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Abstract

The deep belief network (DBN) is implemented in this thesis. First, the MNIST
database is used as a functional verification of the network architecture. Later, the
relevant database applications for voice identification will be applied. In the training
model extraction and hardware verification, the Matlab simulation is performed to
determine the appropriate network size and layers which can achieve satisfactory
identification results. Subsequently, the trained model is stored in ROMs and integrated
into the proposed hardware architecture. Then the test data of the MNIST database are
used to verify the accuracy of the DBN hardware circuit.

With the development of artificial intelligence, researches on speech recognition
and deep learning become increasingly popular. With the aging society, the hearing aids
also attracting attention. Traditional hearing aids are susceptible to environmental
sounds. In addition, the hearing aids need to be wore for a long time, and the design of
the assistive devices needs to be light and low-power consumption. Therefore, deep
learning is used for the environmental sound field in the hearing aids to improve the
resistance to the environmental sound field, and suitable hearing compensation can be
applied. Using application specific IC (ASIC) to implement audio equipment for
hearing aids can achieve lightweight and low-power consumption, and is a trend in the
design of hearing aids.

To future, the relevant database applications for voice identification will be applied.
Furthermore, reducing the access times of the external memory, dynamically adjust the
accuracy of calculations and reducing the number of MACs to reduce the power

consumption of the overall operation will be gradually studied in the future works.

Keywords: deep belief network (DBN)
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Chapter 1 Introduction

1.1Introduction to Neural Network

The neural network is a technology had been discussed for a long time. The
neural network can be traced back to 1940. In the other word, the neural network
is a quite historical research. From 1940, the neural network has been concerned
by a large number of research scholars.

McCulloch, W., and Pitts first published a concept of neural network in 1943.
However, the weight arrays must be established manually, the neural network
cannot be proposed an effective training method. The technology of neural
network only is discussed at that time.

Frank Reosenblatt proposed a much-need training algorithm called
backpropagation. This is an algorithm that can automatically build a neural
network weight array. However, this algorithm is quite slow. With increasing
number of layers, backpropagation algorithm will be slower. Though
backpropagation algorithm helped the development of the neural network in early
1980 and 1990, in the multilayer neural network, it still cannot have proposed an
effective training method. Neural network again becomes a discussed technology.

In 2006, Hinton proposed a new method to improve the training of neural
network. High-speed graphics processing units (GPU) speeds up the multilayer
neural network training. This new method makes today’s researchers feel the
benefits of deep neural networks and use deep neural networks to help people in

many applications.



A neural network architecture has at least one input layer and one output layer,
as shown in Figure 1.1. When a pattern inputs to the neural network, the neural
network will synchronously output a set of a pattern. The input layer and the output

layer through the hidden layer to calculation a set of a pattern.

[Input Pattern]—»| Input Hidden Output |, [Output Pattern]
Layer Layers Layer

Figure 1.1 General neural network architecture

The neural network inside 1s composed of independent and interconnected
neurons. As shown in Figure 1.2, each.neuron is calculated by inputs and weights,
then outputs the value after an activation function. The input of a neuron may be
another neuron’s output or an external input of the neural network. These inputs
are usually expressed by floating-point or binary values. The binary value will use
1 and 0 to represent true and false, in some applications, +1 and -1 are used to

represent true and false.



Activation Function ——-v’\ Output

a neuron to

(1.1)

Where the 1 the input value and

weight val e activation function.

The variable i is the number of the input and weight, the number of both

variables must be same.



The fully connected network can be seen in the various neural networks,
as shown in Figure 1.3. The name of the fully connected network is named
based on the number of hidden layers. The fully connected network shown in
Figure 1.3 is a two-hidden-layer fully connected network. The hidden layer
of the general neural network is between zero and two layers. In deep neural

network, it will have more than two hidden layers.

Input Layer Hidden Layer #1  Hidden Layer #2 QOutput Layer

—_——

Figure 1.3 A two-hidden-layer fully connected network

Neurons are basic components in the neural network. The common
neurons are the input neurons, output neurons, hidden neurons and bias
neurons. As mentioned before, the input neuron will pass data to the next
neuron of the next layer. The output neuron will accept the data from a neuron
in the last layer. There are two important characteristics of the hidden node,
one is hidden neuron only accept data from other neurons as input data, like
input neurons or other hidden neurons. The other is hidden neuron only passes

the data to output neuron or other hidden neurons. The hidden neurons can
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help neural network to understand the information of the input data and form
the output, but the hidden neurons are not directly connected input data or
output data.

The bias neuron can help neural network learn input data faster. The
function of the bias neuron is similar to the input neuron but the output of the
bias neuron is a fixed value. Because the output of bias neuron is constant
value, the bias neuron will not be connected to the previous layer. Figure 1.4

shows a two-hidden-layers neural network with bias neurons.

Input Layer Hidden Layer #1  Hidden Layer #2 Output Layer

—

Figure 1.4 A two-hidden-layers fully connected neural network with bias neurons



The choice of the activation function is important because the activation
function affects how one formats the input data. The activation function is
used to establish the scope of the output neuron. Among them, sigmoid
function, hyperbolic tangent function and Rectified Linear Units (ReLU) are
the most common used functions.

The sigmoid activation function is most commonly used in feedforward
neural networks. As shown in Equation 1.2 and Figure 1.5, using sigmoid
activation function can ensure that the values stay within a relatively small

range. The output values of sigmoid function are limited to 0 to 1.
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Figure 1.5 sigmoid activation function [32]



The hyperbolic tangent function is similar to the sigmoid function. The
sigmoid function restricts the output value within 0 and 1, and the hyperbolic
tangent function limits the output value between -1 and +1, as shown in
Equation 1.3 and Figure 1.6. Hyperbolic tangent activation function has

better performance than sigmoid activation function in some applications.

¢ (x) = tanh(x) (1.3)

1.0

0.5

0.0

-0.5

-1.0

Figure 1.6 Hyperbolic tangent activation function [32]
ReLU was proposed by Yee-Whye Teh and Hinton, and it was quickly
adopted in recent years. Due to the superior performance of ReLU in training
results, most of the current researches adopt ReLLU as an activation function.

Equation 1.4 shows the ReLU function.

¢ (x) = max(0, x) (1.4)



Unlike sigmoid function or the hyperbolic tangent function, ReLU does
not limit values within -1 to 1. In Figure 1.7, it can be seen why ReLU is
superior to the other activation function in training process. The non-
saturating function makes it easier to train the deep neural network with many

layers.

-1 0 1 2 3 4

X

Figure 1.7 ReLU activation function [32]

Neural networks are often used for data regression or data classification.
The main goal of data regression is to predict the target results from input
data. For example, we want to use a vehicle’s information to calculate how
many gallons of gasoline the vehicle consumes per mile (miles per gallon,

MPG).



The possible vehicle data includes the weight of the vehicle, the
horsepower, the number of cylinders and the amount of exhaust gas (hybrid
power or gasoline), the output data is the speculated MPG value. Then we
can use the neural network with a lot of vehicle data to train the neural
network with known vehicle MPG values. In this example, we use a neural
network to create a non-linear model between the input data and the output
data. After training process, when we input a vehicle’s information, we can
predict the vehicle’s MPG through a trained neural network model.

The goal of classification is using a neural network to assign input data
to specific categories. For example, suppose we want to identify the flower
of unknown species (class A, class B, Class C). The input data are petal length,
petal width, calyx length, and calyx width. Each output neuron represents a
class. We can use a large amount of species data and known corresponding
output answers to train the neural network. After establishing a nonlinear
model between the input data and the output data. If we suppose the output
answer of the neural network is [H1, H2, H3] =[0.9, 0.2, 0.4]. Then, after the
softmax function, as shown in Equation 1.5, the output data are converted to
[Y1, Y2, Y3] = [0.4755,0.2361,0.2884]. The variable i in Equation 1.5
means the number of output neuron.

efli
$; = Y, eHi (-3

Subsequently, the probability that the classification result is class A is
0.4755, the probability of class B is 0.2361, and the probability of class C is
0.2884. This example shows that the flower we want to recognize has the

highest probability to be class A.



In next section, we will discuss the common neural networks, like the
restricted Boltzmann machine (RBM), deep belief net (DBN) and

convolutional neural network (CNN), and we will briefly introduce those

neural networks.
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1.2 Introduction to RBM, DBN and CNN

In the past few years, the restricted Boltzmann machine (RBM), are
applied to many applications, such as image recognition and sound analysis.
The Boltzmann machine is a neural network architecture that can represent a
probability distribution. The Boltzmann machine uses the sample distribution
of the target to learn important features of the target. When using the
Boltzmann machine, the calculation requirement is very high.

However, by limiting the network topology, we can simplify learning
issues and then forms RBMs. A RBM has a visible layer containing visible

units and a hidden layer containing hidden units, as shown in Figure 1.8.

RBM

Hidden layer

Hidden unit 1 Hidden unit 2

Visible layer

Figure 1.8 The architecture of RBM
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In RBM, all units are connected to units in other layers, but units in the
same layer are not connected to each other. The connection in the RBM is
non-directional, and the value of each unit is binary states.

From [33], the probability of each hidden unit being 1 can be expressed
as Equation 1.6, where o is sigmoid function. Similarly, because RBM is the

symmetric network with no directionality, the probability of 1 for each visible

unit can be expressed as Equation 1.7.

12



When the aforementioned RBMs are stacked, we can form a deep neural

network named as deep belief neural network (DBN). The hidden layer of

RBM #1 is connected to the visible layer of RBM #2 and hidden layer of

RBM #2 is connected to the visible layer of RBM #3, as shown in Figure 1.9.

RBM #1

RBM #2

RBM #3

Visible layer #1

\
/

ORONe

Hidden layer #1

Hidden unit 1

Hidden unit 2

Visible layer #2

Hidden layer #2

Hidden unit 1

Hidden unit 2

0

Hidden unit 3

Visible layer #3

SO

O @

Hidden layer #3

Hidden unit 1
Hidden unit 2

Figure 1.9 Greedy layer-wise learning in a deep belief network (DBN)

After training process, DBN established a multi-layer non-linear feature

detector through the dependency of the multiple layers of the visible units

and hidden units. In DBN, only the top two layers are non-directional RBM,

and other layers are directed belief networks, as shown in Figure 1.10.




RBM Belief net

Hidden layer #3 Hidden layer #2 Hidden layer #1 Visible layer #1

Hidden unit 1 Hidden unit 1

Hidden unit 1

Hidden unit 2 Hidden unit 2

Hidden unit 2

SN N

Hidden unit 3 Hidden unit 3

Figure 1.10 Hybrid model of the DBN after greedy layer-wise learning
The Convolutional Neural Network (CNN) is the most commonly used
neural network architecture for image recognition today. CNN consists of
many stacked layers including convolution layers, fully connected layers,

non-linearity layers, and pooling layers, as shown in Figure 1.11.

14



The convolution layer extracts high-level features from the input data,
as shown in Figure 1.11(a). The FC layer will convert the input linearly, and
it is used usually in the final stage of the CNN architecture, as shown in
Figure 1.11(b). The nonlinear layer is used to increase the fitting ability of a
neural network. The most commonly used activation function in CNN is
ReLU, as shown in Figure 1.11(c). The Pooling layer is used to reduce the
size and computation of the feature map of the next layer and maintain the
invariability of the data transformation, as shown in Figure 1.11(d). Figure
1.12 shows an actual CNN architecture application. In [2], CNN is used to

recognize the human face.

' feature maps

. convolution kernels

=
(a) Convolution layer (b) Fully Connected Layer
output RN ‘
input
(c) Rectified Linear Unit (d) Max-pooling Layer

Figure 1.11 Typical layers in CNN [2]
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Figure 1.12 A practical CNN model for face alignment [2]
In addition to the basic network architecture and applications mentioned
above, there are many new innovative network architectures are proposed to

solve problems in all aspects. ural network design, memory bandwidth

efficiency can be achieved b ing weights or by binarizing weights,

the performance of th es but requires a little sacrifice

in accuracy

and the off-chip

for achieving high
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13 CPU, GPU, FPGA and ASIC

Implementation of Neural Networks

A neural network requires huge computing resource. As the number of
neural network layers increases, the more computing power are demanding.
From the research of AlexNet, an eight-layer network architecture in 2012, to
ResNET, which introduced a 150-layer network architecture in 2015,
computational complexity grows at geometric multiples, and the demand for
computations increases explosively.

The most commonly used computing resource today including CPU,
GPU, FPGA, and ASIC. In the neural network operation, a large number of
parallel calculations and a large number of floating-point matrix operations
are required.

The CPU architecture cannot fully exploit the computational needs of
neural networks. Therefore, the current mainstream neural network will
choose GPU, FPGA or ASIC as the main computing resource.

GPU is a processor specially designed for processing image operations.
It is suitable for complex mathematical and geometric operations, and it also
has superior performance in parallel operations. This feature is exactly in line
with the computational requirements of neural networks, so most of the

researches, GPU is the preferred choice.

17



FPGA is a platform that can repeatedly be compiled according to the
needs of the user. FPGA has the characteristics of higher efficiency and lower
power consumption than GPU.

However, in order to maintain the flexibility, FPGA have many
programmable circuits, so the operating frequency is restricted and the cost
cannot be as low as compared with ASIC. Due to the low power consumption
and repeat compilation of FPGAs, many researchers still use FPGAs as the
main operating resource.

ASIC is a dedicated integrated circuit. In recent years, there are many
chips designed specifically for a certain architecture, such as TPU, NPU, and
VPU. From the performance, area, power consumption, ASIC has obvious
advantages to FPGA or GPU.

Table 1.1 Comparison of GPU, FPGA and ASIC

efficiency | flexibility | Production cost | Power consumption
GPU middle high middle high
FPGA | low middle high middle
ASIC high low low low

Since the current neural network architectures are kept improving, the
architecture of the neural network keeps changing. ASIC is not as flexible as
GPU or FPGA in such applications, Table 1.1 summaries the comparison

between GPU, FPGA, and ASIC.

18



The recently developed ASIC, TPU, from Google is 15 times higher
performance than traditional GPU, and with low production costs ASIC still
has sufficient advantages in the development of neural network technology.

The mainstream of today's neural network computing is the use of GPUs
with cloud computing. However, with the popularity of neural network-like
applications, data transmitted through the internet may be stolen. The neural
network application platform will gradually move toward the edge devices.

Since training the neural network requires a large number of complex

calculations, the trend is to t al network model at first through the

cloud computing or ed to perform inference process
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1.4 Related Works

In [34], an Altera Stratix III FPGA with a DDR2 SDRAM SODIMM
was used to implement the RBM architecture. Figure 1.13 shows the RBM
modules in [34], the RBM module is distributed to different groups. Each
RBM contains a set of multiplying arrays, embedded RAMs, and logic
elements. Weight values and neuron data are distributed in each group, and
each group handles part of the network. Under the proposed architecture, if
placement and routing are not effectively implemented, they are susceptible
to wire delay. The ’probosed_ tar'chitecttire is compared with the neural
networks runs with Matlab, and there has a significant acceleration both in

s‘iﬁgle_'-precision and d.o{lble-pr'ecision.calculations, as shown in Figure 1.14.

256: DDRZHRBM:
32 : CPU>RBM register Avalon Master

Avalon Slave
Main
Controller

256 : CPU>RBM mem

Stream Logic Avalon Slave

Mainé>Local

T T i T e e e BURarS
Local FSM Local FSM Local FSM

P it S TR AN SE R | Beait o o s s e

Memory Memory

Visible Neuron Broadcast

X)X ... X
Tree Add / Accum

X)X ... I
Tree Add / Accum

RX)... XX
Tree Add / Accum

6 6 16 16
Sigmoid / RNG / Sigmoid / RNG / Sigmoid / RNG / Sigmoid / RNG /
Compare Compare Compare Compare

X)X ... X
Tree Add / Accum

TreeAdd Value BroadCast

Figure 1.13 RBM module detail [34]
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Speedup for 50 epochs

256x%256 256x1024 512x512

M Base:single precision M Base:double precision

Figure 1.14 The speedup as compared with Matlab [34]

In [35], the stochasti oenerator generates a set of evenly

distributed stochastic re 1.15. It uses the stochastic

number gene S eight values, and then

1.16. The

bit floating-point
numbers fi are shown in Figure

1.17.

Input (Binary) ~

_|_

Stream (p = Input/Max)

RNG — !

Figure 1.15 Stochastic Number Generator [35]

21



Probabilisitic Stream
Encoders Piecewise-Linear
Integrator Activation Function

Multiplier l l

N
UP-DOWN vi=f ( wijxi)
COUNTER i

REG +
| i num samples
| [rsn}— '
LFSR =
[ ; |
1

! (M x N)

Figure 1.16 Architecture for Computing a Single Hidden Unit [35]
Classification Accuracy with Different Computation Precision

e}

90 .............................................................
80 : TSN s e S
< : : : : : : :
; '?0 .......... ; ........... .: ........... : ............ ............ ............ ...........
g : : : f f f f
=5 - : : : : - :
g 60 TP TR ST P TR PY TP
< : : : : : : :
g : 5 5 5 : : :
8= sol - f P ZERERTRREE Lo Do E SESCIIRTEY
Q : : : : : : :
= : : : : : : :
Z o] f R IR RRNET ST SRR RN
© : : : : : : :
30 f ........... ........... ........... ............ ...........
201 —©— Stochastic
: : : —¥— 64-bit Floating—point
| : : : :
8 9 10 11 12 13 14 15 16

Computation Bit Precision
Figure 1.17 The classification accuracy on the MNIST testing dataset with different

computation precision for the network [35]
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To improve the speed performance of the DBN, [36] uses FPGAs serial
connections, as shown in Figure 1.18. Through the sharing of resources in
each FPGA, computational allocation and parallel operations increase the
overall performance. However, the speed up of the proposed architecture is

limited by the performance of the FPGA board itself.
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FPGA1 FPGA2
Figure 1.18 Block diagram for the quad-FPGA system [36]

In [37], four contributions are presented to enhance the performance of
the RBM, Neuron computation unit (NCU) is shown in Figure 1.19, low
power neuron binarizer (LPBN) is shown in Figure 1.20, user-defined
connection map (UDCM) is shown in Figure 1.21, and early stopping (ES)

mechanism.
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The NCU has two modes of operation, inner products for hidden neuron
generation from the visible layer, and linear summation for visible neuron
reconstruction from the hidden layer. LPBN is a switch used to determine the
RBM learning mode. UDCM can skip unnecessary data access and
calculations for the entire system to improve performance. The ES
mechanism will terminate the learning process to reduce the training time. In
summary, UDCN and ES mechanism can reduce the computation time. NCU

and LPNB can reduce the cost of hardware implementation.
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1.5 Motivation and Application Description

This thesis uses the MNIST handwritten database as the usage data, and
uses MNIST to understand the operation of DNN. Learning how to design
deep network architectures under ASIC flow through the MNIST database
and a four layers DBN network. It is expected that the experience of this
research can be applied to the design of other network architectures, with a
voice-related database for identification.

With the technological development of speech recognition and natural
language understanding, research topics related to intelligent speech have
also attracted attention. In addition, with the aging of society, related
applications of intelligent speech and hearing aids have also become a serious
research topic.

The traditional hearing aids are easily affected by the sound field in
different environment, hearing aids are not ideal for auditory compensation.

Therefore, it is necessary to use a neural network to perform deep
learning on the sound fields in different environment and to acquire and
identify features of the sound field for a long period to achieve customized
auditory compensation.

In this thesis, we will use MNIST handwriting database as the dataset to
understand the operation of DNN. Learning how to design the deep neural
network architecture under ASIC flow with MNIST database and the DBN
with four layers will be used for this application.

Subsequently, the experience of designing DNN ASIC can be used to

apply to other neural network architectures such as hearing aids applications.
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1.6 Neural network and SVM

In the early image or speech recognition, the gradient vanish formed by
the neural network architecture caused the depth of the architecture cannot to
break through the three layers. In addition, the calculation time of neural
network is quite long and the SVM is better handled than the neural network
in the shallow network between the two layers, so traditional the image or
speech recognition was dominated by the SVM architecture.

Until 2006, Hinton proposes RBM architecture and DBN network
architecture. Forward and backward conduction of data through RBM to
capture the characteristics of the data and solve the problem of gradient
vanish. Then, by stacking RBMs to build a multi-layer deep network
architecture DBN, machine learning using a neural network-like architecture

becomes mainstream.

1.7 Chapter Organization
The Chapter 1 briefly discusses the components of a neural network and
the common neural network architecture. The common elements in the neural
network are also introduced in this chapter.
The remaining thesis are organized as follows: The Chapter 2 describes
the hardware architecture of the implementation. The Chapter 3 shows the
simulation results of real hardware architecture. Finally, in Chapter 4, we will

make a conclusion and discuss what can be improved in the future works.
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Chapter 2 Architecture of DBN

hardware

2.1 Architecture overview

In this thesis, the proposed architecture uses the MNIST database. The
MNIST database is a large database of handwritten digits and a benchmark for
computer vision applications. MNIST is composed of 0 to 9, total 10 kinds of
hand-written digits. As shown in Figure 2.1, each digit contains 28x28 gray-scale
pixels, which are often used to train image processing systems. The MNIST

database contains 60,000 training digits and 10,000 test digits.
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Figure 2.1 Samples from the MNIST [3]

The proposed architecture focused on the inference phase not the training
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phase, so the proposed architecture uses the Deep Belief Networks (DBN) toolbox
provided by Mohammad Ali Keyvenrad [38] to train the DBN network. Figure 2.2
shows the flow to train the DBN.

The DBN is trained by the Matlab toolbox. The DBN designed in Matlab is
trained and fine-tune by the training data. After training in Matlab is done, the
weight values and bias values of each layer can be extracted and saved as text files.
The obtained weight values and bias values are stored in the ROMs and integrated
into the proposed DBN hardware. Finally, the proposed DBN circuit uses the same
test data to verify the proposed DBN hardware identification capabilities. In
Matlab simulation, double-precision is used in numerical calculations. This
method is not possible to be used in low-power hardware implementation.
Therefore, in design of the proposed architecture, the range of weight values and
the fractional bit requirements simulated by Matlab 1s observed to determine the
bits requirement in hardware design to retain the accuracy.

In the training process, the architecture mentioned in [40] and [19] were
considered. In the process of finding out the suitable DBN model by adjusting the
precision of the input data and the precision of unit calculation. After finding out
the model, the model will be written in text file from Matlab. Because of the data
in the model are quite huge, the proposed architecture uses ROM to store the model.

Finally, through the test data to verify the accuracy of the classification results.
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In the verification process, the correct results of each layer’s output were
calculated by Matlab code firstly. Then the test model in hardware design will use
these results to verify the correctness of DBN hardware. The unit calculation in
Matlab using the floating-point numbers, but the proposed architecture using
fixed-point numbers in each unit calculation. There are some errors between
floating-point calculation results and fixed-point calculation results. However,

those errors can be suppressed after the sigmoid activation function.

Training data model
Weight
Bias
DBN
Test data Hardware

Figure 2.2 Model training and hardware verification

The activation function (sigmoid) can be implemented using a look-up table
or a polynomial. The accuracy of the look-up table method and the Taylor series
are compared using Matlab. As shown in Figure 2.3, the correct rate of the
classification result of using the floating-point sigmoid function training is about
96.2%. The correct rate obtained by using the lookup table is 96.1%. Taylor series
method with a 10 order polynomial shown in Equation 2.1 only achieves a correct
rate 92.2%. Based on Matlab simulation, the sigmoid function is implemented with

the look-up table method.
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errorBeforeBF =
3.8100 » [Initinal result (96.2%)

Elapsed time is 0.030838 seconds.

arrorafterBF =
3.8600 »  Using sigmoid look-up table (96.1%)

Elapsed time s 0.030149 seconds.

errarAfterBP2 -

7. 7700 - Using 10 order Taylor series (92.2%)

Figure 2.3 The comparison of look up table and Taylor series.
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2.2 Architecture of DBN

The DBN neural network architecture used in MNIST database handwriting
digits detecting is 784%x256x256x256%10, totally has four layers, as shown in
Figure 2.4. The input neurons of the first layer are 784 because the image size of
the handwritten digits in MNIST database is 28x28. The last layer has 10 output
neurons because the proposed design wants to classify the input image from 0 to
9. The size of the weighted array is dependent on the number of neurons in the
network architecture. Because each layer of the DBN is fully connected, the
weight array sizes in each layer are 784x256, 256256, 256x256 and 256x10,
respectively.

To determine the suitable number of layers in the network architecture and
the number of units between each layer, in the first, the size of the network
architecture used by Hinton [40] is used. After setting the network architecture to
784x500x500%2000%10 and processing the training, the recognition accurate rate
is 96.37%. Later found in [19], they use the same number of network layers, but
use a smaller network architecture 784x256x256%256x10. In [19], the correct rate
of classification is 99.6%. After using the same network size as [19] without other
adjustments, classification accuracy reached 98.2%.

Through the above training and model selection process, a better
classification model can be obtained with a smaller network architecture, and the
number of units that need to be used is greatly reduced, and the amount of
computation required inside the neural network is also reduced. Therefore, the

DBN network architecture is determined as 784x256x256x256x%10.
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Figure 2.4 The architecture of the DBN module
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2.3 Hardware architecture

Input
data

The proposed DBN first verision hardware architecture is shown in

Figure 2.5. The input are MNIST handwritten digits. Each image has 784

pixels, the input registers are used to store one image data. Addition, 49

ROMs are used to store weight values and one ROM is used to store bias

values. The data in the ROMs are stored sequentially, as shown in Figure 2.6.

The State machine will control the different layer calculation by four Layer

valid signals and one Visible valid signal and uses one Out valid signal to

control when the Unit REG sends the max unit to MAX REG. The sigmoid

activation function is implemented with lookup a table with 1024 entries.

Layer 1_address, Layer 2_address, Layer 3_address, Layer 4_address
setupl, setup2, setup3, setup4
3

v

. Bias . State
Weight Bias :
REG m ROM REG machine
a2 x4
Visble_valid Procasing Unit Eﬁ: ;:::::ﬂ:
™ tnput | 784 MACs aver 4 vaid ':I?é
REG N +
Adder tree . )
4 4 y r
D B N 4 Sigmoid

module

ut_valid

look up Sigmoid
table unit REG

Figure 2.5 Overall block diagram of the first version architecture
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Weight ROM1 Weight ROM2 Weight ROM31 Weight ROM32
L1 w[0] L1 wi6272] L1 w[188160] L1 w[194432]

L1 w[1] L1 w[6273] L1 w[188161] L1 w[194433]

L1 w6271] L1 w[12543] L1 w[194431] L1_w[200703]
Weight ROM33 Weight ROM34 Weight ROM39 Weight ROM40
12 w[0] 12 w[8192] 12 w[49153] 12 w[57344]

12 w[1] L2 w[8193] L2 w[49154] L2 W[57345]

12 w[8191] L2 w[16383] L2 w[57343] 12 W[65535]
Weight ROM41 Weight ROM42 weight ROM47 Weight ROM48
L3 w[0] 13 w[8192] L3 w[49153] 13 w[57344]

13 w[1] 13 w[8193] L3 w[49154] 13 w[57345]
L3_w[8191] L3_w[16383] L3_w[57343] 13_w[65535]
Weight ROM49 Bias ROM1

L4_w[0] b[0]

L4_w[1] b[1]

L4 w[2550] b[1024]

Figure 2.6 The address arrangement in each ROM in the first version architecture

The proposed architecture uses Input REG to store one image data. The
state machine sends the read data addresses to 32 Weight ROMs and one Bias
ROM and then stores the read out data in Weight REG and Bias REG before
MAC operations. The Input REG, Weight REG, and Bias REG can be directly
accessed by the Processing unit. When the processing unit finishes the MAC
computing, the summation result is sent to the Unit REG. The Unit REG
sends the data to the Sigmoid lookup table for computing activation function
output. The activation function output data are stored in the Sigmoid unit
REG and will be the input data for the next layer. After the calculation of the
current layer is completed, the Processing unit will start to calculate the next
layer. When the final layer computation is finished, the State machine sends

a signal to Unit REG to send the max unit of the last layer to the MAX REG
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for comparison. The MAX REG search the maximum results and sends out
corresponding digit as the classification output.

In the proposed architecture, the sigmoid function is implemented with
a segmented look-up table, as shown in Figure 2.7. By dividing the sigmoid
function into different intervals, the index value of each interval contains a 4-
bit integer and a different number of decimal bits according to the interval.
When the x value is 0 to 1 or the x value is 0 to -1, the index value consists
of a 4-bit integer and a 6-bit decimal number. When the x value is 1 to 2 or
the x value is -1 to -2, the index value consists of a 4-bit integer and a 5-bit
decimal number. When the x value is 2 to 3 or the x value is -2 to -3, the index
value consists of a 4-bit integer and a 4-bit decimal number. When the x value
is 3 to 4 or the x value is -3 to -4, the index value consists of a 4-bit integer
and a 3-bit decimal number. When the x value is 4 to 5 or the x value is -4 to
-5, the index value consists of a 4-bit integer and a 2-bit decimal number.
When the x value is greater than 5 or the X value is less than -5, the index
value consists of a 4-bit integer and a 1-bit decimal number. Then, the input
will be converted by the above mentioned into a fixed-point number with 4-

bit integer part and 12-bit decimal part.
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Figure 2.7 The proposed segmented sigmoid function look-up table

37



The proposed architecture action is divided into five parts, as shown in
Figure 2.8. The proposed architecture inputs the image through the
Visible valid signal and calculates the different layer by the different
Layer valid signal. Finally, the output is controlled by the Out valid signal.

The next Visible valid signal rises and receives the next picture.

| | | I’l ‘
Visible_valid j \ l l 1 If . 1
Layer1_valid ! > o
yerl M I I I I‘ M calculate
setupl .”.“ l ] ] L1 . 5
. 1 [ | ayer
Layer2_valid 'i _\: | 1 > calgmate
setup2 I/\_ ]\ 1 L1
. I I / . 4 > Layer 3
Layer3_valid I I I I calculate
setup3 1 I[\ﬂ ..l 1 Layerd
Layer4_valid : : :I : P calculate
setup4 | | I[\j\ 1 Search
Out_valid I I I T— pﬂf
I || 1
| | | 1 1

Figure 2.8 Timing diagram of the first version architecture

Figure 2.9 shows the details timing of the input data. The input data are
stored in Input REG via Visible valid. Figure 2.10 shows the first layer
weight read in. When Layerl valid is rises, Layer]l address will start sending
addresses to 32 ROMs. After Weight REG obtain weight value by setupl

signal, the first layer units start to calculate.

visble vaup/ e \
Tnput REG< Input REG[0] X Input REG[1] X ______ Xlnput REG[782]><Input REG[783]

Figure 2.9 Timing diagram of input image in the first version architecture
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layerivauo [ e \

Layer 1_address < address1_1 X address1_2 X X address1_7 X address1_8 X
setupl /\ A /‘\ /\ l\
Weight REG_1 X owia XX wse X wiz X wis

Weight REG_32 X Wi1_249 X ...... X W1_254 X W1_255 X W1_256

Figure 2.10 Timing diagram of first layer weight values in the first version

architecture

Figure 2.11 shows the second layer weight read in. When Layer2 valid
rises, Layer2 address will start to send addresses to 8 ROMs. After Weight
REG obtain weight values by setup2 signal, the second layer units start to

compute.

lyer2vao [ e \
Layer 2_address < address2_1 X address2_2 X ...... X address2_31 X addressZ_BZX
setup2 /\ ...... ]\ /\

Weight REG_1 X W2_1 X ...... X w2_30 X w2_31 >< w2_32

Weight REG_8 X waas WX weas X waass X waass

Figure 2.11 Timing diagram of second layer weight values in the first version

architecture

Similarly, when Layer3 valid rises, as shown in Figure 2.12,
Layer3 address will start to send addresses to 8 ROMs. When Weight REG

obtains weight values by setup3 signal, the third layer units start to compute.

Layer 3_VALID |

Layer 3_address < address3_1 X address3_2 X ,,,,,, X address3_31 X addre553732><

setup3 /\ /\ """ l \ [\ / \

Weight REG_1 X W3_1 X ______ X W3_30 X W3_31 X W3_32

Weight REG_8 X owizes X X wsasa X wa2ss X w3256

Figure 2.12 Timing diagram of third layer weight values in the first version

architecture
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When Layer4 valid rises, as shown in Figure 2.13, Layer4 address will
start to send addresses to a ROMs. After Weight REG obtains weight values
by setup4 signal, the fourth layer units start to calculate. When all calculations
are completed, Out valid will rise and the fourth layer units send results to
MAX REG, as shown in Figure 2.14. The next Visible valid rise to input the

next image.

lyerava® [ e
Layer 4_address < address4_1 X address4_2 X ...... X address4_9 X address4710><

setup4 /\ [\ /\ [\ /\

Weight REG_1 X wii X ... X wis X wis X wit

Figure 2.13 Timing diagram of fourth layer weight values in the first version

architecture

Visible_VALID / \

Output_VALID | \

M AX_REG < result X
Figure 2.14 Timing diagram of output result and input next image in the first version

architecture

From the architecture, the critical path of this architecture will appear in
the multiplication and addition operations in each layer. In the first layer, 784
MACs and one adder tree are performed in one cycle, and critical path the
delay is quite long. There are also 256 MAC and one adder tree delay in other

layer calculations.
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There are many registers and MAC units being used in the above
architecture. From experience of the first version, the new architecture is
proposed, as shown in Figure 2.15. Separating each layer in the architecture,
each layer also separates the access to the weight values. The first layer only
accesses the ROM_W1 1 to ROM W1 32, the second layer only accesses
the ROM W2 1 to ROM W2 8, the third layer only accesses the
ROM W3 1 to ROM W3 8, and the fourth layer only accesses the
ROM_ W4 1. Because of the ROM complier has the smallest memory size
limitative, all bias values are store in the same ROM. Each layer will access
the bias values from the same ROM. The weight and bias values address
arrangement in each ROM is shown in Figure 2.16. With such an architecture,
both redundant registers are removed and the used MAC units are reduced

for circuit area consideration.

Input ——»

» ROM_Bias <
All layer
3 A -
ROM_W1 ROM_W2 ROM_W3 ROM_W4

3 h

A 4 A 4 y A h 4 Y A A
L1 L2 L3 L4 Output

32MAC 8MAC 8MAC 1MAC

Figure 2.15 Overall block diagram of the second version architecture
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ROM W1 1 ROM w1 2 ROM W1 31 ROM W1 32
L1_w[0] L1_w[6272] L1_w[188160] L1_w[194432]
L1_w[1] L1_w[6273] L1_w[188161] L1_w[194433]

L1 w[6271] L1 w[12543] L1 w[194431] L1 w[200703]

ROM W2 1 ROM w2 2 ROM W2 7 ROM W2 8
12_w[0] 12_w[8192] 12_w[49153] 12_w[57344]
12_w[1] 12_w[8193] 12_w[49154] 12_w[57345]
Lz_w[8191] Lz_w[16383] Lz_w[57343] Lz_w[65 535]

ROM W3 1 ROM W3 2 ROM W3 7 ROM W3 8
L3_w[0] L3_w[8192] L3_w[49153] L3_w[57344]
L3_w[1] L3_w[8193] L3_w[49154] L3_w[57345]

L3 w[8191] 13 w[16383] 13_w[57343] L3 W[65535]

ROM W4 1 ROM_Bias
L4_w[0] bro1  All layer
L4_w[1] b[1]

L4_w[25 59] 5[1024]

Figure 2.16 The address arrangement in each ROM in the second version architecture

The detail block diagram of the first layer is shown in Figure 2.17. State
machine controls data input into Input REG. Then, state machine sends the
first layer to use the weight address and bias address to ROM W1 1 to
ROM_W1 32and ROM Bias. Then, ROM W1 I'to ROM_W1 32 and the
ROM_ Bias return the corresponding data to the MAC unit and the MAC unit
calculates 32 multiplications in parallel. Unit REG stores and returns data to
MAC for accumulation. When the MAC operatives of 256 units in the first
layer is completed, the state machine sends Out valid signal to control the
Unit REG sends data to the L1 sigmoid table for activation function

computation and output the first layer’s output to the L2.
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Layerl
weight
address

value

Layerl | Layerl
bias weight
address | address

Layerl
bias
address
value

Stat ™7 L1
e
machine 32M AC
l In_valid State Out_valid
A N A 4
L1
o MAC Unit . i
» REG REG SIgmol
22 table

Figure 2.17 First layer block diagram of the second version architecture

» Layerl output

The detail block diagram of the second layer is shown in Figure 2.18.

State machine controls data input into Input REG. Then, state machine sends

weight address and bias address to ROM W2 1 to ROM W2 8 and the

ROM Bias. Then, ROM W2 1 to ROM W2 8 and the ROM Bias return

the corresponding data to the MAC unit and the MAC unit calculates eight

multiplications in parallel. Unit REG stores and returns data to MAC for

accumulation. When the MAC operatives of 256 units in the second layer is

completed, the state machine sends Out valid to control the Unit REG sends

data to the L2 sigmoid table for activation function computation and output

the second layer’s output to the L3.
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e
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Input Unit L2
— —> ni ] _
REG » MAC REG sigmoid
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Figure 2.18 Second layer block diagram of the second version architecture

The detail block diagram of the third layer is shown in Figure 2.19. State

machine controls data input into Input REG. Then, state machine sends

weight address and bias address to ROM W3 1 to ROM W3 8 and the

ROM Bias. Then, ROM W3 1 to ROM W3 8 and the ROM Bias return

the corresponding data to the MAC unit and the MAC unit calculates eight

multiplications in parallel. Unit REG stores and returns data to MAC for

accumulation. When the MAC operatives of 256 units in the third layer is

completed, the state machine sends Out_valid to control the Unit REG sends

data to the L3 sigmoid table for activation function computation and output

the third layer’s output to the L4.
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Figure 2.19 Third layer block diagram of the second version architecture

The detail block diagram of the fourth layer is shown in Figure 2.20.

State machine controls data input into Input REG. Then, state machine sends

the fourth layer to use the weight address and bias address to the ROM W4

and the ROM Bias. The ROM W4 and the ROM Bias return the

corresponding data to the MAC of the fourth layer and calculate one unit at a

time. Unit REG store and return data to MAC for accumulation. When the

fourth layer of 10 units is completed, the state machine sends Out valid to

send the Unit REG data to the MAX REG to select the largest unit and output.

I A

Layers | Layerd
bias weight
address | address

Layerd
weight

a

ddress
value

Layerd
bias
address
value

Y

™T L4

State
machine 1MAC
¢ In_valid State Out_valid

A A J A 4
Input Unit MAX
REG MAC REG REG

XL F_

Figure 2.20 Fourth layer block diagram of the second version architecture

» Layerd output

In the second version architecture, the number of MAC units and
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registers are reduced. Therefore, the main problem in the first version, the
circuit area cost, and the critical path of design can be further improved.

The timing diagram of the second version is shown in Figure 2.21.
Because the last layer in the second version integrates the maximum value
searching unit, the second version uses four stages to calculate the output.

As shown in Figure 2.22, the input of the first layer input into
Input REG sequentially when the In_valid signal rises. Subsequently, MAC
unit calculates the units of different parts through the switching of STATE.
Each part has 32 units in calculated simultaneously. The first layer calculates
256 units through eight times operations. Unit REG adds bias value when
STATE is 8. Then, Unit REG sends results to the L1 sigmoid table with
Out_valid. Finally, the data are sent to the next layer after L1 sigmoid table.
In the Equation 2.2 to 2.4, the v represents the Input REG, the w represents
the return value from ROM_W1 1 to ROM W1 32, the u represents the
Unit REG. Take the first two states in the first layer for example, Equation
2.2 and Equation 2.3 show the unit to be calculated in the state 0 and state 1,

respectively. Equation 2.4 shows all units are added with bias values
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Figure 2.21 Timing diagram of the second version architecture
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Figure 2.22 Timing diagram of the first layer in the second version architecture

783
ulj] = Z 1) XWIi] +ulj]j = 0,816, .., 248 ab STATE = 0 2.2)
i=
783
ulj] = Z vlil X wli+784] +ulj],j = 1,9,17,...,249 at STATE =1 (2.3)
i=
255
ufi] = bli] + uli] at STATE =8 (2.4)
i=0
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As shown in Figure 2.23, the inputs of the second layer input into

Input REG sequentially when the In_valid signal rises. Subsequently, MAC

unit calculates the units of different parts through the switching of STATE.

Each part has eight units in calculated simultaneously. The second layer

calculate 256 units through 32 times operations. Unit REG adds bias value

when STATE is 32. Then, Unit REG sends results to the L2 sigmoid table

with Out valid. Finally, the data are sent to the next layer after

L2 sigmoid table. Take the first two states in the second layer for example,

Equation 2.5 and Equation 2.6 show the units to be calculated in the state 0

and state 1, respectively. Equation 2.7 shows all units are added with bias

Unit_REG[64],

Unit_REG[65],

Unit_REG[95],

Unit_REG[2],

values.
In_valid / \
Input_REG X Input_REG[0],Input_REG[1],...,Input_REG[254],Input_REG[255]
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Figure 2.23 Timing diagram of the second layer in the second version architecture

255
ulj] = Z v[i] X w[i] + u[j],j = 0,32, 64, ..., 224 at STATE =0

255
ulj] = Z v[i] X w[i + 256] + u[jl,j = 1,33, 65, ..., 225 at STATE = 1

255

uli] = b[i] + u[i] at STATE = 32

i=0
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As shown in Figure 2.24, the inputs of the third layer input into

Input REG sequentially when the In_valid signal rises. Subsequently, MAC

unit calculates the units of different parts through the switching of STATE.

Each part has eight units in calculated simultaneously. The third layer

calculate 256 units through 32 times operations. Unit REG adds bias value

when STATE is 32. Then, Unit REG sends results to the L3 sigmoid table

with Out valid. Finally, the data are sent to the next layer after

L3 sigmoid table. Take the first two states in the third layer for example,

Equation 2.8 and Equation 2.9 show the units to be calculated in the state 1

and state 0, respectively. Equation 2.10 shows all units are added with bias

Unit_REG[192], Unit_REG[193],

Unit_REG[223],

Unit_REG[2],

Unit_REG[254],

values.
In_valid / \
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Figure 2.24 Timing diagram of the third layer in the second version architecture

255

ulj] = Z v[i] x w[i] + u[j],j = 0,32, 64, ..., 224 at STATE =0

255
ulj] = Z v[i] X w[i + 256] + u[jl,j = 1,33, 65, ..., 225 at STATE = 1

255
uli] = b[i] + u[i] at STATE = 32
i=0
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In the layer fourth timing diagram, as shown in Figure 2.25, the inputs
of the fourth layer input into Input REG sequentially when the In valid
signal rises. Subsequently, MAC unit calculates the units of different parts
through the switching of STATE. Each part has one unit in calculated. The
fourth layer calculate 10 units through 10 times operations. Unit REG adds
bias value when STATE is 10. Then, searching the max unit in Unit REG
sent to MAX REG. After finding out the max unit, the result sent out from
MAX REG after the Out valid is rises. Take the first two states in the fourth
layer for example, Equation 2.11 and Equation 2.12 show the units to be
calculated in the state 0 and state 1, respectively. Equation 2.13 shows all

units are added with bias values.

In_valid / \

X Input_REG[0],Input REG[1],...,Input_REG[254],Input REG[255]

Input_REG
STATE 0 1 . 9 10
Unit REG Unit_part1 X Unit_part2 X X Unit_part10 X Add_Bias
I | | 1 |
Outﬁvalid | | | | |
MAX_REG | | | | | ||X result
I v [ v | | v ] Unit. REG[O] |
: . . nit_| ,
| Unit_REG[0] | Unit_REG[1] | 1 Unit_REG[9] | Unit_REG[1].
< > < > —p| . |
256 cycles 256 cycles 256 cycles | - |
I Unit_REG[9] |
—>

10 cycles

Figure 2.25 Timing diagram of the fourth layer in the second version architecture

255
ulj] = Z v[i] x wli] + uljl,j = 0 at STATE =0 @.11)
i=0
255
ulj] = Z v[i] X wli + 256] + u[j],j = 1 at STATE =1 2.12)
=0
255
uli] = Z b[i] + uli] at STATE = 10 2.13)
i=0
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2.4 Summary

First, through the simulation in Matlab toolbox, the suitable model to implement the
circuit can be found. Then, comparing the complexity of the look-up table and Taylor
series, the sigmoid activate function is implemented with a look-up table. Finally, two
architectures of DBN are bulit. In the first version, the preliminary architecture was
proposed. When the MAC units are calculated, the critical path causes the bottleneck

in the circuit speed. The second version not only improves the bottleneck of circuit

operating speed but also reduces the ¢
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Chapter 3 Experimental Result

3.1Waveform analysis
Both DBN hardware circuit are implement in TSMC 90nm CMOS
process. Figure 3.1 is the RTL waveform simulation of the first version. As
mentioned in section 2.3, the first version architecture divides the operation
into five parts. The parallel multipliers used in calculations within the same
layer reduce the overall calculation time. In the first layer, 32 ROMs can also
read data simultaneously, and eight ROMs in the second and third layers can
read data simultaneously. The proposed first version architecture can be 32
times faster than a circuit that only has one multiplier, and 8 times faster in

the second and third layers computation.

O ED Ot D EREAEIESEd 30 o9ddd 0dd Jdddad o 0 390940 ooaoadcaasd § Saddaaaddedag GEREEF R € F927 chTE, 3F% 0

tayert Layer2 tayer3 Layerd 15
culate calculat ————

} }at oy +4
caicuiate ca

li 0

Figure 3.1 The RTL simulation waveform in the first version architecture

Figure 3.2 and Figure 3.3 show the simulation operation of the first layer.
The input value uses the visible vlaid signal to store data in Input REG. At
the same time, the Layerl valid risses and the setup1 signal in Figure 3.3 will
be used to start storing the weight values to the registers Weight REG 1 to
Weight REG 32. First, each unit multiplied by the corresponding weight
value. Next, each unit add up the corresponding bias value and store in the
Unit REG. Then, the results in the Unit REG send to the sigmoid look-up
table to convert. Finally, the result store into the Sigmoid unit REG as the

input of the next layer.
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Figure 3.2 The simulation operation of input image in the first version architecture
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Figure 3.3 The simulation operation of the first layer in the first version architecture

Figure 3.4 shows the simulation operation of the second layer, using
Layer2 valid as the signal and using setup2 signal to store the weight value
of the second layer to Weight REG 33 to Weight REG 40. The previous
layer stores the result in Sigmoid unit REG as the input of the second layer
of input. First, each unit multiplied by the corresponding weight value. Next,
each unit add up the corresponding bias value and store in the Unit REG.
Then, the results in the Unit REG send to the sigmoid look-up table to
convert. Finally, the result store into the Sigmoid unit REG as the input of

the next layer.
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Figure 3.4 The simulation operation of the second layer in the first version

architecture

Figure 3.5 shows the simulation operation of the third layer. The

operations of the third layer are similar to the second layer, using
Layer3 valid as the signal and using setup3 signal to store the weight value

of the third layer to Weight REG 41to Weight REG 48. The previous layer
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stores the result in Sigmoid unit REG as the input of the third layer. First,
each unit multiplied by the corresponding weight value. Next, each unit add
up the corresponding bias value and store in the Unit REG. Then, the results
in the Unit REG send to the sigmoid look-up table to convert. Finally, the

result store into the Sigmoid unit REG as the input of the next layer.
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Figure 3.5 The simulation operation of the third layer in the first version architecture

Figure 3.6 shows the simulation operation of the fourth layer. The fourth
layer uses the previous layer results stores in Sigmoid unit REG as input.
Using Layer4 valid as the signal and using setup4 signal to store the weight
value of the fourth layer to Weight REG 49. First, each unit multiplied by
the corresponding weight value. Next, each unit add up the corresponding
bias value and store in the Unit REG. When all the units in the fourth layer
have been calculated, the result of the fourth layer in the Unit REG will be

sent to MAX to select the largest unit output, as shown in Figure 3.7.
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Figure 3.6 The simulation operation of the fourth layer in the first version architecture

EI OUT_VALID I |J
!

Figure 3.7 The simulation operation of MAX output result in the first version

architecture
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The first version architecture using lot of two-dimensional array to store
the data which cause the time of synthesis is quit long. In addition, the first
version architecture occupies lot of resources when the first version
architecture start synthesis and then cause the synthesis fail.

The waveform simulation in the second version architecture is shown in
Figure 3.8(a) to Figure 3.8(d). Four layers are calculating in sequence. The
result data of first layer are the input data of second layer. The result data of
second layer are the input data of third layer. The result data of third layer are
the input data of fourth layer. The calculates switching according to the
STATE signal in each layer to calculate different partial units. The maximum
unit search is performed in the fourth layer. The IN_ VALID signal in Figure
3.8(a) to Figure 3.8(d) are the In_valid signal in Figure 2.22 to Figure 2.25.
The OUT VALID signal in Figure 3.8(a) to Figure 3.8(d) are the Out valid
signal in Figure 2.22 to Figure 2.25. The register V in Figure 3.8(a) to Figure
3.8(d) are the Input REG in Figure 2.22 to Figure 2.25. L1 all unit,
L2 all unit, L3 all unit and L4 all unit are the Unit REG in Figure 2.22 to
Figure 2.25. The register OUT DATA in the fourth layer is the MAX REG
of Figure 2.25.
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Figure 3.8(a) The first layer RTL simulation waveform in the second version

architecture
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Figure 3.8(b) The second layer RTL simulation waveform in the second version

architecture
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Figure 3.8(c) The third layer RTL simulation waveform in the second version

architecture
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Figure 3.8(d) The fourth layer RTL simulation waveform in the second version

architecture

Figure 3.9 shows the calculation of the first layer. Using IN_VALID to
read in and store the data into the register V. Switching different unit
calculations through the STATE signal. 32 units are calculated in each state.
When STATE signal 1s 7, 256 units in the first layer are complete calculation.
When the STATE signal is 8, the results in the L1 all unit are added with the
bias value. Next, using OUT_VALID signal sent to the L1 sigmoid table

conversion. Finally, output the result from the first layer.

verl BN IN_ VALID

Fed B w[0:793][15:0]

B sTaTE([5:0)

Wod B 11 a1l unit[0:255] [41:0]
B cuT_vaLID

:m{u n,nuun,u,u,n,u,u,u,n,u,
R ERER R

-‘-‘II‘IIIZ-"II_IIIHZ-E

| L

Figure 3.9 The simulation operation of the first layer in the second version
architecture

Figure 3.10 shows the calculation of the second layer. Using IN_VALID
to read in and store the data into the register V. Switching different unit
calculations through the STATE signal. Eight units are calculated in each state.
When STATE signal is 31, 256 units in the second layer are complete
calculation. When the STATE signal is 32, the results in the L2 all unit are
added with the bias value. Next, using OUT VALID signal sent to the

L2 sigmoid table conversion. Finally, output the result from the second layer.
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Figure 3.10 The simulation operation of the second layer in the second version

architecture

Figure 3.11 shows the calculation of the third layer. Using IN_ VALID
to read in and store the data into the register V. Switching different unit
calculations through the STATE signal. Eight units are calculated in each state.
When STATE signal is 31, 256 units in the third layer are complete
calculation. When the STATE signal is 32, the results in the L3 _all unit are
added with the bias value. Next, using OUT VALID signal sent to the

L3 sigmoid_table conversion. Finally, output the result from the third layer.

B v vaLID |
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Figure 3.11 The simulation operation of the third layer in the second version

architecture

Figure 3.12 shows the calculation of the fourth layer. Using IN_ VALID
to read in and store the data into the register V. Switching different unit
calculations through the STATE signal. One unit is calculated in each state.
When STATE signal is 9, Ten units in the fourth layer are complete
calculation. When the STATE signal is 10, the result in the L4 all unit is
added with the bias value. Next, using OUT VALID signal sent to the
OUT _DATA to search the max unit. Finally, output the result from the fourth

layer.

57



i B v _vaLID

Re] B w[0:255][15:0]

i @ sTaTE (5. 0]

el B L4 =11 wnit[0:9] [41:0]
% [§ our vaLID

Wed B ouT DaATA[4:0)

Figure 3.12 The simulation operation of the fourth layer in the second version

architecture
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3.2 Fixed-point number calculation

Accuracy

100
90
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60
50
40
30
20
10

accuracy analysis

The DBN model trained in Matlab and the test data are formatted as 27-
bit, 16-bit, 8-bit and 4-bit fixed-point numbers. Different bits representations
are compared their classification accuracy with double-precision Matlab
simulations. As shown, in Figure 3.13 the proposed architecture can still
maintain accuracy using 16-bit data processing as compared to double-
precision floating point calculations. Under the 8-bit condition, only 2%
accuracy loos between the double-precision can be found, and in 4-bit
conditions, it completely loses the ability perform to classification. From this
experiment, the 16-bit and 8-bit representations can be used in the proposed

architecture, and still have sufficient accuracy for MNIST database

application.
Classification accuracy
98.2 97.3 97.3 96.9
o= — o=
0
Double-precision  4-bit integer, 23-bit ~ 4-bit integer, 12-bit  4-bit integer, 4-bit 4-bit integer
floating-point format decimal decimal decimal

Data bits

Figure 3.13 The classification accuracy vs. data bits
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3.3 Summary

The simulation circuit information of the proposed second version
architecture is summarized in Table 3.1, the power of the DBN circuit from
the best case to the worst case are 418mW, 353mW, and 311mW, respectively.
The gate count of the proposed design circuit is 1,160k. The maximum clock
rate of the DBN circuit is 73.6MHz. The precision of the proposed
architecture is 16-bit fixed-pointed. The proposed architecture used 334k
MAC operation. The efficiency of the simulation circuit from best case to
worst case are 1.46411GOPs/W, 1.7337GOPs/W, and 1.9678GOPs/W,
respectively. Table 3.2 illustrates the comparison between the proposed

circuit and the existing systems

Table 3.1 The simulation circuit information

FF TT SS
Power(mW) 418 353 311
Area(gate count) 1160k
Clock rate(MHz) 73.6
Cycle 40.26M
Efficiency(GOPs/W) 1.46411 1.7337 1.9678
Architecture precision 16-bit fixed-point
Number of MAC
' 334k
operation
Accuracy 97.3
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Table 3.2 Performance comparisons

This work [12] [16] [19]
Technology 90nm 65nm 40nm 40nm

Fully-connected | Convolutional | Fully-connected | Fully-connected
Design target

layer layer layer & FFT layer
Power(mW) 353 278 0.288 125%
Clock rate(MHz) 73.6 100-250 1.9-19.3 250

Efficiency(GOPs/W) | 1.7337 0.6%** 374 N/A

Area(gate count) 1160k N/A N/A

Area(mm?) 3.145
16-bit
fixed-point

Accuracy 99.6%

*estimate. **Calculated
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Chapter 4 Conclusion and Future
works

4.1 Conclusion

In this thesis, we implemented two versions of hardware accelerators for
the DBN network and the impact of the recognition result due to the accuracy
of the input data is discussed. The clock speed bottleneck of the first version
architecture is the delay in MAC operations with the adder tree. However, the
computing elements can be shared in different layers of calculations.

Through the experience in the first version architecture, the second
version architecture is implemented, and the adder tree in the first version
architecture is reduced. Also, the computational delay generated by the adder
tree is reduced. Separating the shared MACs in each layer will increase the
hardware cost. However, simplifying the architecture from the first version
to the second version, the performance can be improved.

In the DBN model extraction, we use the toolbox in [38] to simulate the
operation of the DBN network. First, the toolbox is used to find out the
network size and unit number in each layer. Next, the DBN hardware circuit
is implement in TSMC 90nm CMOS process after the DBN model

determined.
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In the simulation experiment, different precision on the extracted models
are tested, and then, the minimum precision required for weight and bias can
be obtained. At present, the proposed architecture had large power
consumption. To reduce the energy consumption while maintaining the
accuracy of identification, it will be necessary to use an approximate

multiplier to reduce the overall computational complexity and then reduces

the energy consumption.

63



4.2 Future works

In the proposed circuit architecture, there are some idle circuits waiting
during the operation in different layer. Therefore, pipelining the circuit can
be the first step to improve the throughput in the proposed circuit architecture.
In addition, the research trend of the current edge artificial intelligence chip
can be adopted in the next step.

From last year's ISSCC 2017 related papers for DNN ASIC development.
It can be seen that the research trend of the current edge artificial intelligence
chip is to reduce the access time of the external memory, dynamically adjusts
operation accuracy, reduces the power consumption per MAC operation, and
uses voltage scaling technology to reduce power consumption in different
mode.

The main reason of reducing the access times of the external memory is
that the I/O Pad will consume large power consumption when accessing data.
From the power analysis of [29], the external memory is the main source of
power consumption, as shown in Figure 4.1. The amount of external data
access times can be reduced by compressing the model, and then power

consumption is reduced.
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Figure 4.1 Required memory and energy with different image size [29]

For dynamically adjusting the accuracy of MAC operations, as
discussed in [2, 19, 21, 23], the bit number of weight and bias in each layer
not need to be the same, as illustrated in Figure 4.2. In [19], when the activity
value is too small, the activity value will be set to zero and the computation
can be reduced. Compared with general multipliers and the approximate
multiplier in [39], the average error in computation is only 0.37% in
multiplication. Using an approximate multiplier to replace a normal
multiplier can reduce the critical path of the multiplier. Moreover, using the
technology of reducing the operation voltage can further improve the problem
of power consumption.

From the above trends, development and implementation in the future

will be improved in these major directions.
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