecture 

 

Figure 2.22 Timing diagram of the first layer in the second version architecture 

 𝑢[𝑗] =∑ 𝑣[𝑖] × 𝑤[𝑖] + 𝑢[𝑗], 𝑗 = 0, 8, 16,… , 248⁡ 𝑎𝑡⁡ 𝑆𝑇𝐴𝑇𝐸 = 0
783

𝑖=0
 (2.2) 

 𝑢[𝑗] = ∑ 𝑣[𝑖] × 𝑤[𝑖 + 784] + 𝑢[𝑗], 𝑗 = 1, 9, 17,… , 249⁡ 𝑎𝑡⁡ 𝑆𝑇𝐴𝑇𝐸 = 1
783

𝑖=0
 (2.3) 

 𝑢[𝑖] =∑ 𝑏[𝑖] + 𝑢[𝑖]⁡ 𝑎𝑡⁡ 𝑆𝑇𝐴𝑇𝐸 = 8
255

𝑖=0
 (2.4) 
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As shown in Figure 2.23, the inputs of the second layer input into 

Input_REG sequentially when the In_valid signal rises. Subsequently, MAC 

unit calculates the units of different parts through the switching of STATE. 

Each part has eight units in calculated simultaneously. The second layer 

calculate 256 units through 32 times operations. Unit_REG adds bias value 

when STATE is 32. Then, Unit_REG sends results to the L2_sigmoid_table 

with Out_valid. Finally, the data are sent to the next layer after 

L2_sigmoid_table. Take the first two states in the second layer for example, 

Equation 2.5 and Equation 2.6 show the units to be calculated in the state 0 

and state 1, respectively. Equation 2.7 shows all units are added with bias 

values. 

 

Figure 2.23 Timing diagram of the second layer in the second version architecture 

 𝑢[𝑗] = ∑ 𝑣[𝑖] × 𝑤[𝑖] + 𝑢[𝑗], 𝑗 = 0, 32, 64,… , 224⁡ 𝑎𝑡⁡ 𝑆𝑇𝐴𝑇𝐸 = 0
255

𝑖=0
 (2.5) 

 𝑢[𝑗] =∑ 𝑣[𝑖] × 𝑤[𝑖 + 256] + 𝑢[𝑗], 𝑗 = 1, 33, 65,… , 225⁡ 𝑎𝑡⁡ 𝑆𝑇𝐴𝑇𝐸 = 1
255

𝑖=0
 (2.6) 

 𝑢[𝑖] = ∑ 𝑏[𝑖] + 𝑢[𝑖]⁡ 𝑎𝑡⁡ 𝑆𝑇𝐴𝑇𝐸 = 32
255

𝑖=0
 (2.7) 
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As shown in Figure 2.24, the inputs of the third layer input into 

Input_REG sequentially when the In_valid signal rises. Subsequently, MAC 

unit calculates the units of different parts through the switching of STATE. 

Each part has eight units in calculated simultaneously. The third layer 

calculate 256 units through 32 times operations. Unit_REG adds bias value 

when STATE is 32. Then, Unit_REG sends results to the L3_sigmoid_table 

with Out_valid. Finally, the data are sent to the next layer after 

L3_sigmoid_table. Take the first two states in the third layer for example, 

Equation 2.8 and Equation 2.9 show the units to be calculated in the state 1 

and state 0, respectively. Equation 2.10 shows all units are added with bias 

values. 

 

Figure 2.24 Timing diagram of the third layer in the second version architecture 

 𝑢[𝑗] = ∑ 𝑣[𝑖] × 𝑤[𝑖] + 𝑢[𝑗], 𝑗 = 0, 32, 64,… , 224⁡ 𝑎𝑡⁡ 𝑆𝑇𝐴𝑇𝐸 = 0
255

𝑖=0
 (2.8) 

 𝑢[𝑗] =∑ 𝑣[𝑖] × 𝑤[𝑖 + 256] + 𝑢[𝑗], 𝑗 = 1, 33, 65,… , 225⁡ 𝑎𝑡⁡ 𝑆𝑇𝐴𝑇𝐸 = 1
255

𝑖=0
 (2.9) 

 𝑢[𝑖] = ∑ 𝑏[𝑖] + 𝑢[𝑖]⁡ 𝑎𝑡⁡ 𝑆𝑇𝐴𝑇𝐸 = 32
255

𝑖=0
 (2.10) 
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In the layer fourth timing diagram, as shown in Figure 2.25, the inputs 

of the fourth layer input into Input_REG sequentially when the In_valid 

signal rises. Subsequently, MAC unit calculates the units of different parts 

through the switching of STATE. Each part has one unit in calculated. The 

fourth layer calculate 10 units through 10 times operations. Unit_REG adds 

bias value when STATE is 10. Then, searching the max unit in Unit_REG 

sent to MAX_REG. After finding out the max unit, the result sent out from 

MAX_REG after the Out_valid is rises. Take the first two states in the fourth 

layer for example, Equation 2.11 and Equation 2.12 show the units to be 

calculated in the state 0 and state 1, respectively. Equation 2.13 shows all 

units are added with bias values. 

 

Figure 2.25 Timing diagram of the fourth layer in the second version architecture 

 𝑢[𝑗] = ∑ 𝑣[𝑖] × 𝑤[𝑖] + 𝑢[𝑗], 𝑗 = 0⁡ 𝑎𝑡⁡ 𝑆𝑇𝐴𝑇𝐸 = 0
255

𝑖=0
 (2.11) 

 𝑢[𝑗] =∑ 𝑣[𝑖] × 𝑤[𝑖 + 256] + 𝑢[𝑗], 𝑗 = 1⁡ 𝑎𝑡⁡ 𝑆𝑇𝐴𝑇𝐸 = 1
255

𝑖=0
 (2.12) 

 𝑢[𝑖] = ∑ 𝑏[𝑖] + 𝑢[𝑖]⁡ 𝑎𝑡⁡ 𝑆𝑇𝐴𝑇𝐸 = 10
255

𝑖=0
 (2.13) 
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2.4 Summary 

First, through the simulation in Matlab toolbox, the suitable model to implement the 

circuit can be found. Then, comparing the complexity of the look-up table and Taylor 

series, the sigmoid activate function is implemented with a look-up table. Finally, two 

architectures of DBN are bulit. In the first version, the preliminary architecture was 

proposed. When the MAC units are calculated, the critical path causes the bottleneck 

in the circuit speed. The second version not only improves the bottleneck of circuit 

operating speed but also reduces the cost of circuit area. 
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Chapter 3 Experimental Result 

3.1Waveform analysis 

Both DBN hardware circuit are implement in TSMC 90nm CMOS 

process. Figure 3.1 is the RTL waveform simulation of the first version. As 

mentioned in section 2.3, the first version architecture divides the operation 

into five parts. The parallel multipliers used in calculations within the same 

layer reduce the overall calculation time. In the first layer, 32 ROMs can also 

read data simultaneously, and eight ROMs in the second and third layers can 

read data simultaneously. The proposed first version architecture can be 32 

times faster than a circuit that only has one multiplier, and 8 times faster in 

the second and third layers computation. 

 

Figure 3.1 The RTL simulation waveform in the first version architecture  

Figure 3.2 and Figure 3.3 show the simulation operation of the first layer. 

The input value uses the visible_vlaid signal to store data in Input_REG. At 

the same time, the Layer1_valid risses and the setup1 signal in Figure 3.3 will 

be used to start storing the weight values to the registers Weight_REG_1 to 

Weight_REG_32. First, each unit multiplied by the corresponding weight 

value. Next, each unit add up the corresponding bias value and store in the 

Unit_REG. Then, the results in the Unit_REG send to the sigmoid look-up 

table to convert. Finally, the result store into the Sigmoid_unit_REG as the 

input of the next layer. 
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Figure 3.2 The simulation operation of input image in the first version architecture 

 

Figure 3.3 The simulation operation of the first layer in the first version architecture 

Figure 3.4 shows the simulation operation of the second layer, using 

Layer2_valid as the signal and using setup2 signal to store the weight value 

of the second layer to Weight_REG_33 to Weight_REG_40. The previous 

layer stores the result in Sigmoid_unit_REG as the input of the second layer 

of input. First, each unit multiplied by the corresponding weight value. Next, 

each unit add up the corresponding bias value and store in the Unit_REG. 

Then, the results in the Unit_REG send to the sigmoid look-up table to 

convert. Finally, the result store into the Sigmoid_unit_REG as the input of 

the next layer. 

 

Figure 3.4 The simulation operation of the second layer in the first version 

architecture 

Figure 3.5 shows the simulation operation of the third layer. The 

operations of the third layer are similar to the second layer, using 

Layer3_valid as the signal and using setup3 signal to store the weight value 

of the third layer to Weight_REG_41to Weight_REG_48. The previous layer 
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stores the result in Sigmoid_unit_REG as the input of the third layer. First, 

each unit multiplied by the corresponding weight value. Next, each unit add 

up the corresponding bias value and store in the Unit_REG. Then, the results 

in the Unit_REG send to the sigmoid look-up table to convert. Finally, the 

result store into the Sigmoid_unit_REG as the input of the next layer. 

 

Figure 3.5 The simulation operation of the third layer in the first version architecture 

Figure 3.6 shows the simulation operation of the fourth layer. The fourth 

layer uses the previous layer results stores in Sigmoid_unit_REG as input. 

Using Layer4_valid as the signal and using setup4 signal to store the weight 

value of the fourth layer to Weight_REG_49. First, each unit multiplied by 

the corresponding weight value. Next, each unit add up the corresponding 

bias value and store in the Unit_REG. When all the units in the fourth layer 

have been calculated, the result of the fourth layer in the Unit_REG will be 

sent to MAX to select the largest unit output, as shown in Figure 3.7. 

 

Figure 3.6 The simulation operation of the fourth layer in the first version architecture 

 

Figure 3.7 The simulation operation of MAX output result in the first version 

architecture 
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The first version architecture using lot of two-dimensional array to store 

the data which cause the time of synthesis is quit long. In addition, the first 

version architecture occupies lot of resources when the first version 

architecture start synthesis and then cause the synthesis fail. 

The waveform simulation in the second version architecture is shown in 

Figure 3.8(a) to Figure 3.8(d). Four layers are calculating in sequence. The 

result data of first layer are the input data of second layer. The result data of 

second layer are the input data of third layer. The result data of third layer are 

the input data of fourth layer. The calculates switching according to the 

STATE signal in each layer to calculate different partial units. The maximum 

unit search is performed in the fourth layer. The IN_VALID signal in Figure 

3.8(a) to Figure 3.8(d) are the In_valid signal in Figure 2.22 to Figure 2.25. 

The OUT_VALID signal in Figure 3.8(a) to Figure 3.8(d) are the Out_valid 

signal in Figure 2.22 to Figure 2.25. The register V in Figure 3.8(a) to Figure 

3.8(d) are the Input_REG in Figure 2.22 to Figure 2.25. L1_all_unit, 

L2_all_unit, L3_all_unit and L4_all_unit are the Unit_REG in Figure 2.22 to 

Figure 2.25. The register OUT_DATA in the fourth layer is the MAX_REG 

of Figure 2.25. 

 

Figure 3.8(a) The first layer RTL simulation waveform in the second version 

architecture 

 

Figure 3.8(b) The second layer RTL simulation waveform in the second version 

architecture 

  



 

56 
 

 

Figure 3.8(c) The third layer RTL simulation waveform in the second version 

architecture 

 

Figure 3.8(d) The fourth layer RTL simulation waveform in the second version 

architecture 

Figure 3.9 shows the calculation of the first layer. Using IN_VALID to 

read in and store the data into the register V. Switching different unit 

calculations through the STATE signal. 32 units are calculated in each state. 

When STATE signal is 7, 256 units in the first layer are complete calculation. 

When the STATE signal is 8, the results in the L1_all_unit are added with the 

bias value. Next, using OUT_VALID signal sent to the L1_sigmoid_table 

conversion. Finally, output the result from the first layer. 

 

Figure 3.9 The simulation operation of the first layer in the second version 

architecture 

Figure 3.10 shows the calculation of the second layer. Using IN_VALID 

to read in and store the data into the register V. Switching different unit 

calculations through the STATE signal. Eight units are calculated in each state. 

When STATE signal is 31, 256 units in the second layer are complete 

calculation. When the STATE signal is 32, the results in the L2_all_unit are 

added with the bias value. Next, using OUT_VALID signal sent to the 

L2_sigmoid_table conversion. Finally, output the result from the second layer. 
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Figure 3.10 The simulation operation of the second layer in the second version 

architecture 

Figure 3.11 shows the calculation of the third layer. Using IN_VALID 

to read in and store the data into the register V. Switching different unit 

calculations through the STATE signal. Eight units are calculated in each state. 

When STATE signal is 31, 256 units in the third layer are complete 

calculation. When the STATE signal is 32, the results in the L3_all_unit are 

added with the bias value. Next, using OUT_VALID signal sent to the 

L3_sigmoid_table conversion. Finally, output the result from the third layer. 

 

Figure 3.11 The simulation operation of the third layer in the second version 

architecture 

Figure 3.12 shows the calculation of the fourth layer. Using IN_VALID 

to read in and store the data into the register V. Switching different unit 

calculations through the STATE signal. One unit is calculated in each state. 

When STATE signal is 9, Ten units in the fourth layer are complete 

calculation. When the STATE signal is 10, the result in the L4_all_unit is 

added with the bias value. Next, using OUT_VALID signal sent to the 

OUT_DATA to search the max unit. Finally, output the result from the fourth 

layer. 
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Figure 3.12 The simulation operation of the fourth layer in the second version 

architecture 
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3.2 Fixed-point number calculation 

accuracy analysis 

The DBN model trained in Matlab and the test data are formatted as 27-

bit, 16-bit, 8-bit and 4-bit fixed-point numbers. Different bits representations 

are compared their classification accuracy with double-precision Matlab 

simulations. As shown, in Figure 3.13 the proposed architecture can still 

maintain accuracy using 16-bit data processing as compared to double-

precision floating point calculations. Under the 8-bit condition, only 2% 

accuracy loos between the double-precision can be found, and in 4-bit 

conditions, it completely loses the ability perform to classification. From this 

experiment, the 16-bit and 8-bit representations can be used in the proposed 

architecture, and still have sufficient accuracy for MNIST database 

application. 

 

Figure 3.13 The classification accuracy vs. data bits 
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3.3 Summary 

The simulation circuit information of the proposed second version 

architecture is summarized in Table 3.1, the power of the DBN circuit from 

the best case to the worst case are 418mW, 353mW, and 311mW, respectively. 

The gate count of the proposed design circuit is 1,160k. The maximum clock 

rate of the DBN circuit is 73.6MHz. The precision of the proposed 

architecture is 16-bit fixed-pointed. The proposed architecture used 334k 

MAC operation. The efficiency of the simulation circuit from best case to 

worst case are 1.46411GOPs/W, 1.7337GOPs/W, and 1.9678GOPs/W, 

respectively. Table 3.2 illustrates the comparison between the proposed 

circuit and the existing systems 

Table 3.1 The simulation circuit information 

 FF TT SS 

Power(mW) 418 353 311 

Area(gate count) 1160k 

Clock rate(MHz) 73.6 

Cycle 40.26M 

Efficiency(GOPs/W) 1.46411 1.7337 1.9678 

Architecture precision 16-bit fixed-point 

Number of MAC 

operation 
334k 

Accuracy 97.3 
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Table 3.2 Performance comparisons 

 This work [12] [16] [19] 

Technology 90nm 65nm 40nm 40nm 

Design target 
Fully-connected 

layer 

Convolutional 

layer 

Fully-connected 

layer & FFT 

Fully-connected 

layer 

Power(mW) 353 278 0.288 125* 

Clock rate(MHz) 73.6 100-250 1.9-19.3 250 

Efficiency(GOPs/W) 1.7337 9.6** 374 N/A 

Area(gate count) 1160k 1176k N/A N/A 

Area(mm2) N/A 16 7.1 3.145 

Architecture precision 
16-bit 

fixed-point 

16-bit 

fixed-point 

16-bit 

fixed-point 

16-bit 

fixed-point 

Accuracy 97.3% N/A N/A 99.6% 

*estimate. **Calculated based on reported GOPs and power 
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Chapter 4 Conclusion and Future 

works 

4.1 Conclusion 

In this thesis, we implemented two versions of hardware accelerators for 

the DBN network and the impact of the recognition result due to the accuracy 

of the input data is discussed. The clock speed bottleneck of the first version 

architecture is the delay in MAC operations with the adder tree. However, the 

computing elements can be shared in different layers of calculations. 

Through the experience in the first version architecture, the second 

version architecture is implemented, and the adder tree in the first version 

architecture is reduced. Also, the computational delay generated by the adder 

tree is reduced. Separating the shared MACs in each layer will increase the 

hardware cost. However, simplifying the architecture from the first version 

to the second version, the performance can be improved. 

In the DBN model extraction, we use the toolbox in [38] to simulate the 

operation of the DBN network. First, the toolbox is used to find out the 

network size and unit number in each layer. Next, the DBN hardware circuit 

is implement in TSMC 90nm CMOS process after the DBN model 

determined. 
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In the simulation experiment, different precision on the extracted models 

are tested, and then, the minimum precision required for weight and bias can 

be obtained. At present, the proposed architecture had large power 

consumption. To reduce the energy consumption while maintaining the 

accuracy of identification, it will be necessary to use an approximate 

multiplier to reduce the overall computational complexity and then reduces 

the energy consumption. 
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4.2 Future works 

In the proposed circuit architecture, there are some idle circuits waiting 

during the operation in different layer. Therefore, pipelining the circuit can 

be the first step to improve the throughput in the proposed circuit architecture. 

In addition, the research trend of the current edge artificial intelligence chip 

can be adopted in the next step. 

From last year's ISSCC 2017 related papers for DNN ASIC development. 

It can be seen that the research trend of the current edge artificial intelligence 

chip is to reduce the access time of the external memory, dynamically adjusts 

operation accuracy, reduces the power consumption per MAC operation, and 

uses voltage scaling technology to reduce power consumption in different 

mode.  

The main reason of reducing the access times of the external memory is 

that the I/O Pad will consume large power consumption when accessing data. 

From the power analysis of [29], the external memory is the main source of 

power consumption, as shown in Figure 4.1. The amount of external data 

access times can be reduced by compressing the model, and then power 

consumption is reduced. 
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Figure 4.1 Required memory and energy with different image size [29] 

For dynamically adjusting the accuracy of MAC operations, as 

discussed in [2, 19, 21, 23], the bit number of weight and bias in each layer 

not need to be the same, as illustrated in Figure 4.2. In [19], when the activity 

value is too small, the activity value will be set to zero and the computation 

can be reduced. Compared with general multipliers and the approximate 

multiplier in [39], the average error in computation is only 0.37% in 

multiplication. Using an approximate multiplier to replace a normal 

multiplier can reduce the critical path of the multiplier. Moreover, using the 

technology of reducing the operation voltage can further improve the problem 

of power consumption.  

From the above trends, development and implementation in the future 

will be improved in these major directions. 
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Figure 4.2 Minimum precision requirements in different layers [19] 
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