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摘要 

  
隨著物聯網興起，不論是智慧型手機、社群平台或感測裝置，所有設備都希

望能夠經由網路跟伺服器交換資料，讓使用者能夠即時得到回覆，也因此面臨大

數據 (Big data) 的時代，海量的資料、不同的資料型態、隨時隨地的資料傳遞，

隱藏在資料裡的價值，都是處理大數據會面對的問題。 

分散式系統和雲端計算也越來越普遍，希望藉由多個運算伺服器或叢集做平

行化的運算，和互相使用存取空間讓容量上升，來彌補個人電腦儲存的空間不足

和 CPU 運算速度的瓶頸。也因為個人電腦上的瓶頸，越來越多人使用硬體加速

平台(hardware accelerator)來分擔運算的負擔，最常見的就是可程式邏輯陣列

(FPGA)和圖形處理加速器(GPU)。硬體加速平台適合做高密度且獨立的運算，它

具有很多運算單元可以達到運算平行化。 

K-means 分群演算法是資料探勘(data mining)的一種，可以用來分析資料間

的關聯性或是圖片的優化，而本論文也實現 K-means 分群演算法分析大型的資

料，呈現出硬體加速平台的優勢。因此，我們建立了一個以 FPGA 為基礎的擴充

平台，利用網路分享器來提升擴充性(scalability)。電腦端把資料整理好傳給 FPGA，

經由FPGA計算完後，再把結果傳回給電腦端。電腦端負責較不規則的運算處理，

工作分配和處理 FPGA 的運算結果，而 FPGA 只要專注於運算的部分。最後再

以執行時間來評斷系統的表現。 

 

 
關鍵詞: 大數據，現場可程式邏輯門陣列硬體加速平台，K-means 分群演算法，

以 FPGA 為基礎的擴充平台 
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Abstract 
 

 Nowadays, the smart phones, web systems, and wireless sensors are enabled to 

connect the Internet, and response to user in real time. Therefore, we are living in the 

internet of things (IoT) era with big data generation. The “4Vs” characteristics of big 

data such as variety, volume, velocity, and value make them difficultly to be handled. 

 The personal computer is hard to deal with big data, because the capacity of 

memories and storage devices is not enough and the limited processing rate of the 

CPU. Therefore, the distributed file system and cloud computing have become 

popular. Both of them can compute in parallel and share the data of disks. Moreover, 

the hardware accelerator is suited for data-intensive computation, and the function 

units of hardware accelerator are processed in parallel. Graphic processing units 

(GPUs) and field programmable gate arrays (FPGAs) are potential hardware 

acclerators. 

 K-means clustering algorithm is one of the data mining techniques. K-means is 

used to find the relation between the data, or for image processing. Therefore, in this 

thesis we implement k-means clustering algorithm to analyze the dataset. The 

FPGA-based hardware accelerators that communicate with computer through switch 

are proposed. The computer wraps data into packets to FPGA, and it receives data 

after the FPGAs are finished computation. In addition, the host computer is employed 

as the master to manage data and dispatch jobs, and the FPGAs are focused on 

accelerating data computation. Finally, the proposed system performance is compared 

with the benchmark execution time. 

Keywords: big data, field programmable gate, K-means clustering algorithm, 

PGA-based hardware accelerators 
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Chapter 1 

Introduction 

1.1 Introduction to Big Data 

Nowadays, the growing popularity of web systems, mobile devices, social media, 

surveillance videos, and wireless sensors generate large amounts of data from 

difference sources. Specific technologies such as network, internet, server, email and 

mobile are growing up [1]. The smart phones have launched a wave of revolution, not 

only the user can directly access vast amounts of smart phone applications but also 

enables individuals to use applications to reach mass audiences [2]. The conception of 

Internet of Things (IoT) is connectivity of network entities embedded with device that 

can exchange data to physical objects. However, Internet of Things (IoT) is evolved to 

Internet of Anything (IoA), Fig. 1.1 shows the IoA ecosystem by [3].     

 

Figure 1.1: Presents [3] vision of the IoA ecosystem 
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IoA can possibly imagine everything as part of the network ecosystem, like internet 

operating system – a common applications have ability to accommodate any and all 

sensor inputs, system states, operation conditions, and data context [3].  

An IDC report [4] predicts that data volume will increase from 130 exabytes to 

40,000 exabytes by a factor of 300, from 2005 to 2020. According to reference [5], 

the dataset is produced rapidly. For instance, the user searches by Google is more than 

38000 per second, and 2 terabyte of photos are uploaded to social media every day, 

and videos on Youtube are watched 4 billion hours long for a month. The data is 

exponential growth as shown in Fig. 1.2. It is obviously the data explosion generation 

is coming.  

 

Figure 1.2: 50-fold Growth form beginning of 2010 to the end of 2020 [4] 

In fact, big data is difficult to be handled, not only the amount of data is large, 

but also it has special properties. The properties of big data make it not easy to be 

handled. The properties include of big data variety, volume, velocity and value, the 

“4Vs” is widely applied to the definition of big data [6].  
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The variety means the data produced is not of one flavor, they have structured, 

semi-structured and unstructured data, so traditional database systems are hard to 

handle them. For example, users generated contents in social media, IT industries log 

files, and sensor devices data, all these data are different structure. 

The volume means the volume of big data is quite larger than traditional data. In 

Fig. 1.2, the growth rate is incredible and traditional database or hardware are notable 

to store big data. 

The velocity means big data must be analyzed at a rate that matches the speed of 

data production. In the Internet of Everything (IoE) environment, real-time 

applications report must be quickly. User wants to know everything immediately via 

device, such as smart phones, detection sensors and RFID.    

Finally, by analyzing big data, some useful values can be found, for instance, 

business trends and commercial benefits. But, it has a gap in between the different 

specialty, like business leaders concern how to add value in product and get more 

benefit unlike IT leaders concern the low power or processing [7]. 

There are more characteristics like complexity and variability [7] [8]. Variability 

means data flow is inconsistencies, to maintain data loads is a challenge. Complexity 

means the degree of transform data across systems coming from different sources. 

For these properties, big data have many challenges and issues [6][7][8][9], we 

summarize above references discussion and show as follows: 

Data Privacy and Security: User can store privacy information in many of 

online services, cloud, social media and mobile phones, but we don’t know where is 

data stored. Everything enables to connect the Internet, personal information, business 

privacy and financial data are probably steal by hacker. We can encrypt privacy data 

and carefully upload data to protect ourselves. 
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Data management and store: Data are excessive large that the storage devices 

not have enough space to storing datasets. In addition, many datasets are 

heterogeneous in type, semantics, structure, video and text. To conquer this problem, 

the storage devices need scalability, expanding system capacity should be easy and 

convenient, while increasing capacity does not need to shut down the system. 

Distributed file system allows user to share files and share data to many hosts. Many 

hosts can interconnect to the server, and it can handle heterogeneous data and have 

great scalability. However, distributed file system has others challenges, like 

requirements response time, power consumption, data transform, and static storage 

may not be satisfied by dynamic data growth. 

Data analysis and application: To analyze entire dataset is difficult, volume of 

dataset is huge but lots of information is worthless, the analysis time is hard to be 

real-time. In addition, the available data becomes challenge, privacy dataset like 

enterprise financial information, technique or valuable logs, are hard to be shared, but 

we need to cooperate with different professionals. However, we expect the valuable 

benefits in big data, machine learning and data mining [10] are sophisticated 

analytical technologies to explore tendency. 

Nowadays, computing is transformed to commodity, that delivers infrastructure, 

platform and software in a manner like traditional utilities water, electricity natural 

gas and telephone network. It seems the 5
th

 utility that services consumer’s requests 

any time and pays as the usage of service [11]. National Institute of Standards and 

Technology (NIST) [12] defines cloud computing (shown in Fig. 1.3) as follows five 

essential characteristics, four deployment models, and three service models. 



 

-16- 

 

Infrastructure as a service Platform as a service Software as a service

On-Demand 
Self-Service

Broad Network 
Access

Resource 
Pooling

Rapid Elasticity
Measured 

Service

Public Cloud Community Cloud Private Cloud Hybrid Cloud

Five Essential 
Characteristics

Four Deployment 
Models

Three Service 
Models

 

Figure 1.3: Cloud computing definition by NIST 

Five essential characteristics: 

 On-demand self-service: Customer can unilaterally use computing capabilities 

without requiring service provider. 

 Broad network access: User can access cloud service at any time through 

standard mechanism with client platforms.  

 Resource pooling: Provider uses a multi-tenant model pool computing 

resources to serve multiple consumers. 

 Rapid elasticity: Capabilities can be elastically provisioned and released with 

customer demands. 

 Measured service: Cloud provider measures and monitors resource usage, user 

pays appropriately and transparently based on utilization. 

Four deployment models: 

 A public cloud represents publicity accessible via the internet and third-party 

service providers, and it may be owned by a large organization or a company 

offering cloud services. 

 A community cloud is shared by several organization, community members 

can jointly use cloud data and applications. 

 A private cloud is owned by single organization, it offers increased security at 
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a greater cost. 

 A hybrid cloud is composed of two or more different deployment models  

that maintain unique entities, but enable data and application portability  

between clouds by standardized or proprietary technology. 

Three service models: 

 Infrastructure as a service (IaaS): The capability provided machines, storages, 

networks, and other fundamental computing resources, that consumer can 

deploy or run software such as operating systems or applications, but disables 

to manage or control the underlying cloud infrastructure. (ex: Amazon EC2, 

OpenNebula) 

 Platform as a service (PaaS): The capability provided platform that consumer 

can deploy applications using programming language or tools onto virtualized 

cloud platform. (ex: Google App Engine, Hadoop, Microsoft Windows Azure) 

 Software as a service (SaaS): The capability provided customer can use 

provider’s application running on a cloud infrastructure through web browser 

or a program interface. (ex: Google Apps, mail services, EyeOS) 

Obviously, processing big data is a challenge, both hardware and software are 

evolved to adapt the characteristics of big data. Therefore, many software frameworks 

and file systems are developed to against big data issue, such as NoSQL database, 

Google file system, Facebook’s photo storage haystack and Hadoop. 

NoSQL is complemented replacement relational database management systems 

(RDBMS). One of the most important is that NoSQL not uses SQL as a query 

language nor based on tables. NoSQL systems have six features [13] and high 

scalability, reliability, and availability, that are suitable for unstructured data and 

management of datasets. The primary way differs from relation database is NoSQL 
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systems supports many data models, such as Key Value Databases, Column Oriented 

Databases, Document Databases, Graph Databases and Extensible Record Databases 

[6][14]. 

Google file system (GFS) [15] runs on hundred inexpensive machines on Linux 

operation system, and GFS has fault tolerance and atomic data recovery when 

inexpensive commodity hardwares are failure. GFS is composed of a single master, 

multiple clients and multiple chunkservers. Its architecture is shown in Fig. 1.4. GFS 

client program communicates with the master and chunckservers through system APIs. 

GFS master manages all file system metadata, metadata records namespace and data 

location of chunkserver. Files are divided into chunks (64MB) and saved in 

chunckservers. Each chunk is identified by an unique 64-bit chunk handle and is 

replicated across least three chunckservers. GFS chuckserver sends read or write 

command by the chunk handle and byte range. [16] lists GFS’s main characteristics 

like big data are divided into chunks and simplify management system. However, 

there are some disadvantages in GFS, such as small size files have poor performance 

and single master may restrict scalability and reliability of system.    

 

Figure 1.4: Google File System architecture [15] 
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Facebook developed haystack [16] to store billons small size of photos. Haystack 

achieves four goals: high throughput and low latency, fault-tolerant, cost-effective and 

simple. Haystack is composed of three core components: Haystack Store, Haystack 

Directory and Haystack Cache. Haystack Store manages the metadata of photos in file 

system. Haystack Directory maintains metadata correspondence between physical 

volumes and logical volumes, that physical volumes are storage capacity and logical 

volumes point to physical volumes on different machines. Haystack Cache is internal 

content delivery network (CDN), which can store for popular photos and protect 

metadata if CDN nodes fail. Fig. 1.5 shows the flow of serving a photo, haystack 

directory establishes the URL to each photo, the URL contains information like 

following: http://<CDN>/<Cache>/<Machine id>/<Logical volume, Photo>. The 

system uses the logical volume and photo id looks for photos. If the CDN cannot find 

the photo then delete the CDN address from the URL and contacts the Cache. There is 

similar behavior when data miss in Cache. 

 

Figure 1.5: Serving a photo in Haystack [16] 
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Hadoop [17] is an open source software framework that enables massive data 

storage and distributed processing over large clusters of computing servers. It is 

mainly composed of two modules: Hadoop distributed file system (HDFS) and 

MapReduce. An HDFS cluster has a single Namenode that manages file system 

metadata, namespace and edit log. Secondary Namenode can rebuild Namenode data 

by the namespace and edits log when system is crashed. In addition, there are several 

Datanodes that stores the actual data. In HDFS, a file is split into one or more blocks, 

and each block has several replications to prevent missing data. The MapReduce 

framework consists of a single master JobTracker and one slave TaskTracker per 

cluster node. The master JobTracker schedules jobs for the slaves, and monitors and 

re-executing the failed tasks. The MapReduce framework enables the automatic 

paralleling and distribution of large-scale computation applications on the large 

cluster of computing servers. Therefore, it becomes easier to implement big data 

analysis applications. However, some cases are not suited for Hadoop like low-latency 

data access or lots of small files, Hadoop is designed for batch-type that is hard to 

report in real-time. In addition, block size of Hadoop is larger than many small files, 

and it makes Namenode storing unnecessary metadata. In fact, there are many 

approaches to improve Hadoop framework, such as a flexible data flow, blocking 

operators, I/O optimization, scheduling, joins, performance tuning and energy 

optimization [6]. 

Besides the development of software frameworks and distributed file systems, 

the computing servers also require new system capabilities. Computing demand is 

kept increasing and with only CPUs is dissatisfaction. Therefore, heterogeneous 

hardware accelerator helps to share computing loading and becomes more attracted in 

recent years. 
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1.2 Heterogeneous Hardware Accelerator 

A single core computer has reached its performance limitations, the multiple 

cores work in parallel can achieve speed up, but part of sequential fractions unlikely 

to be amenable to parallel processing [18]. In Amdahl’s law [18], the simple 

experiment shows that one of the key factors to speedup is to enhance the 

non-sequential fractions.  If we assume that the fractions of the program can be 

executed in parallel is α (0≦α≦1) and can be execution by N processors, consider 

the execution time T is the execution time to run same program on a single-processor. 

The equation of enhanced execution time T’ can be written in Eq. 1.1 by Amdahl’s 

law.  

𝑇’ =  𝑇 × ((1 − 𝛼 ) +
𝛼 

𝑁
)                 (1.1) 

 The speedup S is shown in Eq. 1.2(a), and the system efficiency E is shown in Eq. 

1.2(b). We can estimate the system that has several processors have appropriate 

benefit. However, if N is very large, the system efficiency becomes very low. For 

example, if we assume the non-sequential fraction α is 0.5 and number of processors 

N are 128, and the system efficiency is 1.5%. It means most processors are idle, and 

the system which run with 128 processors. 

(a) 𝑆 = 𝑇′ 𝑇⁄      (b) 𝐸 = 𝑆/𝑁                  (1.2) 

N processors or level of N parallelism doesn’t means to speed up a factor of N. 

Many factors create latency or overhead between processor and system such as the 

data transmit turnaround time and signal deliver between two more processors. We 

should evaluate benefits when we determine the architecture, and the overhead affects 

the actual speedup. For example, mobile cloud computing helps the smartphone 

calculates the intensive computing, but it also has additional costs like data file 
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migration, application turnaround time and energy consumption [19]. Besides, a 

single complex processor as a host processor operates with many small and simple 

cores achieved better speedup and energy efficience than homogeneous cores 

architecture [20][21]. In this thesis, we focus on the system cooperates with hardware 

accelerators. Heterogeneous architecture property can separate jobs to hardwares and 

softwares, and hardware accelerators can excellently work on computational intensive 

jobs, and software programs can process complex functions and manage data.  

Graphic processing units (GPUs), and field programmable gate arrays (FPGAs) 

are potential hardware accelerators. The main advantages of the GPU are high 

memory bandwidth, many programmable cores with multi-thread execution in parallel, 

coding with high level languages like CUDA, and changing functions easier than 

FPGAs. FPGAs have high density arrays of logic blocks which can execute 

computation in parallel. User can use Verilog or VHDL to implemented circuits in 

FPGA, and the vendors provide useful IPs to help developer design [22]. However, 

design different hardware accelerator architecture have many challenges for developer. 

It takes a lot of time to implement the design, but it is difficult to know the 

performance before implementation [23]. In FPGA, developers require co-design 

software and hardware, and understand hardware design concepts [24], and design 

skills are also important in GPU. For instance, the programmer uses if statement may 

cause performance poorly [22]. In addition, operation frequency of GPU is faster than 

FPGA, but the cores are grouped that the data transfer have latency between groups. 

Furthermore, local memory size in each group is small, and the GPU inappropriately 

executes sophisticated algorithms with shared shard arrays because the limitations in 

memory access [25]. 

However, there are unclear which hardware accelerators are better because it is 
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doesn’t exist standard benchmark. Many researchers present the performance for 

diverse applications. In reference [22], they implement Gaussian Elimination, Data 

encryption standard, and Needleman-Wunsch on an FPGA and the GPU, they find 

independent data flow. The computation which can process in parallel is good fit to 

GPU, and applications which have many memory access times are bad fit to GPU. 

FPGA is good fit at computation low-level bit-wise operations and is bad fit at 

complex algorithm and data flow. [23] experiments four applications which are matrix 

multiplication, N-body simulation, Heston Pricing, and finite difference modeling. It 

really needs to understand different application’s characteristics to select property 

computing architecture for the best performance and energy efficient. Moreover, [24] 

chooses specific four benchmarks with different properties, such as memory 

bandwidth limited (STREAM), computationally limited (SGEMM), memory latency 

limited (Large FFTs) and parallelism limited (Monte-Carlo Methods), as shown in 

Fig.1.6. GPUs have great performance for streaming applications because of higher 

floating-point operation performance and high memory bandwidth, but they have poor 

performance in Fast Fourier Transform because non-contiguous memory blocks 

transfers takes higher penalty. FPGA is suited for low memory bandwidth and parallel 

applications. 

 

Figure 1.6: Different memory access characteristics benchmark applications [24] 
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After discussion characteristics in both FPGA and GPU, we survey prior 

embedded hardware accelerators systems architectures. 

In [26], the IBM Power8 processor doubles L1 to L3 data cache size per core for 

big data analytics. In addition, the execution functional units are also increased to 

enhance per-core throughput. Since server workloads will continue to evolve, the 

IBM Power8 processor introduces the coherent accelerator processor interface (CAPI) 

to support the general purpose cores for a heterogeneous computing solution with 

off-chip hardware accelerators. These accelerators can be plugged into PCIe slots and 

implemented in FPGA or ASIC chips. Fig. 1.7 shows the architecture of IBM power8.  

In [27], the similar hybrid CPU/FPGA architecture is discussed. Since it is hard 

to calculate large amount of data by only CPUs, the FPGA can help to enhance the 

throughput of data processing. 

FPGA / ASIC
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Figure 1.7: Architecture of CAPI [26] 
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In [28], they implement the three vision services, stabilization, moving target 

indication and contrast normalization on heterogeneous computing system. The 

hardware-based vision IP modules are implemented on Xilinx Zynq platforms and 

service-based software runs on Linux. Software is a middleware that manages 

hardware accelerator, provides common API functionalities, supports different 

requirements. Fig. 1.8 shows vision IP hardware architecture. VIN devices accept 

multiple video formats, and VOUT devices display result on display. VDMA devices 

can read and write between memory interface and crosspoint switches, and VIP 

modules are processing in parallel to achieve high performance with low latency. One 

feature of this architecture is high level of parallelism, and the other is the unified 

memory that allows multiple devices to share memory with the ARM processor cores. 

 

Figure 1.8: Hardware architecture of Vision IP [28] 

In [29], they discuss FPGA supercomputer architectures. Fig. 1.9 shows a typical 

topology. The data are transferred between the host processor and FPGA memory 

through PCI bus. The advantage of this architecture is that the host operating system 
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can handle connection protocol, assemble packets, and manages data flows, etc. 

However, if host CPU needs to perform computation, resources are shared.  

 

Figure 1.9: Typical FPGA supercomputer data flow [29] 

Another architecture is network connections on FPGA side, as shown in Fig. 

1.10. The property of this architecture is that the data are directly processed by 

FPGAs without CPU interfering. However, the disadvantages of this architecture are 

the costs of computation power and need the master support when data processing in 

different FPGAs. 

 

Figure 1.10: Network-oriented FPGA supercomputer data flow [29] 
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The other architecture in Fig. 1.11 is focused on processing stream data, 

connecting host processor and FPGA local memory with PCIe. The host processor 

enables to support managing data flow, and FPGA can process intensive computation. 

However, this architecture is difficult to be expanded. 

 

Figure 1.11: Network-oriented FPGA co-processor card data flow [29] 

In [30], they integrate ZedBorad platform which combines ARM processor and 

FPGA, and Hadoop to be a new Zynq-based Hadoop cluster. It can inherit Hadoop 

frameworks, like the namenode, the scheduler and the HDFS. A CPU system is 

employed as the namenode that maintains file metadata. This architecture can achieve 

speedup as compare to pure software approaches. 

In this chapter, we disscus hardware accelerator characteristics and heterogenous 

architectures. Finally, we implement K-means algorithm in Xilinx VC707 platform. 

K-means algorithm have intesive computation which can work in parallel and can 

reduce execution time. 
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1.3 K-means algorithm on FPGA-based 

Hardware Accelerator 

1.3.1 K-means algorithm 

 Data mining is a technique to find association rule or value in big data. There are 

many methods, like statistics, on-line analytical processing (OLAP), machine learning, 

expert system, pattern recognition, etc. K-means clustering algorithm is one of the 

clustering algorithms for data analysis, and K-means clustering algorithm has 

intensive computation and non-sequential working. These properties are suited for 

hardware accelerators. 

 K-means algorithm is used to image processing, cluster analysis, and feature 

learning. The goal of K-means algorithm is to separating the input data into the 

number k of clusters. The data which are in a cluster have similar properties to each 

other and be dissimilar in other clusters. Assume input data is on a set X of 

D-dimensional real vector, that X = {x𝑛𝜖𝑅𝐷 , 𝑤𝑖𝑡ℎ 𝑛 = 1, … , 𝑁}, and partition X into 

K (K≤N) sets S = {𝑆1, 𝑆2, … , 𝑆𝑘}, each cluster is associated with center value. 

Therefore, the output of objective function in Euclidean distance is ∑ ∑ ||𝑥 −𝑥∈𝑆𝑖

𝑘
i=0

𝑢𝑖||2, where 𝑢𝑖 is the mean of points (center) in 𝑆𝑖. K-means algorithm is iterative 

procedures, there are four steps as followed in Fig. 1.12.  

 

Figure 1.12: K-means algorithm steps flow 
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 First, the initialization step selects initial value to be center and determines the 

number of clusters. Basically, the programmer sometimes uses random numbers to be 

centers, but initial values are effected the result of accuracy or iteration times. Many 

algorithms are used to detect the initial value to improve performance, but we do not 

discuss in here. Second, the finding clusters step assigns objects to the nearest cluster 

center. We can get the number of K clusters in this step. Third, in finding centers step 

calculates each cluster center as the mean of objects in the cluster. If the all of new 

cluster centers are approximate same then K-means is finished. Otherwise, the step 

returns to finding clusters step with new centers to find new cluster sets. 

 We list the advantages and the disadvantages of K-means as followed: 

 Advantages of K-means: 

 K-means is easier to understand and is faster than hierarchical clustering.  

 K-means has relatively efficient: O(nkdt), where n are the number of nodes, 

k are the number of clusters, d is dimension of node, t are iteration times. 

Disadvantages of K-means: 

 Different initial centers cause different result that is hard to comparing 

quality. 

 K-means is unable to resolve if datasets have two tightly or overlapping 

data.  

 K-means is unable to handle non-linear datasets or outliers. 
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1.3.2 Related Work 

 K-means algorithm is used to many diverse domains, so we focus on hardware 

implementation. 

 In [31], they implement K-means algorithm for image processing on PCI board 

with FPGA, and connect external two memories. One memory is storing the pixel 

data from the host computer and the other memory is saving the cluster results. They 

use the FPGA to find each pixel cluster numbers, and store sum of pixel value in 

accumulators. In the host computer side, they send complete image to the FPGA 

memories, and compute new cluster centers. In [32], they modify architecture of [31]. 

They add floating-point division module in FPGA. This architecture computes new 

cluster centers on the FPGA side, and saves each iteration result in the FPGA before 

algorithm is terminated. They use PCIe communication between host and FPGA, Fig. 

1.13 is shown the data flow in [32]. First, the host computer sends complete image 

data to the FPGA memory. Second, initial centers are transmitted to the FPGA from 

the host. Before K-means algorithm is finished, there is no contact between the host 

and the FPGA, it saves a lot of transmission time comparing with [31]. Fig. 1.14 

shows the structure of K-means in [32]. Inputs of this architecture are image data and 

cluster centers. Outputs of this architecture are the cluster assignment for each pixel.  

Both the pixel shift module and validity module are used to synchronize data with 

computation. The datapath module is found the nearest cluster of pixel data. The 

accumulators are counted the number of data in each cluster, and are accumulated 

pixel data associate with clusters. The mean updata division module is calculated new 

cluster centers. Finally, all cluster centers are replaced by new cluster centers in next 

iteration. 
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Figure 1.13: Interaction between the host and FPGA [32]  

 

Figure 1.14: K-means algorithm circuits [32] 

 The execution time is speedup because programming in parallelism and reducing 

transmission times. Nevertheless, the memory capacity is obstacle, volume of big data 

or others dataset may larger than size of memory. 

 In [33], they implement K-means cluster for color image on FPGA with 

Euclidean distance metric. The hardware circuits are shown in Fig. 1.15. A target pixel 

is 24-bit full color RGB images. Each SRAM bank is 32-bit, four pixels are stored in 

three memory banks and results are stored in reset memory banks. This architecture is 
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computed 96 squared Euclidean distances in parallel and it is calculated new center 

from four partial sums. Furthermore, they implement filter algorithm that each pixel is 

less than or equal to 24, and FEKM algorithm [36] can reduce scanning the number of 

pixels for iteration. They use two techniques to reducing computation time, and the 

memories can load next image when others image is processing. However, the 

number of computing pixels for once operation is four that is not enough. 

 

Figure 1.15: K-means hardware circuit [33] 

 In [34], they implement K-means in FPGA for high dimensional datasets. They 

use triangle inequality algorithm to avoid calculating square root to reduce 

consumption, and the result is hardly changed. Fig. 1.16 shows data flow of this 

architecture. First, data are stored in memory through PCIe and hardware accelerator 

do clustering. After clustering is completed, the result is send to host through JTAG. 

Fig. 1.17 presents hardware architecture. The high-dimensional data FIFO is 
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controlled input data. The distance calculators are calculated square distance in 

parallel. The distance accumulator is accumulated distance, and it is found the 

minimum square distance and cluster after the calculation is completed in this 

iteration. The counterparts in processing units are used to compute the new distance 

and cluster to compare to old ones. Finally, both upper bound and lower bound are 

used to store square distance for triangle inequality algorithm. 

Figure 1.16: Data flow overview [34] 

 

Figure 1.17: Hardware architecture [34] 
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In [35], they implement K-means in hardware for microarray data, and 

computation distance and find the minimum distance in parallel. However, all of input 

data is stored in on-chip memory, that is not work where the dataset is larger than 

capacity of memory.  
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1.4 Motivation 

 Big data analytics requires to analyzing data at the rate that matches the speed of 

data production. Therefore, some software frameworks such as Hadoop with high 

scalability and fault tolerance had been proposed to enable massive data storage and 

processing over large clusters of computing servers. However, the performance of 

data analytics can be further improved by deploying hardware accelerators to the 

computing servers.  

 Data mining algorithms are used to analyze big data. K-means clustering 

algorithm is one of data mining techniques, and it is simple but powerful. Moreover, 

K-means clustering algorithm is a data-intensive computation application that 

hardware accelerators are suited for speed up computation. In addition, several 

heterogeneous architectures interact with hardware accelerators and host computer 

through PCIe slots. The transmission rate of PCIe is higher than Ethernet. However, 

limitations of PCIe slots are hard to be expanded. Moreover, capacity of memory is 

not large enough to store whole datasets, that is hardly to complete within 

independent single hardware accelerator. 

 Therefore, we develop FPGA-based hardware accelerator through Ethernet 

switch to achieve high scalability. We implement K-means clustering in our 

FPGA-based hardware accelerators, and cooperate with the host computer and FPGAs, 

the host computer is employed as the master to manage data and control the status, the 

FPGAs focus on computation. 

 The rest of the paper is organized as follows: Chapter 2 introduces our FPGA 

platform, architecture overview, packet format format between transmission and 

reception, and communication memory with memory interface. Chapter 3 depicts 



 

-36- 

 

implementing K-means clustering algorithm in our FPGA and achieving scalability. 

Chapter 4 shows our experiment environment and speeds up comparing with Hadoop 

framework. Finally, in Chapter 5, we make a conclusion and discuss the future works 

about embedded hardware accelerator issues. 
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Chapter 2 

Proposed Hardware Accelerator 

Architecture  

2.1 System Overview 

 The proposed accelerator platform is composed of many VC707 FPGA 

evaluation boards (EVBs) [37], as shown in Fig. 2.1. The computing server 

communicates with FPGA EVBs with Gigabit Ethernet switch. Then, the workloads 

of the computing server can be shared in FPGA EVBs. The computing server wraps 

the data into packets and sends them to VC707 EVBs through a Gigabit Ethernet 

switch. Then, the workloads of the computing server can be shared in FPGA EVBs. 

 

Figure 2.1: The proposed FPGA-based hardware accelerator platform with VC707 

evaluation boards  
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 The component locations in VC707 EVB are shown in Fig. 2.2. We describe the 

components which are used in our implementation in Table 2.1. 

 

 

Figure 2.2: VCV707 EVB [37] 

Table 2.1: VC707 EVB component description 

Locations Component Description 

1 USB JTAG interface 

2 Network cable port 

3 10/100/1000 Mb/s Ethernet PHY 

4 DDR3 SODIMM memory (1 GB) 

5 Virtex-7 FPGA with cooling fan 

6 LCD character display 

7 User DIP Switch 

8 User LEDs 

9 Power on/off switch 
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We use ISE tool to design the VC707 EVB. Fig 2.3 is shown the ISE design flow. 

Our coding language is Verilog, and the vendor provides IPs to help developers to 

complete complex algorithm. Developers can embed IPs in design by inserting 

template of IPs. The user constraint file (.ucf) can set constraints and pin locations. 

After synthesis and implementation in design, the ISE operators reports and messages, 

and creates bit file. Finally, the impact tool is used to program bit file into VC707 

EVM board through JTAG. Moreover, LCD character display or LEDs can show 

debug information. However, we use ChipScope to record the trace of signal and help 

us for debuging. The debug tool ChipScope can monitor registers value when VC707 

EVB is executed, we will introduce it in detail in section 2.2.4.  

 

 

Figure 2.3: ISE design flow 
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2.2 Hardware Accelerator Development 

2.2.1 Architecture of VC707 EVB 

 We implement four modules in the FPGA including Ethernet physical IP, 

mixed-mode clock manager (MMCM), DDR3 memory interface controller IP, and 

user core. Ethernet physical layer IP is used to collect the packets sent from the 

computing server, and the computation results of the FPGA can be also sent back to 

the computing server through the Ethernet physical layer IP. The MMCM creates 

dynamic reconfiguration of the phase, duty cycle, and clock output frequency. The 

DDR3 memory interface controller IP helps the user core to communicate with the 

on-board 1GB DDR3 memory. Finally, the proposed computation algorithm or 

controller are implemented in the user core of user design. 

The VC707 EVB clock distribution is shown in Fig. 2.4. The 200MHz system 

clock (sys_clk) is consisted of a differential clock pair SYSCLK_P and SYSCLK_N. 

The 125MHz SGMII clock is composed of SGMIICLK_Q0_P and 

SGMIICLK_Q0_N differential clock pairs. The reference clock (clkin1) of the 

mixed-mode clock manager (MMCM) is 125MHz. The MMCM provides a phase and 

frequency related the 62.5MHz clock (clkout0) and the 125MHz clock (clkout1), and 

the clock (clkfbout) is used to reduce skew. The clock (clkout0) is used for Ethernet 

controller module, and the clock (clkout1) is used for physical medium attachment 

(PMA) IP module and serial-gigabit media independent interface (SGMII) module, 

inside the Ethernet physical IP. In memory interface IP, the clock (clkout1) is for the 

memory controller, and the output clock (app_clk) provides clock to communicate 

with memory controller. Finally, the clock (userclk) is used to user core. 
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Figure 2.4: VC707 EVB clock distribution  

 The data flow is shown in Fig. 2.5, Ethernet physical IP receives data rx_d from 

the host computer and transmits data tx_d to the host computer. The RX FIFO 

receives data (rx_d) from the Ethernet physical layer IP and combines them. The TX 

FIFO sends the byte data (tx_d) split from the packet to the Ethernet physical layer IP. 

Both the RX FIFO and the FX FIFO behavior will describe in section 2.2.2. The 

commands (cmd) and addresses (addr) can be sent to the memory interface controller 

IP simultaneously. For a write request, the written data (wm_data) should be prepared 

before sending write command to the memory interface controller IP. After a write 

request is finished, the ready signal provided by the memory interface controller IP 

indicates the completion of the write request to the DDR3 memory. For a read request, 

after several cycles, the read data (rm_data) are output by the memory interface 

controller IP. We will describe memory operation in section 2.2.3. 
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Figure 2.5: Data flow of VC707 EVB 
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2.2.2 Ethernet PHY Controller 

 The Ethernet PHY IP module is helped us to handle complex Ethernet protocol, 

we focus on Ethernet packet format when we process packet. The packet format is 

shown in Fig. 2.6. 

 

Figure 2.6: Packet format 

 Preamble: The Preamble consists of 7-byte pattern of altering 1 and 0 bits, 

and is used to synchronize the receiver clock rate. 

 Start frame delimiter (SFD): The SFD is a one byte which marks the 

beginning of Ethernet frame. 

 Destination address (DA): The DA contains target MAC address. 

 Source address (SA): The SA contains source MAC address. 

 Length: Length is data length. However, data length must be longer than 

64-byte without preamble, the reason is avoiding packet collision. Therefore, 

minimum data length is 46 bytes and the maximum data length is 1500 

bytes. 

 Frame check sequence (FCS): The FCS contains 4 bytes that allows check 

corrupt data in the data entire frame at receiver.  

 

The RX FIFO module operations are shown in Fig. 2.7. We use a counter to 

combine receiving data (rx_d) when the reception signal (rx_en) is enabled (rx_en). 

The RX FIFO module outputs the receiving data to the user core module after 

checking the destination address (DA) and the source address (SA) are correct. Finally, 
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we assert the signal (rx_finish) when reception is done. 

 

Figure 2.7: Behavior in RX FIFO module 

 The TX FIFO module behavior is similar to the RX FIFO module. Fig. 2.8 

shows the TX FIFO operations. We assert the transmission signal (tx_en) after user 

core operation is finished. Subsequently, we wrap data into packets when the signal 

(tx_en) is high. Finally, the packets are sent to the computing server through Ethernet 

physical IP. 

 

Figure 2.8: Behavior in TX FIFO module 
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2.2.3 Memory Operation 

 The DDR3 memory controller IP helps to communicate with DDR3 devices. 

Table 2.2 shows the DDR3 user interface (UI) primary signals by user core side. 

Table 2.2: DDR3 user interface primary signals 

Signal Direction Description 

Command 

app_rdy Input This input indicates that UI is ready to accept 

requests.  

app_en Output This output asserts when user sends app_addr and 

app_cmd to UI. 

app_addr [27:0] Output This output is the address for current command.  

app_cmd [2:0] Output This output indicates command for current requests.  

Read = 001, Write = 000  

Write 

app_wdf_rdy Input This input indicates that write FIFO data are ready to 

receive data. 

app_wdf_data [511:0] Output This output contains data that are ready to write into 

memory. 

app_wdf_wren Output This output indicates that app_wdf_data are valid. 

Read 

app_rd_data_valid Input This input indicates that the read data is valid. 

app_rd_data [511:0] Input This input contains the read data from memory. 
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The write operation timing diagram is shown in Fig. 2.9. The command 

(app_cmd) and the address (app_addr) are sent simultaneously when the signal 

(app_en) is asserted. In addition, we confirm the signal (app_rdy) is high that UI is 

accepted the requests, and signal (app_wdf_rdy) is high that write FIFO is ready to 

store data. Subsequently, Fig. 2.9 is shown three scenarios for the write data in 

memory, as follows:  

Case 1: Write data (app_wdf_data) are sent along with the command. 

Case 2: Write data are sent before command. 

Case 3: Write data are sent after command, but the maximum delay is two clock  

cycles. 

 

Figure 2.9: Write operation timing diagram 
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 Moreover, the sequential write operation is little different, there is no delay 

between the write data and command. The write data are sent along with 

corresponding command. If signal (app_wdf_rdy) is deasserted, we need to hold 

signal (app_wdf_wren) high and keep the write data (app_wdf_data) value until signal 

(app_wdf_rdy) becomes high. Fig. 2.10 shows the burst write operation timing 

diagram. 

 

Figure 2.10: Burst write operation timing diagram  

 The read operation is similar. When signal (app_en) is asserted, we sent read 

quest command and address. The read data (app_rd_data) return by the UI when 

signal (app_rd_data_valid) is asserted.                          
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Figure 2.11: Read operation timing diagram 
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2.2.4 ChipScope Debug Tool 

 User can run simulation by ISE. However, ISE simulation is unable to show the 

real time operation of the FPGA. Therefore, we use ChipScope to debug. The 

ChipScope tools integrate measurement hardware components with target design. We 

insert Integrated CONtroller cores (ICONs) and Integrated Logic Analyzers (ILAs) in 

our design. The ICON module communicates between the ILA module and host 

computer through JTAG, and the maximum number of connect signal with the ILA is 

fifteen. The ILA module can monitor internal signals in user design, and it sets trigger 

conditions to the stored signal. Finally, we use ChipScope software in host computer 

to check signals which are stored in ILA module. Fig. 2.12 shows the ChipScope 

system diagram. 

 

 

Figure 2.12: ChipScope system diagram 
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Chapter 3 

K-means Clustering Implemented in 

FPGA-based Hardware Accelerator 

3.1 System Architecture for Implementation 

K-means 

 We describe K-means clustering algorithm in section 1.3.1. K-means clustering 

is grouped objects based on unique features into the number of clusters. In addition, 

K-means is applied to diverse applications, and we implement K-means for dataset 

analysis. Because K-means is unable to handle non-linear datasets or outliers, we use 

Matlab to create dataset which is distinct from each cluster. Moreover, every node in 

dataset is three-dimensional, and thus, we can display the result to check the cluster 

distribution.  

 The design flow is shown in Fig. 3.1. First, we create the dataset which contains 

distinct clusters with random three-dimensional nodes, and dataset format is a text file. 

Second, the master processor reads dataset into arrays and wraps nodes, cluster 

centers, control signals into transmission packets. Subsequently, we send packets to 

VC707 EVBs through Ethernet switch. Third, the VC707 EVBs groups node into the 

clusters after receiving node data and centers. After that, the VC707 EVBs calculate 

the cluster number of each node. Consequently, the VC707 EVBs return the cluster 
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value of nodes to the host computer. Fourth, the master processor is calculated all 

cluster centers according to receiving the cluster number of nodes from the VC707 

EVBs. Step 5, the master processor replaces initial centers with the new centers, and 

next iteration is processed to find the new cluster centers from step 2 to step 4. Finally, 

we write the result into the text file, and display the clusters distribution by Matlab, 

when the iteration times are terminated. 

 

 

Figure 3.1: System of K-means clustering implementation design flow 
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3.2 Circuits Design in FPGA 

 We share the workloads in the three VC707 EVBs, and each VC707 EVB has 

same components and behaviors. Therefore, we introduce the architecture of single 

VC707 EVB. We do not use the on-board DDR3 memory in the design, because the 

size of dataset is larger than capacity of memory. Furthermore, the VC707 EVB 

memory communication time could cause overload. Besides, the VC707 EVB has two 

primary modules Ethernet PHY IP and clustering circuits, as shown in Fig. 3.2. In 

addition, the single VC707 EVB can handle 115 data nodes from the host computer 

transmission packet simultaneously. After the dataset is complete transmission, the 

VC707 EVB returns the sum of the clusters coordinate values with three dimensions 

and the number of nodes in each cluster to the host computer. Finally, the host 

computer can calculate new centers from the three VC707 EVBs and find the new 

centers to the next iteration. 

 

Figure 3.2: K-means implemented module of VC707 EVB   
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Algorithm 1 shows the pseudo code of the K-means clustering algorithm in the 

VC707 EVB. In K-means algorithm, the inputs are three-dimensional 115 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Algorithm1 : K-means clustering algorithm in VC707 EVB  

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Input: 3-d 115 floating-point nodes (32 bits*3*115=11040 bits) and 4 cluster floating-point centers (32 bits*4*3=384bits) 

Output: the registers cluster_value[3][2] store clusters coordinate value of 3-d floating-point (32 bits*4*3=384 bits) and 

the registers cluster_amount[3] store number of nodes in each cluster (96 bits*4=384 bits) 

max_number_of_cluster is 4 

max_node_count is 115 

 

1:  receive packet input from host computer; 

2:  store input in the node data registers and center data registers in sequential; 

3:  for(cluster_count=1; cluster_count <= max_number_of_cluster; cluster_count++) begin 

4:    set_cluster_center(cluster_count); 

5:  calculate Euclidean distance to cluster centers in total 115 nodes; 

6:  save 115 Euclidean distances from 115 nodes; 

7:  end 

8:  In 115 nodes with 4 Euclidean distance, find the shortest distance from 115 nodes;  

9:  for(node_count=1; node_count <= max_node_count; node_count++) begin 

10:  if(cluster number of node == cluster number “n” of node with shortest distance ) then  

11:   cluster_value[n][0] = cluster_value[n][0] + node_x_coordinate; 

12:   cluster_value[n][1] = cluster_value[n][1] + node_y_coordinate;  

13:   cluster_value[n][2] = cluster_value[n][2] + node_z_coordinate; 

14:   cluster_amount[n] = cluster_amount[n] + 1; 

15: end 

16: if dataset is complete transmission then 

17:  wrap the registers cluster_value[3][2] and the registers cluster_amount[3] into packet and send to host 

18:  computer; 

19:  reset the registers cluster_value[3][2] and the registers cluster_amount[3] value for next iteration; 

18: else 

19:  wait for packet from host; 

20: end 
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floating-point nodes and 4 cluster floating-point centers from host computer. We store 

the node data and cluster centers when the VC707 EVB is received packet. 

Subsequently, we calculate the Euclidean distance to each cluster centers in total 115 

nodes. Consequently, we find the shortest distance in 4 Euclidean distance of each 

cluster. After that, we accumulate the grouped nodes of one cluster coordinate 

floating-point values that are x-coordinate, y-coordinate and z-coordinate in three 

32-bit registers until 115 nodes are computed. Moreover, we store the number of 

nodes in one cluster into 96-bit register. Our maximum number of cluster is four, so 

we have twelve 32-bit registers to store the clusters coordinate values of floating-point, 

and four 96-bit registers to store the number of nodes in each cluster. When the 

dataset is complete transmission, the VC707 EVB returns the sum of the clusters 

coordinate values with three dimensions and the number of nodes in each cluster to 

the host computer. In addition, we do not compute new centers in the FPGA because 

we share the workloads to the three VC707 EVBs. We need to compute the new 

centers in the host computer. 
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3.2.1 Data Field in Packet 

 The packet format is described in section 2.2.2. This section shows the value of 

data field in both transmission and reception packets, as shown in Fig. 3.3 and Fig.3.4.  

The reception packet data field (rx_data) starts following packet number (rx_cnt) 

which indicates packet number. The command (rx_cmd) is used to require FPGA to 

execution code according to command. The amount of cluster indicates the number of 

clusters, and maximum the number of clusters is four in our design. The amount of 

node is used to show the number of nodes in packets. The cluster center contains four 

cluster centers, and each center has three data because of dataset is three-dimensional. 

In addition, node value is single-precision (32 bits). Therefore, we use 48-byte 

register to save four cluster centers. Finally, the node data consisted of 115 nodes 

value, and each node has three-data. 

 

Figure 3.3: Reception packet data field form host computer 

 The transmission packet data field (tx_data) is composed of packet number 

(tx_cnt), command (tx_cmd) and the node data. The packter number (tx_cnt) is same 

value as reception packet to confirm the packet number. The command (tx_cmd) is 

determined the transmission data which is transmitted to host computer, and the 

command (tx_cmd) also has same value as reception packet. The last, the node data 

register contains the sum of coordinate values and the number of nodes in each 

cluster.  
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Figure 3.4: Transmission packet data field to host computer 
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3.2.2 K-means Flow Chart in FPGA 

 The VC707 EVB is implemented K-means clustering algorithm and the flow 

chart is shown in Fig. 3.5. 

 

Figure 3.5: K-means flow chart in VC707 EVB 

First, the VC707 EVB is waited for command from the host computer. After 

reception packet is received, we store the node value and the cluster centers in 

registers. Subsequently, we calculate the Euclidean distance between 115 nodes and 

one cluster center in parallel, and store result in the registers. If all cluster centers is 

already calculated with 115 nodes, we can get the cluster number of 115 nodes from 

the minimum Euclidean distance of each node. Otherwise, we prepare next cluster 
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centers, and calculate the Euclidean distance again. After that, we accumulate the 

grouped nodes of the cluster coordinate values and the number of nodes in each 

cluster into registers. Finally, we warp the cluster coordinate values and the number of 

nodes in each cluster into the packet, and transmit the packet to the host computer.  
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3.2.3 K-means Circuits 

 The Euclidean distance equation is shown in Eq. 3.1. Every value of nodes and 

centers is a single-precision floating point number, and the floating-point IPs help us 

to process floating-point operations. 

      distance =  √(𝑛𝑜𝑑𝑒𝑥 − 𝑐𝑒𝑛𝑡𝑒𝑟𝑥)2 + (𝑛𝑜𝑑𝑒𝑦 − 𝑐𝑒𝑛𝑡𝑒𝑟𝑦)
2

+ (𝑛𝑜𝑑𝑒𝑧 − 𝑐𝑒𝑛𝑡𝑒𝑟𝑧)2
2

  (3.1) 

The Fig. 3.6 shows the circuit for calculation of Euclidean distance. We calculate 

115 Euclidean distance between nodes and centers in parallel. The total of 

floating-point IP has 1035 modules including 345 subtractors, 345 square operations, 

230 adders, and 115 square root operations. Both the input and the output of every IP 

modules are 32 bits. We get 115 distances of each node after six clock cycles. After 

calculation is done, we replace center value with next cluster centers. 

 

Figure 3.6: Euclidean distance circuits 
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 After the four clusters distance between each node and centers are already 

calculated, we find the shortest distance in four distances by comparing binary tree, as 

shown in Fig. 3.7. In addition, we implement 115 comparing tree modules processing 

in parallel, and get the 115 cluster number of nodes after two clock cycles.  

 

Figure 3.7: Comparing binary tree 

Finally, we accumulate the coordinate values of 115 grouped nodes and the 

number of nodes in each cluster into registers. Besides, we do not calculate the 115 

grouped nodes in parallel, because the resource of VC707 EVB is not enough to fulfill 

parallel circuits.  
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3.3 Master Processor 

 The master processor is implemented in host computer by visual studio C++ 

programing. The master processor is used to composition transmission packets, 

analysis reception packets, and calculation the cluster centers. We use union structure 

by C++ library to decompose floating-point into four unsigned characters, an 

unsigned character is basic unit of packet data. Therefore, we can wrap the 

floating-point into packets and transmit to the VC707 EVBs. Moreover, the single 

reception packet from the VC707 EVBs contains the sum of cluster coordinate values 

and the number of nodes in each cluster, we calculate the cluster centers after all 

dataset is clustering from three VC707 EVBs. Subsequently, we can do next iteration 

until the program is finished. Besides, the VC707 EVB is similar as a function, that 

once transmission to FPGA can process 115 nodes, and once reception from FPGA 

can get the sum of cluster values and the number of nodes in each cluster in once 

iteration. Therefore, we reduce the latency of reception time because the VC707 

EVBs return packet only once time in once iteration.  
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Chapter 4 

Experimental Results 

4.1 Ethernet Transfer Rate 

 In the proposed FPGA-based hardware accelerator platform, the data 

transmission time between the computing server and the hardware accelerator 

platform depends on the I/O speed limitations of the Ethernet physical layer IP. When 

data are sent from the computing server to the hardware accelerator platform, the 

transmission data rate is tested and shown in Table 4.1. Oppositely, the transmission 

data rate from hardware accelerator platform to the computing server is also tested, 

and shown in Table 4.1. 

In the single VC707 EVB, the usage of Ethernet rate is approximate 40 percent. 

Therefore, we share the workload to three VC707 EVBs and the usage of Ethernet 

rate is approximate 99 percent. 

 

Table 4.1: Transmission rate between host computer and VC707 EVB 

Direction Packet length Number 

of Packet 

Time Transmission 

data rate 

Server to 

VC707 EVB 

1500bytes 5,000 0.124s 483.87Mbps 

VC707 EVB 

to server 

1500bytes 5,000 0.909s 66.01Mbps 
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4.2 FPGA Resource Utilization 

Table 4.2 shows the hardware resource utilization of the proposed hardware 

accelerator for K-means clustering algorithm.  

 

Table 4.2: FPGA resource utilization 

Slice Logic 

Utilization 

Used Available Utilization 

Number of 

 Slice Registers 

125,761 607,200 20% 

Number of  

Slice LUTs 

233,865 303,600 77% 

Number of 

Occupied Slices 

71,005 75,900 93% 

Number of 

DSP48E1s 

2,191 2,800 78% 
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4.3 Execution Time between Benchmark 

and FPGA-based Hardware Accelerator 

 Fig. 4.1 shows the execution time of K-means clustering algorithm (iteration 

three times) without latency of reading and writing data in 125 million 

three-dimensional node dataset. The execution time is compared to computer server 

with Intel I7-4770, computer server with Intel I5-3230M, and the proposed hardware 

accelerator with three VC707 EVBs. As shown in Fig. 4.1. 

 

Figure 4.1: Compare 3-FPGA with I5-3230M (2.6GHz), and I7-4770 (3.4GHz) with 125 

million three-dimensional nodes dataset 
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 Fig. 4.2 shows the execution time without latency of reading and writing data for 

the different size of dataset. The execution time of computer server with Intel I7-4770, 

computer server with Intel I5-3230M, and the proposed hardware accelerator with 

three VC707 EVBs are growth linear if the datasets are growth. 

 

Figure 4.2: Compare 3-FPGA with I5-3230M (2.6GHz), and I7-4770 (3.4GHz) with 

25/50/75/100/125 million three-dimensional nodes dataset 
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Fig. 4.3 shows the execution time with latency of reading and writing data for the 

different size of dataset. In fact, the disk I/O time is very long latency that is cost 

more than 90 percent of total time. Because the speed rate of disk is slower than CPU 

clock rate, and the miss penalty of memory and cache cost the latency. Therefore, 

Hadoop system can reduce disk I/O latency, because HDFS is able to spilt files into 

many blocks and transmits the blocks to others computing servers. But, the 

communication latency between master and slaves also costs latency. In addition, both 

the proposed hardware accelerator with three VC707 EVBs and computer server with 

Intel I7-4770 are same hard disk, but computer server with Intel I5-3230M hard disk 

is different. 

 

Figure 4.3: Compare 3-FPGA with I5-3230M (2.6GHz), and I7-4770 (3.4GHz) with 

25/50/75/100/125 million three-dimensional nodes dataset, with disk I/O latency. 
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Fig. 4.4 shows the execution time for different size of dataset with several 

Hadoop (version 1.2.1) clusters servers and the proposed hardware accelerator with 

three VC707 EVBs. The master server has 8 cores Intel(R) Xeon(R) CPU           

E5506(2.13GHz), and all slaves are 8 cores including Intel(R) Xeon(R) CPU           

E5420(2.5GHz), Quad-Core AMD Opteron(tm) Processor 8356(2.29GHz) and Intel(R) 

Xeon(R)CPUE5520(2.27GHz).We use open source Apache Mahout [38] to 

implement K-means clustering in Hadoop. Except for Hadoop clusters with single 

server execution time is growth fast, the others performance is approximate equal. In 

fact, Hadoop system is needed to adjust the environment such as maximum map or 

reduce tasks and capacity of block sizes, the different conditions are affected 

performance. Therefore, we refer the Apache Hadoop [17] to adjust our Hadoop 

cluster environment. Besides, the execution time of three VC707 EVBs is faster than 

Hadoop clusters when dataset is small, because the communication latency between 

master and slaves costs time. But, the time of reading and writing data through hard 

disk costs latency, that Hadoop clusters execution time is growth slower than host 

computer. Therefore, Hadoop cluster is suited for computing the bigger datasets. 

Because of the communication, delivery block size, and job dispatch between Hadoop 

cluster servers can process in parallel. However, if we can reading or writing data in 

parallel in the hosts, the performance is improvement because hard disk I/O latency 

costs more time. 
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Figure 4.4: Compare Hadoop clusters with 1/2/3/4/5/6-servers, 3-FPGA, and 3-FPGA 

with 3-host with 25/50/75/100/125 million three-dimensional nodes dataset 
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Chapter 5 

Conclusion and Future Works 

5.1 Conclusion 

In this thesis, an FPGA-based hardware accelerator platform for K-means 

clustering algorithm is presented. The proposed accelerator platform can use many 

VC707 FPGA EVBs to speed up the algorithm processing. Since server workloads 

will continue to evolve, the proposed FPGA-based hardware accelerator platform 

provides an easy way to support the CPUs for a heterogeneous computing solution 

with off-chip hardware accelerators. The experimental results for clustering 25 million 

three-dimensional node dataset shows that the proposed hardware accelerator 

platform with three FPGA EVBs at 125MHz clock rate can achieve the 2x speedup as 

compared with the computing server with an Intel I7-4770 CPU at 3.4GHz, and 10x 

speedup as compared with Hadoop clusters. 
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5.2 Future Works 

 In this thesis, we share workload to three VC707 EVBs and usage of Ethernet 

rate is approximate 99 percent, the Ethernet rate is reached limitation in our system. 

The system clock, Ethernet physical FIFO clock, and user core clock are too slow that 

is obstacle to speedup execution time. Therefore, we should re-build environment in 

single VC707 EVBs to speedup.  

 Besides, we can cooperate with Hadoop system and FPGA-based hardware 

accelerators. The Hadoop system is employed as the master and FPGA-based 

hardware accelerators are employed as the slaves. The HDFS in Hadoop can help us 

manage the files and split files into several blocks. The jobtracker can dispatch job to 

slaves. Therefore, the FPGA-based hardware accelerators focus on computation when 

get the jobs. However, the cooperation environment is difficult to build. We need to 

understand entire operations, behaviors, and architectures in Hadoop system, and 

realize the communication between HDFS, program, and scheduler. However, we 

consider to embed the hardware accelerators in Hadoop system that can handle the big 

data and improve performance.  
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