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摘要 

    不論在圖片或影像的處理中往往伴隨著資料的運算與儲存，而當這些影像與

圖片量大到某個程度使得運算量過大且難以管理這些資料時，我們將這樣的問題

稱之為”巨量資料 (Big data) ”。 

    而當一般的個人電腦 (PC) 遇到 Big data 時往往面臨著執行時間過久或是使

用過多的儲存空間等問題。在圖片或影像的處理的程式中，無非就是許多矩陣的

運算，若我們將一些重複度很高的矩陣運算，例如:矩陣相乘…等等，切割至現場

可編輯邏輯閘陣列 (FPGA) 上運算，這樣將可以省下許多的運算時間及暫存空間。 

    而將這些資料由 PC 端傳送到現場可編輯邏輯閘陣列 FPGA 端上儲存，然後

等待 FPGA 運算完後，再將其結果再傳回 PC 這樣的一個環境便是本論文的重點

之一，而我們將這環境稱之為現場可編輯邏輯閘陣列硬體加速平台(FPGA-based 

hardware accelerator)或是現場可編輯邏輯閘陣列協處理器平台 (Co-processor 

FPGA platform)。 

    放置在 FPGA-based hardware accelerator 上的應用便是本論文的另外一個重

點，由於許多影像處理演算法會使用到矩陣相乘，例如: Bilateral filter 與 weighted 

least squares ，這兩者都是利用矩陣乘法來強化邊線輪廓外，還有著各式各樣的

影像處理演算法都使用到，所以本論文利用硬體可以多套運算器的特性，設計一

個能夠解決各種尺寸的浮點矩陣相乘電路，來分擔 PC 上執行大量矩陣乘法的負

擔。 

 

關鍵詞：巨量資料、現場可編輯邏輯閘陣列硬體加速平台、現場可編輯邏輯閘陣

列協處理器平台、矩陣相乘在現場可編輯邏輯閘陣列。 
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Abstract 

Dealing the image or video are often accompanied by data computing and data 

storage. When the number of dealing image or video is very large makes computing 

excessive and difficult to manage such condition, we call this problem is “Big data 

analysis”. 

When the personal computer (PC) met big data problems, are often faced the 

execution time too long and use too much storage space problems. The processing 

program of image or video is usually include a lot of matrix operations. If we send 

matrix operations of the high repeat degree such as matrix multiplication to field 

programmable logic gate array (FPGA), it will save a lot of time and storage space. 

We send those matrix data from PC to the DDR memory or FPGA evaluation board, 

and waits FPGA computing is done. Then the result is sent from FPGA back to PC. 

That environment is one of the priorities of this thesis. We call the environment is 

“FPGA-based hardware accelerator or FPGA Co-processor platform”. 

The application which is running on the FPGA-based hardware accelerator is 

another priorities of this thesis. Since many image processing algorithms used to matrix 

multiplication to solve problem such as” Bilateral filter” and “weighted least squares”, 

those algorithm are used matrix multiplication to enhance the “Edge-Preserving”, so 

this thesis uses the feature of multiple sets of hardware to design a circuit of matrix 

multiplication of no size limitation. This thesis will use the FPGA-based hardware 

accelerator and application of matrix multiplication to accelerate and overcome the 

bottleneck of PC. 

Index Terms —Big data, FPGA-based hardware accelerator, Co-processor FPGA 

platform, Matrix multiplication on FPGA. 
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 Introduction 

1.1  Introduction to Big Data 

Big Data is the term for a collection of data set too complex and large that it make 

difficult to manage, analyze and process using the traditional database system [1, 2]. 

Big Data include activity logs, business transaction, images, and surveillance videos 

that can reach massive proportions over time [1, 2]. In some statistics, those data 

generated exceed 2.5 quintillion bytes everyday [1].  
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Fig. 1.1 3Vs Big Data models [3] 

Fig. 1.1 shows the 3Vs Big Data models [3], it has three characteristics: volume, 
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variety and velocity. 

Volume indicates the number of byte of data sets, we can see the exponential 

growth from inner channel to outer channel in Fig. 1.1. Image and photo are very easy 

to have terabyte level, video even reach the petabytes level. Table 1.1 shows the volume 

size of various data sets. 

 

Table 1.1 Data set volume size [2] 

Value Abbreviation Name 

11000  
KB Kilobyte 

21000  
MB Megabyte 

31000  
GB Gigabyte 

41000  
TB Terabyte 

51000  
PB Petabyte 

61000  
EB Exabyte 

 

Velocity represents that how fast the data sets are generated. We can see velocity 

of data sets generation from batch of inner channel to real time of outer channel. 

According the reference [2], there are over than 328 million Google searches every day, 

2 terabyte of photos uploaded to community websites every day, 14 million hours of 

video watched on YouTube every day. The velocity of data generated has gone beyond 

our imagination. 
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Variety represents that the data stored in multiple formats. There are several 

different formats in various applications. Some data can be stored in a text file, such as 

database and Excel, but most of data are not in the traditional formats, such as image, 

photo, video, audio and pdf. Those data must be organized, that make it meaningful. If 

the data all in the same format, it will be easy to do, but it is impossible. Hence, 

organizing the many different formats is one of the challenges with the Big Data.   

 Today, Big Data system has become an enterprises of technologies supplier, such 

as IBM, Yahoo and Facebook [4]. There are many small enterprises, who also want to 

use the Big Data techniques, but they don’t have enough capital to do, Cloud-based Big 

Data processing is suggested by [4]. It has feature of elastic services framework, lets 

user in a pay-as-you-go manner [4]. Those small enterprises do not have to spend a lot 

of money to upgrade the hardware, they can spend those money in core of design and 

research. On the other hand, the user who want to use the Big Data techniques can 

readily obtain data and application what they want by environment of Cloud computing 

supplier [5]. Users also can accomplish the same work in different operating system.  

Cloud computing can be express a group of physical machine servers, it provides 

services to users [6]. Services of Cloud computing is a platform of computing and 

management of data in physical machines servers. It usually presents a virtual network 

when user sends a service request. Virtual network is a set of virtual nodes and virtual 

links, it can be expressed a group virtual machine that mapping on the physical machine 

server. Fig. 1.2 shows the schematic view of Cloud computing. 

In the above, brief introduction to the problem of the Big Data and Cloud 

computing to handle the Big Data problem. Although Cloud computing provides a 

powerful computing and management platform, but it has some problem. Problem 1: 



 

 

- 4 - 

 

 

Since user data must be placed on the Cloud computing servers, so users must take 

some risks that data maybe stolen. Problem 2: Not all users can afford the cost of Cloud 

computing services. Problem 3: If all of Big Data problem are using Cloud computing, 

that is too waste. In fact, above problems can occur in everyday life, for example we 

want to access the monitor videos and make it clearer by image processing. Assuming 

the amount of videos has Big Data level, it faced the execution time too long and use 

too much storage space problem for PC or server, and we can’t put processing of videos 

immediately into Cloud computing serves to solve. There are many similar case in the 

life.  

 

Fig. 1.2 Cloud computing 
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There are some application for data analysis such as traditional database system and 

typical data mining. Traditional database system is not powerful for Big Data analysis. 

Due to database system is not storage independent, database system take too much 

storage space to construct data. In addition, database system uses a lot of loading and 

indexing during the processing data, database system take a lot of time to query data. 

There are many disadvantages of database system for Big Data. Typical data mining is 

not efficient for Big Data analysis. Typical data mining algorithms require all data that 

is loaded into the main memory, it maybe cause the memory full stage and take a lot of 

time to load data. 

In Big Data analysis application, there are many applications such as Big Data 

mining and MapReduce. In reference [7] - [10], Big Data mining is not the same as data 

mining, big data mining has mechanism of information exchange and information 

integration. This mechanism will make sure that all information sources work together 

to achieve a global optimization goal. In reference [11] - [13], MapReduce is an 

effective tool for Big Data analysis, because MapReduce has unique features which 

include simplicity and communicative manners of its programming model. MapReduce 

has mainly two functions map( ) and reduce( ).Function of map( ) performs filtering 

and sorting, and function of reduce() that performs a summary operation. 

   Big Data is a significant problem in various application. One of Big Data 

challenge is Big Data analysis. Traditional database system and typical data mining are 

not enough to analyze Big Data. In recent, MapReduce replace the traditional database 

system and Big data mining replace the typical data mining, they are two kind of 

powerful analysis tool for Big Data. 
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According above case, we want proposed a new approach to solve Big Data 

problems. In this thesis, first we against the speed of data processing with Big Data 

problems to research a hardware accelerator. 
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1.2  Hardware Accelerator 

In a general purpose processor, it usually can execute arithmetic unit at once, so it's 

sequential execution. Because processor is executed one by one, it takes some time to 

wait for previous execution end [14]. If a program has a lot of instructions, then the 

waiting time is considerable. Suppose we want to improve processor performance, we 

have to speed up the clock frequency, but speed up the clock frequency of the processor 

that is not cost-effective, and it has bottleneck on increasing the clock frequency.  

Hardware accelerator can be used to implement by FPGA or application-specific 

integrated circuit (ASIC) [15]. Fig. 1.3 shows the Cyclone III FPGA development board. 

Fig. 1.4 shows the ASIC chip. 

 

 

Fig. 1.3 Cyclone III FPGA Development Board 
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Fig. 1.4 ASIC chip 

There are many techniques that can improve execution performance, hardware 

accelerator is one of them. The difference between software and hardware is 

concurrency. Due to we can design multi sets of arithmetic units in hardware, it does 

not take a long time to wait for previous execution end. The number of arithmetic units 

is limited by FPGA capacity or ASIC chip area.  

Hardware accelerator is usually designed for computationally repeated or 

computationally intensive software code [16]. The application range of hardware 

accelerator can vary from a small functional unit to a large functional block, such as 

motion estimation in H.264. Now, hardware accelerator has been used widely in 

floating-point accelerator or graphics accelerator [17], etc. "Hardware accelerator" is 

an older term, and nowadays we call video or graphic card. Fig. 1.5 shows the graphic 

card [5]. 
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Fig. 1.5 Graphic card 

 

How to choose the development platform of hardware accelerator? Since the 

development of the accelerator is in the beginning, first we choose FPGA to develop 

our design, and finally we design ASIC until the development of design is almost done. 

In this thesis, our purpose is focus on the acceleration of data computing which is 

divided Big Data problems from PC into multi hardware accelerators, so that 

communication interface between PC and FPGA is very important. According above 

description, the first emphasis about choosing the development platform of hardware 

accelerator is FPGA board with networking. Why we don’t use the Advanced 
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Microcontroller Bus Architecture (AMBA) FPGA, compiling the program into an 

ARM CPU on a Zynq evaluation board, then uses the AMBA to connect the FPGA and 

CPU. However, if we use the AMBA FPGA, then it is not possible to assign job to many 

FPGAs. The second problem, the clock frequency of an ARM CPU integrated in a 

FPGA is too slow as compared to Intel CPU used by PCs. The second emphasis about 

choosing the development platform of hardware accelerator is FPGA board with 

memory. The hardware accelerator in order to solve Big Data problem, so it must has 

memory space to store those huge data.  
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1.3  Matrix Multiplication on FPGA-Based 

Hardware Accelerator 

1.3.1 Matrix Multiplication complexity 

According to the above introduction of the Big Data, one of big data challenges 

are images or videos processing. Image or video processing is usually include many 

matrix operations. In various image processing algorithms, there many algorithms use 

the matrix multiplication to solve image processing problem, such as “Bilateral 

Filter,” ”Weighted Least Squares” and “Motion Estimation”. Two algorithms as we 

mentioned before are used matrix multiplication to enhance the “Edge-Preserving”. The 

third algorithms as we mentioned before is used matrix multiplication to find the vector 

of moving object in image. A matrix multiplication is repeated multiplications and 

additions, so we believe that matrix multiplication with a high order of parallelism. Fig. 

1.3.1 shows the relationship chart of matrix order and number of multiplication and 

additions in matrix multiplication. As shown in Fig. 1.6, we can see that when the 

matrix size is twice bigger than the original matrix size, the number of multiplications 

and additions of matrix will be eight times than the number of multiplications and 

additions of original matrix, this growth rate is very fast.  There are “x” matrixes of 

“n” order are multiplied continuously, we can deduce that have    1
3

 xn  

multiplications and    1
3

 xn  additions. Whether “n” and “x” are fixed values to 

divide into four types of time complexity. Table 1.3.1.1 shows the time complexity of 
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matrix multiplication. 

 

Fig. 1.6 Relationship chart of matrix size and number of multiplication and additions in 

matrix multiplication  

Table 1.2 Time complexity of matrix multiplication 

Matrix order n Matrix number x Time complexity 

Fixed Fixed  1  

Fixed Non-Fixed  x  

Non-Fixed Fixed  3n  

Non-Fixed Non-Fixed  xn  3
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When “n” or “x” is too large, there are huge operation of multiplications and 

additions. The huge number of multiplications and additions is definitely a considerable 

problem for PC. If we can divide the multiplications and additions into FPGA that 

compute multiplications and additions in parallel, then we can save a lot of time in 

matrix operation.  
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1.3.2 Related Work  

In the recent, there are several research that handle the problem of performing 

matrix multiplication in FPGA [18] - [20].  

In the reference [18], it is use the peripheral component interconnect (PCI)-express 

2.0 8 x endpoint to connect the PC and FPGA, its bandwidth is 4GB/s in two-way. 

Using the PCI as a communication interface between FPGA and PC is a great choice, 

because the transmission rate is higher than Ethernet. Although the communication 

interface of PCI has a fast transfer rate, but it has a disadvantage that PC has limited 

PCI slots, so the number of FPGA connected to PC is limited. Although communication 

interface of Ethernet has a slower transmission rate than PCI, it can connect number of 

FPGA is unlimited through Ethernet switch. Fig. 1.7 shows the PCI connector. Fig. 1.8 

shows the PCI-express slot. 

 

Fig. 1.7 PCI connector 
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Fig. 1.8 PCI-express slot 

The reference [18] propose two architectures of floating-point matrix 

multiplication, it consists of a linear list of multiplier – adder processing elements (PEs). 

Fig. 1.9 shows the architecture “a” and “b” of PE. Let X and Y be two matrixes, that X 

with dimensions p   q and Y with dimensions q   r. The n is number of PE. When p, 

q, r   n, matrix X consists of i   j and matrix Y consists of j   k blocks, where i = 

 np / , j =  nq /  and k =  nr / . (They pad zero on the under “n” part, like Formula 

1.3.2.1.) The result matrix R with dimensions p   r, consists i   k blocks. The 

architecture “a” of PE is use the algorithm 1 to operation, and architecture “b” of PE is 

use the algorithm 2 to operation. 

 Algorithm 1: The PC consecutively sends the blocks of input matrixes X and Y 

which the order of sending is correspond with result block. For example, the result 

block  = . It’s totals is sending (2   i   
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j   k) of input block. Since the algorithm 1 has a problem of sending many repeated 

matrix X blocks, author proposed the algorithm 2. 

Algorithm 2: Let a row of result matrix R be a result unit. The PC consecutively 

sends the blocks of matrix X and Y which order of sending is correspond with result 

unit. Formula 1.1 shows the first row of result unit. In formula 1.2, it can be simplified 

into formula 1.3 it can only sent once of the same block of X, then according the order 

of formula 1.4 sent the matrix blocks of Y continuously, like  

. When accelerator 

is completed a part of result unit, such as , it will be sent to the PC to  

store and waiting the other parts for adding. We can repeat above steps until the final 

part of result unit finished that is done of matrix multiplication. Totally, it sends (( (1 + 

k )   j )  i ) of input block. 

 

 

 

 

  

  

Formula 1.1 Padding 0 on under n parts 
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Formula 1.2 Result unit 

 

 

Formula 1.3 Result unit simplify 
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Fig. 1.9 Two architecture “a” and “b” of PE [18] 

According to the above description, we make comparison with algorithm 1 and 

algorithm 2, as following table 1.3 
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Table 1.3 Comparison with algorithm 1 and algorithm 2 

Algorithm 1   with   Architecture of a of PE 

Advantage The algorithm is simple. 

Disadvantage Sending too many repeated block of input matrixes. 

No. of pass delay of adder  n stages 

Algorithm 2   with   Architecture of b of PE 

Advantage Sending lesser repeated block of input matrixes than 

algorithm 1. 

Disadvantage It needs the PC to help to temporarily store the some 

parts of result matrix. 

No. of pass delay of adder n -1 stages 
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1.4  Motivation 

The problems of Big Data has become importance, only improves clock frequency 

of the computer is not enough, it still takes a lot of time to execution. So one PC link 

multi general-purpose FPGA-based accelerator over the Ethernet to solve the Big Data 

analysis problem of long execution time that is our vision. This vision is very broad, so 

we first study the single-precision floating-point matrix multiplication in one FPGA-

based accelerator to solve the problem of long execution time of numerous floating-

point matrix multiplications. 

In floating-point matrix multiplication, we survey the reference [18]. It has two 

kinds of algorithms and architectures, the both of algorithms and architectures have 

some disadvantages. We want to find out an method that to reduce the number of 

sending input matrix blocks and this method does not need computer that help to 

temporarily store the some parts of result matrix. We also want to research an 

architecture of PE that to reduce the gate delay and it must meet our algorithm. 

In Chapter 2, we will introduce the architecture of our FPGA-based hardware 

accelerator and describe the operation flow. In Chapter 3, we will introduce the 

architecture of our floating-point matrix multiplication circuit and describe the 

operation flow. In Chapter 4, we will appear the execution time comparison chart which 

is perform a matrix multiplication and one PC with FPGA accelerator and one PC 

without FPGA accelerator. Finally, discuss the future works and make a conclusion in 

Chapter 5. 
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Chapter 2  Architecture of FPGA-Based 

Hardware Accelerator           

2.1  Architecture Overview 

Fig. 2.1 shows the architecture overview of our vision that is one PC link multi 

FPGA-based accelerator over the Ethernet. 

FPGAFPGA FPGA FPGA………

PC 
or 

Server
Switch FPGA

FPGA with 
network 
function 

Ethernet 
cable

 

Fig. 2.1 Architecture overview of multi FPGA-based accelerator 

In Fig. 2.1 we can see a PC or a server that connects the multi FPGAs which with 

network function. We use this architecture to speed up the computer which is going to 

solve the problem of Big Data analysis 
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2.2  FPGA Development Platform 

Our accelerator is implemented using Xilinx Virtex-7 VC707 board (VX485T 

FPGA). Fig. 2.2 shows the Xilinx Virtex-7 VC707 board. Table 2.2.1 describe the main 

VC707 board component that we use. 

1

2

5

34

 

Fig. 2.2 Xilinx Virtex-7 VC707 Board 

 

Table 2.1 VC707 Board Main Component Descriptions 

Callout Component Description 

1 Virtex-7 FPGA with cooling fan 

2 DDR3 SODIMM memory (1GB) 

3 10/100/1000 Mb /s Ethernet PHY 

4 Ethernet port 

5 Power on/off switch 
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We mainly use two differential clock sources on VC707 board, namely system 

clock and GTX transceiver clock. System clock is a 200MHz differential signal pair 

named SYSCLK_P and SYSCLK_N, it is a reference clock used to provide a high-

speed clock for designed top module. GTX transceiver clock is a 125MHz differential 

signal pair named SGMIICLK_Q0_P and SGMIICLK_Q0_N. It is a reference clock of 

high-quality and low-jitter for Ethernet IP core (SGMII GTX Transceiver). The 

description about clock distribution will introduce in next section. 
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2.3  Architecture of FPGA-Based Hardware 

Accelerator 

Fig. 2.3 shows the architecture of FPGA-based hardware accelerator and clock 

distribution.  
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Fig. 2.3 Architecture of FPGA-based hardware accelerator and clock distribution 

 

In Fig. 2.3, we can see the Ethernet block needs two reference clocks, namely 

sys_clk and sgii_clk, that are 200MHz and 125MHz, respectively. Ethernet block also 

generates a clock of 62.5MHz named txout_clk that is used as a reference clock for 

Mixed-Mode Clock Manager (MMCM). MMCM is a Phase-locked loop (PLL) 

component.  After MMCM align phase of txout_clk, it multiplied the clkfb by 10 
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times. MMCM divided clkfb by 10 times and 5 times, then generate two clock of 

62.5MHz and 125MHz respectively, namely userclk1 and a userclk2. Userclk1 is used 

as a transmission clock for Ethernet block. Userclk2 is used as a reception clock, 

memory interface clock and Media Access Control (MAC) clock for Ethernet block, 

DDR3 controller interface and MAC core respectively. DDR3 controller interface 

generates a clock of 125MHz named app_clk that is used as an operation clock for 

user_core. 

Fig. 2.4 shows the mainly data and control signal flow of FPGA-based hardware 

accelerator. 
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Fig. 2.4 Major data and control signal flow of FPGA-based hardware accelerator 
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In Fig. 2.4, the Ethernet block is an IP core, it is used to receive a pair of rxp and 

rxn differential signals and process the two signals into a one byte rx_d bus. The rx_d 

[7:0] is the received packet. Ethernet block is used to process tx_d [7:0] that is 

transmission packet into a pair of txp and txn differential signals and sends the two 

signals into Ethernet PHY. 

The DDR3 Controller Interface is an IP core, too. It is used to send app_wdf_data 

and addr[27:0] to the memory. The app_wdf_data bus is the data that write to the 

memory. The addr[27:0] is the address for writing or reading the memory. The 

addr[27:0] is also used to catch an app_rd_data bus from memory controller.  

User Core includes the User rx, User tx, Processing unit and matrix operation 

modules. The User rx module combines rx_d into a received packet, then send the 

rx_data to processing unit. In section 2.5.1, we will describe the packet processing in 

User rx module.  

The User tx module is used to build up tx_d bus into a transmission packet, then 

transmit the transmission packet into Ethernet block. In section 2.5.2, we will describe 

the packet processing of User tx module. 

The Processing unit module controls the state machine and manages the data flow 

of all sub modules in the User Core module. In section 2.4, we will use the control flow 

to describe the state machine of the Processing unit module. 

The Matrix operation module is used to compute matrix multiplication with parallel 

floating point arithmetic unit that help the host PC to quickly complete matrix 

multiplication. In section 3.3, we will describe the algorithm and architecture of matrix 

multiplication. 
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2.4  User Core Control Flow 

Fig. 2.5 shows control flow of User Core. It actually is a state machine in User core, 

we want to use the simple way of control flow to describe the operation of state machine. 
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Fig. 2.5 User Core control flow 
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In Fig. 2.5, we can see the beginning procedure of control flow is idle, then waiting 

the packets come from PC. After we receive a packet, Processing unit module will 

check its command field. The command field actually is a data field in packet. In section 

3.2,we will introduce the packet format. The command field includes three kind of 

command, that are write, read and matrix operation. If we receive a write command, 

control flow will go to procedure of writing data. When the control flow enters the 

procedure of writing data, the Processing unit module will perform a procedure of 

writing data. After writing data, procedure of control flow back to idle. In section 2.6.1, 

we will describe the procedure of writing data. If we receive a read command, control 

flow will go to procedure of reading data. When the control flow enters the procedure 

of reading data, the Processing unit module will perform a procedure of reading data, 

After reading data, procedure of control flow will go to procedure of send data to PC. 

When the control flow enters the procedure of send data to PC, the Processing unit 

module will perform a procedure of sending data. After sending the data, Processing 

unit module will check the condition that if all data has been read and sent. If all data 

is not been read and sent completely then control flow go back to the procedure of read 

data. If all data has been read and send the control flow go back to the procedure of idle. 

In section 2.6.2, we will describe the produce of reading data. If we receive a matrix 

multiplication command, control flow will go to procedure of matrix multiplication. 

When the control flow enters the procedure of matrix multiplication, the Processing 

unit module will compute matrix multiplication. After matrix multiplication, procedure 

of control flow will go to read data.  
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2.5  MAC control 

In fact, the MAC core is a free IP core, so its function is simple. The function of 

packet reception and packet transmission are performed in User rx and User tx module 

respectively.  

2.5.1 Packet Reception 

Fig. 2.6 shows the timing diagram of packet reception. In Fig. 2.6, if rx_en signals 

is active-hihg then rx_d is valid.  

 

 

Fig. 2.6 Packet reception timing diagram 

When rx_en signals is high, we can use a counter to count the clock cycles and use 

the value of counter to distinguish what is field of the packet. Table 2.5.1.1 describes 

the field of packet. After receiving the DA and SA, User rx module will check whether 

the SA equal to PC MAC address and check whether the DA equal to FPGA MAC 

address. If the both of DA and SA are equal to the FPGA address and PC address, 

respectively. Then the data is for us. After Uer rx module receives all data, it will sent 
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data to Processing unit module. 

 

Table 2.2 Packet field description 

Field name Counter value Length Description 

Preamble 0~6 7 bytes Preamble contains a 0x55 pattern, it indicates forefront of a 

packet. In usually, the preamble is not used. 

SFD 7 1 bytes SFD field contains a 0xD5 pattern, it marks the start of the 

frame. In usually, the SFD is not used. 

DA 8~13 6 bytes DA contains destination MAC address. 

SA 14~19 6 bytes SA contains source MAC address 

Length 20~21 2 bytes Length of data and pad field 

Data  22~X 0-1500 bytes The field is always provided in the packet data for 

transmission and is always retained in the receive packet 

data. 

Pad (X+1)~Y 0-46 bytes The field is used to ensure that the frame length is at least 

64bytes (the preamble and SFD field are not includes for this 

calculation). 

FCS (Y+1)~Z 4 bytes The value of the FCS field is calculated from the destination 

address, source address, length, data and pad fields using a 

32-bit cyclic redundancy check (CRC). In our design, 

Ethernet environment is simple, so we don’t use CRC to 

check packet. 
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2.5.2 Packet Transmission 

Fig. 2.7 shows the timing diagram of one packet transmission. User tx module is 

similar to Use rx module, they are different operation direction. After User tx module 

receives the tx_data from the Processing unit module, it uses a counter to count the 

clock cycle from 0 to value of packet length. User tx module use the value of counter 

to distinguish what field is sent to tx_d and pull up tx_en until the counter value equals 

to the length value.  

 

 

Fig. 2.7 Packet transmission timing diagram 
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2.6  Memory control 

Table 2.3 shows the major signals of memory controller interface of user side. 

 

Table 2.3 major signals of DDR3 memory interface of user side. 

Signal Direction Description 

app_cmd[2:0] Output This output selects the command for current request.  

Read = 001, Write = 000 

app_addr[27:0] Output This output indicates the address for the current request. 

app_en Output This is a request signal. The user must apply the desired value to 

app_addr, app_cmd. 

app_rdy Input This input indicates the memory interface is ready for accept 

request of user side.  

app_wdf_data[511:0] Output The bus provides the data currently begin written to external 

memory. 

app_wdf_end Output This output indicates that the data on the app_wdf_data in the 

current cycle is the last data for the current request. 

app_wdf_wren Output This input indicates that the data on the app_wdf_data is valid. 

app_wdf_rdy Input This input indicates that write data FIFO is ready to receive data. 

Write data accepted when both app_wdf_rdy and app_wdf_wren 

are asserted. 

app_rd_data[511:0] Input This output contains the data reading from the external memory. 

app_rd_data_valid Input This input indicates that the data on the app_rd_data is valid. 
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2.6.1 Memory Write 

Fig. 2.8 shows timing diagram of memory write. In Fig. 2.8, if we want to write a 

data, we must follow the rules of writeing data. Writing data into memory can be 

divided into two parts that are writing data and writing commands. First, we assign data 

to the app_wdf_data of 512 bits and assert the app_wdf_wren and app_wdf_end signals 

until app_wdf_rdy signal is high. Second, we assign a write command and an address 

to app_cmd and app_addr, respectively. Then we assert the app_en signal until app_rdy 

signal is high. 

 

 

Fig 2.8 Memory write timing diagram 

 

If we want to use memory bandwidth efficiently, we can write data in burst mode. 

Fig. 2.9 shows timing diagram of burst mode operation with depth 8 times data write. 

Writing data into memory can be divided into two parts that are writibg data and writing 
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command, too. First, if app_wdf_rdy signal is always high, and then we continuously 

assign eight data to the app_wdf_data of 512 bits and continuously assert the 

app_wdf_wren signal. Then we assert the app_wdf_end in last clock cycle of writing 

data. In writing data procedure, if app_wdf_rdy signal gives low, we must stop writing 

data and assert the app_wdf_wren signal until app_wdf_rdy signal is high. Second, if 

app_rdy signal is high and, and then we continuously assign write commands and 8 

address to the app_cmd and app_addr, respectively and continuously assert the app_en 

signal. In writing command procedure, if app_rdy signal gives low then we must stop 

writing address and assert app_en signal unitl app_rdy signal is high. 

 

 

Fig. 2.9 Memory burst mode timing diagram of 8 times data write 

 

 

 

 

 

 



 

 

- 35 - 

 

 

2.6.2 Memory Read 

Fig. 2.10 shows timing diagram of memory read. In Fig. 2.10, if we want to read a 

datum, we must follow the rules of reading data. Reading data from memory can be 

divided into two parts that is read command and read data. First, we assign a command 

and an address the app_cmd and app_addr, respectively and assert the app_en signal 

until app_rdy signal is high. Second, if app_rd_data_valid is asserted then store the data 

from app_rd_data. 

 

Fig. 2.10 memory read timing diagram. 

 

If we want to read data efficiently, we can read data in burst mode. Fig. 2.11 shows 

timing diagram of memory burst read mode with depth 8. Reading data from memory 

can be divided into two parts that are read command and read data. First, if app_rdy 

signal is high, we can continuously assign read command and 8 addresses to app_cmd 

and app_addr, respectively. Then we continuously assert the app_en signal, In read 

command procedure, if app_rdy signal is low, we must stop the read operation and 

assert the app_en signal until app_rdy signal is high. Second, if app_rd_data_valid is 
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asserted then store the data from app_rd_data. 

 

Fig. 2.11 Memory burst mode timing diagram of 8 times data read 
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Chapter 3    Floating-point Matrix 

Multiplication on FPGA-Based 

Hardware Accelerator 

3.1  Matrix storage sequence in FPGA 

board DDR3 Memory 

In Formula 3.1 we can see that two 8 by 8 matrix A and matrix B multiplication. 

That is matrix A * matrix B = matrix C. We first observe the  in Formula 

3.2 In Formula 3.2 we can find a rule about matrix multiplication. If we divide matrix 

A into several 1 by 4 matrix blocks X and divide matrix B into several 4 by 1 matrix Y 

like formula 3.5. Then formula 3.2 can be rewritten as formula 3.3. We can simplify 

Formula 3.3 into formula 3.4. In formula 3.4, we can see a group of regular sequence 

like  and , If we use this sequence to 

store the data and computation, then we can simply multiply two matrixes of various 

size by hardware. Before we use this sequence to operation, we must use order of 

formula 3.5 to write matrix A and matrix B element into memory. 
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Formula 3.1 two 8 x 8 matrix multiplication 

 

Formula 3.2 c1 1~c1 4 of matrix C 

 

 

 

 

Formula 3.3 use matrix block X and Y to indicate c1 1~c1 4 of matrix C 

 

Formula 3.4 simplify the formula 3.3 
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Formula 3.5 order of matrix A , matrix B and matrix C in memory 
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3.2  Packet Format 

In order to communicate between the PC and FPGA, we must define the data fields 

of a packet. Fig 3.1 shows the data field of one packet that sent from PC to FPGA. Fig 

3.2 shows the data fields of one packet that sent from FPGA to PC. Table 3.1 describe 

the data field of packet. 

Matrix multiplication command packet :

Read command packet :

Write command packet :

Packet from PC to FPGA

 

Fig. 3.1 data field of packet from PC to FPGA 

Packet from FPGA to PC 

Read command report packet :

Matrix multiplication result packet :

  

Fig. 3.2 data field of packet from FPGA to PC 
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Table 3.1 data field description 

Field name Description 

cnt This field indicates the sequence number of packet. 

 

 

cmd 

This field indicates the operation which we want to execute. 

Write command packet : 0x01 

Read command packet : 0x02 

Read command report packet : 0x02 

Matrix Multiplication command packet : 0x03 

Matrix Multiplication result packet : 0x03 

16-element cnt This field indicates the number of 16-element in this packet. 

16-element This field indicates a group of values of 16 4-bytes. 

addr This field indicates the address. 

addr cnt This field indicates the number of address in this packet. 

matrix A column num This field indicates the value of matrix A column. 

matrix B column num This field indicates the value of matrix B column. 

matrix A start addr This field indicates the starting address of matrix A. 

matrix A end addr This field indicates the end address of matrix A. 

matrix B start addr This field indicates the starting address of matrix B. 

matrix B end addr This field indicates the end address of matrix B. 

matrix C start addr This field indicates the starting address of matrix C. 
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3.3  Architecture of Floating-point Matrix 

Multiplication Circuit 

3.3.1  Architecture overview 

Fig. 3.3 shows the architecture overview of floating-point matrix multiplication 

circuit. In Fig. 3.3, there are one matrix processor master and 4 matrix processors. The 

matrix processor master reads numerous matrix elements from the DDR memory and 

sends the elements to various matrix processors for computation. After matrix 

processors finish computation, matrix processor master sample those results and writes 

results into DDR memory. Fig. 3.3 shows schematic diagram, there are 16 matrix 

processors in the floating-point matrix multiplication circuit. 

4_element_matrix_

processor_1[127:0]

Matrix processor master

Matrix processor_1 

DDR3 Memory interface

matrix_processor_1_state[2:0]

matrix_processor_1_result[31:0]

Matrix processor_4 

4_
ele

men
t_m

atr
ix_

pr
oc

es
so

r_
4[

12
7:0

]

matr
ix_

pr
oc

es
so

r_
4_

sta
te[

2:0
]

matr
ix_

pr
oc

es
so

r_
4_

res
ult

[3
1:0

]

ad
dr

[2
7:

0]

4_
el

em
en

t[
12

7:
0]

4_
el

em
en

t_
re

su
lt

[1
27

:0
]

Matrix processor_2 

matr
ix_

pr
oc

es
so

r_
2_

res
ult

[3
1:0

]

4_
ele

men
t_m

atr
ix_

pr
oc

es
so

r_
2[

12
7:0

]

matr
ix_

pr
oc

es
so

r_
2_

sta
te[

2:0
]

Matrix processor_3

matrix_processor_3_state[2:0]

4_element_matrix_

processor_3[127:0]

matrix_processor_3_result[31:0]

 



 

 

- 43 - 

 

 

Fig. 3.3 Floating-point matrix multiplication circuit overview 

3.3.2  Matrix Processor 

Fig. 3.4 shows the architecture of matrix processor. 
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Fig. 3.4 architecture of matrix processor 

In Fig. 3.4, we can see an architecture of the matrix processor of full binary tree (4 

level) structure. There are 4 PEs in the architecture. First, control unit catch the input 

data of matrix block 127bits bus, the matrix block X is send to MEM X register and the 

matrix Y is send to MEM Y register. After the matrix block X and matrix block Y are 

send, computation starts, then waiting the multiplication results. Figure 3.4 shows the 

schematic diagram, architecture of matrix processor is a full binary tree (6 level) 

structure.  
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In the architecture of matrix processor, the number of pass delay of adder is n2log  

stages, it is less than n  in reference [18], there are 16 matrix processor in matrix 

processor, so number of pass delay is 8 stages.   
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3.3.3 Matrix processor master 

Fig. 3.5 shows architecture matrix processor master. 

 

Fig. 3.5 matrix processor master 

   In Fig. 3.5, we can see the mainly three blocks, Input data controller, Matrix 

processor state table and Output data controller. First, Input data controller uses 

information of matrix A and matrix B to read matrix X blocks and matrix Y blocks from 

memory. After Input data controller receives the matrix blocks, it checks if the matrix 

processor state is idle. If matrix processor is idle then the Input data controller assigns 

the matrix blocks to matrix processor. Second, if matrix processor state is calculation 

finish, then Output data controller will store the result from matrix processor. Third, if 

result have not been calculated yet then it will be temporarily stored in Result register. 

Final, if result is complete then result will be written into the memory. Figure 3.5 shows 
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the schematic diagram, there are 16 element_matrix_process bus, 16 

matrix_porcessor_state bus and 16 matrix_processor_result bus. 
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Chapter 4  Experimental Results 

4.1  Ethernet Transfer result 

4.1.1  Ethernet Transfer rate 

In this section, we transmit the 50 thousand 1500-byte in FPGA-based accelerator 

and PC to test the transmission rate by using ethernet. Table 4.1 shows the transmission 

rate in this measurement. 

Table 4.1 FPGA-based accelerator and PC transmission rate 

Direction Packet length Number of Packet  Time Transmission data rate 

PC to FPGA 1500bytes 50,000 11.025s 52.52Mbps 

FPGA to PC 1500bytes 50,000 8.698s 66.56Mbps 

We also test the transmission data rate with the DDR memory delay includes data 

from PC to FPGA‘s external memory and data from FPGA external’s memory to PC. 

Table 4.2 shows the transmission rate in this condition. 

Table 4.2 transmission rate with the DDR memory delay 

Direction Packet length Number of Packet Time Transmission data rate 

PC to FPGA 1500bytes 50,000 11.52s 52.08Mbps 

FPGA to PC 1500bytes 50,000 9.262s 64.78Mbps 

The Ethernet transmission data rate will be the bottleneck to the FPGA-based 

accelerator, for large data computatiion. In the future, if company of Xillinx has 

provided high transmission rate of Ethernet IP core then it will greatly enhance the 
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efficiency of our architecture of FPGA-based accelerator. 

4.1.2  Ethernet Tx FIFO Issue 

Fig. 4.1 shows the transmission data flow. The packet from User Tx module to 

Ethernet block is 125MHz and packet from Ethernet block run at PHY run at 62.5MHz. 

If we transmit too many packets, in a short time then it causes transmission FIFO 

overflow. Due to MAC core is a free IP, it can’t to solve the problem of transmission 

FIFO overflow. We use an easy method to avoid this problem. We obtain the number 

of waiting clock cycles by experimental result. The number of waiting clock cycles 

between each packet transmission is equal to Total packet . 

 

Ethernet 
block

PHYUser Tx PC

125MHz

62.5MHz

FPGA
FPGA board

 

Fig. 4.1 transmission data flow 
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4.2  Matrix Multiplication Experimental 

Result 

In Fig. 4.2 ~ Fig. 4.10, we use three different computers to compute different matrix 

sizes matrix multiplication, and then compare the execution time with the proposed 

FPGA-based accelerator. 

 

Fig. 4.2 compare Intel I5-3230M (2.60GHz) with FPGA at 4x4, 8x8, 16x16 matrix size 
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Fig. 4.3 compare Intel I5-3230M (2.60GHz) with FPGA at 32x32, 64x64, 128x128, 

256x256 matrix size 

 

Fig. 4.4 compare Intel I5-3230M (2.60GHz) with FPGA at 512x512, 1024x1024, 

2048x2048 matrix size 
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Fig. 4.5 compare Intel I5-2400 (3.10GHz) with FPGA at 4x4, 8x8, 16x16 matrix size 

 

Fig. 4.6 compare Intel I5-2400 (3.10GHz) with FPGA at 32x32, 64x64, 128x128, 

256x256 matrix size 
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Fig. 4.7 compare Intel I5-2400 (3.10GHz) with FPGA at512x512, 1024x1024, 

2048x2048 matrix size 

 

Fig. 4.8 compare Intel I7-4770 (3.40GHz) with FPGA at 4x4, 8x8, 16x16 matrix size 
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Fig. 4.9 compare Intel I7-4770 (3.40GHz) with FPGA at 32x32, 64x64, 128x128, 

256x256 matrix size 

 

Fig. 4.10 compare Intel I7-4770 (3.40GHz) with FPGA at 512x512, 1024x1024, 

2048x2048 matrix size 
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In Fig. 4.2 ~ Fig. 4.10 we found that if the matrix size is larger than 1024 x1024 

then accelerate can speed up the computation time. Due to Ethernet transmission rate 

is a bottleneck in our hardware accelerator, if the computation time is large enough to 

cover transmission time then the proposed accelerator can faster than PC. In addition, 

accelerator is slower than PC in small computation that is acceptable, because we don’t 

use the accelerator in a small size matrix computation.  

In Fig. 4.11 ~ Fig. 4.18, we use two different computers to compute different matrix 

sizes in matrix multiplication of various numbers, and then compare the execution time 

with the proposed FPGA-based accelerator. 

 

 

Figure 4.11 is the comparison at 64*64 size matrix of 10 /100 /1000 between Intel I5-

3230M (2.6GHz) and FPGA 
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Figure 4.12 is the comparison at 128*128 size matrix of 10 /100 /1000 between Intel 

I5-3230M (2.6GHz) and FPGA 

 

Figure 4.13 is the comparison at 256*256 size matrix of 50 /100 /200 between Intel 

I5-3230M (2.6GHz) and FPGA 
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Figure 4.14 is the comparison at 512*512 size matrix of 25 /50 between Intel I5-

3230M (2.6GHz) and FPGA 

 

Figure 4.15 is the comparison at 64*64 size matrix of 10 /100/1000 between Intel I7-

4770 (3.4GHz) and FPGA 
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Figure 4.16 is the comparison at 128*128 size matrix of 10 /100/1000 between Intel 

I7-4770 (3.4GHz) and FPGA 

 

Figure 4.17 is the comparison at 256*256 size matrix of 50 /100/200 between Intel I7-

4770 (3.4GHz) and FPGA 
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Figure 4.18 is the comparison at 512*512 size matrix of 25 /50/100 between Intel I7-

4770 (3.4GHz) and FPGA 

 

In Fig. 4.11 ~ Fig. 4.18，we can find that the larger computations will cause the 

performance of FPGA equal to or larger than the performance of PC. However, because 

of the waiting mechanism of Tx FIFO overflow in FPGA, the larger computations cause 

the longer waiting time such that the performance of FPGA will decreases. 

Table 4.3 shows time analysis that the PC and FPGA respective compute 30 matrix 

those size is 512 x 512, and table 4.4 shows time analysis that the PC and FPGA 

respective compute 30 matrix those size is 16 x 16. 
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Table 4.3 is the time analysis that the PC and FPGA respectively compute 30 matrix 

those size is 512 x 512 

Table 4.4 is the time analysis that the PC and FPGA respectively compute 30 matrix 

those size is 16 x 16 

I7-4770 (3.4GHz)  

Total 

execution 

time 

 

24.943997s 

Memory read time 18.31459 s 73.42 % 

Memory write time 0.033172 s 0.13 % 

Computing time 6.592300 s 26.46 % 

FPGA (125MHz) 

 

 

Total 

execution 

time 

 

 

 

23.973594s 

The time that PC send packets to FPGA 9.974400 s 41.62% 

The time that FPGA send packets to PC 0.658349 s 2.74% 

The time of memory read in FPGA board 8.842444 s 36.88% 

The time of memory write in FPGA board 0.028999 s 0.12% 

FPGA computing time 4.469401 s 18.64% 

I7-4770 (3.4GHz)  

Total 

execution 

time 

 

0.003181 s 

 

Memory read time 0.002224 s 69.93 % 

Memory write time 0.000139 s  4.38 % 

Computing time 0.000816 s 25.67 % 

FPGA (125MHz) 

 

 

Total 

execution 

time 

 

 

 

0.009668 s 

 

The time that PC send packets to FPGA 0.009031 s 93.41 % 

The time that FPGA send packets to PC 0.000300 s  3.10 % 

The time of memory read in FPGA board 0.000285 s  2.94 % 

The time of memory write in FPGA board 0.000028 s  0.28 % 

FPGA computing time 0.000023 s  0.23 % 
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In table 4.3 and table 4.4, PC computes the multiplication of big size matrix that 

takes a lot of time to reads data from memory. If the amount of data of matrix is larger 

than the capacity of cache in PC, then PC will reads the data from memory that is called 

cache miss. Reading data from memory that takes too many time that is more than the 

time of reading data from cache. FPGA computes the matrix multiplication that takes a 

lot of time to send data between PC and FPGA. According above, we only compare the 

computing time of PC and computing time of FPGA. 
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4.3  FPGA Utilization 

Table 4.5 shows the slice utilization of the proposed accelerator without matrix 

multiplication circuit. Table 4.6 shows the slice utilization of the proposed accelerator 

with matrix multiplication circuit. 

 

 

Table 4.5 Accelerator Environment without Matrix Multiplication Utilization  

Slice Logic Utilization Used Available Utilization 

Number of Slice Registers 60,054 607,200 9% 

Number of Slice LUTs 52,234 303,600 17% 

Number used as logic 50,135 303,600 16% 

 

 

Table 4.6 Accelerator Environment with Matrix Multiplication Utilization  

Slice Logic Utilization Used Available Utilization 

Number of Slice Registers 194,312 607,200 32% 

Number of Slice LUTs 151,370 303,600 49% 

Number used as logic 136,356 303,600 44% 
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Chapter 5  Conclusion and Future 

Works 

5.1  Conclusion 

In recent years, Big Data analysis becomes a serious problem in the data storage, 

management and analysis. When the PC processes big data problems, they often faces 

the execution time too long and use too much storage space problem. One of big data 

challenges are image analyzing and processing. The processing of image or video 

usually includes a lot of matrix operations. If we send parallel matrix operations such 

as matrix multiplication to FPGA, it can save a lot of execution. 

In this thesis, we implement a FPGA-based hardware accelerator and design a 

floating-point matrix multiplication in accelerator to help PC to reduce the execution 

time of computation huge matrix multiplication. 

The Ethernet transmission rate is a bottleneck for our accelerator architecture. If 

the computation is large enough to cover transmission time then accelerator can be 

faster than PC. In addition, the proposed accelerator is slower than PC in small matrix 

computation that is acceptable, because we don’t use the accelerator with small matrix 

computation.  
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5.2  Future Works 

For now, we can only assign the job to one FPGA. If we want to implement a real 

multi-FPGA-based accelerator, it must write multi-thread program in PC. In this way, 

PC can parallel assign the job to different FPGA accelerators. 

In this thesis, we only implement one function of floating-point matrix 

multiplication in accelerator, this is not enough to help various computation to enhance 

the execution time. 

According the above, the general purpose multi-FPGA-based accelerator are 

necessary in the future. 
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