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摘要 

 

由於物聯網的興起，人們經由網路與伺服器交換的資料量越來越龐大，隨著

大數據的演進，如何從巨量資料中挖掘出有價值的資訊，是現今的重要課題。因

此資料探勘演算法被廣泛使用在各個領域上。而如何處理這些海量的資料以及分

析不同的資料型態成為大數據會面臨到的問題。 

 

為了解決儲存設備與運算能力的限制，分散式系統和雲端運算近年也越來越

普及，透過多個伺服器叢集執行平行化的運算，克服 CPU 運算速度的瓶頸；此

外，藉由多個伺服器的串聯來增加儲存的容量，彌補單一設備空間不足的問題。

為了提升運算的效能，在處理任務的時候，可以藉由硬體加速平台來分擔運算的

負載。硬體加速平台最常見的有圖形處理加速器(GPU)和可程式邏輯陣列(FPGA)，

通常擁有數量眾多的運算單元，用來執行高密度且獨立的運算並達到運算平行化。 

 

本論文針對巨量資料的儲存平台與運算能力的增進，提出一個軟硬體整合的

方案，在 Hadoop 系統串聯以 FPGA 為基礎的硬體加速平台，利用 Hadoop 叢集

的分散式檔案系統(HDFS)以及 MapRdeuce 的平行運算優勢，再藉由網路分享器

提升擴充性，建構一個用於資料探勘演算法的Hadoop與FPGA整合的加速平台。

我們使用在資料探勘中最常見的K-means分群演算法以及KNN最近鄰居分類演

算法來呈現此整合加速平台的優勢。 

 

 

 

關鍵字: 大數據，Hadoop 叢集，現場可程式邏輯門陣列，K-means 分群演算法，

KNN最近鄰居分類演算法，硬體加速平台 



 

-5- 

 

Abstract 
 

Since the growing popularity of the internet of things (IoT), the amount of data 

people exchange via web servers are increasing huge. With the evolution of big data, it 

is important to extract the valuable information from the massive data. Therefore, data 

mining algorithms are widely used in various fields. The “5Vs” including volume, 

velocity, variety, veracity and, value are the challenges of big data processing and 

analyzing. 

In order to overcome the limitations of storage devices and computing capability, 

the distributed systems and cloud computing are becoming popular in recent years. The 

parallel computing cluster by multiple servers can conquer the bottleneck of CPU 

computing capability. In addition, the distributed systems can provide the advantage of 

storage capacity to make up for the lack of the disk space issue. Graphic processing 

units (GPUs) and field programmable gate arrays (FPGAs) are potential hardware 

accelerators and usually have a large number of arithmetic units for performing high 

density and independent operations in parallel to enhance the effectiveness. 

In this thesis, the implementation of the K-means clustering algorithm and K-

nearest neighbor algorithm on a Hadoop cluster with FPGA-based hardware 

accelerators is presented. The proposed design follows MapReduce programming 

model and uses Hadoop distribution file system (HDFS) for storing large dataset. The 

proposed FPGA-based hardware accelerator for speed up the proposed algorithms is 

implemented on Xilinx VC707 evaluation boards (EVBs).  

 

Keywords: big data, Hadoop, field programmable gate, K-means clustering algorithm, 

K-nearest neighbor algorithm, FPGA-based hardware accelerators  
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Chapter 1 

Introduction 

1.1 Introduction to Big Data 

In the past few years, information technology continues to penetrate and innovate 

in all areas of social, economic and life. In fact, all of the industries have to confront 

the issues of big data analytics. Under the support of mobile computing, internet of 

things (IoT), cloud computing and a series of emerging technologies, social media, 

collaborative creation, virtual services and other new application models continue to 

expand the scope and form of human creativity and information exploitation. The global 

amount of data explosively grow up day by day.  

According to the IDC report [1], the digital universe will grow by a factor of 300, 

from 130 Exabytes to 40,000 Exabytes, or 40 trillion gigabytes from 2005 to 2020, and 

it will about double every two years. Although the portion of the digital universe 

holding potential analytic value is growing, only a tiny fraction of territory has been 

explored. IDC estimates that by 2020, as much as 33% of the digital universe will 

contain information that might be valuable if analyzed. The data are exponential growth 

as shown in Fig. 1.1. It is obviously the era of big data is coming. 
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Figure 1.1: 50-fold Growth form beginning of 2010 to the end of 2020 [1] 

Generally, the range of big data covers a wide discrepancy between the various 

definitions. Big data is a collection of data set that too complex and large to be managed, 

analyzed and processed by using the traditional database system [5][6]. It includes 

activity logs, business transaction, images, and surveillance videos that can reach 

massive proportions over time [5][6]. First “3Vs” model was proposed by Gartner Inc. 

[2], and they pointed to three key challenges of data processing, volume, velocity, and 

variety [4]. Besides the explanations of big data based on [3][7][8], “5Vs” is widely 

applied to the definition of big data [9][10], including volume, velocity, variety, veracity 

and, value. Fig. 1.2 below illustrates the feature related to “5Vs.” 
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Figure 1.2: The 5Vs of Big Data [10] 

Volume is the amount of the data to produce, process, and preservation. These data 

generated exceed 2.5 quintillion bytes everyday [5], and with 90 percent of the world’s 

data created in the last 2 years [1]. The traditional database and hardware don’t have 

the capability to store big data. 

Velocity represents that the data streaming into the servers in real time is 

continuous and fast. As more and more machines, internet users, social networks, and 

results of searching are growing every second, the processing time is very important for 

marketing prediction. The important information should be obtained immediately to 

maximize the value, and therefore, big data must be analyzed at a rate that matches the 

speed of data production. 

Variety means big data includes the structured data of pure text, audio, video, web, 

and streaming, semi-structured, and unstructured data. These data are not in the same 

format, and most of them are unstructured so they are not easy to be handled. Hence, 

dealing with many different formats of data is one of the challenges of big data. 
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Veracity of big data should be considered during processing and analyzing. 

Because the resource of data become diverse, the reliability and quality of the 

information are not stable. We must be sure about the information which is correct in 

order to prevent dirty data damage the system completeness and correctness. 

Value is an important feature of the data. Data value depends on the events or 

processes they represent such as stochastic, probabilistic, regular or random. In some 

respect, data value is closely related to the data volume and data variety. 

Due to the certain essential characteristics of big data, big data is not easy to be 

analyzed with a single computer, and have many challenges and issues which need to 

be solved [15-18]. We summarize the discussion of above references as follows: 

Data Privacy and Security: People share their own personal information every 

day in social media network such as Facebook. These personal information are 

collected and used in order to add the value of the business. In certain domains, like 

financial data, medical information, as well as government intelligence, those data have 

standards for data security and confidentiality requirements. These private data must be 

encrypted in case hackers hijack these valuable intelligence. 

Data Storage and Management: Big data is excessive large and has a rapid 

growth rate. Therefore the available storage are not enough for storing the large amount 

of data. In addition, data management addresses massive amounts of heterogeneous and 

complex data, such as semantics, structure, video and text. Under the trend that big data 

is growing at an alarming rate and data explosion causes the consumption of system 

resource seriously. The static storage solution can’t satisfy the challenge of data 

dynamic evolution. To conquer the issue, Han Hu [15] classifies the data management 

framework into three layer which consist of file systems, database technology, and 

programming models as shown in Fig. 1.3.  
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Figure 1.3: Data Management Framework [15] 

The brief of this framework is as following: 

 File System: The file system is the basis of big data storage. Google designed 

and implemented the Google File System (GFS) [14][19] as a scalable distributed file 

system for data intensive application. GFS runs on hundred inexpensive servers to 

provide fault tolerance and high performance to a large number of clients. Additionally, 

Facebook implemented Haystack [22] to store large amount of small size of photos to 

serve the long tail of request seen by sharing photos in a large social network. Haystack 

achieved four main goals, including high throughput and low latency, fault tolerant, 

cost effective and simple. Furthermore, Taobao File System (TFS) [23] is also a large-

scale and high performance similar distributed file system for a massive amount of 

small files. 

 Database: NoSQL [24] database is becoming the standard to deal with the 

big data problems and the systems are high scalability, reliability, and availability that 

are suitable for unstructured data and management of datasets. Bigtable [25] is a type 

of column-oriented of NoSQL databases and is a compressed, high performance, and 

proprietary data storage system built on GFS to store large-scale structured data for 

cloud computing [20]. In addition, Amazon Dynamo [26] is a type of key-value stores 
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of NoSQL database service which can form a highly available key-value structured 

storage system and a distributed data store. Moreover, one of NoSQL databases, 

document stores databases, support more complex data than key-value stores. 

MongoDB [27] is a type of cross-platform document-oriented of NoSQL database 

written by C++ in order to solve a lot of problems in application development 

community. Because the relational databases and NoSQL databases have their own 

advantages and disadvantages, there are hybrid databases to combine relational and 

NoSQL databases to gain advanced performance. Spanner [28] is the first system to 

globally distributed data and support externally consistent distributed transactions. 

Unlike the key-value store model in Bigtable, each table of Spanner must have a 

primary key column. Moreover, Spanner has evolved into a temporal multi-version 

database and the special features of Spanner are externally consistent reads and writes 

and the globally consistent reads across the database at a timestamp. 

 Programming Models: Although NoSQL databases are attractive for many 

reasons, unlike relational database systems, they don’t support declarative expression 

and offer limited support of querying and analysis operations. The programming 

models is the key of implementing the application logics and facilitating the data 

analysis applications. One of the processing models is the generic processing model 

which addresses general application problems and is used in MapReduce [29] and 

Dryad [30]. Both of them are the distributed system for parallel application for large-

scale computations. Besides, graph processing model is a type of programming model 

and can express a growing class of applications and capture the related entities. Pregel 

[32] by Google is one of the graph processing model to specialize in large-scale 

computing. GraphLab [31] is another graph processing model to target parallel machine 

learning algorithms and data mining tasks. 
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Data Analysis and Application: The analysis on the huge data which can be 

structured, semi-structured, and unstructured requires advance skills. It is difficult to 

analyze entire dataset to extract the valuable information from the large amount of data. 

The emerging analytics has six critical technical areas, structured data analytics, text 

analytics, multimedia analytics, web analytics, network analytics, and mobile analytics. 

We expect machine learning and data mining can be more helpful in big data analysis 

to explore the valuable benefits. Moreover, processing the large amount of data also 

takes large amount of time. Thus, we can use large-scale parallel system to dramatically 

reduce the response time for data-intensive operations on large databases.  

With big data growing up every second, the traditional database systems obviously 

can’t address the variety and scale challenges and both hardware and software are 

evolved to adapt the characteristics of big data. Thus, many software frameworks are 

developed to against big data issue to extend the high scalability and fault tolerance, for 

example, Hadoop [11] and Spark [13], are provided to handle massive data.  
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1.2 Software Framework 

Hadoop [11] is a cluster system that enables massive data storage and distributed 

processing over large number of computing servers. It is designed to scale up from a 

single server to thousands of machines, each offering local computation and storage. 

Rather than rely on hardware to deliver high-availability, Hadoop itself is designed to 

detect and handle failures at the application layer, and so delivering a highly-available 

service on top of a cluster of computers, each of which may be prone to failures. The 

Hadoop cluster server division of roles is shown in Fig. 1.4. Hadoop has Master Node 

and Slave Node which are cluster computing servers. There are one Name Node and 

one JobTracker in the Master Node, and a Data Node and a Task Tracker in each Slave 

Node. There are two main modules, Hadoop distributed file system (HDFS) and 

MapReduce, we will use these two modules in our propsed system.  

Master Node Slave Node

MapReduce

Computing Layer

HDFS

Database Layer

JobTracker

Name Node Data Node

TaskTracker

 

Figure 1.4: Hadoop cluster server division of roles 

The HDFS architecture is shown in Fig. 1.5. HDFS is a distributed file system 

which provides high throughput access to the application data and has a master/slave 

architecture. An HDFS cluster consists of a single NameNode, and a master server that 

manages the file system namespace and regulates access to files by clients. In addition, 
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there are a number of DataNodes, usually one per node in the cluster, which manage 

storage attached to the nodes that they run on. In HDFS, a file will be split into one or 

more blocks, and each block will have several replications on different DataNode to 

prevent missing data. 

 

Figure 1.5: Hadoop Distributed File System Architecture 

MapReduce [29] is a software framework for easily writing applications which 

process vast amounts of data in parallel on large computing clusters in a reliable and 

fault-tolerant manner. It is a concept of divide and conquer and a MapReduce program 

is composed of a Map() procedure that performs filtering and sorting and a Reduce() 

method that performs a summanry results. The MapReduce operation is shown in Fig. 

1.6. The MapReduce framework operates exclusively on <key, value> pairs. The 

framework views the input to the job as a set of <key, value> pairs and produces a set 

of <key, value> pairs as the output of the job. The Mapper maps input <key, value> 

pairs to a set of intermediate <key, value> pairs and the Reducer reduces a set of 

intermediate values which share a key to a smaller set of values.  
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Final Results

 

Figure 1.6: MapReduce Framework Operation 

Spark [13] is a fast and general engine for large-scale data processing that supports 

cyclic data flow and in-memory computing and provides an interface for programming 

entire clusters with implicit data parallelism and fault-tolerance. Spark is also 

compatible with Hadoop. However, the difference with Hadoop MapReduce, Spark 

works in-memory speeding up orcessing time by offering over 80 high-level operators 

that make it easy to build parallel apps and you can use it interactively from the Scala, 

Python and R shells. In the structure, each Spark application is composed by a driver 

program which runs the user’s main() fuction to execute variety parallel operations on 

clusters. The main abstract of Spark is to provide a Resilient Distributed Dataset (RDD) 

which represents an immutable, partitioned collection of elements that can be operated 

on in parallel. Another abstract of Spark is shared variables which are run in parallel 

computations. Spark powers a stack of libraries including Spark SQL which is the 

module for working with structured data for fast engine interactive queries, Spark 

Streaming which builds scalable fault-tolerant streaming application easily for real time 

streaming data analysis, GraphX which is an API for graphs and graph-parallel 

computation, and MLlib which is a scalable machine laerning library for machine 

learning as shown in Fig. 1.7. 
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Spark SQL
Spark 

Streaming

Mllib

(Machine Learning)

GraphX

(Graph)

Apache Spark

 

Figure 1.7: Spark Stack of libraries 

Besides the development of software frameworks, the computing servers are also 

required new system capabilities to adapt to the data explosion. A single specification 

of CPUs is dissatisfied with the increasing computing demand. Therefore, we must rely 

on high-efficiency computing capability to deal with big data and enhance the 

performance per watt ratio. In this situation, the heterogeneous computing is not only a 

secret weapon for supercomputers but also a powerful tool which can share the 

computing loading to improve the performance of data mining for developers.  
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1.3 Hardware Accelerator 

 Heterogeneous computing [40] is getting more attention in recent years, because 

the issues of traditional ways by raising the CPU clock frequency and adding the 

number of cores inevitably lead to greater complexity and heat. In addition, the scalar 

processors have a fundamental limitation of difficultly extracting more instruction-level 

parallelisms (ILPs). Meanwhile, heterogeneous computing systems can gain the 

performance and energy efficiency by employing the specialized processors like 

graphics processing units (GPUs) and field programmable gate arrays (FPGAs) to 

accelerate some operations. Moreover, heterogeneous architecture property can 

separate jobs and allow the appropriate hardware co-processors for each operation 

within given applications, so hardware accelerators can excellently work on 

computational intensive tasks, and software programs can process complex functions 

and manage data. 

 The general purpose on graphics processing units (GPGPU) is a powerful engine 

for computationally demanding applications [41]. Both AMD’s and NVIDIA’s flagship 

GPUs feature unified as shown in Fig. 1.8. The advantages of the GPU are high memory 

bandwidth, many programmable cores with multi-thread execution in parallel, coding 

with high level languages like Nvidia's compute unified device architecture (CUDA) 

which provides a highly parallel architecture with hundreds of cores and very high 

memory bandwidth, and easy to reprogram functions. For efficiency, the GPU 

processes many elements in parallel using the same program. Each element is 

independent from the other elements, and in the base programming model, elements 

cannot communicate with each other. 
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Figure 1.8: Both AMD and NVIDIA build architectures with unified, massively 

parallel programmable units at their cores. [41] 

 A GPU implementation speedup of the K-means algorithm [42] presented two 

different strategies for low-dimensional data sets and high-dimensional data sets 

respectively, in order to make the best use of the power of GPUs. They used NVIDIA 

GTX280 GPUs as shown in Fig. 1.9 to develop their platform. For low dimensional 

data sets, they exploited GPU on-chip registers to significantly decrease data access 

latency. For high dimensional data sets, they design parallel programming pattern used 

in matrix multiplication to accelerate the K-means algorithm. Overall, their GPU-based 

K-means algorithm was three to eight times faster than the best reported GPU-based 

algorithm. However, the implementation could deal with a finite scale of data set and 

the size is limited by the global memory size of the GPU, but the strategy couldn’t 

handle the larger size of data set which is out of the limitation. 
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Figure 1.9: NVIDIA GTX280 hardware architecture of the GPU [42] 

GPU in Hadoop framework [37] presented the advantages of GPU massively 

parallel processors and Hadoop large-scale MapReduce clusters. According to Fig. 1.10, 

GPU accelerators are added in each slave node, and the native program can control both 

the CPU and GPU resource. The map and reduce task are the processing units in the 

Hadoop framework which can be accelerated by the GPU. They used GPU to accelerate 

the big map-task which can be about 100 times faster than the same computation assign 

to the CPU. However, the better performance of GPU depends on higher IO speed and 

running application characteristics. In order to address this problem, a hybrid system 

for GPU-based homogeneous clusters was presented [38]. 

The hybrid scheduling technique for GPU-based computer clusters [38] is shown 
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in Fig. 1.11 which minimizes the execution time of a submitted job using dynamic 

profiles of map tasks running on CPU cores and GPU devices when a client submits a 

MapReduce job and the tasks can run on both CPU cores and GPU devices. They 

demonstrates the results and the speedup can be achieved 1.93 times faster than the 

Hadoop original scheduling algorithm at 64 nodes (1024 CPU cores and 128 GPU 

devices). 

 

Figure 1.10: Hadoop-GPU Framework [37] 

 

Figure 1.11: Overview of the hybrid scheduling technique [38] 
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Unlike CPU and GPU, FPGAs don’t have fixed pipeline or instruction set, instead, 

FPGAs have high density arrays of logic blocks which can execute computation in 

parallel. Users can program by using hardware description languages (HDL) and 

vendors can provide intellectual property cores (IP cores) to speed up the design of the 

projects. Besides, the hardware accelerator offers huge performance and energy 

improvements over general purpose processors are more popular for use in 

implementing application specific accelerators [35]. Efficient computing of machine 

learning and data mining has gained much more attention in recent years, while 

becoming more and more challenges with growing data size and higher performance 

requirements [36]. Recently, the physical constraints of CPUs and the power 

consumption are becoming a critical problem so FPGA has been widely explored in 

various high performance computing applications because of its low power, low cost, 

and reconfigurable [34]. 

A CPU-FPGA heterogeneous architecture was proposed for accelerating a short 

reads mapping algorithm [43], and it was built on the concept of hash-index. The 

proposed architecture is implemented and evaluated on a customized FPGA accelerator 

card with a Xilinx Virtex5 LX330 FPGA which is mainly composed of a processing 

element (PE) controller, an array of PEs and data buses, as shown in Fig. 1.12. The 

accelerator is as a co-processor connected to the host CPU through the PCIe interface 

and consists a processing array which is composed of 100 four stage pipelined 

processing units, a central controller and three separated data buses. The 

implementation which is designed to take the advantage of the spatial parallelism on 

FPGA can achieve the speedup of 22.2 to 42.9 times than an Intel six-cores CPU. 

However, the architecture can be improved to upgrade the PEs to align long reads with 

more tolerance due to the increased sequencing error rate. 
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Figure 1.12: Proposed FPGA accelerator architecture overview [43] 

A novel framework was presented for implementing portable and scalable data-

intensive applications on reconfigurable hardware [44]. They focus on standard PCs 

and PCI-Express extension cards featuring FPGAs and memory as shown in Fig. 1.13. 

Both components of a PC and an FPGA communicate through a PCIe bus and the PCIe 

provides fast and scalable communication. The maximum bandwidth is determined by 

the capabilities of both the host PC and the FPGA board. The proposed FPGA 

components is shown in Fig. 1.14. This frame work consists of hardware 

implementation rules, a communication API along with corresponding hardware 

wrappers, and a method to automatically select an application’s optimal replication 

factor R for a given hardware platform. The parallel kernels achieve the speedup 9.2 

times over the single-PE versions, and the area of the circuits is well within the available 

FPGA area. However, the automatic optimization method can be extended of 

considering memory bandwidth and allowing more hardware parameters. 
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Figure 1.13: Accelerator Architecture: Standard PC with PCIe cards [44] 

 

Figure 1.14: Proposed FPGA components [44] 

An on-chip processor scheduler is implemented to maximize the utilization of 

computation resources and achieve better load balancing. An efficient data access 

scheme is carefully designed to maximize data reuse and throughput. Meanwhile, the 

FPMR [36], a MapReduce framework on FPGA, as shown in Fig. 1.15, hides the task 

control, synchronization, and communication away from designers so that more 

attention can be paid to the application itself. The initial <key, value> pairs are prepared 

by CPU and then transferred to the FPGA through PCI-E bus or CPU bus. They 

demonstrates 31.8x speedup of RankBoost than the CPU-based implementation and the 

performance is comparable to a fully manually designed version, which achieves 33.5x 

speedup. 
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Figure 1.15: FPMR Framework [36] 

The ARM-based Hadoop clusters with FPGA-based hardware accelerators to 

improve the performance in big data analytics are proposed. In ZCluster [21], Zynq 

platform which integrates the ARM processor and the FPGA in the single chip is used 

as the Slave Node as shown in Fig. 1.16. Then, the FPGA can act as a co-processor to 

share the loading of the ARM processor. Thus, the execution time of applications can 

be reduced. However, in addition to the jobs executed in the FPGA, some irregular jobs 

of the applications still need to run with ARM processor. Thus, if only a small portion 

of jobs can be executed by the FPGA, the relatively slow performance of the ARM 

processor as compared to the Intel processors will be the problem.  
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CPU Zed Zed Zed

Switch

Master Slave Slave Slave

 

Figure 1.16: ZCluster System Overview [21] 

In this paper, we use Xilinx VC707 evaluation boards (EVBs) [33] to communicate 

with the host computers through Gigabit Ethernet. The host computer with high 

performance Intel I7 processors can share the loading of applications by sending the 

jobs to the EVBs. We use K-means clustering algorithm and K-Nearest Neighbor 

algorithm implementation as examples to demonstrate the speedups of the Hadoop 

cluster with FPGA-based hardware accelerators. 
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1.4  Motivation 

 Nowadays, big data analytics has become the focus of research in the various fields 

of government, manufacturing, healthcare, media, and science because of the growing 

popularity of internet of things (IoT). Big data analysis has become an important 

marketing trend involved in a number of areas. It is important to filter out valuable 

information effectively and respond to the needs quickly. Hence, many software 

frameworks provide high scalability and fault tolerance system to enable massive data 

storage and distributed processing over large number of computing servers. However, 

the physical constraints of CPUs limit the performance in computing so we can use the 

hardware accelerator which is low cost, low power and high scalability to improve the 

performance of computation. 

 According to our previous study [39] as shown in Fig. 1.17, we developed the high 

scalability FPGA-based hardware accelerator for data-intensive computation. There 

were three FPGA evaluation boards (EVBs) [33] and one host computer that 

communicated with FPGA EVBs with Gigabit Ethernet switch. We shared the workload 

to three VC707 EVBs and the usage of Ethernet rate was approximate 99 percent. The 

Ethernet rate was reached limitation in our previous system and the bottleneck of 

Ethernet rate will lower the performance. Therefore, we cooperate with Hadoop system 

and FPGA-based hardware accelerators to achieve high scalability and high 

performance of computation in this thesis. 
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Figure 1.17: The FPGA-based hardware accelerator with VC707 EVBs [39] 

In our work, we use Xilinx VC707 EVBs to communicate with the host computers 

through Gigabit Ethernet. The host computer with high performance processors can 

share the loading of applications by sending the jobs to the EVBs. The Hadoop cluster 

consists of one Master Node and three Slave Nodes, and in each Slave Node, it consists 

of one host computer and one VC707 EVB. In the Slave Node, the host computer 

communicates with VC707 EVB through Gigabit Ethernet. The proposed design 

follows MapReduce programming model to process jobs in parallel and uses Hadoop 

distribution file system (HDFS) for storing large dataset to manage and split files into 

several blocks. The proposed high-scalable heterogeneous computing solution is 

suitable to be applied to different machine learning algorithms for big data analytics. 

Furthermore, we will introduce Hadoop cluster in our platform and FPGA 

architecture in Chapter 2. Then, we will depict K-means clustering algorithm and K-

Nearest Neighbors algorithm in the FPGA in Chapter 3. Moreover, we will demonstrate 

our experiment environment and the results of speedup in Chapter 4. Finally, in Chapter 

5, we will make a conclusion and discuss about the future works.  
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Chapter 2 

Proposed Hadoop Cluster with 

FPGA-based Hardware 

Accelerator Architecture 

2.1 System Overview 

The proposed Hadoop cluster with FPGA-based hardware accelerators is shown in 

Fig. 2.1. We write the input dataset to HDFS and execute the MapReduce program in 

the Master Node. Then, in map stage, Hadoop sends map tasks to the appropriate 

servers in the Hadoop cluster. In each map task, the host computer reads the dataset 

from HDFS, and it wraps data into transmission packets. Subsequently, these packets 

are sent to the VC707 EVBs. The VC707 EVB receives packets and the hardware 

accelerator will perform the proposed algorithms with parallel hardware circuits. After 

that, the hardware accelerator implemented in the FPGA calculates and returns the 

partial results to the host computer. Finally, in the reduce stage, Hadoop sends reduce 

tasks to the appropriate servers in the Hadoop cluster. The specifications of the host 

computers are shown in Table 2.1. In the host computers, Hadoop with version: 2.7.1 

was installed. The Hadoop cluster consists of one Master Node and four Slave Nodes, 

and in each Slave Node, it consists of one host computer and one VC707 EVB. The 

host computer communicates with VC707 EVB through Gigabit Ethernet. 



 

-34- 

 

 

Figure 2.1: The proposed system overview 

 

Table 2.1: The specifications of proposed system 

Host Computer CPU Disk OS 
Hadoop 

Version 

Master Node 
Intel(R) Core(TM) 

i7-6700 @ 3.4GHz 

SATAIII 

SSD 240GB 

64-bit 

CentOS 6.7 
2.7.1 

Slave Node 1 
Intel(R) Core(TM) 

i7-4790 @ 3.6GHz 

Slave Node 2 
Intel(R) Core(TM) 

i7-4790 @ 3.6GHz 

Slave Node 3 
Intel(R) Core(TM) 

i7-4770 @ 3.4GHz 

Slave Node 4 
Intel(R) Core(TM) 

i7-4770 @ 3.4GHz 

Master Node

8 ports Gigabit 

Ethernet  Switch

Slave Node 1

VC707 FPGA EVB #1

Host Computer #1

VC707 FPGA EVB #2

Host Computer #2

Slave Node 2

8 ports Gigabit 

Ethernet  Switch

Slave Node 4

VC707 FPGA EVB #4

Host Computer #4

VC707 FPGA EVB #3

Host Computer #3

Slave Node 3
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The components of the VC707 EVB are shown in Fig. 2.2 and the descriptions of 

components we use in our design are shown in Table. 2.2. 

 

Figure 2.2: VC707 EVB [33] 

 

Table 2.2: VC707 EVB descriptions of components 

Locations Component Description 

1 USB JTAG interface 

2 Network cable port 

3 10/100/1000 Mb/s Ethernet PHY 

4 DDR3 SODIMM memory (1 GB) 

5 Virtex-7 FPGA with cooling fan 

6 LCD character display 

7 User DIP Switch 

8 User LEDs 

9 Power on/off switch 
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 In the proposed Hadoop cluster with FPGA-based hardware accelerators, the disk 

I/O with reading and writing data rates of SSD are 488.57 Mbps and 448.48 Mbps, 

respectively. In addition, the data transmission time between the host computer and the 

hardware accelerator platform depends on the I/O speed limitations of the Ethernet PHY 

IP. The transmission data rate from the host computer to the VC707 EVB and from the 

VC707 EVB to the host computer are approximate 436 Mbps and 125 Mbps, 

respectively as shown in Table 2.3. 

Table 2.3: Transmission data rate between the host computer and VC707 EVB 

Direction 
Packet Length 

(bytes) 

Number of 

Packet 
Time (s) 

Transmission 

Data Rate 

Host to 

VC707 
1500 100,000 2.752 436.047 Mbps 

VC707 to 

Host 
1500 100,000 9.593 125.091 Mbps 
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2.2 Hadoop Cluster Setting 

2.2.1 Configuration of HDFS 

HDFS in Hadoop 2.7.1 can support for the file truncate, the quotas per storage type, 

and the files with variable-length blocks. The block size in Hadoop 2.7.1 is 128MB and 

the replication number of files is 3, as shown in Table 2.4. We allocate 40GB resource 

memory and provide 16 CPU virtual cores (vcores) for each node manager as shown in 

Table 2.5. Therefore, the total resources of the HDFS built by four Data Nodes are 

160GB memory and 64 vcores as shown in Fig. 2.3. 

Table 2.4: Configuration in hdfs-site.xml 

Parameter Name Value Description 

dfs.blocksize 134217728 The block size for new files, in bytes. 

dfs.replication 3 
The actual number of replications can be 

specified when the file is created. 

 

Table 2.5: Configuration in yarn-site.xml 

Parameter Name Value Description 

yarn.nodemanager.re

source.memory-mb 
40960 Amount of physical memory, in MB. 

yarn.nodemanager.re

source.cpu-vcores 
16 

Number of vcores that can be allocated for 

containers. 

 

 

Figure 2.3: HDFS total resource overview 
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 In the proposed Hadoop cluster, we build the HDFS for the implementation by one 

Name Node and four Data Nodes. We monitor the transmission data rates of uploading 

files from local drives to HDFS and downloading files from HDFS to local drives as 

shown in Table 2.6. Moreover, we compare the input time on HDFS during Hadoop 

Mahout processing with one to four Data Nodes. Fig. 2.4 shows the input time will 

decrease with increasing the Data Nodes to demonstrate the HDFS parallel progressing. 

Table 2.6: Transmission data rate on HDFS with 4 Data Nodes 

Direction File Size Time Transmission Data Rate 

Upload File to 

HDFS 

3.18 GB  

(3424997624 bytes) 
34.041 s 95.659 MB/s 

Download File 

from HDFS 

3.18 GB  

(3424997624 bytes) 
 19.854 s 164.013 MB/s 

 

Figure 2.4: Input time of Mahout processing with Data Nodes 
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2.2.2 MapReduce of Proposed Architecture 

The MapReduce of our proposed architecture is as shown in Fig. 2.5. We connect 

the Data Node to the VC707 EVB through Gigabit Ethernet to accelerator 

implementations during each mapping. We can share the workload of computation to 

each node and achieve the speedup of the execution. When the Name Node receives the 

commands from users, the Name Node will start to map the jobs to each Data Node by 

the configuration of HDFS. In the map stage, we will separate the programs to software 

and hardware by the complex of computations which will be discussed in Chapter 3 for 

each of the proposed algorithms. The outputs of map stage are <Key, Value> pairs to 

be sent to the reduce stage. In the reduce stage, after all jobs are done successfully, the 

final results will be summarized as the outputs on HDFS by the reducers. 

 

Inputs on 

HDFS

Split Input

Split Input

Mapper

Mapper

Mapper

Mapper

VC707 EVB #1

VC707 EVB #2

VC707 EVB #3

VC707 EVB #4

Outputs 

on HDFS

Final 

Results

<Key, Value>

<Key, Value>

Reducer

 

Figure 2.5: The MapReduce of proposed architecture 
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2.2.3 Hadoop Streaming 

Although the Hadoop framework is implemented in Java, MapReduce applications 

need not be written in Java. Hadoop Streaming is a utility which allows users to create 

and run jobs with any executable as the mapper and the reducer. The executable reads 

the standard inputs from STDIN, writes outputs to STDOUT, and produces results to 

standard inputs as shown in Fig. 2.6. The utility will create a MapReduce job, submit 

the job to a cluster, and monitor the progress of the job until it completes. We can use 

the Hadoop tool, Hadoop Streaming [45], to help us execute the C/C++ programs which 

we implement on Hadoop system.  

As the mapper task, the mapper converts the inputs into lines and feeds the lines to 

the STDIN of the process. In the meantime, the mapper collects the line oriented outputs 

from the STDOUT of the process and converts each line into a <key, value> pair as the 

output of the mapper. On the other hand, as the reducer task, the reducer converts the 

input <key, value> pairs into lines and feeds the lines to the STDIN of the process. 

Meanwhile, the reducer collects the line oriented outputs from the STDOUT of the 

process, converts each line into <key, value> pairs as the output of the reducer. 

 

Input reader
Map 

(stream)

Reduce

(stream)
Output writer

Map

(external)

C/C++

Reduce

(external)

C/C++

STDIN STDINSTDOUT STDOUT

Internal

Data

 

Figure 2.6: Hadoop Streaming behavior 
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2.3 Hardware Accelerator development 

2.3.1 Architecture of VC707 EVB 

Fig. 2.7 shows a Slave Node is composed of one host computer and one VC707 

EVB connected by Ethernet. We implement three modules in FPGA including Ethernet 

Physical IP, Mixed-Mode Clock Manager (MMCM), and user code. The host computer 

wraps data into packets and sends them to VC707 EVB through a Gigabit Ethernet 

switch and the VC707 EVB sends back the computation results as packets to host 

computer through Ethernet Physical IP which connect to the Gigabit Ethernet switch. 

The proposed computation data mining algorithms are implemented in the user code. 

The MMCM creates dynamic reconfiguration of the phase, duty cycle, and clock output 

frequency.  

Host Computer

Intel Core i7 4790 3.6GHz + SSD

Xilinx VC707 FPGA EVB

Ethernet 

IP

Input

FIFO

Output

FIFO

Data Mining 

Implementation 

Circuit

Network 

Switch

 

Figure 2.7: One Slave Node Implemented Module 
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sys_clk

sgmii_clk

Ethernet 
PHY IP

MMCM User Core

clkin1

clkout0

clkfbout

userclk

clkout1

200MHz: sys_clk
125MHz: sgmii_clk, clkout1, userclk
62.5MHz: clkin1, clkout0

 

Figure 2.8:VC707 EVB clock distribution 

 The VC707 EVB clock distribution is shown in Fig. 2.8. The system clock named 

sys_clk is a 200MHz differential signal pair including SYSCLK_P and SYSCLK_N to 

provide a high-speed clock for the top module. The SGMII clock named sgmii_clk is a 

125MHz differential signal pair including SGMIICLK_Q0_P and SGMIICLK_Q0_N 

to provide a reference clock of the high-quality and low-jitter for the Ethernet PHY IP. 

The block of Ethernet PHY IP generates a clock of 62.5 MHz as the reference clock of 

the MMCM named clkin1. The MMCM is a phase-locked loop (PLL) IP. After the 

MMCM aligns phase of clkin1, it multiplied the clkfbout by 10 times and the MMCM 

divided clkfbout by 10 times and 5 times. Then, the MMCM generates two different 

frequency clocks of 62.5MHz and 125MHz, respectively. The clock of clkout0 is 62.5 

MHz to be the transmission clock of the Ethernet PHY IP. The clocks of userclk and 

clkout1 are 125MHz. The userclk is used as an operation clock for the user core and the 

clkout1 is used for physical medium attachment (PMA) IP module and serial-gigabit 

media independent interface (SGMII) module inside the Ethernet physical IP. 
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2.3.2 Ethernet PHY Controller 

Xilinx provides the Ethernet PHY IP to make it easy to use the Ethernet protocol 

for the transmission. The format of the transmission packet is shown in Fig. 2.9. 

 

Preamble SFD DA SA

length (bytes) 77 11 66 22 4466 1500

length FCSdata

 

Figure 2.9: Transmission packet format 

 

 Preamble: The preamble consists of 7-byte allowing devices on the network 

to easily synchronize their receiver clocks. 

 Start frame delimiter (SFD): The SFD is one-byte which is the first field of 

an Ethernet packet. 

 Destination address (DA): The DA contains target MAC address of packet. 

 Source address (SA): The SA contains source MAC address of packet. 

 Length: Length is data length which contains 2 bytes. 

 DATA: The data contain 1500 bytes for data transmission. 

 Frame check sequence (FCS): The FCS contains 4 bytes cyclic redundancy 

check code to verify that whether the data frame is damaged or not. 
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The RX FIFO module operation is shown in Fig. 2.10. The counter is aligned the 

receiving data (rx_d) when the signal of the receiver (rx_en) is enabled (rx_en). The 

RX FIFO module outputs the receiving data to the user core module after checking the 

destination address (DA) and the source address (SA) are correct. Finally, we assert the 

signal (rx_finish) when the reception has be done. 

clk

rx_en

counter 0~6 7 8~13 14~19 20~21 22~1502

rx_d Preamble SFD DA SA Length Receiving Data

rx_finish

 

Figure 2.10: Behavior in RX FIFO module 

 

The TX FIFO module behavior is similar to the RX FIFO module as shown in Fig. 

2.11. We assert the transmission signal (tx_en) after the user core operation is finished. 

Subsequently, we wrap the data into packets when the signal (tx_en) is high. Finally, 

the packets are sent to the host computers through Ethernet PHY IP. 

clk

tx_en

counter 0~6 7 8~13 14~19 20~21 22~1519

tx_d Preamble SFD DA SA Length Transmission Data FCS

1520~1523

 

Figure 2.11: Behavior in TX FIFO module 
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2.4 Ethernet Connection Library in Linux 

For the Ethernet connection between Hadoop cluster and VC707 EVBs in our 

implementation, we use a portable C/C++ library which is the packet capture library 

(libpcap) for network traffic capture. This library provides a consistent C functions 

programming interface for different platforms and users can freely call these functions 

to program applications. The structure of libpcap is simple and easy to use. We can use 

these API functions to complete the connection between Hadoop nodes and VC707 

EVBs. The three main libpcap function we use in our implementation are 

pcap_open_live(), pcap_next_ex(), pcap_sendpacket (). 

 pcap_t *pcap_open_live (const char *device, int snaplen, int promisc, int 

to_ms, char *errbuf); 

 int pcap_next_ex(pcap_t *p, struct pcap_pkthdr **pkt_header, const u_char 

**pkt_data); 

 int pcap_sendpacket(pcap_t *p, const u_char *buf, int size); 

We use pcap_open_live() to open a device for capturing our transmission packets 

on the network. When pcap_open_live() returns a packet capture handle on success, we 

can connect to the VC707 EVBs successfully. In addition, we use pcap_next_ex() for 

receiving data and pcap_sendpacket () for transmitting data through the network 

interface. 
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2.5 Brief Summary 

We will integrate the Hadoop system and the FPGAs as above to achieve the high 

scalability and high performance of computation system. The HDFS provides high 

throughput to read and write data, MapReduce supports the applications execute in 

parallel, Hadoop Streaming assists us to program in C/C++, and the libpcap library 

serves the Ethernet to connect with the Ethernet PHY IP in VC707 EVBs. In addition, 

the MMCM in VC707 EVBs helps the system to easily generate the clock signals the 

architecture needs. 

In order to take the advantages of software and hardware, we separate the programs 

of the proposed algorithms as the mappers and the reducers based on the characteristic 

of MapReduce, and implement the repetition of the iterations in FPGAs to accelerate 

the operations.  

The purpose of the proposed architecture is to speed up the operations to 

demonstrate the contribution of the hardware accelerator. The analyses to separate the 

proposed algorithms to software and hardware are important tasks. Therefore, in next 

chapter, we will focus on the implementation of the designs of K-mean clustering 

algorithm and K-nearest neighbor algorithm in VC707 EVBs. 
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Chapter 3 

Acceleration of Data Mining 

Algorithms 

3.1 Introduction to Data Mining 

Data mining is the computational process of analyzing, discovering patterns in big 

data from different perspectives and summarizing them into useful information. There 

are many ways to dig out the value of big data. In an effort to identify some of the most 

influential algorithms that have been widely used in the data mining community, the 

ICDM [46] identified the top 10 algorithms in data mining. The top 10 algorithms cover 

classification, clustering, statistical learning, association analysis, and link mining, 

which are all among the most important topics in data mining research and development. 

K-means clustering algorithm and K-nearest neighbor classification algorithm are two 

of the top 10 algorithms. 

The K-means algorithm is a simple iterative method for data clustering in a large 

number of high-dimensional data sets. The K-nearest neighbor algorithm is a non-

parametric method of the basic classifiers for pattern recognition or data classification. 

The properties of two algorithms are intensive computation and non-sequential jobs 

which are suited for hardware accelerations. 
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3.2 Acceleration of K-means Clustering 

Algorithm 

3.2.1 Introduction to K-means Clustering Algorithm 

K-means clustering is the most popular data mining algorithm and is used in image 

processing and machine learning. The goal of K-means algorithm is to partition the 

input data into the number k of clusters. The K-means clustering algorithm operates on 

a set of D-dimensional set X = {x𝑛𝜖𝑅𝐷 , 𝑤𝑖𝑡ℎ 𝑛 = 1, … , 𝑁}, and partitions X into k (k≤N) 

clusters, where N is the total number of the input data points. The end result is a set of 

D-dimensional centroids for the clusters C = {𝐶1, 𝐶2, … , 𝐶𝑘}, each cluster is associated 

with the center value. Therefore, the output of objective function in Euclidean distance 

is ∑ ∑ ||𝑥 − 𝑢𝑖||
2

𝑥∈𝐶𝑖

𝑘
i=0 , where 𝑢𝑖 is the mean of points (center) in 𝐶𝑖. 

The K-means clustering flow is described as following. Firstly, the number k of 

clusters and the initial cluster centers are determined. Then, the objects are partitioned 

to the nearest cluster by calculating the Euclidean distance between the centers and each 

D-dimensional point. Subsequently, the new center values are computed by calculating 

the mean of the objects in the clusters to replace the previous centers. After that, the 

iteration of partitioning object to the nearest cluster and calculating the new centers has 

been repeated until the new cluster centers are approximated. Finally, when the new 

cluster sets are all assigned to the nearest cluster, the K-means clustering is finished. 

  



 

-49- 

 

3.2.2 Software Implementation 

We prepare the three-dimensional input data by MATLAB and upload the files to 

HDFS. In addition, we implement the initialization and calculate the new cluster centers 

in MapReduce program.  

Algorithm 1 shows the pseudo code of K-means mapper. In each map task, the 

mapper reads the partial datasets which are three-dimensional floating-point data nodes 

and four cluster three-dimensional floating-point centers from HDFS. When the inputs 

are ready, the mapper connects to the VC707 and wraps the MAC addresses of the 

destination and the source into the transmission packet. Moreover, the mapper wraps 

the 4 cluster centers and 115 nodes into transmission packet. Then, the host computer 

sends the whole transmission packet to the VC707 EVB, and then the host computer 

receives the packet of the partial results from VC707 EVB. Finally, the mapper 

constructs the outputs as <key, value> pairs to the reduce stage. 

Algorithm 2 presents the pseudo code of K-means reducer. In the reduce stage, the 

reducer adds the partial sum of each dimension and the partial amount of nodes in the 

clusters from the mapper. Then, the reducer calculates the new cluster centers for the 

next iteration and update the cluster center file to HDFS. 
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  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

Algorithm 1 : K-means Mapper 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

Input: partial 3-d floating-point nodes (32bits* N *3) and 4 cluster 3-d floating-point centers 

(32bits*4*3=384bits) 

Output: partial <key, value> pairs, where the key is the index of cluster and the value is the partial 

sum of 3-d floating-point (32bits*4*3=384bits) with the amount of nodes in the clusters 

(32bits*4*3=384bits) 

max_number_of_cluster is 4 

max_node_count is 115 

number of input nodes is N 

 

1:  receive input data from HDFS and calculate the number N of input nodes; 

2:  connect to the VC707 EVB; 

3:  wraps MAC address into the transmission packet; 

4:  for row = 0 to N do 

5:   wrap the 4 cluster centers into transmission packet; 

6:  do { 

7:    wrap the data nodes into transmission packet; 

8:   row = row + 1; 

9:   } while (row % 115 != 0); 

10:  send the packet to VC707 EVB; 

11:    receive the packet of the partial results from VC707 EVB; 

12:  end for 

13:  // construct the outputs as <key, value> to reducer 

14:  for index = 0 to max_number_of_cluster, index++ do 

15:    output <index, partial results and the number of nodes in the clusters> as <key, value> pair 

16:  end for 



 

-51- 

 

 

  

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Algorithm 2 : K-means Reducer 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Input: <key, value> pairs of all mappers, where the key is the index of cluster and the value is the partial 

sum of 3-d floating-point (32bits*4*3=384bits) with the number of amount in the clusters 

(32bits*4*3=384bits) 

Output: 4 new cluster 3-d floating-point centers (32bits*4*3=384bits) to HDFS 

 

max_number_of_cluster is 4 

 

1:  receive input data <key, value> from all of mapper; 

2:  do { 

3: calculate x coordinate total sum of each cluster 

4: calculate y coordinate total sum of each cluster 

5: calculate z coordinate total sum of each cluster 

6: calculate total amout of each cluster 

7:  } while (inputs != NULL) 

8:  // Update new 4 cluster centers 

9:  for index = 0 to max_number_of_cluster do 

10:     x of new cluster center = the sum of x coordinate / the amount of x coordinate; 

11:    y of new cluster center = the sum of y coordinate / the amount of y coordinate; 

12:     z of new cluster center = the sum of z coordinate / the amount of z coordinate; 

13:  end for 

14:  write the 4 new cluster centers into HDFS; 
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3.2.3 Circuit Design in FPGA 

We separate the computations of calculating the Euclidean distance and clustering 

to the VC707 EVB. Algorithm 3 [39] shows the pseudo code of the K-means clustering 

algorithm in the VC707 EVB.  

In K-means clustering circuit, the inputs are 115 nodes three-dimensional single 

precision floating point coordinate values and the initial center coordinate values for 

four clusters from the host computer. When the K-means clustering circuit receives the 

coordinate values of 115 nodes, it calculates the Euclidean distances of each node to 

the cluster centers with parallel hardware circuits and finds the shortest distances to the 

cluster centers. After that, the nodes can be grouped into four clusters. When the input 

nodes are all grouped into clusters, the number of nodes in each cluster and the partial 

sum of the coordinate values of each dimension in each cluster are sent back to the host 

computer. Then, the host computer sends another 115 nodes to the VC707 EVB until 

all input dataset are grouped by the proposed FPGA-based hardware accelerator. In 

addition, the host computer calculates new centers for the next iteration by 

accumulating the partial sum and the number of nodes in each cluster which are sent by 

the VC707 EVB.  
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Algorithm 3 : K-means clustering algorithm in VC707 EVB  

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Input: 3-d 115 floating-point nodes (32 bits*3*115=11040 bits) and 4 cluster floating-point centers (32 

bits*4*3=384bits) 

Output: the registers cluster_value[3][2] store clusters coordinate value of 3-d floating-point (32 

bits*4*3=384 bits) and the registers cluster_amount[3] store number of nodes in each cluster 

(96 bits*4=384 bits) 

max_number_of_cluster is 4 

max_node_count is 115 

 

1:  receive packet input from host computer; 

2:  store input in the node data registers and center data registers in sequential; 

3:  for(cluster_count=1; cluster_count <= max_number_of_cluster; cluster_count++) begin 

4:    set_cluster_center(cluster_count); 

5:  calculate Euclidean distance to cluster centers in total 115 nodes; 

6:  save 115 Euclidean distances from 115 nodes; 

7:  end 

8:  In 115 nodes with 4 Euclidean distance, find the shortest distance from 115 nodes;  

9:  for(node_count=1; node_count <= max_node_count; node_count++) begin 

10:  if(cluster number of node == cluster number “n” of node with shortest distance ) then  

11:   cluster_value[n][0] = cluster_value[n][0] + node_x_coordinate; 

12:   cluster_value[n][1] = cluster_value[n][1] + node_y_coordinate;  

13:   cluster_value[n][2] = cluster_value[n][2] + node_z_coordinate; 

14:   cluster_amount[n] = cluster_amount[n] + 1; 

16: end 

17: end 

18: if dataset is complete transmission then 

19:  wrap the registers cluster_value[3][2] and the registers cluster_amount[3] into packet and send 

to host computer; 

20: reset the registers cluster_value[3][2] and the registers cluster_amount[3] value for next iteration; 

21: end 
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The Euclidean distance equation is shown in Eq. 3.1. 

distance =  √(𝑛𝑜𝑑𝑒𝑥 − 𝑐𝑒𝑛𝑡𝑒𝑟𝑥)2 + (𝑛𝑜𝑑𝑒𝑦 − 𝑐𝑒𝑛𝑡𝑒𝑟𝑦)
2

+ (𝑛𝑜𝑑𝑒𝑧 − 𝑐𝑒𝑛𝑡𝑒𝑟𝑧)2
2

 

Eq. 3.1 

We implement the Euclidean distance with 115 group parallel hardware circuits as 

shown in Fig. 3.1 by Xilinx IP core generators including the IP cores of floating-point 

subtractors, floating-point adders, floating-point square circuits, and floating-point 

square root circuits. 

 

 

Figure 3.1: Euclidean distance parallel hardware circuits between one three-

dimensional cluster center node and 115 three-dimensional nodes. (Node: 115 nodes x 

32bits = 11040 bits; Cluster: 1 cluster center x three-dimensional x 32bits = 96 bits) 
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3.3 Acceleration of K-Nearest Neighbor 

Algorithm 

3.3.1 Introduction to K-Nearest Neighbor Algorithm 

The K-nearest neighbor (KNN) algorithm is also one of the most popular data 

mining algorithms. The KNN algorithm is mostly used in pattern recognition to solve 

regression or classification problem. The goal of KNN algorithm is to find the K-closest 

neighboring training samples to the object and classify the object by a majority vote of 

its K nearest neighbors to assign the object to the class, K is a user-defined constant. 

The training sample data are given the set 𝑆 = {(𝑥1, 𝑦1), … (𝑥𝑖, 𝑦𝑖), … , (𝑥𝑛, 𝑦𝑛)}, where 

x is the feature vector and y is the corresponding target class. In order to find the nearest 

neighbors, a commonly used distance is the Euclidean distance. An unlabeled vector is 

classified by assigning the label 𝑦𝑖 which is the most frequent among the K training 

samples S nearest to the query object. 

The KNN algorithm flow is described as following. Firstly, the number of K and 

training samples are assigned, and the target test data are defined. Then, the distances 

between the training samples and the target test data are calculated. Finally, when the 

target test data are classified by finding the K shortest distances of the training samples 

and voted by the weight of the samples, the KNN algorithm is finished. 
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3.3.2 Software Implementation 

The KNN algorithm software implementation is also divided into the mapper stage 

and the reducer stage. Algorithm 4 shows the pseudo code of the KNN algorithm 

mapper. We use the same of K-means dataset by MATLAB and also send the data into 

HDFS. When the inputs are ready, the mapper connects to the VC707 and wraps the 

MAC addresses of the destination and the source into the transmission packet. 

Moreover, the mapper wraps the test data and 115 sample nodes into transmission 

packet. Then, the host computer sends the whole transmission packet to the VC707 

EVB, and receives the packet of the partial results from VC707 EVB. Finally, the 

mapper constructs the outputs as <key, value> pairs to the reduce stage. 

  
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Algorithm 4 : KNN algorithm Mapper 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Input: partial 3-d floating-point sample nodes (32bits*N*3) and one 3-d floating-point test data 

(32bits*1*3=96bits) 

Output: partial <key, value> pairs, where the key is the Euclidean distance (32bits*K), and the value 

is the label of the sample data (32bits*K) 

1:  receive input data from HDFS, calculate the number N of input nodes and give labels to the input 

data; 

2:  connect to the VC707 EVB; 

3:  wraps MAC address into the transmission packet; 

4:  for row = 0 to N do 

5:   wrap the test data into transmission packet; 

6:  do { 

7:    wrap the sample nodes into transmission packet; 

8:   row = row + 1; 

9:   } while (row % 115 != 0); 

10:  send the packet into VC707 EVB; 

11:    receive the packet of the K shortest Euclidean distances from VC707 EVB; 

12:  end for 

13:  // construct the outputs as <key, value> to reducer 

14:  for index = 0 to K do 

15:    output <the Euclidean distance, label>; 

16:  end for 
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Algorithm 5 presents the pseudo code of the KNN algorithm. In the reduce stage, 

the reducer will get the sorted Euclidean distance values and the label of the sample 

dataset from the mapper. Then, the reducer votes by the weight of the samples to 

determine where the test data belongs to. 

  
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Algorithm 5: KNN algorithm Reducer 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Input: partial <key, value> pairs, where the key is the Euclidean distance (32bits*K), and the value is 

the label of the sample data (32bits*K) 

Output: Show the test data which class it belongs to. 

 

K is a user-defined constant; 

1:  receive input data <key, value> from all of mapper; 

2:  for i = 0 to K do 

3:    find the max frequency of the labels; 

4: end for 

5: output the label which the test data belongs to; 
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3.3.3 Circuit Design in FPGA 

We implement the Euclidean distance calculation circuits in the VC707 EVB. 

Algorithm 6 shows the pseudo code of the KNN algorithm in the VC707 EVB. In KNN 

circuit, the inputs are 115 nodes three-dimensional single precision floating point 

coordinate values and the test data coordinate values from the host computer. When the 

KNN circuit receives the coordinate values of 115 nodes, it calculates the Euclidean 

distances of each sample data to the test data and sorts with parallel hardware circuits 

and the 115 Euclidean distance are sorted by floating-point compare IP cores with 

parallel hardware circuits. After that, the K shortest distances will be sent back to the 

host computer. Then, the host computer sends another 115 nodes to the VC707 EVB 

until all input dataset are grouped by the proposed FPGA-based hardware accelerator.  

  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Algorithm 6 : KNN algorithm in VC707 EVB  

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Input: 3-d 115 floating-point sample nodes (32 bits*3*115=11040 bits) and 1 floating-point test data 

(32 bits*1*3=96bits) 

Output: the register of K shortest Euclidean distances (32bits*K) 

max_node_count is 115 

1:  receive packet input from host computer; 

2:  store input in the node data registers and center data registers in sequential; 

3:     set_cluster_center(cluster_count); 

4:  calculate Euclidean distance to the test data in total 115 nodes; 

5:  save 115 Euclidean distances from 115 nodes; 

6: In 115 node Euclidean distances, find the K shortest distance from 115 node Euclidean distances; 

7::    sorting and keep the K shortest Euclidean distances; 

8: wrap the registers K shortest Euclidean distances into packet and send to host computer; 

9:   reset the registers of Euclidean distances value for next iteration; 
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Chapter 4 

Experimental Results 

4.1 K-means Clustering Experimental 

Results 

Table 4.1 shows the hardware resource utilization of the proposed hardware 

accelerator for K-means clustering algorithm. 

 

Table 4.1: FPGA resource utilization 

Slice Logic 

Utilization 
Used Available Utilization 

Number of 

 Slice Registers 
125,761 607,200 20% 

Number of  

Slice LUTs 
234,713 303,600 77% 

Number of 

Occupied Slices 
70,535 75,900 92% 

Number of 

DSP48E1s 
2,185 2,800 78% 
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Fig. 4.1 shows the total time required for K-means clustering algorithm with 

different size of input dataset. The proposed Hadoop streaming with FPGA-based 

hardware accelerators can achieve 3x speedup than the Hadoop cluster using Mahout 

machine learning libraries [19] with one Master Node and four Slave Nodes 

configuration. 

3x

2x

 

Figure 4.1: Compare Hadoop cluster with FPGA-based accelerators with Mahout 

libraries on 1 Master Node + 4 Slave Nodes. 
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Fig. 4.2 shows the total time required for K-means clustering algorithm with 

different number of Slave Nodes. When the number of Slave Nodes is increased, the 

total time required for K-means clustering algorithm can be reduced accordingly. 

Moreover, it also shows the performance improvement saturation when the number of 

Slave Nodes is increased. 

 

Figure 4.2: Hadoop cluster with 1/2/3/4 Slave Nodes 
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 Fig. 4.3 presents that the speedup of our proposed Hadoop cluster with FPGA-

based hardware accelerators can be achieved the speedup of 21x than Intel i5-3230M 

at 2.6GHz [39]. In our proposed architecture, the I/O latency has been reduced because 

we use SDD in each host computer and store dataset on HDFS to raise the disk I/O rate. 

In addition, Hadoop MapReduce supports the parallel computation and HDFS provides 

the high throughput to contribute the speedup. 

 

Figure 4.3: Compare proposed results with [39]  
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4.2 K-Nearest Neighbor Experimental 

Results 

Table 4.2 shows the hardware resource utilization of the proposed hardware 

accelerator for KNN algorithm. 

 

Table 4.2: FPGA resource utilization 

Slice Logic 

Utilization 
Used Available Utilization 

Number of 

 Slice Registers 
101,312 607,200 16% 

Number of  

Slice LUTs 
216,511 303,600 86% 

Number of 

Occupied Slices 
72,965 75,900 96% 

Number of 

DSP48E1s 
2,185 2,800 78% 
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 Fig. 4.4 shows the compared results of the KNN algorithm between Hadoop 

cluster without FPGA-based hardware accelerators and Hadoop cluster with FPGA-

based hardware accelerators. The Hadoop environment described in Table 2.1 is 

composed of the Intel I7 CPU and the SSD. In the design of KNN algorithm, we 

implement the calculation of Euclidean distance and matrix comparisons sorting in the 

VC707. We accelerate the calculation of Euclidean distance and sorting in the VC707 

EVB by parallel hardware circuits. The speedup of the hardware accelerator can achieve 

3.5x than Hadoop cluster without FPGAs. 

 

3.5x

2.4x

 

Figure 4.4: Compare Hadoop cluster without FPGAs with Hadoop cluster with 

FPGAs on 1 Master Node + 4 Slave Nodes 
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Fig. 4.5 shows the total time required for KNN algorithm with different number of 

Slave Nodes. When the number of Slave Nodes is increased, the total time required for 

KNN clustering algorithm can be reduced accordingly. Moreover, it also shows the 

performance saturation when the number of Slave Nodes is increased. 

 

Figure 4.5: Hadoop cluster with 1/2/3/4 Slave Nodes 
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Chapter 5 

Conclusion and Future Works 

5.1 Conclusion 

In this thesis, the proposed Hadoop cluster with FPGA-based hardware 

accelerators for K-means clustering algorithm and K-nearest neighbor algorithm can 

share the loading in the Slave Nodes to the VC707 EVBs. The Hadoop cluster provides 

the parallel processing to speed up the computations of the massive datasets. 

The experimental results show that for clustering three-dimensional input dataset, 

the proposed design in K-means clustering algorithm can achieve 3x speedup than the 

Hadoop cluster without FPGA-based hardware accelerators and the implementation in 

K-nearest neighbor algorithm can achieve 3.5x speedup than Hadoop cluster without 

FPGA-based hardware accelerators. As a result, the proposed high-scalable 

heterogeneous computing solution is suitable to be applied to different machine 

learning algorithms for big data analytics.  
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5.2 Future Works 

In this thesis, we communicate with the Hadoop cluster and VC707 EVBs through 

Ethernet. The Ethernet PHY clock is subject to the specification of VC707 EVBs that 

is the obstruction to speed up while transmitting data packets. Therefore, we can 

consider the other way to communicate with the host computer and VC707 EVBs like 

PCI Express (PCI-E). The PCI-E is a high-speed serial computer expansion bus 

standard and has high bandwidth to provide higher system bus throughput. We can take 

the advantage of the PCI-E to speed up the data transmission rate. Besides, we can 

increase the system clock rate for whole hardware accelerator to speed up the operations. 

Thus, we should rebuild and redesign the architecture of the VC707 EVBs to achieve 

the speedup. 

Moreover, we can find the new software platform like Spark that the performance 

of iterations is higher than Hadoop. Spark can achieve the speedup faster than Hadoop 

because Spark perform many operations in memory. The Spark RDD technique 

effectively solves the I/O latency during processing. In addition, the open-source 

hardware is the future trend in recently years, we expect our hardware implementations 

can be more reconfigurable that users can easily modify some parameters to execute 

the programs instead rewriting the source code for their needs. 

However, the integration of software and hardware is the current trend in these 

years, we committee to develop a platform which is more flexible to achieve high 

scalability and high performance for different requirements. 
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