
國 立 中 正 大 學

資訊工程研究所碩士論文

用於手寫數字辨識的 DBN 硬體加速器

設計

Design of a DBN Hardware

Accelerator for Handwritten Digit

Recognition

 研究生 : 李奕增

 指導教授 : 鍾菁哲 博士

中華民國 一零七 年 八 月

I

國 立 中 正 大 學

資訊工程研究所碩士論文

用於手寫數字辨識的 DBN 硬體加速器

設計

Design of a DBN Hardware

Accelerator for Handwritten Digit

Recognition

 研究生 : 李奕增

 指導教授 : 鍾菁哲 博士

中華民國 一零七 年 八 月

II

I

摘要

深度信念網絡(DBN)架構在本篇論文中被使用，首先以 MNIST 資料庫做網

路架構的功能驗證，往後將會套用聲音辨識的相關資料庫應用。在訓練模型的萃

取與硬體驗證中，使用 Matlab 模擬來取得滿意的辨識結果，以此決定出合適的

網路大小與層數。接著將訓練好的模型存入ROM中並整合到提出的硬體架構中。

利用 MNIST 的測試資料對硬體架構進行準確度的驗證。

隨著人工智慧發展，語音辨識與深度學習的相關研究逐漸熱門。伴隨高齡化

社會，聽覺輔具的應用也備受到注目。聽覺輔具搭配深度學習的應用也逐漸普及，

傳統的聽覺輔輔具容易受到環境音場的影響，無法提供合適的聲音補償。此外，

聽覺輔具需要長時間配戴，輔具的設計需要輕薄且低耗電，因此在聽覺輔具中對

環境音場使用深度學習，以此提高對環境音場的抵抗提供合適的聽覺補償，而且

一個合適得聽覺補償可以被應用。使用特殊應用積體電路(ASIC)來實作是設計聽

覺輔具的趨勢而且聽覺輔具設備能達到輕量且低功耗。

因此在未來我們會使用聲音辨識的相關資料庫，並且減少硬體對外部記憶體

的存取次數、動態調整運算的精準度、降低 MACs 的使用次數來降低整體運算會

在未來的工作中逐步研究。

關鍵字: 深度信念網絡(DBN)

II

Abstract

 The deep belief network (DBN) is implemented in this thesis. First, the MNIST

database is used as a functional verification of the network architecture. Later, the

relevant database applications for voice identification will be applied. In the training

model extraction and hardware verification, the Matlab simulation is performed to

determine the appropriate network size and layers which can achieve satisfactory

identification results. Subsequently, the trained model is stored in ROMs and integrated

into the proposed hardware architecture. Then the test data of the MNIST database are

used to verify the accuracy of the DBN hardware circuit.

With the development of artificial intelligence, researches on speech recognition

and deep learning become increasingly popular. With the aging society, the hearing aids

also attracting attention. Traditional hearing aids are susceptible to environmental

sounds. In addition, the hearing aids need to be wore for a long time, and the design of

the assistive devices needs to be light and low-power consumption. Therefore, deep

learning is used for the environmental sound field in the hearing aids to improve the

resistance to the environmental sound field, and suitable hearing compensation can be

applied. Using application specific IC (ASIC) to implement audio equipment for

hearing aids can achieve lightweight and low-power consumption, and is a trend in the

design of hearing aids.

To future, the relevant database applications for voice identification will be applied.

Furthermore, reducing the access times of the external memory, dynamically adjust the

accuracy of calculations and reducing the number of MACs to reduce the power

consumption of the overall operation will be gradually studied in the future works.

Keywords: deep belief network (DBN)

III

Content

摘要.. I

Abstract ... II

Content ... III

List of Figures ... V

List of Tables .. IX

Chapter 1 Introduction ... 1

1.1 Introduction to Neural Network ... 1

1.2 Introduction to RBM, DBN and CNN ... 11

1.3 CPU, GPU, FPGA and ASIC Implementation of Neural Networks 17

1.4 Related Works .. 20

1.5 Motivation and Application Description .. 26

1.6 Neural network and SVM .. 27

1.7 Chapter Organization ... 27

Chapter 2 Architecture of DBN hardware ... 28

2.1 Architecture overview .. 28

2.2 Architecture of DBN .. 32

2.3 Hardware architecture .. 34

2.4 Summary .. 51

Chapter 3 Experimental Result .. 52

3.1 Waveform analysis ... 52

3.2 Fixed-point number calculation accuracy analysis .. 59

3.3 Summary .. 60

Chapter 4 Conclusion and Future works .. 62

4.1 Conclusion ... 62

IV

4.2 Future works .. 64

Reference ... 67

V

List of Figures

Figure 1.1 General neural network architecture .. 2

Figure 1.2 Calculation of a neuron’s output .. 3

Figure 1.3 A two-hidden-layer fully connected network 4

Figure 1.4 A two-hidden-layers fully connected neural network with bias

neurons ... 5

Figure 1.5 sigmoid activation function [32] .. 6

Figure 1.6 Hyperbolic tangent activation function [32]................................. 7

Figure 1.7 ReLU activation function [32].. 8

Figure 1.8 The architecture of RBM .. 11

Figure 1.9 Greedy layer-wise learning in a deep belief network (DBN) 13

Figure 1.10 Hybrid model of the DBN after greedy layer-wise learning 14

Figure 1.11 Typical layers in CNN [2] ... 15

Figure 1.12 A practical CNN model for face alignment [2] 16

Figure 1.13 RBM module detail [34] ... 20

Figure 1.14 The speedup as compared with Matlab [34] 21

Figure 1.15 Stochastic Number Generator [35] ... 21

Figure 1.16 Architecture for Computing a Single Hidden Unit [35] 22

Figure 1.17 The classification accuracy on the MNIST testing dataset with

different .. 22

Figure 1.18 Block diagram for the quad-FPGA system [36] 23

Figure 1.19 Architecture of the NCU with dual operation modes [37] 24

Figure 1.20 Architecture of the proposed low power neuron binarizer [37] 25

Figure 1.21 Architecture of the proposed UDCM module [37] 25

Figure 2.1 Samples from the MNIST [3] ... 28

VI

Figure 2.2 Model training and hardware verification 30

Figure 2.3 The comparison of look up table and Taylor series. 31

Figure 2.4 The architecture of the DBN module ... 33

Figure 2.5 Overall block diagram of the first version architecture 34

Figure 2.6 The address arrangement in each ROM in the first version

architecture ... 35

Figure 2.7 The proposed segmented sigmoid function look-up table 37

Figure 2.8 Timing diagram of the first version architecture 38

Figure 2.9 Timing diagram of input image in the first version architecture 38

Figure 2.10 Timing diagram of first layer weight values in the first version

architecture ... 39

Figure 2.11 Timing diagram of second layer weight values in the first version

architecture ... 39

Figure 2.12 Timing diagram of third layer weight values in the first version

architecture ... 39

Figure 2.13 Timing diagram of fourth layer weight values in the first version

architecture ... 40

Figure 2.14 Timing diagram of output result and input next image in the first

version architecture .. 40

Figure 2.15 Overall block diagram of the second version architecture 41

Figure 2.16 The address arrangement in each ROM in the second version

architecture ... 42

Figure 2.17 First layer block diagram of the second version architecture ... 43

Figure 2.18 Second layer block diagram of the second version architecture

.. 44

Figure 2.19 Third layer block diagram of the second version architecture . 45

VII

Figure 2.20 Fourth layer block diagram of the second version architecture 45

Figure 2.21 Timing diagram of the second version architecture 47

Figure 2.22 Timing diagram of the first layer in the second version

architecture ... 47

Figure 2.23 Timing diagram of the second layer in the second version

architecture ... 48

Figure 2.24 Timing diagram of the third layer in the second version

architecture ... 49

Figure 2.25 Timing diagram of the fourth layer in the second version

architecture ... 50

Figure 3.1 The RTL simulation waveform in the first version architecture . 52

Figure 3.2 The simulation operation of input image in the first version

architecture ... 53

Figure 3.3 The simulation operation of the first layer in the first version

architecture ... 53

Figure 3.4 The simulation operation of the second layer in the first version

architecture ... 53

Figure 3.5 The simulation operation of the third layer in the first version

architecture ... 54

Figure 3.6 The simulation operation of the fourth layer in the first version

architecture ... 54

Figure 3.7 The simulation operation of MAX output result in the first version

architecture ... 54

Figure 3.8(a) The first layer RTL simulation waveform in the second version

architecture ... 55

Figure 3.8(b) The second layer RTL simulation waveform in the second

VIII

version architecture .. 55

Figure 3.8(c) The third layer RTL simulation waveform in the second version

architecture ... 56

Figure 3.8(d) The fourth layer RTL simulation waveform in the second

version architecture .. 56

Figure 3.9 The simulation operation of the first layer in the second version

architecture ... 56

Figure 3.10 The simulation operation of the second layer in the second

version architecture .. 57

Figure 3.11 The simulation operation of the third layer in the second version

architecture ... 57

Figure 3.12 The simulation operation of the fourth layer in the second version

architecture ... 58

Figure 3.13 The classification accuracy vs. data bits 59

Figure 4.1 Required memory and energy with different image size [29] 65

Figure 4.2 Minimum precision requirements in different layers [19] 66

IX

List of Tables

Table 1.1 Comparison of GPU, FPGA and ASIC .. 18

Table 3.1 The simulation circuit information... 60

Table 3.2 Performance comparisons .. 61

1

Chapter 1 Introduction

1.1Introduction to Neural Network

The neural network is a technology had been discussed for a long time. The

neural network can be traced back to 1940. In the other word, the neural network

is a quite historical research. From 1940, the neural network has been concerned

by a large number of research scholars.

McCulloch, W., and Pitts first published a concept of neural network in 1943.

However, the weight arrays must be established manually, the neural network

cannot be proposed an effective training method. The technology of neural

network only is discussed at that time.

Frank Rosenblatt proposed a much-need training algorithm called

backpropagation. This is an algorithm that can automatically build a neural

network weight array. However, this algorithm is quite slow. With increasing

number of layers, backpropagation algorithm will be slower. Though

backpropagation algorithm helped the development of the neural network in early

1980 and 1990, in the multilayer neural network, it still cannot have proposed an

effective training method. Neural network again becomes a discussed technology.

In 2006, Hinton proposed a new method to improve the training of neural

network. High-speed graphics processing units (GPU) speeds up the multilayer

neural network training. This new method makes today’s researchers feel the

benefits of deep neural networks and use deep neural networks to help people in

many applications.

2

A neural network architecture has at least one input layer and one output layer,

as shown in Figure 1.1. When a pattern inputs to the neural network, the neural

network will synchronously output a set of a pattern. The input layer and the output

layer through the hidden layer to calculation a set of a pattern.

Figure 1.1 General neural network architecture

The neural network inside is composed of independent and interconnected

neurons. As shown in Figure 1.2, each neuron is calculated by inputs and weights,

then outputs the value after an activation function. The input of a neuron may be

another neuron’s output or an external input of the neural network. These inputs

are usually expressed by floating-point or binary values. The binary value will use

1 and 0 to represent true and false, in some applications, +1 and -1 are used to

represent true and false.

3

Figure 1.2 Calculation of a neuron’s output

The neuron will multiply each input with the weight, and then adds these

multiplication results to the activation function. The operation of a neuron to

calculate the output is shown in Equation 1.1.

𝑓(𝑥𝑖 , ω𝑖) = ϕ(∑(𝑥𝑖 ⋅ ω𝑖))

𝑖

 (1.1)

Where the variable 𝑥𝑖 and the variable ω𝑖 represent the input value and

weight value of the neuron, respectively and ϕ is the activation function.

The variable 𝑖 is the number of the input and weight, the number of both

variables must be same.

4

The fully connected network can be seen in the various neural networks,

as shown in Figure 1.3. The name of the fully connected network is named

based on the number of hidden layers. The fully connected network shown in

Figure 1.3 is a two-hidden-layer fully connected network. The hidden layer

of the general neural network is between zero and two layers. In deep neural

network, it will have more than two hidden layers.

Figure 1.3 A two-hidden-layer fully connected network

Neurons are basic components in the neural network. The common

neurons are the input neurons, output neurons, hidden neurons and bias

neurons. As mentioned before, the input neuron will pass data to the next

neuron of the next layer. The output neuron will accept the data from a neuron

in the last layer. There are two important characteristics of the hidden node,

one is hidden neuron only accept data from other neurons as input data, like

input neurons or other hidden neurons. The other is hidden neuron only passes

the data to output neuron or other hidden neurons. The hidden neurons can

5

help neural network to understand the information of the input data and form

the output, but the hidden neurons are not directly connected input data or

output data.

The bias neuron can help neural network learn input data faster. The

function of the bias neuron is similar to the input neuron but the output of the

bias neuron is a fixed value. Because the output of bias neuron is constant

value, the bias neuron will not be connected to the previous layer. Figure 1.4

shows a two-hidden-layers neural network with bias neurons.

Figure 1.4 A two-hidden-layers fully connected neural network with bias neurons

6

The choice of the activation function is important because the activation

function affects how one formats the input data. The activation function is

used to establish the scope of the output neuron. Among them, sigmoid

function, hyperbolic tangent function and Rectified Linear Units (ReLU) are

the most common used functions.

The sigmoid activation function is most commonly used in feedforward

neural networks. As shown in Equation 1.2 and Figure 1.5, using sigmoid

activation function can ensure that the values stay within a relatively small

range. The output values of sigmoid function are limited to 0 to 1.

ϕ(𝑥) =
1

1 + ⅇ−𝑥
 (1. 2)

Figure 1.5 sigmoid activation function [32]

7

The hyperbolic tangent function is similar to the sigmoid function. The

sigmoid function restricts the output value within 0 and 1, and the hyperbolic

tangent function limits the output value between -1 and +1, as shown in

Equation 1.3 and Figure 1.6. Hyperbolic tangent activation function has

better performance than sigmoid activation function in some applications.

 ϕ(𝑥) = tanh⁡(𝑥) (1. 3)

Figure 1.6 Hyperbolic tangent activation function [32]

ReLU was proposed by Yee-Whye Teh and Hinton, and it was quickly

adopted in recent years. Due to the superior performance of ReLU in training

results, most of the current researches adopt ReLU as an activation function.

Equation 1.4 shows the ReLU function.

 ϕ(𝑥) = max⁡(0, 𝑥) (1. 4)

8

Unlike sigmoid function or the hyperbolic tangent function, ReLU does

not limit values within -1 to 1. In Figure 1.7, it can be seen why ReLU is

superior to the other activation function in training process. The non-

saturating function makes it easier to train the deep neural network with many

layers.

Figure 1.7 ReLU activation function [32]

Neural networks are often used for data regression or data classification.

The main goal of data regression is to predict the target results from input

data. For example, we want to use a vehicle’s information to calculate how

many gallons of gasoline the vehicle consumes per mile (miles per gallon,

MPG).

9

The possible vehicle data includes the weight of the vehicle, the

horsepower, the number of cylinders and the amount of exhaust gas (hybrid

power or gasoline), the output data is the speculated MPG value. Then we

can use the neural network with a lot of vehicle data to train the neural

network with known vehicle MPG values. In this example, we use a neural

network to create a non-linear model between the input data and the output

data. After training process, when we input a vehicle’s information, we can

predict the vehicle’s MPG through a trained neural network model.

The goal of classification is using a neural network to assign input data

to specific categories. For example, suppose we want to identify the flower

of unknown species (class A, class B, Class C). The input data are petal length,

petal width, calyx length, and calyx width. Each output neuron represents a

class. We can use a large amount of species data and known corresponding

output answers to train the neural network. After establishing a nonlinear

model between the input data and the output data. If we suppose the output

answer of the neural network is [H1, H2, H3] = [0.9, 0.2, 0.4]. Then, after the

softmax function, as shown in Equation 1.5, the output data are converted to

[Y1, Y2, Y3] = [0.4755,0.2361,0.2884]. The variable 𝑖 in Equation 1.5

means the number of output neuron.

 ϕ𝑖 =
ⅇH𝑖

∑ ⅇH𝑖
𝑖

 (1. 5)

Subsequently, the probability that the classification result is class A is

0.4755, the probability of class B is 0.2361, and the probability of class C is

0.2884. This example shows that the flower we want to recognize has the

highest probability to be class A.

10

In next section, we will discuss the common neural networks, like the

restricted Boltzmann machine (RBM), deep belief net (DBN) and

convolutional neural network (CNN), and we will briefly introduce those

neural networks.

11

1.2 Introduction to RBM, DBN and CNN

In the past few years, the restricted Boltzmann machine (RBM), are

applied to many applications, such as image recognition and sound analysis.

The Boltzmann machine is a neural network architecture that can represent a

probability distribution. The Boltzmann machine uses the sample distribution

of the target to learn important features of the target. When using the

Boltzmann machine, the calculation requirement is very high.

However, by limiting the network topology, we can simplify learning

issues and then forms RBMs. A RBM has a visible layer containing visible

units and a hidden layer containing hidden units, as shown in Figure 1.8.

Figure 1.8 The architecture of RBM

12

In RBM, all units are connected to units in other layers, but units in the

same layer are not connected to each other. The connection in the RBM is

non-directional, and the value of each unit is binary states.

From [33], the probability of each hidden unit being 1 can be expressed

as Equation 1.6, where σ is sigmoid function. Similarly, because RBM is the

symmetric network with no directionality, the probability of 1 for each visible

unit can be expressed as Equation 1.7.

 𝑝(H𝑖 = 1|v) = σ(∑(𝜔𝑖𝑗𝑣𝑗 + 𝑐𝑖)

𝑚

𝑗=1

) (1. 6)

 𝑝(V𝑗 = 1|h) = σ(∑(𝜔𝑖𝑗ℎ𝑖 + 𝑏𝑗)

𝑛

𝑖=1

) (1. 7)

From the above, the trained RBM will have the joint probability

distribution of the (𝑣,ℎ) state. In other words, RBM can be used to observe

the dependency of input and output.

13

When the aforementioned RBMs are stacked, we can form a deep neural

network named as deep belief neural network (DBN). The hidden layer of

RBM #1 is connected to the visible layer of RBM #2 and hidden layer of

RBM #2 is connected to the visible layer of RBM #3, as shown in Figure 1.9.

Figure 1.9 Greedy layer-wise learning in a deep belief network (DBN)

After training process, DBN established a multi-layer non-linear feature

detector through the dependency of the multiple layers of the visible units

and hidden units. In DBN, only the top two layers are non-directional RBM,

and other layers are directed belief networks, as shown in Figure 1.10.

14

Figure 1.10 Hybrid model of the DBN after greedy layer-wise learning

The Convolutional Neural Network (CNN) is the most commonly used

neural network architecture for image recognition today. CNN consists of

many stacked layers including convolution layers, fully connected layers,

non-linearity layers, and pooling layers, as shown in Figure 1.11.

15

The convolution layer extracts high-level features from the input data,

as shown in Figure 1.11(a). The FC layer will convert the input linearly, and

it is used usually in the final stage of the CNN architecture, as shown in

Figure 1.11(b). The nonlinear layer is used to increase the fitting ability of a

neural network. The most commonly used activation function in CNN is

ReLU, as shown in Figure 1.11(c). The Pooling layer is used to reduce the

size and computation of the feature map of the next layer and maintain the

invariability of the data transformation, as shown in Figure 1.11(d). Figure

1.12 shows an actual CNN architecture application. In [2], CNN is used to

recognize the human face.

Figure 1.11 Typical layers in CNN [2]

16

Figure 1.12 A practical CNN model for face alignment [2]

In addition to the basic network architecture and applications mentioned

above, there are many new innovative network architectures are proposed to

solve problems in all aspects. In neural network design, memory bandwidth

efficiency can be achieved by compressing weights or by binarizing weights,

the performance of the neural network improves but requires a little sacrifice

in accuracy [9, 29].

In hardware development, many people use FPGAs to implement many

neural network architectures [2, 13, 24]. FPGAs are used to verify the

possibility of neural network development in hardware, but the use of FPGA

development is affected by the on-chip memory size and the off-chip

bandwidth limitation, both of which are the major factor for achieving high

performance.

17

1.3 CPU, GPU, FPGA and ASIC

Implementation of Neural Networks

A neural network requires huge computing resource. As the number of

neural network layers increases, the more computing power are demanding.

From the research of AlexNet, an eight-layer network architecture in 2012, to

ResNET, which introduced a 150-layer network architecture in 2015,

computational complexity grows at geometric multiples, and the demand for

computations increases explosively.

The most commonly used computing resource today including CPU,

GPU, FPGA, and ASIC. In the neural network operation, a large number of

parallel calculations and a large number of floating-point matrix operations

are required.

The CPU architecture cannot fully exploit the computational needs of

neural networks. Therefore, the current mainstream neural network will

choose GPU, FPGA or ASIC as the main computing resource.

GPU is a processor specially designed for processing image operations.

It is suitable for complex mathematical and geometric operations, and it also

has superior performance in parallel operations. This feature is exactly in line

with the computational requirements of neural networks, so most of the

researches, GPU is the preferred choice.

18

FPGA is a platform that can repeatedly be compiled according to the

needs of the user. FPGA has the characteristics of higher efficiency and lower

power consumption than GPU.

However, in order to maintain the flexibility, FPGA have many

programmable circuits, so the operating frequency is restricted and the cost

cannot be as low as compared with ASIC. Due to the low power consumption

and repeat compilation of FPGAs, many researchers still use FPGAs as the

main operating resource.

ASIC is a dedicated integrated circuit. In recent years, there are many

chips designed specifically for a certain architecture, such as TPU, NPU, and

VPU. From the performance, area, power consumption, ASIC has obvious

advantages to FPGA or GPU.

Table 1.1 Comparison of GPU, FPGA and ASIC

 efficiency flexibility Production cost Power consumption

GPU middle high middle high

FPGA low middle high middle

ASIC high low low low

Since the current neural network architectures are kept improving, the

architecture of the neural network keeps changing. ASIC is not as flexible as

GPU or FPGA in such applications, Table 1.1 summaries the comparison

between GPU, FPGA, and ASIC.

19

The recently developed ASIC, TPU, from Google is 15 times higher

performance than traditional GPU, and with low production costs ASIC still

has sufficient advantages in the development of neural network technology.

The mainstream of today's neural network computing is the use of GPUs

with cloud computing. However, with the popularity of neural network-like

applications, data transmitted through the internet may be stolen. The neural

network application platform will gradually move toward the edge devices.

Since training the neural network requires a large number of complex

calculations, the trend is to train the neural network model at first through the

cloud computing or GPUs. Then ASIC is used to perform inference process

based on trained models to achieve personalized applications.

20

1.4 Related Works

In [34], an Altera Stratix III FPGA with a DDR2 SDRAM SODIMM

was used to implement the RBM architecture. Figure 1.13 shows the RBM

modules in [34], the RBM module is distributed to different groups. Each

RBM contains a set of multiplying arrays, embedded RAMs, and logic

elements. Weight values and neuron data are distributed in each group, and

each group handles part of the network. Under the proposed architecture, if

placement and routing are not effectively implemented, they are susceptible

to wire delay. The proposed architecture is compared with the neural

networks runs with Matlab, and there has a significant acceleration both in

single-precision and double-precision calculations, as shown in Figure 1.14.

Figure 1.13 RBM module detail [34]

21

Figure 1.14 The speedup as compared with Matlab [34]

In [35], the stochastic number generator generates a set of evenly

distributed stochastic streams, as shown in Figure 1.15. It uses the stochastic

number generator to process the input data and weight values, and then

performs calculations for each neural unit, as shown in Figure 1.16. The

proposed architecture is implemented in the Opal Kelly Kintex 7350-4lOT

FPGA to convert different bits of input data and weight values. To compare

with the input data and weight values represented by 64-bit floating-point

numbers for classification accuracy, the accuracy results are shown in Figure

1.17.

Figure 1.15 Stochastic Number Generator [35]

22

Figure 1.16 Architecture for Computing a Single Hidden Unit [35]

Figure 1.17 The classification accuracy on the MNIST testing dataset with different

computation precision for the network [35]

23

To improve the speed performance of the DBN, [36] uses FPGAs serial

connections, as shown in Figure 1.18. Through the sharing of resources in

each FPGA, computational allocation and parallel operations increase the

overall performance. However, the speed up of the proposed architecture is

limited by the performance of the FPGA board itself.

Figure 1.18 Block diagram for the quad-FPGA system [36]

In [37], four contributions are presented to enhance the performance of

the RBM, Neuron computation unit (NCU) is shown in Figure 1.19, low

power neuron binarizer (LPBN) is shown in Figure 1.20, user-defined

connection map (UDCM) is shown in Figure 1.21, and early stopping (ES)

mechanism.

24

The NCU has two modes of operation, inner products for hidden neuron

generation from the visible layer, and linear summation for visible neuron

reconstruction from the hidden layer. LPBN is a switch used to determine the

RBM learning mode. UDCM can skip unnecessary data access and

calculations for the entire system to improve performance. The ES

mechanism will terminate the learning process to reduce the training time. In

summary, UDCN and ES mechanism can reduce the computation time. NCU

and LPNB can reduce the cost of hardware implementation.

Figure 1.19 Architecture of the NCU with dual operation modes [37]

25

Figure 1.20 Architecture of the proposed low power neuron binarizer [37]

Figure 1.21 Architecture of the proposed UDCM module [37]

26

1.5 Motivation and Application Description

This thesis uses the MNIST handwritten database as the usage data, and

uses MNIST to understand the operation of DNN. Learning how to design

deep network architectures under ASIC flow through the MNIST database

and a four layers DBN network. It is expected that the experience of this

research can be applied to the design of other network architectures, with a

voice-related database for identification.

With the technological development of speech recognition and natural

language understanding, research topics related to intelligent speech have

also attracted attention. In addition, with the aging of society, related

applications of intelligent speech and hearing aids have also become a serious

research topic.

The traditional hearing aids are easily affected by the sound field in

different environment, hearing aids are not ideal for auditory compensation.

Therefore, it is necessary to use a neural network to perform deep

learning on the sound fields in different environment and to acquire and

identify features of the sound field for a long period to achieve customized

auditory compensation.

In this thesis, we will use MNIST handwriting database as the dataset to

understand the operation of DNN. Learning how to design the deep neural

network architecture under ASIC flow with MNIST database and the DBN

with four layers will be used for this application.

Subsequently, the experience of designing DNN ASIC can be used to

apply to other neural network architectures such as hearing aids applications.

27

1.6 Neural network and SVM

In the early image or speech recognition, the gradient vanish formed by

the neural network architecture caused the depth of the architecture cannot to

break through the three layers. In addition, the calculation time of neural

network is quite long and the SVM is better handled than the neural network

in the shallow network between the two layers, so traditional the image or

speech recognition was dominated by the SVM architecture.

Until 2006, Hinton proposes RBM architecture and DBN network

architecture. Forward and backward conduction of data through RBM to

capture the characteristics of the data and solve the problem of gradient

vanish. Then, by stacking RBMs to build a multi-layer deep network

architecture DBN, machine learning using a neural network-like architecture

becomes mainstream.

1.7 Chapter Organization

The Chapter 1 briefly discusses the components of a neural network and

the common neural network architecture. The common elements in the neural

network are also introduced in this chapter.

The remaining thesis are organized as follows: The Chapter 2 describes

the hardware architecture of the implementation. The Chapter 3 shows the

simulation results of real hardware architecture. Finally, in Chapter 4, we will

make a conclusion and discuss what can be improved in the future works.

28

Chapter 2 Architecture of DBN

hardware

2.1 Architecture overview

In this thesis, the proposed architecture uses the MNIST database. The

MNIST database is a large database of handwritten digits and a benchmark for

computer vision applications. MNIST is composed of 0 to 9, total 10 kinds of

hand-written digits. As shown in Figure 2.1, each digit contains 28×28 gray-scale

pixels, which are often used to train image processing systems. The MNIST

database contains 60,000 training digits and 10,000 test digits.

Figure 2.1 Samples from the MNIST [3]

The proposed architecture focused on the inference phase not the training

29

phase, so the proposed architecture uses the Deep Belief Networks (DBN) toolbox

provided by Mohammad Ali Keyvenrad [38] to train the DBN network. Figure 2.2

shows the flow to train the DBN.

The DBN is trained by the Matlab toolbox. The DBN designed in Matlab is

trained and fine-tune by the training data. After training in Matlab is done, the

weight values and bias values of each layer can be extracted and saved as text files.

The obtained weight values and bias values are stored in the ROMs and integrated

into the proposed DBN hardware. Finally, the proposed DBN circuit uses the same

test data to verify the proposed DBN hardware identification capabilities. In

Matlab simulation, double-precision is used in numerical calculations. This

method is not possible to be used in low-power hardware implementation.

Therefore, in design of the proposed architecture, the range of weight values and

the fractional bit requirements simulated by Matlab is observed to determine the

bits requirement in hardware design to retain the accuracy.

In the training process, the architecture mentioned in [40] and [19] were

considered. In the process of finding out the suitable DBN model by adjusting the

precision of the input data and the precision of unit calculation. After finding out

the model, the model will be written in text file from Matlab. Because of the data

in the model are quite huge, the proposed architecture uses ROM to store the model.

Finally, through the test data to verify the accuracy of the classification results.

30

In the verification process, the correct results of each layer’s output were

calculated by Matlab code firstly. Then the test model in hardware design will use

these results to verify the correctness of DBN hardware. The unit calculation in

Matlab using the floating-point numbers, but the proposed architecture using

fixed-point numbers in each unit calculation. There are some errors between

floating-point calculation results and fixed-point calculation results. However,

those errors can be suppressed after the sigmoid activation function.

Figure 2.2 Model training and hardware verification

The activation function (sigmoid) can be implemented using a look-up table

or a polynomial. The accuracy of the look-up table method and the Taylor series

are compared using Matlab. As shown in Figure 2.3, the correct rate of the

classification result of using the floating-point sigmoid function training is about

96.2%. The correct rate obtained by using the lookup table is 96.1%. Taylor series

method with a 10 order polynomial shown in Equation 2.1 only achieves a correct

rate 92.2%. Based on Matlab simulation, the sigmoid function is implemented with

the look-up table method.

31

Figure 2.3 The comparison of look up table and Taylor series.

1

1 + ⅇ−𝑥
=

1

1 + ∑
(−𝑥)𝑘

𝑘!
10
𝑘=1

 (2.1)

32

2.2 Architecture of DBN

The DBN neural network architecture used in MNIST database handwriting

digits detecting is 784×256×256×256×10, totally has four layers, as shown in

Figure 2.4. The input neurons of the first layer are 784 because the image size of

the handwritten digits in MNIST database is 28×28. The last layer has 10 output

neurons because the proposed design wants to classify the input image from 0 to

9. The size of the weighted array is dependent on the number of neurons in the

network architecture. Because each layer of the DBN is fully connected, the

weight array sizes in each layer are 784×256, 256×256, 256×256 and 256×10,

respectively.

To determine the suitable number of layers in the network architecture and

the number of units between each layer, in the first, the size of the network

architecture used by Hinton [40] is used. After setting the network architecture to

784×500×500×2000×10 and processing the training, the recognition accurate rate

is 96.37%. Later found in [19], they use the same number of network layers, but

use a smaller network architecture 784×256×256×256×10. In [19], the correct rate

of classification is 99.6%. After using the same network size as [19] without other

adjustments, classification accuracy reached 98.2%.

Through the above training and model selection process, a better

classification model can be obtained with a smaller network architecture, and the

number of units that need to be used is greatly reduced, and the amount of

computation required inside the neural network is also reduced. Therefore, the

DBN network architecture is determined as 784×256×256×256×10.

33

Figure 2.4 The architecture of the DBN module

34

2.3 Hardware architecture

The proposed DBN first verision hardware architecture is shown in

Figure 2.5. The input are MNIST handwritten digits. Each image has 784

pixels, the input registers are used to store one image data. Addition, 49

ROMs are used to store weight values and one ROM is used to store bias

values. The data in the ROMs are stored sequentially, as shown in Figure 2.6.

The State machine will control the different layer calculation by four Layer

valid signals and one Visible valid signal and uses one Out valid signal to

control when the Unit REG sends the max unit to MAX_REG. The sigmoid

activation function is implemented with lookup a table with 1024 entries.

Figure 2.5 Overall block diagram of the first version architecture

35

Figure 2.6 The address arrangement in each ROM in the first version architecture

The proposed architecture uses Input REG to store one image data. The

state machine sends the read data addresses to 32 Weight ROMs and one Bias

ROM and then stores the read out data in Weight REG and Bias REG before

MAC operations. The Input REG, Weight REG, and Bias REG can be directly

accessed by the Processing unit. When the processing unit finishes the MAC

computing, the summation result is sent to the Unit REG. The Unit REG

sends the data to the Sigmoid lookup table for computing activation function

output. The activation function output data are stored in the Sigmoid unit

REG and will be the input data for the next layer. After the calculation of the

current layer is completed, the Processing unit will start to calculate the next

layer. When the final layer computation is finished, the State machine sends

a signal to Unit REG to send the max unit of the last layer to the MAX_REG

36

for comparison. The MAX_REG search the maximum results and sends out

corresponding digit as the classification output.

In the proposed architecture, the sigmoid function is implemented with

a segmented look-up table, as shown in Figure 2.7. By dividing the sigmoid

function into different intervals, the index value of each interval contains a 4-

bit integer and a different number of decimal bits according to the interval.

When the x value is 0 to 1 or the x value is 0 to -1, the index value consists

of a 4-bit integer and a 6-bit decimal number. When the x value is 1 to 2 or

the x value is -1 to -2, the index value consists of a 4-bit integer and a 5-bit

decimal number. When the x value is 2 to 3 or the x value is -2 to -3, the index

value consists of a 4-bit integer and a 4-bit decimal number. When the x value

is 3 to 4 or the x value is -3 to -4, the index value consists of a 4-bit integer

and a 3-bit decimal number. When the x value is 4 to 5 or the x value is -4 to

-5, the index value consists of a 4-bit integer and a 2-bit decimal number.

When the x value is greater than 5 or the x value is less than -5, the index

value consists of a 4-bit integer and a 1-bit decimal number. Then, the input

will be converted by the above mentioned into a fixed-point number with 4-

bit integer part and 12-bit decimal part.

37

Figure 2.7 The proposed segmented sigmoid function look-up table

4-bit integer

6-bit decimal

4-bit integer

5-bit decimal

4-bit integer

4-bit decimal

4-bit integer

3-bit decimal

4-bit integer

2-bit decimal

4-bit integer

1-bit decimal

4-bit integer

1-bit decimal

4-bit integer

2-bit decimal

4-bit integer

3-bit decimal

4-bit integer

4-bit decimal

4-bit integer

5-bit decimal

4-bit integer

6-bit decimal

38

The proposed architecture action is divided into five parts, as shown in

Figure 2.8. The proposed architecture inputs the image through the

Visible_valid signal and calculates the different layer by the different

Layer_valid signal. Finally, the output is controlled by the Out_valid signal.

The next Visible_valid signal rises and receives the next picture.

Figure 2.8 Timing diagram of the first version architecture

Figure 2.9 shows the details timing of the input data. The input data are

stored in Input REG via Visible_valid. Figure 2.10 shows the first layer

weight read in. When Layer1_valid is rises, Layer1_address will start sending

addresses to 32 ROMs. After Weight REG obtain weight value by setup1

signal, the first layer units start to calculate.

Figure 2.9 Timing diagram of input image in the first version architecture

39

Figure 2.10 Timing diagram of first layer weight values in the first version

architecture

Figure 2.11 shows the second layer weight read in. When Layer2_valid

rises, Layer2_address will start to send addresses to 8 ROMs. After Weight

REG obtain weight values by setup2 signal, the second layer units start to

compute.

Figure 2.11 Timing diagram of second layer weight values in the first version

architecture

Similarly, when Layer3_valid rises, as shown in Figure 2.12,

Layer3_address will start to send addresses to 8 ROMs. When Weight REG

obtains weight values by setup3 signal, the third layer units start to compute.

Figure 2.12 Timing diagram of third layer weight values in the first version

architecture

40

When Layer4_valid rises, as shown in Figure 2.13, Layer4_address will

start to send addresses to a ROMs. After Weight REG obtains weight values

by setup4 signal, the fourth layer units start to calculate. When all calculations

are completed, Out_valid will rise and the fourth layer units send results to

MAX_REG, as shown in Figure 2.14. The next Visible_valid rise to input the

next image.

Figure 2.13 Timing diagram of fourth layer weight values in the first version

architecture

Figure 2.14 Timing diagram of output result and input next image in the first version

architecture

From the architecture, the critical path of this architecture will appear in

the multiplication and addition operations in each layer. In the first layer, 784

MACs and one adder tree are performed in one cycle, and critical path the

delay is quite long. There are also 256 MAC and one adder tree delay in other

layer calculations.

41

There are many registers and MAC units being used in the above

architecture. From experience of the first version, the new architecture is

proposed, as shown in Figure 2.15. Separating each layer in the architecture,

each layer also separates the access to the weight values. The first layer only

accesses the ROM_W1_1 to ROM_W1_32, the second layer only accesses

the ROM_W2_1 to ROM_W2_8, the third layer only accesses the

ROM_W3_1 to ROM_W3_8, and the fourth layer only accesses the

ROM_W4_1. Because of the ROM complier has the smallest memory size

limitative, all bias values are store in the same ROM. Each layer will access

the bias values from the same ROM. The weight and bias values address

arrangement in each ROM is shown in Figure 2.16. With such an architecture,

both redundant registers are removed and the used MAC units are reduced

for circuit area consideration.

Figure 2.15 Overall block diagram of the second version architecture

42

Figure 2.16 The address arrangement in each ROM in the second version architecture

The detail block diagram of the first layer is shown in Figure 2.17. State

machine controls data input into Input REG. Then, state machine sends the

first layer to use the weight address and bias address to ROM _W1_1 to

ROM_W1_32 and ROM_Bias. Then, ROM _W1_1 to ROM_W1_32 and the

ROM_Bias return the corresponding data to the MAC unit and the MAC unit

calculates 32 multiplications in parallel. Unit REG stores and returns data to

MAC for accumulation. When the MAC operatives of 256 units in the first

layer is completed, the state machine sends Out_valid signal to control the

Unit REG sends data to the L1_sigmoid_table for activation function

computation and output the first layer’s output to the L2.

43

Figure 2.17 First layer block diagram of the second version architecture

The detail block diagram of the second layer is shown in Figure 2.18.

State machine controls data input into Input REG. Then, state machine sends

weight address and bias address to ROM _W2_1 to ROM_W2_8 and the

ROM_Bias. Then, ROM _W2_1 to ROM_W2_8 and the ROM_Bias return

the corresponding data to the MAC unit and the MAC unit calculates eight

multiplications in parallel. Unit REG stores and returns data to MAC for

accumulation. When the MAC operatives of 256 units in the second layer is

completed, the state machine sends Out_valid to control the Unit REG sends

data to the L2_sigmoid_table for activation function computation and output

the second layer’s output to the L3.

44

Figure 2.18 Second layer block diagram of the second version architecture

The detail block diagram of the third layer is shown in Figure 2.19. State

machine controls data input into Input REG. Then, state machine sends

weight address and bias address to ROM _W3_1 to ROM_W3_8 and the

ROM_Bias. Then, ROM _W3_1 to ROM_W3_8 and the ROM_Bias return

the corresponding data to the MAC unit and the MAC unit calculates eight

multiplications in parallel. Unit REG stores and returns data to MAC for

accumulation. When the MAC operatives of 256 units in the third layer is

completed, the state machine sends Out_valid to control the Unit REG sends

data to the L3_sigmoid_table for activation function computation and output

the third layer’s output to the L4.

45

Figure 2.19 Third layer block diagram of the second version architecture

The detail block diagram of the fourth layer is shown in Figure 2.20.

State machine controls data input into Input REG. Then, state machine sends

the fourth layer to use the weight address and bias address to the ROM _W4

and the ROM_Bias. The ROM _W4 and the ROM_Bias return the

corresponding data to the MAC of the fourth layer and calculate one unit at a

time. Unit REG store and return data to MAC for accumulation. When the

fourth layer of 10 units is completed, the state machine sends Out_valid to

send the Unit REG data to the MAX_REG to select the largest unit and output.

Figure 2.20 Fourth layer block diagram of the second version architecture

In the second version architecture, the number of MAC units and

46

registers are reduced. Therefore, the main problem in the first version, the

circuit area cost, and the critical path of design can be further improved.

The timing diagram of the second version is shown in Figure 2.21.

Because the last layer in the second version integrates the maximum value

searching unit, the second version uses four stages to calculate the output.

As shown in Figure 2.22, the input of the first layer input into

Input_REG sequentially when the In_valid signal rises. Subsequently, MAC

unit calculates the units of different parts through the switching of STATE.

Each part has 32 units in calculated simultaneously. The first layer calculates

256 units through eight times operations. Unit_REG adds bias value when

STATE is 8. Then, Unit_REG sends results to the L1_sigmoid_table with

Out_valid. Finally, the data are sent to the next layer after L1_sigmoid_table.

In the Equation 2.2 to 2.4, the v represents the Input_REG, the w represents

the return value from ROM_W1_1 to ROM_W1_32, the 𝑢 represents the

Unit_REG. Take the first two states in the first layer for example, Equation

2.2 and Equation 2.3 show the unit to be calculated in the state 0 and state 1,

respectively. Equation 2.4 shows all units are added with bias values

47

Figure 2.21 Timing diagram of the second version architecture

Figure 2.22 Timing diagram of the first layer in the second version architecture

 𝑢[𝑗] =∑ 𝑣[𝑖] × 𝑤[𝑖] + 𝑢[𝑗], 𝑗 = 0, 8, 16,… , 248⁡ 𝑎𝑡⁡ 𝑆𝑇𝐴𝑇𝐸 = 0
783

𝑖=0
 (2.2)

 𝑢[𝑗] = ∑ 𝑣[𝑖] × 𝑤[𝑖 + 784] + 𝑢[𝑗], 𝑗 = 1, 9, 17,… , 249⁡ 𝑎𝑡⁡ 𝑆𝑇𝐴𝑇𝐸 = 1
783

𝑖=0
 (2.3)

 𝑢[𝑖] =∑ 𝑏[𝑖] + 𝑢[𝑖]⁡ 𝑎𝑡⁡ 𝑆𝑇𝐴𝑇𝐸 = 8
255

𝑖=0
 (2.4)

48

As shown in Figure 2.23, the inputs of the second layer input into

Input_REG sequentially when the In_valid signal rises. Subsequently, MAC

unit calculates the units of different parts through the switching of STATE.

Each part has eight units in calculated simultaneously. The second layer

calculate 256 units through 32 times operations. Unit_REG adds bias value

when STATE is 32. Then, Unit_REG sends results to the L2_sigmoid_table

with Out_valid. Finally, the data are sent to the next layer after

L2_sigmoid_table. Take the first two states in the second layer for example,

Equation 2.5 and Equation 2.6 show the units to be calculated in the state 0

and state 1, respectively. Equation 2.7 shows all units are added with bias

values.

Figure 2.23 Timing diagram of the second layer in the second version architecture

 𝑢[𝑗] = ∑ 𝑣[𝑖] × 𝑤[𝑖] + 𝑢[𝑗], 𝑗 = 0, 32, 64,… , 224⁡ 𝑎𝑡⁡ 𝑆𝑇𝐴𝑇𝐸 = 0
255

𝑖=0
 (2.5)

 𝑢[𝑗] =∑ 𝑣[𝑖] × 𝑤[𝑖 + 256] + 𝑢[𝑗], 𝑗 = 1, 33, 65,… , 225⁡ 𝑎𝑡⁡ 𝑆𝑇𝐴𝑇𝐸 = 1
255

𝑖=0
 (2.6)

 𝑢[𝑖] = ∑ 𝑏[𝑖] + 𝑢[𝑖]⁡ 𝑎𝑡⁡ 𝑆𝑇𝐴𝑇𝐸 = 32
255

𝑖=0
 (2.7)

49

As shown in Figure 2.24, the inputs of the third layer input into

Input_REG sequentially when the In_valid signal rises. Subsequently, MAC

unit calculates the units of different parts through the switching of STATE.

Each part has eight units in calculated simultaneously. The third layer

calculate 256 units through 32 times operations. Unit_REG adds bias value

when STATE is 32. Then, Unit_REG sends results to the L3_sigmoid_table

with Out_valid. Finally, the data are sent to the next layer after

L3_sigmoid_table. Take the first two states in the third layer for example,

Equation 2.8 and Equation 2.9 show the units to be calculated in the state 1

and state 0, respectively. Equation 2.10 shows all units are added with bias

values.

Figure 2.24 Timing diagram of the third layer in the second version architecture

 𝑢[𝑗] = ∑ 𝑣[𝑖] × 𝑤[𝑖] + 𝑢[𝑗], 𝑗 = 0, 32, 64,… , 224⁡ 𝑎𝑡⁡ 𝑆𝑇𝐴𝑇𝐸 = 0
255

𝑖=0
 (2.8)

 𝑢[𝑗] =∑ 𝑣[𝑖] × 𝑤[𝑖 + 256] + 𝑢[𝑗], 𝑗 = 1, 33, 65,… , 225⁡ 𝑎𝑡⁡ 𝑆𝑇𝐴𝑇𝐸 = 1
255

𝑖=0
 (2.9)

 𝑢[𝑖] = ∑ 𝑏[𝑖] + 𝑢[𝑖]⁡ 𝑎𝑡⁡ 𝑆𝑇𝐴𝑇𝐸 = 32
255

𝑖=0
 (2.10)

50

In the layer fourth timing diagram, as shown in Figure 2.25, the inputs

of the fourth layer input into Input_REG sequentially when the In_valid

signal rises. Subsequently, MAC unit calculates the units of different parts

through the switching of STATE. Each part has one unit in calculated. The

fourth layer calculate 10 units through 10 times operations. Unit_REG adds

bias value when STATE is 10. Then, searching the max unit in Unit_REG

sent to MAX_REG. After finding out the max unit, the result sent out from

MAX_REG after the Out_valid is rises. Take the first two states in the fourth

layer for example, Equation 2.11 and Equation 2.12 show the units to be

calculated in the state 0 and state 1, respectively. Equation 2.13 shows all

units are added with bias values.

Figure 2.25 Timing diagram of the fourth layer in the second version architecture

 𝑢[𝑗] = ∑ 𝑣[𝑖] × 𝑤[𝑖] + 𝑢[𝑗], 𝑗 = 0⁡ 𝑎𝑡⁡ 𝑆𝑇𝐴𝑇𝐸 = 0
255

𝑖=0
 (2.11)

 𝑢[𝑗] =∑ 𝑣[𝑖] × 𝑤[𝑖 + 256] + 𝑢[𝑗], 𝑗 = 1⁡ 𝑎𝑡⁡ 𝑆𝑇𝐴𝑇𝐸 = 1
255

𝑖=0
 (2.12)

 𝑢[𝑖] = ∑ 𝑏[𝑖] + 𝑢[𝑖]⁡ 𝑎𝑡⁡ 𝑆𝑇𝐴𝑇𝐸 = 10
255

𝑖=0
 (2.13)

51

2.4 Summary

First, through the simulation in Matlab toolbox, the suitable model to implement the

circuit can be found. Then, comparing the complexity of the look-up table and Taylor

series, the sigmoid activate function is implemented with a look-up table. Finally, two

architectures of DBN are bulit. In the first version, the preliminary architecture was

proposed. When the MAC units are calculated, the critical path causes the bottleneck

in the circuit speed. The second version not only improves the bottleneck of circuit

operating speed but also reduces the cost of circuit area.

52

Chapter 3 Experimental Result

3.1Waveform analysis

Both DBN hardware circuit are implement in TSMC 90nm CMOS

process. Figure 3.1 is the RTL waveform simulation of the first version. As

mentioned in section 2.3, the first version architecture divides the operation

into five parts. The parallel multipliers used in calculations within the same

layer reduce the overall calculation time. In the first layer, 32 ROMs can also

read data simultaneously, and eight ROMs in the second and third layers can

read data simultaneously. The proposed first version architecture can be 32

times faster than a circuit that only has one multiplier, and 8 times faster in

the second and third layers computation.

Figure 3.1 The RTL simulation waveform in the first version architecture

Figure 3.2 and Figure 3.3 show the simulation operation of the first layer.

The input value uses the visible_vlaid signal to store data in Input_REG. At

the same time, the Layer1_valid risses and the setup1 signal in Figure 3.3 will

be used to start storing the weight values to the registers Weight_REG_1 to

Weight_REG_32. First, each unit multiplied by the corresponding weight

value. Next, each unit add up the corresponding bias value and store in the

Unit_REG. Then, the results in the Unit_REG send to the sigmoid look-up

table to convert. Finally, the result store into the Sigmoid_unit_REG as the

input of the next layer.

53

Figure 3.2 The simulation operation of input image in the first version architecture

Figure 3.3 The simulation operation of the first layer in the first version architecture

Figure 3.4 shows the simulation operation of the second layer, using

Layer2_valid as the signal and using setup2 signal to store the weight value

of the second layer to Weight_REG_33 to Weight_REG_40. The previous

layer stores the result in Sigmoid_unit_REG as the input of the second layer

of input. First, each unit multiplied by the corresponding weight value. Next,

each unit add up the corresponding bias value and store in the Unit_REG.

Then, the results in the Unit_REG send to the sigmoid look-up table to

convert. Finally, the result store into the Sigmoid_unit_REG as the input of

the next layer.

Figure 3.4 The simulation operation of the second layer in the first version

architecture

Figure 3.5 shows the simulation operation of the third layer. The

operations of the third layer are similar to the second layer, using

Layer3_valid as the signal and using setup3 signal to store the weight value

of the third layer to Weight_REG_41to Weight_REG_48. The previous layer

54

stores the result in Sigmoid_unit_REG as the input of the third layer. First,

each unit multiplied by the corresponding weight value. Next, each unit add

up the corresponding bias value and store in the Unit_REG. Then, the results

in the Unit_REG send to the sigmoid look-up table to convert. Finally, the

result store into the Sigmoid_unit_REG as the input of the next layer.

Figure 3.5 The simulation operation of the third layer in the first version architecture

Figure 3.6 shows the simulation operation of the fourth layer. The fourth

layer uses the previous layer results stores in Sigmoid_unit_REG as input.

Using Layer4_valid as the signal and using setup4 signal to store the weight

value of the fourth layer to Weight_REG_49. First, each unit multiplied by

the corresponding weight value. Next, each unit add up the corresponding

bias value and store in the Unit_REG. When all the units in the fourth layer

have been calculated, the result of the fourth layer in the Unit_REG will be

sent to MAX to select the largest unit output, as shown in Figure 3.7.

Figure 3.6 The simulation operation of the fourth layer in the first version architecture

Figure 3.7 The simulation operation of MAX output result in the first version

architecture

55

The first version architecture using lot of two-dimensional array to store

the data which cause the time of synthesis is quit long. In addition, the first

version architecture occupies lot of resources when the first version

architecture start synthesis and then cause the synthesis fail.

The waveform simulation in the second version architecture is shown in

Figure 3.8(a) to Figure 3.8(d). Four layers are calculating in sequence. The

result data of first layer are the input data of second layer. The result data of

second layer are the input data of third layer. The result data of third layer are

the input data of fourth layer. The calculates switching according to the

STATE signal in each layer to calculate different partial units. The maximum

unit search is performed in the fourth layer. The IN_VALID signal in Figure

3.8(a) to Figure 3.8(d) are the In_valid signal in Figure 2.22 to Figure 2.25.

The OUT_VALID signal in Figure 3.8(a) to Figure 3.8(d) are the Out_valid

signal in Figure 2.22 to Figure 2.25. The register V in Figure 3.8(a) to Figure

3.8(d) are the Input_REG in Figure 2.22 to Figure 2.25. L1_all_unit,

L2_all_unit, L3_all_unit and L4_all_unit are the Unit_REG in Figure 2.22 to

Figure 2.25. The register OUT_DATA in the fourth layer is the MAX_REG

of Figure 2.25.

Figure 3.8(a) The first layer RTL simulation waveform in the second version

architecture

Figure 3.8(b) The second layer RTL simulation waveform in the second version

architecture

56

Figure 3.8(c) The third layer RTL simulation waveform in the second version

architecture

Figure 3.8(d) The fourth layer RTL simulation waveform in the second version

architecture

Figure 3.9 shows the calculation of the first layer. Using IN_VALID to

read in and store the data into the register V. Switching different unit

calculations through the STATE signal. 32 units are calculated in each state.

When STATE signal is 7, 256 units in the first layer are complete calculation.

When the STATE signal is 8, the results in the L1_all_unit are added with the

bias value. Next, using OUT_VALID signal sent to the L1_sigmoid_table

conversion. Finally, output the result from the first layer.

Figure 3.9 The simulation operation of the first layer in the second version

architecture

Figure 3.10 shows the calculation of the second layer. Using IN_VALID

to read in and store the data into the register V. Switching different unit

calculations through the STATE signal. Eight units are calculated in each state.

When STATE signal is 31, 256 units in the second layer are complete

calculation. When the STATE signal is 32, the results in the L2_all_unit are

added with the bias value. Next, using OUT_VALID signal sent to the

L2_sigmoid_table conversion. Finally, output the result from the second layer.

57

Figure 3.10 The simulation operation of the second layer in the second version

architecture

Figure 3.11 shows the calculation of the third layer. Using IN_VALID

to read in and store the data into the register V. Switching different unit

calculations through the STATE signal. Eight units are calculated in each state.

When STATE signal is 31, 256 units in the third layer are complete

calculation. When the STATE signal is 32, the results in the L3_all_unit are

added with the bias value. Next, using OUT_VALID signal sent to the

L3_sigmoid_table conversion. Finally, output the result from the third layer.

Figure 3.11 The simulation operation of the third layer in the second version

architecture

Figure 3.12 shows the calculation of the fourth layer. Using IN_VALID

to read in and store the data into the register V. Switching different unit

calculations through the STATE signal. One unit is calculated in each state.

When STATE signal is 9, Ten units in the fourth layer are complete

calculation. When the STATE signal is 10, the result in the L4_all_unit is

added with the bias value. Next, using OUT_VALID signal sent to the

OUT_DATA to search the max unit. Finally, output the result from the fourth

layer.

58

Figure 3.12 The simulation operation of the fourth layer in the second version

architecture

59

3.2 Fixed-point number calculation

accuracy analysis

The DBN model trained in Matlab and the test data are formatted as 27-

bit, 16-bit, 8-bit and 4-bit fixed-point numbers. Different bits representations

are compared their classification accuracy with double-precision Matlab

simulations. As shown, in Figure 3.13 the proposed architecture can still

maintain accuracy using 16-bit data processing as compared to double-

precision floating point calculations. Under the 8-bit condition, only 2%

accuracy loos between the double-precision can be found, and in 4-bit

conditions, it completely loses the ability perform to classification. From this

experiment, the 16-bit and 8-bit representations can be used in the proposed

architecture, and still have sufficient accuracy for MNIST database

application.

Figure 3.13 The classification accuracy vs. data bits

98.2 97.3 97.3 96.9

0

0

10

20

30

40

50

60

70

80

90

100

Double-precision

floating-point format

4-bit integer, 23-bit

decimal

4-bit integer, 12-bit

decimal

4-bit integer, 4-bit

decimal

4-bit integer

A
cc

u
ra

cy

Data bits

Classification accuracy

60

3.3 Summary

The simulation circuit information of the proposed second version

architecture is summarized in Table 3.1, the power of the DBN circuit from

the best case to the worst case are 418mW, 353mW, and 311mW, respectively.

The gate count of the proposed design circuit is 1,160k. The maximum clock

rate of the DBN circuit is 73.6MHz. The precision of the proposed

architecture is 16-bit fixed-pointed. The proposed architecture used 334k

MAC operation. The efficiency of the simulation circuit from best case to

worst case are 1.46411GOPs/W, 1.7337GOPs/W, and 1.9678GOPs/W,

respectively. Table 3.2 illustrates the comparison between the proposed

circuit and the existing systems

Table 3.1 The simulation circuit information

 FF TT SS

Power(mW) 418 353 311

Area(gate count) 1160k

Clock rate(MHz) 73.6

Cycle 40.26M

Efficiency(GOPs/W) 1.46411 1.7337 1.9678

Architecture precision 16-bit fixed-point

Number of MAC

operation
334k

Accuracy 97.3

61

Table 3.2 Performance comparisons

 This work [12] [16] [19]

Technology 90nm 65nm 40nm 40nm

Design target
Fully-connected

layer

Convolutional

layer

Fully-connected

layer & FFT

Fully-connected

layer

Power(mW) 353 278 0.288 125*

Clock rate(MHz) 73.6 100-250 1.9-19.3 250

Efficiency(GOPs/W) 1.7337 9.6** 374 N/A

Area(gate count) 1160k 1176k N/A N/A

Area(mm2) N/A 16 7.1 3.145

Architecture precision
16-bit

fixed-point

16-bit

fixed-point

16-bit

fixed-point

16-bit

fixed-point

Accuracy 97.3% N/A N/A 99.6%

*estimate. **Calculated based on reported GOPs and power

62

Chapter 4 Conclusion and Future

works

4.1 Conclusion

In this thesis, we implemented two versions of hardware accelerators for

the DBN network and the impact of the recognition result due to the accuracy

of the input data is discussed. The clock speed bottleneck of the first version

architecture is the delay in MAC operations with the adder tree. However, the

computing elements can be shared in different layers of calculations.

Through the experience in the first version architecture, the second

version architecture is implemented, and the adder tree in the first version

architecture is reduced. Also, the computational delay generated by the adder

tree is reduced. Separating the shared MACs in each layer will increase the

hardware cost. However, simplifying the architecture from the first version

to the second version, the performance can be improved.

In the DBN model extraction, we use the toolbox in [38] to simulate the

operation of the DBN network. First, the toolbox is used to find out the

network size and unit number in each layer. Next, the DBN hardware circuit

is implement in TSMC 90nm CMOS process after the DBN model

determined.

63

In the simulation experiment, different precision on the extracted models

are tested, and then, the minimum precision required for weight and bias can

be obtained. At present, the proposed architecture had large power

consumption. To reduce the energy consumption while maintaining the

accuracy of identification, it will be necessary to use an approximate

multiplier to reduce the overall computational complexity and then reduces

the energy consumption.

64

4.2 Future works

In the proposed circuit architecture, there are some idle circuits waiting

during the operation in different layer. Therefore, pipelining the circuit can

be the first step to improve the throughput in the proposed circuit architecture.

In addition, the research trend of the current edge artificial intelligence chip

can be adopted in the next step.

From last year's ISSCC 2017 related papers for DNN ASIC development.

It can be seen that the research trend of the current edge artificial intelligence

chip is to reduce the access time of the external memory, dynamically adjusts

operation accuracy, reduces the power consumption per MAC operation, and

uses voltage scaling technology to reduce power consumption in different

mode.

The main reason of reducing the access times of the external memory is

that the I/O Pad will consume large power consumption when accessing data.

From the power analysis of [29], the external memory is the main source of

power consumption, as shown in Figure 4.1. The amount of external data

access times can be reduced by compressing the model, and then power

consumption is reduced.

65

Figure 4.1 Required memory and energy with different image size [29]

For dynamically adjusting the accuracy of MAC operations, as

discussed in [2, 19, 21, 23], the bit number of weight and bias in each layer

not need to be the same, as illustrated in Figure 4.2. In [19], when the activity

value is too small, the activity value will be set to zero and the computation

can be reduced. Compared with general multipliers and the approximate

multiplier in [39], the average error in computation is only 0.37% in

multiplication. Using an approximate multiplier to replace a normal

multiplier can reduce the critical path of the multiplier. Moreover, using the

technology of reducing the operation voltage can further improve the problem

of power consumption.

From the above trends, development and implementation in the future

will be improved in these major directions.

66

Figure 4.2 Minimum precision requirements in different layers [19]

67

Reference

[1] Vivienne Sze, Yu-Hsin Chen, Joel Emer, Amr Suleiman, and Zhengdong Zhang,

“Hardware for machine learning: Challenges and opportunities,

arXiv:1612.07625v5 [cs.VC], ” arXiv.org, Aug. 2017.

[2] Kaiyuan Guo, Lingzhi Sui, Jiantao Qio, Song Yao, Song Han, Yu Wang and

Huazhon Yang, “Angel-Eye a complete design flow for mapping CNN onto

customized hardware, ” in Proceedings of IEEE Computer Society Annual

Symposium on VLSI (ISVLSI), Jul. 2016, pp. 24-29.

[3] Patyon Lin, Szu-Wei Fu, Syu-Siang Wang, Ying-Hui Lai, and Yu Tsao, “Maximum

entropy learning with deep belief networks, ” Entropy, vol. 18, no. 7, pp. 251, Jul.

2016.

[4] Da Li, Xinbo Chen, Michela Becchi, and Ziliang Zong, “Evaluating the energy

efficiency of deep convolutional neural networks on CPUs and GPUs, ” in

Proceedings of IEEE International Conference on Big Data and Cloud Computing,

Social Computing and Networking, Sustainable Computing and Communications

(BDCloud-SocialCom-SustainCom), Oct. 2016, pp. 477-484.

[5] Stacey Higginbotham, “Google takes unconventional route with homegrown

machine learning chips, ” Next Platform, May 2016.

[6] Bert Moons and Marian Verhelst, “A 0.3-2.6 TOPS/W precision-scalable

processor for real-time large-scale ConvNets, ” in Proceedings of IEEE

symposium on VLSI Circuits(VLSI-Circuits), Jun. 2016.

[7] Patrick Judd, Jorge Albericio, Tayler Hetherington, Tor M. Aamodt, and Andreas

Moshovos, “Stripes: Bit-serial deep neural network computing, ” in Proceedings

of Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),

Oct. 2016.

68

[8] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon and Ali Farhadi,

“XNOR-Net: ImageNet classification using binary convolutional neural

networks, ” in Proceedings of European Conference on Computer Vision (ECCV),

Oct. 2016, pp. 525-542.

[9] Renzo Andri, Lukas Cavigelli, Davide Rossi, and Luca Benini, “YodaNN: An

architecture for ultra-low power binary-weight CNN acceleration, ” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol.

37, no. 1, pp. 48-60, Jan. 2018.

[10] Michael Price, “Energy-scalable speech recognition circuits, ” Ph. D. thesis,

Massachusetts Institute of Technology (MIT), Jun. 2016.

[11] Dongyung Kim, Junwhan Ahn, and Sungjoo Yoo, “A novel zero weight or

activation-aware hardware architecture of convolutional neural network, ” in

Proceedings of Design Automation & Test in Europe Conference & Exhibition

(DATE), Mar. 2017, pp. 1462-1467.

[12] Yu-Hsin Chen, Tushar Krishna Joel S. Emer, and Vivienne Sze, “Eyeriss: An

energy-efficient reconfigurable accelerator for deep convolutional neural

networks, ” IEEE Journal of Solid-State Circuits, vol. 52, no. 1, pp. 127-138, Jan.

2017.

[13] Hardik Sharma, Jongse Park, Divya Mahajan, Emmanuel Amaro, Joon Kyung

Kim, Chenkai Shao, Asit Mishra, and Hadi Esmaeilzadeh, “From high-level deep

neural models to FPGAs, ” in Proceedings of Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO), Oct. 2016.

[14] Jorge Albericio, Alberto Delmás, Patrick Judd, Sayeh Sharify, Gerard O’Leary,

Roman Genov, and Andreas Moshovos, “Bit-pragmatic deep neural network

computing, ” in Proceedings of Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO), Oct. 2017, pp. 382-394.

69

[15] Kyeongryeol Bong, Sungpill Choi, Changhyeon Kim, Shanghoon Kang,

Youchang Kim, and Hoi-Jun Yoo, “A 0.62mW ultra-low-power convolutional-

neural network face-recognition processor and a CIS integrated with always-on

haar-like face, ” in Digest of Technical Papers, IEEE Solid-State Circuits

Conference (ISSCC), Feb. 2017, pp. 248-249.

[16] Suyoung Bang, Jingcheng Wang, Ziyun Li, Cao Gao, Yejoong Kim, Qing Dong,

Yen-Po Chen, Laura Fick, Xun Sun, Ron Dreslinski, Trevor Mudge, Hun Seok

Kim, David Blaauw, and Dennis Sylvester, “A 288μW programmable deep-

learning processor with 270KB on-chip weight storage using non-uniform

memory hierarchy for mobile intelligence, ” in Digest of Technical Papers, IEEE

Solid-State Circuits Conference (ISSCC), Feb. 2017, pp. 250-251.

[17] Dongjoo Shin, Jinmook Lee, Jinsu Lee, and Hoi-Jun Yoo, “DNPU: An

8.1TOPS/W reconfigurable CNN-RNN processor for general-purpose deep neural

networks, ” in Digest of Technical Papers, IEEE Solid-State Circuits Conference

(ISSCC), Feb. 2017, pp. 240-241.

[18] Wenlin Chen, James Wilson, Stephen Tyree, Kilian Q. Weinberger, and Yixin Chen,

“Compressing convolutional neural networks in the frequency domain, ” in

Proceedings of 22nd ACM SIGKDD Conference on Knowledge Discovery and

Data Mining (KDD), Aug. 2016.

[19] Brandon Reagen, Paul Whatmough, Robert Adolf, Saketh Rama, Hyunkwang Lee,

Sae Kyu Lee, José Miguel Hernández-Lobato, Gu-Yeon Wei, and David Brroks,

“Minerva: Enabling low-power, highly-accurate deep neural network

accelerators, ” in Proceedings of ACM/IEEE 43rd Annual International Symposium

on Computer Architecture (ISCA), Jun. 2016, pp. 267-278.

[20] Jonathan Binas, Daniel Neil, Giacomo Indiveri, Shih-Chii Liu, and Michael

Pfeiffer, “Precise deep neural network computation on imprecise low-power

70

analog hardware, arXiv:1606.0786v1 [cs.NE], ” arXiv.org, Jun. 2016.

[21] Patrick Judd, Jorge Albericio, Tayler Hetherington, Tor Aamodt, Natalie Enright

Jerger, Raquel Urtasun, and Andreas Moshove, “Reduced-precision strategies for

bounded memory in deep neural nets, arXiv:1511.05236v4 [cs.LG], ” arXiv.org,

Jan. 2016.

[22] Byinghyo Shim. Srinivasa R. Sridhara, and Naresh R. Shanbhag, “Reliable low-

power digital signal processing via reduced precision redundancy, ” IEEE

Transactions on Very Large Scale Integration (VLSI) System, vol. 12, no. 5, pp.

497-510, May 2004.

[23] Philipp Matthias Gysel, “Ristretto: Hardware-oriented approximation of

convolutional neural networks, arXiv:1605.06402v1 [cs.CV], ” arXiv.org, May

2016.

[24] Yufei Ma, Naveen Suda, Yu Cao, Jae-Sun Seo, and Sarma Vrudhula, “Scalable and

modularized RTL compilation of convolutional neural networks onto FPGA, ” in

Proceedings of International Conference on Field Programmable Logic and

Applications (FPL), Sep. 2016.

[25] Jorge Albericio, Patrick Judd, Tayler Hetherington, Tor Aamodt, Natalie Enright

Jerger, and Andreas Moshovos, “Cnvlutin: Ineffectual-neuron-free deep neural

network computing, ” in Proceedings of ACM/IEEE 43rd Annual International

Symposium on Computer Architecture (ISCA), Jun. 2016.

[26] Mingyu Gao, Jing Pu, Xuan Yang, Mark Horowitz, and Christos Kozyrakis,

“TETRIS: Scalable and efficient neural network acceleration with 3D memory, ”

ACM SIGARCH Computer Architecture News, vol. 45, no.1, pp. 751-764, Mar.

2017.

[27] Yingyan Lin, Sai Zhang, and Naresh R. Shanbhag, “Variation-tolerant

architectures for convolutional neural networks in the near threshold voltage

71

regime, ” in Proceedings of IEEE International Workshop on Signal Processing

System (SiPS), Dec. 2016, pp. 17-22.

[28] Vivieen Sze, Yu-Hsin Chen, Tien-ju Yang, and Joel Emer, “Efficient processing of

deep neural networks: A tutorial and survey, arXiv:1703.09039v2 [cs.CV], ”

arXiv.org, Aug. 2017.

[29] Jong Hwan Ko, Duckhwan Kim, Taesik Na, Jaeha Kung, and Saibal

Mukhopadhyay, “Adaptive weight compression for memory-efficient neural

networks, ” in Proceedings of Design Automation & Test in Europe Conference &

Exhibition (DATE), Mar. 2017, pp. 199-204.

[30] Matthieu Courbariaux and Yoshua Bengio, “BinaryConnect: Training deep neural

networks with binary weights during propagations, ” in Proceedings of Advances

in Neural Information Processing System (NIPS), Dec. 2015.

[31] Tien-Ju Yang, Yu-Hsim Chen, and Vivienne Sze, “Designing energy-efficient

convolutional neural networks using energy-aware pruning, arXiv:1611.05128v4

[cs.CV], ” arXiv.org, Apr. 2017.

[32] Jeff Heaton, “Artificial Intelligence for Humans, Volume 3: Deep Learning and

Neural Networks”, Heaton Research Inc., Dec.2015.

[33] Asja Fischer and Christian Igel, “An introduction to Restricted Boltzmann

Machines, ” in Proceedings of Iberoamerican Congress on Pattern Recognition

(CIARP), Sep. 2012, pp. 14-36.

[34] Sang Kyum Kim, Lawrence C. McAfee, Peter L. McMahon, and Kunle Olukotun,

“A highly scalable Restricted Boltzmann Machine FPGA implementation, ” in

Proceedings of Field Programmable Logic and Applications (FPL), Sep. 2009, pp.

367-372.

[35] Kayode Sanni, Guillaume Garreau, Jamal Lottier Molin, and Andreas G. Andreou,

“FPGA implementation of a Deep Belief Network architecture for character

72

recognition using stochastic computation, ” in Proceedings of Information

Sciences and Systems (CISS), Mar. 2015.

[36] Daniel Le Ly and Paul Chow, “High-Performance reconfigurable hardware

architecture for Restricted Boltzmann Machines, ” IEEE Transactions on Neural

Networks, vol. 21, no. 11, pp. 1780-1792, Nov. 2010.

[37] Chang-Hung Tsai, “Restricted Boltzmann Machine (RBM) Processor Design for

Neural Network and Machine Learning Applications, ” Ph.D Thesis, National

Chiao Tung University, Oct. 2016.

[38] Mohammad Ali Keyvenrad, http://ceit.aut.ac.ir/~keyvanrad/index.html

[39] Soheil Hashemi, R. Iris Bahar, and Sherief Reda, “DRUM: A Dynamic Range

Unbiased Multiplier for Approximate Applications, ” in Proceedings of 2015

IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Nov.

2015, pp. 418-428.

[40] Geoffrey E. Hinton and Simon Osindero, “A Fast Learning Algorithm for Deep

Belief Nets, ” in Proceedings of Neural Computation, vol. 18, no. 17, pp. 1527-

1554, Jul. 2006.

