

 國 立 中 正 大 學

資訊工程研究所碩士論文

開發與實現可應用於巨量資料分析之

FPGA 硬體加速平台

Development and Implementation of an

FPGA-Based Hardware Accelerator for

Big Data Analysis

 研究生 : 劉俊凱

指導教授 : 鍾菁哲 博士

中華民國 一零三 年 八 月

- I -

摘要

 不論在圖片或影像的處理中往往伴隨著資料的運算與儲存，而當這些影像與

圖片量大到某個程度使得運算量過大且難以管理這些資料時，我們將這樣的問題

稱之為”巨量資料 (Big data) ”。

 而當一般的個人電腦 (PC) 遇到 Big data 時往往面臨著執行時間過久或是使

用過多的儲存空間等問題。在圖片或影像的處理的程式中，無非就是許多矩陣的

運算，若我們將一些重複度很高的矩陣運算，例如:矩陣相乘…等等，切割至現場

可編輯邏輯閘陣列 (FPGA) 上運算，這樣將可以省下許多的運算時間及暫存空間。

 而將這些資料由 PC 端傳送到現場可編輯邏輯閘陣列 FPGA 端上儲存，然後

等待 FPGA 運算完後，再將其結果再傳回 PC 這樣的一個環境便是本論文的重點

之一，而我們將這環境稱之為現場可編輯邏輯閘陣列硬體加速平台(FPGA-based

hardware accelerator)或是現場可編輯邏輯閘陣列協處理器平台 (Co-processor

FPGA platform)。

 放置在 FPGA-based hardware accelerator 上的應用便是本論文的另外一個重

點，由於許多影像處理演算法會使用到矩陣相乘，例如: Bilateral filter 與 weighted

least squares ，這兩者都是利用矩陣乘法來強化邊線輪廓外，還有著各式各樣的

影像處理演算法都使用到，所以本論文利用硬體可以多套運算器的特性，設計一

個能夠解決各種尺寸的浮點矩陣相乘電路，來分擔 PC 上執行大量矩陣乘法的負

擔。

關鍵詞：巨量資料、現場可編輯邏輯閘陣列硬體加速平台、現場可編輯邏輯閘陣

列協處理器平台、矩陣相乘在現場可編輯邏輯閘陣列。

- II -

Abstract

Dealing the image or video are often accompanied by data computing and data

storage. When the number of dealing image or video is very large makes computing

excessive and difficult to manage such condition, we call this problem is “Big data

analysis”.

When the personal computer (PC) met big data problems, are often faced the

execution time too long and use too much storage space problems. The processing

program of image or video is usually include a lot of matrix operations. If we send

matrix operations of the high repeat degree such as matrix multiplication to field

programmable logic gate array (FPGA), it will save a lot of time and storage space.

We send those matrix data from PC to the DDR memory or FPGA evaluation board,

and waits FPGA computing is done. Then the result is sent from FPGA back to PC.

That environment is one of the priorities of this thesis. We call the environment is

“FPGA-based hardware accelerator or FPGA Co-processor platform”.

The application which is running on the FPGA-based hardware accelerator is

another priorities of this thesis. Since many image processing algorithms used to matrix

multiplication to solve problem such as” Bilateral filter” and “weighted least squares”,

those algorithm are used matrix multiplication to enhance the “Edge-Preserving”, so

this thesis uses the feature of multiple sets of hardware to design a circuit of matrix

multiplication of no size limitation. This thesis will use the FPGA-based hardware

accelerator and application of matrix multiplication to accelerate and overcome the

bottleneck of PC.

Index Terms —Big data, FPGA-based hardware accelerator, Co-processor FPGA

platform, Matrix multiplication on FPGA.

- III -

致 謝

首先，我要誠摯地謝謝我的指導教授—鍾菁哲博士—這兩年來的指導。從一

開始什麼都不懂的暑期訓練，到現在研究有了小成果這一切都要感謝老師不斷地

用心指導。在研究的路途中常常碰壁但老師卻從未放棄過我們，總在關鍵時刻輔

助我們度過難關，希望以後到職場上我也能力回饋一點給我的老師給我的研究室。

 第二，我要感謝我的父母。父母從小管教甚嚴雖然非常在意我們的課業但是

卻不會限制我們想念的科系，只要是正當的事，就會讓我們依自己的興趣不斷努

力向前，使得我有現在的一點點小成就。

第三，我要感謝我的朋友宜臻、維維與阿信在我研究有問題時毫不吝嗇的幫

助我，沒有他們我的研究可能會花得更多時間。希望在未來繁忙的日子裡我們都

不會忘記彼此，也祝福那些朋友不論是在工作或是課業上都可以順順利利。

最後 IC 設計這個領域是我選擇的也是我所喜歡的方向，我絕對不會半途而

廢，我會堅持到底。

劉俊凱

中華民國一零三年八月

寫於國立中正大學資工所

- IV -

Content
 Introduction ... 1

1.1 Introduction to Big Data .. 1

1.2 Hardware Accelerator .. 7

1.3 Matrix Multiplication on FPGA-Based Hardware Accelerator 11

1.3.1 Matrix Multiplication complexity .. 11

1.3.2 Related Work.. 14

1.4 Motivation .. 20

Chapter 2 Architecture of FPGA-Based Hardware Accelerator

 21

2.1 Architecture Overview ... 21

2.2 FPGA Development Platform .. 22

2.3 Architecture of FPGA-Based Hardware Accelerator 24

2.4 User Core Control Flow ... 27

2.5 MAC control .. 29

2.5.1 Packet Reception .. 29

2.5.2 Packet Transmission .. 31

2.6 Memory control ... 32

2.6.1 Memory Write .. 33

2.6.2 Memory Read .. 35

Chapter 3 Floating-point Matrix Multiplication on FPGA-Based

Hardware Accelerator .. 37

3.1 Matrix storage sequence in FPGA board DDR3 Memory 37

3.2 Packet Format .. 40

- V -

3.3 Architecture of Floating-point Matrix Multiplication Circuit 42

3.3.1 Architecture overview ... 42

3.3.2 Matrix Processor ... 43

3.3.3 Matrix processor master ... 45

Chapter 4 Experimental Results .. 47

4.1 Ethernet Transfer result .. 47

4.1.1 Ethernet Transfer rate .. 47

4.1.2 Ethernet Tx FIFO Issue ... 48

4.2 Matrix Multiplication Experimental Result 49

4.3 FPGA Utilization ... 61

Chapter 5 Conclusion and Future Works 62

5.1 Conclusion ... 62

5.2 Future Works .. 63

References .. 64

- VI -

Lis of Figure

Fig. 1.1 3Vs Big Data models [3] .. 1

Fig. 1.2 Cloud computing .. 4

Fig. 1.3 Cyclone III FPGA Development Board.. 7

Fig. 1.4 ASIC chip ... 8

Fig. 1.5 Graphic card ... 9

Fig. 1.6 Relationship chart of matrix size and number of multiplication and additions in

matrix multiplication .. 12

Fig. 1.7 PCI connector ... 14

Fig. 1.8 PCI-express slot .. 15

Fig. 1.9 Two architecture “a” and “b” of PE [18] .. 18

Fig. 2.1 Architecture overview of multi FPGA-based accelerator 21

Fig. 2.2 Xilinx Virtex-7 VC707 Board .. 22

Fig. 2.3 Architecture of FPGA-based hardware accelerator and clock distribution 24

Fig. 2.4 Major data and control signal flow of FPGA-based hardware accelerator 25

Fig. 2.5 User Core control flow ... 27

Fig. 2.6 Packet reception timing diagram .. 29

Fig. 2.7 Packet transmission timing diagram ... 31

Fig 2.8 Memory write timing diagram ... 33

Fig. 2.9 Memory burst mode timing diagram of 8 times data write 34

Fig. 2.10 memory read timing diagram. .. 35

Fig. 2.11 Memory burst mode timing diagram of 8 times data read 36

Fig. 3.1 data field of packet from PC to FPGA ... 40

- VII -

Fig. 3.2 data field of packet from FPGA to PC .. 40

Fig. 3.3 Floating-point matrix multiplication circuit overview 43

Fig. 3.4 architecture of matrix processor ... 43

Fig. 3.5 matrix processor master .. 45

Fig. 4.1 transmission data flow .. 48

Fig. 4.2 compare Intel I5-3230M (2.60GHz) with FPGA at 4x4, 8x8, 16x16 matrix size

.. 49

Fig. 4.3 compare Intel I5-3230M (2.60GHz) with FPGA at 32x32, 64x64, 128x128,

256x256 matrix size ... 50

Fig. 4.4 compare Intel I5-3230M (2.60GHz) with FPGA at 512x512, 1024x1024,

2048x2048 matrix size ... 50

Fig. 4.5 compare Intel I5-2400 (3.10GHz) with FPGA at 4x4, 8x8, 16x16 matrix size

.. 51

Fig. 4.6 compare Intel I5-2400 (3.10GHz) with FPGA at 32x32, 64x64, 128x128,

256x256 matrix size ... 51

Fig. 4.7 compare Intel I5-2400 (3.10GHz) with FPGA at512x512, 1024x1024,

2048x2048 matrix size ... 52

Fig. 4.8 compare Intel I7-4770 (3.40GHz) with FPGA at 4x4, 8x8, 16x16 matrix size

.. 52

Fig. 4.9 compare Intel I7-4770 (3.40GHz) with FPGA at 32x32, 64x64, 128x128,

256x256 matrix size ... 53

Fig. 4.10 compare Intel I7-4770 (3.40GHz) with FPGA at 512x512, 1024x1024,

2048x2048 matrix size ... 53

Figure 4.11 is the comparison at 64*64 size matrix of 10 /100 /1000 between Intel I5-

- VIII -

3230M (2.6GHz) and FPGA .. 54

Figure 4.12 is the comparison at 128*128 size matrix of 10 /100 /1000 between Intel

I5-3230M (2.6GHz) and FPGA ... 55

Figure 4.13 is the comparison at 256*256 size matrix of 50 /100 /200 between Intel I5-

3230M (2.6GHz) and FPGA .. 55

Figure 4.14 is the comparison at 512*512 size matrix of 25 /50 between Intel I5-3230M

(2.6GHz) and FPGA .. 56

Figure 4.15 is the comparison at 64*64 size matrix of 10 /100/1000 between Intel I7-

4770 (3.4GHz) and FPGA ... 56

Figure 4.16 is the comparison at 128*128 size matrix of 10 /100/1000 between Intel I7-

4770 (3.4GHz) and FPGA ... 57

Figure 4.17 is the comparison at 256*256 size matrix of 50 /100/200 between Intel I7-

4770 (3.4GHz) and FPGA ... 57

Figure 4.18 is the comparison at 512*512 size matrix of 25 /50/100 between Intel I7-

4770 (3.4GHz) and FPGA ... 58

- IX -

List of Table

Table 1.1 Data set volume size [2] ... 2

Table 1.2 Time complexity of matrix multiplication ... 12

Table 1.3 Comparison with algorithm 1 and algorithm 2 .. 19

Table 2.1 VC707 Board Main Component Descriptions ... 22

Table 2.2 Packet field description .. 30

Table 2.3 major signals of DDR3 memory interface of user side. 32

Table 3.1 data field description .. 41

Table 4.1 FPGA-based accelerator and PC transmission rate 47

Table 4.2 transmission rate with the DDR memory delay ... 47

Table 4.3 is the time analysis that the PC and FPGA respectively compute 30 matrix

those size is 512 x 512 ... 59

Table 4.4 is the time analysis that the PC and FPGA respectively compute 30 matrix

those size is 16 x 16 ... 59

Table 4.5 Accelerator Environment without Matrix Multiplication Utilization 61

Table 4.6 Accelerator Environment with Matrix Multiplication Utilization 61

- 1 -

 Introduction

1.1 Introduction to Big Data

Big Data is the term for a collection of data set too complex and large that it make

difficult to manage, analyze and process using the traditional database system [1, 2].

Big Data include activity logs, business transaction, images, and surveillance videos

that can reach massive proportions over time [1, 2]. In some statistics, those data

generated exceed 2.5 quintillion bytes everyday [1].

Data

Volume

Data

Variety

Data

Velocity

MB GB TB PB

table

data base

photo
image

W
eb

au
d
io

social
video

unstr
uctured

m
ob

il
e

b
at

chp
er

io
d
ic

n
ea

r
re

al
 t

im
e

re
al

 t
im

e

Fig. 1.1 3Vs Big Data models [3]

Fig. 1.1 shows the 3Vs Big Data models [3], it has three characteristics: volume,

- 2 -

variety and velocity.

Volume indicates the number of byte of data sets, we can see the exponential

growth from inner channel to outer channel in Fig. 1.1. Image and photo are very easy

to have terabyte level, video even reach the petabytes level. Table 1.1 shows the volume

size of various data sets.

Table 1.1 Data set volume size [2]

Value Abbreviation Name

11000
KB Kilobyte

21000
MB Megabyte

31000
GB Gigabyte

41000
TB Terabyte

51000
PB Petabyte

61000
EB Exabyte

Velocity represents that how fast the data sets are generated. We can see velocity

of data sets generation from batch of inner channel to real time of outer channel.

According the reference [2], there are over than 328 million Google searches every day,

2 terabyte of photos uploaded to community websites every day, 14 million hours of

video watched on YouTube every day. The velocity of data generated has gone beyond

our imagination.

- 3 -

Variety represents that the data stored in multiple formats. There are several

different formats in various applications. Some data can be stored in a text file, such as

database and Excel, but most of data are not in the traditional formats, such as image,

photo, video, audio and pdf. Those data must be organized, that make it meaningful. If

the data all in the same format, it will be easy to do, but it is impossible. Hence,

organizing the many different formats is one of the challenges with the Big Data.

 Today, Big Data system has become an enterprises of technologies supplier, such

as IBM, Yahoo and Facebook [4]. There are many small enterprises, who also want to

use the Big Data techniques, but they don’t have enough capital to do, Cloud-based Big

Data processing is suggested by [4]. It has feature of elastic services framework, lets

user in a pay-as-you-go manner [4]. Those small enterprises do not have to spend a lot

of money to upgrade the hardware, they can spend those money in core of design and

research. On the other hand, the user who want to use the Big Data techniques can

readily obtain data and application what they want by environment of Cloud computing

supplier [5]. Users also can accomplish the same work in different operating system.

Cloud computing can be express a group of physical machine servers, it provides

services to users [6]. Services of Cloud computing is a platform of computing and

management of data in physical machines servers. It usually presents a virtual network

when user sends a service request. Virtual network is a set of virtual nodes and virtual

links, it can be expressed a group virtual machine that mapping on the physical machine

server. Fig. 1.2 shows the schematic view of Cloud computing.

In the above, brief introduction to the problem of the Big Data and Cloud

computing to handle the Big Data problem. Although Cloud computing provides a

powerful computing and management platform, but it has some problem. Problem 1:

- 4 -

Since user data must be placed on the Cloud computing servers, so users must take

some risks that data maybe stolen. Problem 2: Not all users can afford the cost of Cloud

computing services. Problem 3: If all of Big Data problem are using Cloud computing,

that is too waste. In fact, above problems can occur in everyday life, for example we

want to access the monitor videos and make it clearer by image processing. Assuming

the amount of videos has Big Data level, it faced the execution time too long and use

too much storage space problem for PC or server, and we can’t put processing of videos

immediately into Cloud computing serves to solve. There are many similar case in the

life.

Fig. 1.2 Cloud computing

- 5 -

There are some application for data analysis such as traditional database system and

typical data mining. Traditional database system is not powerful for Big Data analysis.

Due to database system is not storage independent, database system take too much

storage space to construct data. In addition, database system uses a lot of loading and

indexing during the processing data, database system take a lot of time to query data.

There are many disadvantages of database system for Big Data. Typical data mining is

not efficient for Big Data analysis. Typical data mining algorithms require all data that

is loaded into the main memory, it maybe cause the memory full stage and take a lot of

time to load data.

In Big Data analysis application, there are many applications such as Big Data

mining and MapReduce. In reference [7] - [10], Big Data mining is not the same as data

mining, big data mining has mechanism of information exchange and information

integration. This mechanism will make sure that all information sources work together

to achieve a global optimization goal. In reference [11] - [13], MapReduce is an

effective tool for Big Data analysis, because MapReduce has unique features which

include simplicity and communicative manners of its programming model. MapReduce

has mainly two functions map() and reduce().Function of map() performs filtering

and sorting, and function of reduce() that performs a summary operation.

 Big Data is a significant problem in various application. One of Big Data

challenge is Big Data analysis. Traditional database system and typical data mining are

not enough to analyze Big Data. In recent, MapReduce replace the traditional database

system and Big data mining replace the typical data mining, they are two kind of

powerful analysis tool for Big Data.

- 6 -

According above case, we want proposed a new approach to solve Big Data

problems. In this thesis, first we against the speed of data processing with Big Data

problems to research a hardware accelerator.

- 7 -

1.2 Hardware Accelerator

In a general purpose processor, it usually can execute arithmetic unit at once, so it's

sequential execution. Because processor is executed one by one, it takes some time to

wait for previous execution end [14]. If a program has a lot of instructions, then the

waiting time is considerable. Suppose we want to improve processor performance, we

have to speed up the clock frequency, but speed up the clock frequency of the processor

that is not cost-effective, and it has bottleneck on increasing the clock frequency.

Hardware accelerator can be used to implement by FPGA or application-specific

integrated circuit (ASIC) [15]. Fig. 1.3 shows the Cyclone III FPGA development board.

Fig. 1.4 shows the ASIC chip.

Fig. 1.3 Cyclone III FPGA Development Board

- 8 -

Fig. 1.4 ASIC chip

There are many techniques that can improve execution performance, hardware

accelerator is one of them. The difference between software and hardware is

concurrency. Due to we can design multi sets of arithmetic units in hardware, it does

not take a long time to wait for previous execution end. The number of arithmetic units

is limited by FPGA capacity or ASIC chip area.

Hardware accelerator is usually designed for computationally repeated or

computationally intensive software code [16]. The application range of hardware

accelerator can vary from a small functional unit to a large functional block, such as

motion estimation in H.264. Now, hardware accelerator has been used widely in

floating-point accelerator or graphics accelerator [17], etc. "Hardware accelerator" is

an older term, and nowadays we call video or graphic card. Fig. 1.5 shows the graphic

card [5].

- 9 -

Fig. 1.5 Graphic card

How to choose the development platform of hardware accelerator? Since the

development of the accelerator is in the beginning, first we choose FPGA to develop

our design, and finally we design ASIC until the development of design is almost done.

In this thesis, our purpose is focus on the acceleration of data computing which is

divided Big Data problems from PC into multi hardware accelerators, so that

communication interface between PC and FPGA is very important. According above

description, the first emphasis about choosing the development platform of hardware

accelerator is FPGA board with networking. Why we don’t use the Advanced

- 10 -

Microcontroller Bus Architecture (AMBA) FPGA, compiling the program into an

ARM CPU on a Zynq evaluation board, then uses the AMBA to connect the FPGA and

CPU. However, if we use the AMBA FPGA, then it is not possible to assign job to many

FPGAs. The second problem, the clock frequency of an ARM CPU integrated in a

FPGA is too slow as compared to Intel CPU used by PCs. The second emphasis about

choosing the development platform of hardware accelerator is FPGA board with

memory. The hardware accelerator in order to solve Big Data problem, so it must has

memory space to store those huge data.

- 11 -

1.3 Matrix Multiplication on FPGA-Based

Hardware Accelerator

1.3.1 Matrix Multiplication complexity

According to the above introduction of the Big Data, one of big data challenges

are images or videos processing. Image or video processing is usually include many

matrix operations. In various image processing algorithms, there many algorithms use

the matrix multiplication to solve image processing problem, such as “Bilateral

Filter,” ”Weighted Least Squares” and “Motion Estimation”. Two algorithms as we

mentioned before are used matrix multiplication to enhance the “Edge-Preserving”. The

third algorithms as we mentioned before is used matrix multiplication to find the vector

of moving object in image. A matrix multiplication is repeated multiplications and

additions, so we believe that matrix multiplication with a high order of parallelism. Fig.

1.3.1 shows the relationship chart of matrix order and number of multiplication and

additions in matrix multiplication. As shown in Fig. 1.6, we can see that when the

matrix size is twice bigger than the original matrix size, the number of multiplications

and additions of matrix will be eight times than the number of multiplications and

additions of original matrix, this growth rate is very fast. There are “x” matrixes of

“n” order are multiplied continuously, we can deduce that have    1
3

 xn

multiplications and    1
3

 xn additions. Whether “n” and “x” are fixed values to

divide into four types of time complexity. Table 1.3.1.1 shows the time complexity of

- 12 -

matrix multiplication.

Fig. 1.6 Relationship chart of matrix size and number of multiplication and additions in

matrix multiplication

Table 1.2 Time complexity of matrix multiplication

Matrix order n Matrix number x Time complexity

Fixed Fixed  1

Fixed Non-Fixed  x

Non-Fixed Fixed  3n

Non-Fixed Non-Fixed  xn  3

64 512

4096

32768

64 512

4096

32768

0

5000

10000

15000

20000

25000

30000

35000

4 8 16 32

Amount

Matrix size n x n Addition

Multiplication

- 13 -

When “n” or “x” is too large, there are huge operation of multiplications and

additions. The huge number of multiplications and additions is definitely a considerable

problem for PC. If we can divide the multiplications and additions into FPGA that

compute multiplications and additions in parallel, then we can save a lot of time in

matrix operation.

- 14 -

1.3.2 Related Work

In the recent, there are several research that handle the problem of performing

matrix multiplication in FPGA [18] - [20].

In the reference [18], it is use the peripheral component interconnect (PCI)-express

2.0 8 x endpoint to connect the PC and FPGA, its bandwidth is 4GB/s in two-way.

Using the PCI as a communication interface between FPGA and PC is a great choice,

because the transmission rate is higher than Ethernet. Although the communication

interface of PCI has a fast transfer rate, but it has a disadvantage that PC has limited

PCI slots, so the number of FPGA connected to PC is limited. Although communication

interface of Ethernet has a slower transmission rate than PCI, it can connect number of

FPGA is unlimited through Ethernet switch. Fig. 1.7 shows the PCI connector. Fig. 1.8

shows the PCI-express slot.

Fig. 1.7 PCI connector

- 15 -

Fig. 1.8 PCI-express slot

The reference [18] propose two architectures of floating-point matrix

multiplication, it consists of a linear list of multiplier – adder processing elements (PEs).

Fig. 1.9 shows the architecture “a” and “b” of PE. Let X and Y be two matrixes, that X

with dimensions p  q and Y with dimensions q  r. The n is number of PE. When p,

q, r  n, matrix X consists of i  j and matrix Y consists of j  k blocks, where i =

 np / , j =  nq / and k =  nr / . (They pad zero on the under “n” part, like Formula

1.3.2.1.) The result matrix R with dimensions p  r, consists i  k blocks. The

architecture “a” of PE is use the algorithm 1 to operation, and architecture “b” of PE is

use the algorithm 2 to operation.

 Algorithm 1: The PC consecutively sends the blocks of input matrixes X and Y

which the order of sending is correspond with result block. For example, the result

block = . It’s totals is sending (2  i 

- 16 -

j  k) of input block. Since the algorithm 1 has a problem of sending many repeated

matrix X blocks, author proposed the algorithm 2.

Algorithm 2: Let a row of result matrix R be a result unit. The PC consecutively

sends the blocks of matrix X and Y which order of sending is correspond with result

unit. Formula 1.1 shows the first row of result unit. In formula 1.2, it can be simplified

into formula 1.3 it can only sent once of the same block of X, then according the order

of formula 1.4 sent the matrix blocks of Y continuously, like

. When accelerator

is completed a part of result unit, such as , it will be sent to the PC to

store and waiting the other parts for adding. We can repeat above steps until the final

part of result unit finished that is done of matrix multiplication. Totally, it sends (((1 +

k)  j) i) of input block.

Formula 1.1 Padding 0 on under n parts

- 17 -

Formula 1.2 Result unit

Formula 1.3 Result unit simplify

- 18 -

X
Floating-

point
multiplier

+ Floating-
point adder

MEM X
Storage for

elements of the
first matrix

MEM Y
Storage for

elements of the
second matrix

Control lines

Data lines

C
on

tr
ol

 u
ni

t

MEM Y

X

MEM Y

X

MEM Y

X

Host
computer

PE 2 PE n

MEM X MEM X MEM X

+ +

PE 1

C
on

tr
ol

 u
ni

t

MEM Y

X

MEM Y

X

MEM Y

X

Host
computer

PE 2 PE n

MEM X MEM X MEM X

+ +

PE 1

b

+MX

MEM R MEM R MEM R

a

MEM R
Storage for

elements of the
result matrix

MX Multiplexer

Fig. 1.9 Two architecture “a” and “b” of PE [18]

According to the above description, we make comparison with algorithm 1 and

algorithm 2, as following table 1.3

- 19 -

Table 1.3 Comparison with algorithm 1 and algorithm 2

Algorithm 1 with Architecture of a of PE

Advantage The algorithm is simple.

Disadvantage Sending too many repeated block of input matrixes.

No. of pass delay of adder n stages

Algorithm 2 with Architecture of b of PE

Advantage Sending lesser repeated block of input matrixes than

algorithm 1.

Disadvantage It needs the PC to help to temporarily store the some

parts of result matrix.

No. of pass delay of adder n -1 stages

- 20 -

1.4 Motivation

The problems of Big Data has become importance, only improves clock frequency

of the computer is not enough, it still takes a lot of time to execution. So one PC link

multi general-purpose FPGA-based accelerator over the Ethernet to solve the Big Data

analysis problem of long execution time that is our vision. This vision is very broad, so

we first study the single-precision floating-point matrix multiplication in one FPGA-

based accelerator to solve the problem of long execution time of numerous floating-

point matrix multiplications.

In floating-point matrix multiplication, we survey the reference [18]. It has two

kinds of algorithms and architectures, the both of algorithms and architectures have

some disadvantages. We want to find out an method that to reduce the number of

sending input matrix blocks and this method does not need computer that help to

temporarily store the some parts of result matrix. We also want to research an

architecture of PE that to reduce the gate delay and it must meet our algorithm.

In Chapter 2, we will introduce the architecture of our FPGA-based hardware

accelerator and describe the operation flow. In Chapter 3, we will introduce the

architecture of our floating-point matrix multiplication circuit and describe the

operation flow. In Chapter 4, we will appear the execution time comparison chart which

is perform a matrix multiplication and one PC with FPGA accelerator and one PC

without FPGA accelerator. Finally, discuss the future works and make a conclusion in

Chapter 5.

- 21 -

Chapter 2 Architecture of FPGA-Based

Hardware Accelerator

2.1 Architecture Overview

Fig. 2.1 shows the architecture overview of our vision that is one PC link multi

FPGA-based accelerator over the Ethernet.

FPGAFPGA FPGA FPGA………

PC
or

Server
Switch FPGA

FPGA with
network
function

Ethernet
cable

Fig. 2.1 Architecture overview of multi FPGA-based accelerator

In Fig. 2.1 we can see a PC or a server that connects the multi FPGAs which with

network function. We use this architecture to speed up the computer which is going to

solve the problem of Big Data analysis

- 22 -

2.2 FPGA Development Platform

Our accelerator is implemented using Xilinx Virtex-7 VC707 board (VX485T

FPGA). Fig. 2.2 shows the Xilinx Virtex-7 VC707 board. Table 2.2.1 describe the main

VC707 board component that we use.

1

2

5

34

Fig. 2.2 Xilinx Virtex-7 VC707 Board

Table 2.1 VC707 Board Main Component Descriptions

Callout Component Description

1 Virtex-7 FPGA with cooling fan

2 DDR3 SODIMM memory (1GB)

3 10/100/1000 Mb /s Ethernet PHY

4 Ethernet port

5 Power on/off switch

- 23 -

We mainly use two differential clock sources on VC707 board, namely system

clock and GTX transceiver clock. System clock is a 200MHz differential signal pair

named SYSCLK_P and SYSCLK_N, it is a reference clock used to provide a high-

speed clock for designed top module. GTX transceiver clock is a 125MHz differential

signal pair named SGMIICLK_Q0_P and SGMIICLK_Q0_N. It is a reference clock of

high-quality and low-jitter for Ethernet IP core (SGMII GTX Transceiver). The

description about clock distribution will introduce in next section.

- 24 -

2.3 Architecture of FPGA-Based Hardware

Accelerator

Fig. 2.3 shows the architecture of FPGA-based hardware accelerator and clock

distribution.

User CoreMMCMMAC Core

sgii_clk

sys_clk

tx
ou

t_
cl

k clkfb us
er

cl
k1

Ethernet Block

us
er

cl
k2

sgii_clk_p

sgii_clk_n

sys_clk_p

sys_clk_n

ap
p_

cl
k

DDR3 Controller
Interface

IBUFGDS
200MHz : sys_clk
125MHz : sgii_clk, uerclk2, app_clk

62.5MHz : txout_clk, userclk1

Fig. 2.3 Architecture of FPGA-based hardware accelerator and clock distribution

In Fig. 2.3, we can see the Ethernet block needs two reference clocks, namely

sys_clk and sgii_clk, that are 200MHz and 125MHz, respectively. Ethernet block also

generates a clock of 62.5MHz named txout_clk that is used as a reference clock for

Mixed-Mode Clock Manager (MMCM). MMCM is a Phase-locked loop (PLL)

component. After MMCM align phase of txout_clk, it multiplied the clkfb by 10

- 25 -

times. MMCM divided clkfb by 10 times and 5 times, then generate two clock of

62.5MHz and 125MHz respectively, namely userclk1 and a userclk2. Userclk1 is used

as a transmission clock for Ethernet block. Userclk2 is used as a reception clock,

memory interface clock and Media Access Control (MAC) clock for Ethernet block,

DDR3 controller interface and MAC core respectively. DDR3 controller interface

generates a clock of 125MHz named app_clk that is used as an operation clock for

user_core.

Fig. 2.4 shows the mainly data and control signal flow of FPGA-based hardware

accelerator.

User Core

Ethernet Blockrxp

DDR3 Controller
Interface

x, y : Depending on the design

rxn

txp

txn

rx_d[7:0]

tx
_e

n tx_d[7:0]

User rx

rx
_e

n

Processing unit

app_rd_data[511:0]

rx_data[x:0]

User tx
tx_data[y:0]

Memory controller
signal

addr[27:0]

Matrix operation

matrix_element[511:0] result_matrix_element[511:0]

app_wdf_data[511:0]

Fig. 2.4 Major data and control signal flow of FPGA-based hardware accelerator

- 26 -

In Fig. 2.4, the Ethernet block is an IP core, it is used to receive a pair of rxp and

rxn differential signals and process the two signals into a one byte rx_d bus. The rx_d

[7:0] is the received packet. Ethernet block is used to process tx_d [7:0] that is

transmission packet into a pair of txp and txn differential signals and sends the two

signals into Ethernet PHY.

The DDR3 Controller Interface is an IP core, too. It is used to send app_wdf_data

and addr[27:0] to the memory. The app_wdf_data bus is the data that write to the

memory. The addr[27:0] is the address for writing or reading the memory. The

addr[27:0] is also used to catch an app_rd_data bus from memory controller.

User Core includes the User rx, User tx, Processing unit and matrix operation

modules. The User rx module combines rx_d into a received packet, then send the

rx_data to processing unit. In section 2.5.1, we will describe the packet processing in

User rx module.

The User tx module is used to build up tx_d bus into a transmission packet, then

transmit the transmission packet into Ethernet block. In section 2.5.2, we will describe

the packet processing of User tx module.

The Processing unit module controls the state machine and manages the data flow

of all sub modules in the User Core module. In section 2.4, we will use the control flow

to describe the state machine of the Processing unit module.

The Matrix operation module is used to compute matrix multiplication with parallel

floating point arithmetic unit that help the host PC to quickly complete matrix

multiplication. In section 3.3, we will describe the algorithm and architecture of matrix

multiplication.

- 27 -

2.4 User Core Control Flow

Fig. 2.5 shows control flow of User Core. It actually is a state machine in User core,

we want to use the simple way of control flow to describe the operation of state machine.

Idle

Receive
packet?

No

What command
packet is received?

Yes

Write

Read

Read data

Write data

Send data to PC

Is all data read
and send finish?

No

Yes

Matrix
multiplication

Matrix
operation

Fig. 2.5 User Core control flow

- 28 -

In Fig. 2.5, we can see the beginning procedure of control flow is idle, then waiting

the packets come from PC. After we receive a packet, Processing unit module will

check its command field. The command field actually is a data field in packet. In section

3.2,we will introduce the packet format. The command field includes three kind of

command, that are write, read and matrix operation. If we receive a write command,

control flow will go to procedure of writing data. When the control flow enters the

procedure of writing data, the Processing unit module will perform a procedure of

writing data. After writing data, procedure of control flow back to idle. In section 2.6.1,

we will describe the procedure of writing data. If we receive a read command, control

flow will go to procedure of reading data. When the control flow enters the procedure

of reading data, the Processing unit module will perform a procedure of reading data,

After reading data, procedure of control flow will go to procedure of send data to PC.

When the control flow enters the procedure of send data to PC, the Processing unit

module will perform a procedure of sending data. After sending the data, Processing

unit module will check the condition that if all data has been read and sent. If all data

is not been read and sent completely then control flow go back to the procedure of read

data. If all data has been read and send the control flow go back to the procedure of idle.

In section 2.6.2, we will describe the produce of reading data. If we receive a matrix

multiplication command, control flow will go to procedure of matrix multiplication.

When the control flow enters the procedure of matrix multiplication, the Processing

unit module will compute matrix multiplication. After matrix multiplication, procedure

of control flow will go to read data.

- 29 -

2.5 MAC control

In fact, the MAC core is a free IP core, so its function is simple. The function of

packet reception and packet transmission are performed in User rx and User tx module

respectively.

2.5.1 Packet Reception

Fig. 2.6 shows the timing diagram of packet reception. In Fig. 2.6, if rx_en signals

is active-hihg then rx_d is valid.

Fig. 2.6 Packet reception timing diagram

When rx_en signals is high, we can use a counter to count the clock cycles and use

the value of counter to distinguish what is field of the packet. Table 2.5.1.1 describes

the field of packet. After receiving the DA and SA, User rx module will check whether

the SA equal to PC MAC address and check whether the DA equal to FPGA MAC

address. If the both of DA and SA are equal to the FPGA address and PC address,

respectively. Then the data is for us. After Uer rx module receives all data, it will sent

- 30 -

data to Processing unit module.

Table 2.2 Packet field description

Field name Counter value Length Description

Preamble 0~6 7 bytes Preamble contains a 0x55 pattern, it indicates forefront of a

packet. In usually, the preamble is not used.

SFD 7 1 bytes SFD field contains a 0xD5 pattern, it marks the start of the

frame. In usually, the SFD is not used.

DA 8~13 6 bytes DA contains destination MAC address.

SA 14~19 6 bytes SA contains source MAC address

Length 20~21 2 bytes Length of data and pad field

Data 22~X 0-1500 bytes The field is always provided in the packet data for

transmission and is always retained in the receive packet

data.

Pad (X+1)~Y 0-46 bytes The field is used to ensure that the frame length is at least

64bytes (the preamble and SFD field are not includes for this

calculation).

FCS (Y+1)~Z 4 bytes The value of the FCS field is calculated from the destination

address, source address, length, data and pad fields using a

32-bit cyclic redundancy check (CRC). In our design,

Ethernet environment is simple, so we don’t use CRC to

check packet.

- 31 -

2.5.2 Packet Transmission

Fig. 2.7 shows the timing diagram of one packet transmission. User tx module is

similar to Use rx module, they are different operation direction. After User tx module

receives the tx_data from the Processing unit module, it uses a counter to count the

clock cycle from 0 to value of packet length. User tx module use the value of counter

to distinguish what field is sent to tx_d and pull up tx_en until the counter value equals

to the length value.

Fig. 2.7 Packet transmission timing diagram

- 32 -

2.6 Memory control

Table 2.3 shows the major signals of memory controller interface of user side.

Table 2.3 major signals of DDR3 memory interface of user side.

Signal Direction Description

app_cmd[2:0] Output This output selects the command for current request.

Read = 001, Write = 000

app_addr[27:0] Output This output indicates the address for the current request.

app_en Output This is a request signal. The user must apply the desired value to

app_addr, app_cmd.

app_rdy Input This input indicates the memory interface is ready for accept

request of user side.

app_wdf_data[511:0] Output The bus provides the data currently begin written to external

memory.

app_wdf_end Output This output indicates that the data on the app_wdf_data in the

current cycle is the last data for the current request.

app_wdf_wren Output This input indicates that the data on the app_wdf_data is valid.

app_wdf_rdy Input This input indicates that write data FIFO is ready to receive data.

Write data accepted when both app_wdf_rdy and app_wdf_wren

are asserted.

app_rd_data[511:0] Input This output contains the data reading from the external memory.

app_rd_data_valid Input This input indicates that the data on the app_rd_data is valid.

- 33 -

2.6.1 Memory Write

Fig. 2.8 shows timing diagram of memory write. In Fig. 2.8, if we want to write a

data, we must follow the rules of writeing data. Writing data into memory can be

divided into two parts that are writing data and writing commands. First, we assign data

to the app_wdf_data of 512 bits and assert the app_wdf_wren and app_wdf_end signals

until app_wdf_rdy signal is high. Second, we assign a write command and an address

to app_cmd and app_addr, respectively. Then we assert the app_en signal until app_rdy

signal is high.

Fig 2.8 Memory write timing diagram

If we want to use memory bandwidth efficiently, we can write data in burst mode.

Fig. 2.9 shows timing diagram of burst mode operation with depth 8 times data write.

Writing data into memory can be divided into two parts that are writibg data and writing

- 34 -

command, too. First, if app_wdf_rdy signal is always high, and then we continuously

assign eight data to the app_wdf_data of 512 bits and continuously assert the

app_wdf_wren signal. Then we assert the app_wdf_end in last clock cycle of writing

data. In writing data procedure, if app_wdf_rdy signal gives low, we must stop writing

data and assert the app_wdf_wren signal until app_wdf_rdy signal is high. Second, if

app_rdy signal is high and, and then we continuously assign write commands and 8

address to the app_cmd and app_addr, respectively and continuously assert the app_en

signal. In writing command procedure, if app_rdy signal gives low then we must stop

writing address and assert app_en signal unitl app_rdy signal is high.

Fig. 2.9 Memory burst mode timing diagram of 8 times data write

- 35 -

2.6.2 Memory Read

Fig. 2.10 shows timing diagram of memory read. In Fig. 2.10, if we want to read a

datum, we must follow the rules of reading data. Reading data from memory can be

divided into two parts that is read command and read data. First, we assign a command

and an address the app_cmd and app_addr, respectively and assert the app_en signal

until app_rdy signal is high. Second, if app_rd_data_valid is asserted then store the data

from app_rd_data.

Fig. 2.10 memory read timing diagram.

If we want to read data efficiently, we can read data in burst mode. Fig. 2.11 shows

timing diagram of memory burst read mode with depth 8. Reading data from memory

can be divided into two parts that are read command and read data. First, if app_rdy

signal is high, we can continuously assign read command and 8 addresses to app_cmd

and app_addr, respectively. Then we continuously assert the app_en signal, In read

command procedure, if app_rdy signal is low, we must stop the read operation and

assert the app_en signal until app_rdy signal is high. Second, if app_rd_data_valid is

- 36 -

asserted then store the data from app_rd_data.

Fig. 2.11 Memory burst mode timing diagram of 8 times data read

- 37 -

Chapter 3 Floating-point Matrix

Multiplication on FPGA-Based

Hardware Accelerator

3.1 Matrix storage sequence in FPGA

board DDR3 Memory

In Formula 3.1 we can see that two 8 by 8 matrix A and matrix B multiplication.

That is matrix A * matrix B = matrix C. We first observe the in Formula

3.2 In Formula 3.2 we can find a rule about matrix multiplication. If we divide matrix

A into several 1 by 4 matrix blocks X and divide matrix B into several 4 by 1 matrix Y

like formula 3.5. Then formula 3.2 can be rewritten as formula 3.3. We can simplify

Formula 3.3 into formula 3.4. In formula 3.4, we can see a group of regular sequence

like and , If we use this sequence to

store the data and computation, then we can simply multiply two matrixes of various

size by hardware. Before we use this sequence to operation, we must use order of

formula 3.5 to write matrix A and matrix B element into memory.

- 38 -

Formula 3.1 two 8 x 8 matrix multiplication

Formula 3.2 c1 1~c1 4 of matrix C

Formula 3.3 use matrix block X and Y to indicate c1 1~c1 4 of matrix C

Formula 3.4 simplify the formula 3.3

- 39 -

Formula 3.5 order of matrix A , matrix B and matrix C in memory

- 40 -

3.2 Packet Format

In order to communicate between the PC and FPGA, we must define the data fields

of a packet. Fig 3.1 shows the data field of one packet that sent from PC to FPGA. Fig

3.2 shows the data fields of one packet that sent from FPGA to PC. Table 3.1 describe

the data field of packet.

Matrix multiplication command packet :

Read command packet :

Write command packet :

Packet from PC to FPGA

Fig. 3.1 data field of packet from PC to FPGA

Packet from FPGA to PC

Read command report packet :

Matrix multiplication result packet :

Fig. 3.2 data field of packet from FPGA to PC

- 41 -

Table 3.1 data field description

Field name Description

cnt This field indicates the sequence number of packet.

cmd

This field indicates the operation which we want to execute.

Write command packet : 0x01

Read command packet : 0x02

Read command report packet : 0x02

Matrix Multiplication command packet : 0x03

Matrix Multiplication result packet : 0x03

16-element cnt This field indicates the number of 16-element in this packet.

16-element This field indicates a group of values of 16 4-bytes.

addr This field indicates the address.

addr cnt This field indicates the number of address in this packet.

matrix A column num This field indicates the value of matrix A column.

matrix B column num This field indicates the value of matrix B column.

matrix A start addr This field indicates the starting address of matrix A.

matrix A end addr This field indicates the end address of matrix A.

matrix B start addr This field indicates the starting address of matrix B.

matrix B end addr This field indicates the end address of matrix B.

matrix C start addr This field indicates the starting address of matrix C.

- 42 -

3.3 Architecture of Floating-point Matrix

Multiplication Circuit

3.3.1 Architecture overview

Fig. 3.3 shows the architecture overview of floating-point matrix multiplication

circuit. In Fig. 3.3, there are one matrix processor master and 4 matrix processors. The

matrix processor master reads numerous matrix elements from the DDR memory and

sends the elements to various matrix processors for computation. After matrix

processors finish computation, matrix processor master sample those results and writes

results into DDR memory. Fig. 3.3 shows schematic diagram, there are 16 matrix

processors in the floating-point matrix multiplication circuit.

4_element_matrix_

processor_1[127:0]

Matrix processor master

Matrix processor_1

DDR3 Memory interface

matrix_processor_1_state[2:0]

matrix_processor_1_result[31:0]

Matrix processor_4

4_
ele

men
t_m

atr
ix_

pr
oc

es
so

r_
4[

12
7:0

]

matr
ix_

pr
oc

es
so

r_
4_

sta
te[

2:0
]

matr
ix_

pr
oc

es
so

r_
4_

res
ult

[3
1:0

]

ad
dr

[2
7:

0]

4_
el

em
en

t[
12

7:
0]

4_
el

em
en

t_
re

su
lt

[1
27

:0
]

Matrix processor_2

matr
ix_

pr
oc

es
so

r_
2_

res
ult

[3
1:0

]

4_
ele

men
t_m

atr
ix_

pr
oc

es
so

r_
2[

12
7:0

]

matr
ix_

pr
oc

es
so

r_
2_

sta
te[

2:0
]

Matrix processor_3

matrix_processor_3_state[2:0]

4_element_matrix_

processor_3[127:0]

matrix_processor_3_result[31:0]

- 43 -

Fig. 3.3 Floating-point matrix multiplication circuit overview

3.3.2 Matrix Processor

Fig. 3.4 shows the architecture of matrix processor.

Control unit

MEM R

X

MEM
X[127:96]

MEM
Y[31:0]

X

MEM
X[95:64]

MEM
Y[31:0]

+

Control lines

[31:0]Data lines

X Floating-point
multiplier

+ Floating-point
adder MEM X

Storage for
elements of the

first matrix

MEM Y

Storage for
elements of the
second matrix

MEM R

Storage for
elements of the
result matrix

matrix_processor_state[2:0]

matrix_processor_result[31:0]

4_element_matrix_processor[127:0]

X

MEM
X[63:32]

MEM
Y[31:0]

X

MEM
X[31:0]

MEM
Y[31:0]

+

+

Fig. 3.4 architecture of matrix processor

In Fig. 3.4, we can see an architecture of the matrix processor of full binary tree (4

level) structure. There are 4 PEs in the architecture. First, control unit catch the input

data of matrix block 127bits bus, the matrix block X is send to MEM X register and the

matrix Y is send to MEM Y register. After the matrix block X and matrix block Y are

send, computation starts, then waiting the multiplication results. Figure 3.4 shows the

schematic diagram, architecture of matrix processor is a full binary tree (6 level)

structure.

- 44 -

In the architecture of matrix processor, the number of pass delay of adder is n2log

stages, it is less than n in reference [18], there are 16 matrix processor in matrix

processor, so number of pass delay is 8 stages.

- 45 -

3.3.3 Matrix processor master

Fig. 3.5 shows architecture matrix processor master.

Fig. 3.5 matrix processor master

 In Fig. 3.5, we can see the mainly three blocks, Input data controller, Matrix

processor state table and Output data controller. First, Input data controller uses

information of matrix A and matrix B to read matrix X blocks and matrix Y blocks from

memory. After Input data controller receives the matrix blocks, it checks if the matrix

processor state is idle. If matrix processor is idle then the Input data controller assigns

the matrix blocks to matrix processor. Second, if matrix processor state is calculation

finish, then Output data controller will store the result from matrix processor. Third, if

result have not been calculated yet then it will be temporarily stored in Result register.

Final, if result is complete then result will be written into the memory. Figure 3.5 shows

Output data controller

addr[27:0]

4_element[127:0]

4_element_result[127:0]

Matrix processor State
table

matrix_processor_1_state[2:0]

matrix_processor_state[2:0]

matrix_processor_1_result[31:0]

result
register result_register[127:0]

Input data controller

4_elem
ent_m

atrix_
processor_2[127:0]

4_elem
ent_m

atrix_
processor_1[127:0]

4_elem
ent_m

atrix_
processor_3[127:0]

4_elem
ent_m

atrix_
processor_4[127:0]

matrix_processor_2_state[2:0]

matrix_processor_3_state[2:0]

matrix_processor_4_state[2:0]

matrix_processor_2_result[31:0]

matrix_processor_3_result[31:0]

matrix_processor_4_result[31:0]

- 46 -

the schematic diagram, there are 16 element_matrix_process bus, 16

matrix_porcessor_state bus and 16 matrix_processor_result bus.

- 47 -

Chapter 4 Experimental Results

4.1 Ethernet Transfer result

4.1.1 Ethernet Transfer rate

In this section, we transmit the 50 thousand 1500-byte in FPGA-based accelerator

and PC to test the transmission rate by using ethernet. Table 4.1 shows the transmission

rate in this measurement.

Table 4.1 FPGA-based accelerator and PC transmission rate

Direction Packet length Number of Packet Time Transmission data rate

PC to FPGA 1500bytes 50,000 11.025s 52.52Mbps

FPGA to PC 1500bytes 50,000 8.698s 66.56Mbps

We also test the transmission data rate with the DDR memory delay includes data

from PC to FPGA‘s external memory and data from FPGA external’s memory to PC.

Table 4.2 shows the transmission rate in this condition.

Table 4.2 transmission rate with the DDR memory delay

Direction Packet length Number of Packet Time Transmission data rate

PC to FPGA 1500bytes 50,000 11.52s 52.08Mbps

FPGA to PC 1500bytes 50,000 9.262s 64.78Mbps

The Ethernet transmission data rate will be the bottleneck to the FPGA-based

accelerator, for large data computatiion. In the future, if company of Xillinx has

provided high transmission rate of Ethernet IP core then it will greatly enhance the

- 48 -

efficiency of our architecture of FPGA-based accelerator.

4.1.2 Ethernet Tx FIFO Issue

Fig. 4.1 shows the transmission data flow. The packet from User Tx module to

Ethernet block is 125MHz and packet from Ethernet block run at PHY run at 62.5MHz.

If we transmit too many packets, in a short time then it causes transmission FIFO

overflow. Due to MAC core is a free IP, it can’t to solve the problem of transmission

FIFO overflow. We use an easy method to avoid this problem. We obtain the number

of waiting clock cycles by experimental result. The number of waiting clock cycles

between each packet transmission is equal to Total packet .

Ethernet
block

PHYUser Tx PC

125MHz

62.5MHz

FPGA
FPGA board

Fig. 4.1 transmission data flow

- 49 -

4.2 Matrix Multiplication Experimental

Result

In Fig. 4.2 ~ Fig. 4.10, we use three different computers to compute different matrix

sizes matrix multiplication, and then compare the execution time with the proposed

FPGA-based accelerator.

Fig. 4.2 compare Intel I5-3230M (2.60GHz) with FPGA at 4x4, 8x8, 16x16 matrix size

1 3
23

315 323

350

0

50

100

150

200

250

300

350

400

4 8 16

m
s

(t
im

e)

Matrix size n x n

Small Size Matrix Multiplication

Intel I5-
3230M(2.6GHz)

FPGA

- 50 -

Fig. 4.3 compare Intel I5-3230M (2.60GHz) with FPGA at 32x32, 64x64, 128x128,

256x256 matrix size

Fig. 4.4 compare Intel I5-3230M (2.60GHz) with FPGA at 512x512, 1024x1024,

2048x2048 matrix size

185 2394
11318

89053

2087
7366

29947

139535

0

20000

40000

60000

80000

100000

120000

140000

160000

32 64 128 256

m
s

(t
im

e)

Matrix size n x n

Medium Size Matrix Multiplication

Intel I5-
3230M(2.6GHz)

FPGA

0.78

12.19

101.59

0.76
6.89

35.1

0

20

40

60

80

100

120

512 1024 2048

s
(e

xe
cu

ti
o

n
 t

im
e)

Matrix size n x n

Large Size Matrix Multiplication

Intel I5-
3230M(2.6GHz)

FPGA

- 51 -

Fig. 4.5 compare Intel I5-2400 (3.10GHz) with FPGA at 4x4, 8x8, 16x16 matrix size

Fig. 4.6 compare Intel I5-2400 (3.10GHz) with FPGA at 32x32, 64x64, 128x128,

256x256 matrix size

1 7
41

595 606 621

0

100

200

300

400

500

600

700

4 8 16

m
s

(t
im

e)

Matrix size n x n

Small Size Matrix Multiplication

Intel I5-2400
(3.10GHz)

FPGA

320 2423

19268

91305

4582
10829

46130

210459

0

50000

100000

150000

200000

250000

32 64 128 256

m
s

(e
xe

cu
ti

o
n

 t
im

e)

Matrix size n x n

Medium Size Matrix Multiplication

Intel I5-
2400(3.10GHz)

FPGA

- 52 -

Fig. 4.7 compare Intel I5-2400 (3.10GHz) with FPGA at512x512, 1024x1024,

2048x2048 matrix size

Fig. 4.8 compare Intel I7-4770 (3.40GHz) with FPGA at 4x4, 8x8, 16x16 matrix size

0.74
8.27

100.19

1.06
6.8

39.22

0

20

40

60

80

100

120

512 1024 2048

s
(e

xe
cu

ti
o

n
 t

im
e)

Matrix size n x n

Large Size Matrix Multiplication

Intel I5-
2400(3.10GHz)

FPGA

2 9

73

563 577 586

0

100

200

300

400

500

600

700

4 8 16

m
s

(t
im

e)

Matrix size n x n

Small Size Matrix Multiplication

Intel I7-
4770(3.4GHz)

FPGA

- 53 -

Fig. 4.9 compare Intel I7-4770 (3.40GHz) with FPGA at 32x32, 64x64, 128x128,

256x256 matrix size

Fig. 4.10 compare Intel I7-4770 (3.40GHz) with FPGA at 512x512, 1024x1024,

2048x2048 matrix size

593 4611

31973

109717

1477 5755

25679

131936

0

20000

40000

60000

80000

100000

120000

140000

32 64 128 256

m
s

(e
xe

cu
ti

o
n

 t
im

e)

Matrix size n x n

Medium Size Matrix Multiplication

Intel I7-
4770(3.4GHz)

FPGA

0.58
5.6

88.44

0.74
4.81

34.17

0

20

40

60

80

100

512 1024 2048

s
(e

xe
cu

ti
o

n
 t

im
e)

Matrix size n x n

Large Size Matrix Multiplication

Intel I7-
4770(3.4GHz)

FPGA

- 54 -

In Fig. 4.2 ~ Fig. 4.10 we found that if the matrix size is larger than 1024 x1024

then accelerate can speed up the computation time. Due to Ethernet transmission rate

is a bottleneck in our hardware accelerator, if the computation time is large enough to

cover transmission time then the proposed accelerator can faster than PC. In addition,

accelerator is slower than PC in small computation that is acceptable, because we don’t

use the accelerator in a small size matrix computation.

In Fig. 4.11 ~ Fig. 4.18, we use two different computers to compute different matrix

sizes in matrix multiplication of various numbers, and then compare the execution time

with the proposed FPGA-based accelerator.

Figure 4.11 is the comparison at 64*64 size matrix of 10 /100 /1000 between Intel I5-

3230M (2.6GHz) and FPGA

0.017835 0.169598

1.685748

0.05868
0.586785

6.871653

0

2

4

6

8

10 100 1000

s
(t

im
e)

Number of matrix

64 x 64 Size Matrix Multiplication

Intel I5-
3230M(2.6GHz)

FPGA

- 55 -

Figure 4.12 is the comparison at 128*128 size matrix of 10 /100 /1000 between Intel

I5-3230M (2.6GHz) and FPGA

Figure 4.13 is the comparison at 256*256 size matrix of 50 /100 /200 between Intel

I5-3230M (2.6GHz) and FPGA

0.136929
1.357069

13.499795

0.296504

2.894026

27.986431

0

5

10

15

20

25

30

10 100 1000

s
(t

im
e)

Number of matrix

128 x 128 Size Matrix Multiplication

Intel I5-
3230M(2.6GHz)

FPGA

5.681361

11.470751

23.075366

6.872931

13.746231

27.541243

0

5

10

15

20

25

30

50 100 200

s
(t

im
e)

Number of matrix

256 x 256 Size Matrix Multiplication

Intel I5-
3230M(2.6GHz)

FPGA

- 56 -

Figure 4.14 is the comparison at 512*512 size matrix of 25 /50 between Intel I5-

3230M (2.6GHz) and FPGA

Figure 4.15 is the comparison at 64*64 size matrix of 10 /100/1000 between Intel I7-

4770 (3.4GHz) and FPGA

25.52

51.28

20.79

40.64

0

10

20

30

40

50

60

25 50

s
(t

im
e)

Number of matrix

512 x 512 Size Matrix Multiplication

Intel I5-
3230M(2.6GHz)

FPGA

0.052369 0.193026

1.387832

0.056017
0.56619

6.452715

0

1

2

3

4

5

6

7

10 100 1000

s
(t

im
e)

Number of matrix

64 x 64 Size Matrix Multiplication

Intel I7-
4770(3.4GHz)

FPGA

- 57 -

Figure 4.16 is the comparison at 128*128 size matrix of 10 /100/1000 between Intel

I7-4770 (3.4GHz) and FPGA

Figure 4.17 is the comparison at 256*256 size matrix of 50 /100/200 between Intel I7-

4770 (3.4GHz) and FPGA

0.160338
1.119882

11.462114

0.263906

2.743011

27.852432

0

5

10

15

20

25

30

10 100 1000

s
(t

im
e)

Number of matrix

128 x 128 Size Matrix Multiplication

Intel I7-
4770(3.4GHz)

FPGA

4.565114

9.085274

18.810056

6.655824

13.449328

27.354525

0

5

10

15

20

25

30

50 100 200

s
(t

im
e)

Number of matrix

256 x 256 Size Matrix Multiplication

Intel I7-
4770(3.4GHz)

FPGA

- 58 -

Figure 4.18 is the comparison at 512*512 size matrix of 25 /50/100 between Intel I7-

4770 (3.4GHz) and FPGA

In Fig. 4.11 ~ Fig. 4.18，we can find that the larger computations will cause the

performance of FPGA equal to or larger than the performance of PC. However, because

of the waiting mechanism of Tx FIFO overflow in FPGA, the larger computations cause

the longer waiting time such that the performance of FPGA will decreases.

Table 4.3 shows time analysis that the PC and FPGA respective compute 30 matrix

those size is 512 x 512, and table 4.4 shows time analysis that the PC and FPGA

respective compute 30 matrix those size is 16 x 16.

20.11

40.25

81.32

19.28

38.97

78.42

0

10

20

30

40

50

60

70

80

90

25 50 100

s
(t

im
e)

Number of matrix

512 x 512 Size Matrix Multiplication

Intel I7-
4770(3.4GHz)

FPGA

- 59 -

Table 4.3 is the time analysis that the PC and FPGA respectively compute 30 matrix

those size is 512 x 512

Table 4.4 is the time analysis that the PC and FPGA respectively compute 30 matrix

those size is 16 x 16

I7-4770 (3.4GHz)

Total

execution

time

24.943997s

Memory read time 18.31459 s 73.42 %

Memory write time 0.033172 s 0.13 %

Computing time 6.592300 s 26.46 %

FPGA (125MHz)

Total

execution

time

23.973594s

The time that PC send packets to FPGA 9.974400 s 41.62%

The time that FPGA send packets to PC 0.658349 s 2.74%

The time of memory read in FPGA board 8.842444 s 36.88%

The time of memory write in FPGA board 0.028999 s 0.12%

FPGA computing time 4.469401 s 18.64%

I7-4770 (3.4GHz)

Total

execution

time

0.003181 s

Memory read time 0.002224 s 69.93 %

Memory write time 0.000139 s 4.38 %

Computing time 0.000816 s 25.67 %

FPGA (125MHz)

Total

execution

time

0.009668 s

The time that PC send packets to FPGA 0.009031 s 93.41 %

The time that FPGA send packets to PC 0.000300 s 3.10 %

The time of memory read in FPGA board 0.000285 s 2.94 %

The time of memory write in FPGA board 0.000028 s 0.28 %

FPGA computing time 0.000023 s 0.23 %

- 60 -

In table 4.3 and table 4.4, PC computes the multiplication of big size matrix that

takes a lot of time to reads data from memory. If the amount of data of matrix is larger

than the capacity of cache in PC, then PC will reads the data from memory that is called

cache miss. Reading data from memory that takes too many time that is more than the

time of reading data from cache. FPGA computes the matrix multiplication that takes a

lot of time to send data between PC and FPGA. According above, we only compare the

computing time of PC and computing time of FPGA.

- 61 -

4.3 FPGA Utilization

Table 4.5 shows the slice utilization of the proposed accelerator without matrix

multiplication circuit. Table 4.6 shows the slice utilization of the proposed accelerator

with matrix multiplication circuit.

Table 4.5 Accelerator Environment without Matrix Multiplication Utilization

Slice Logic Utilization Used Available Utilization

Number of Slice Registers 60,054 607,200 9%

Number of Slice LUTs 52,234 303,600 17%

Number used as logic 50,135 303,600 16%

Table 4.6 Accelerator Environment with Matrix Multiplication Utilization

Slice Logic Utilization Used Available Utilization

Number of Slice Registers 194,312 607,200 32%

Number of Slice LUTs 151,370 303,600 49%

Number used as logic 136,356 303,600 44%

- 62 -

Chapter 5 Conclusion and Future

Works

5.1 Conclusion

In recent years, Big Data analysis becomes a serious problem in the data storage,

management and analysis. When the PC processes big data problems, they often faces

the execution time too long and use too much storage space problem. One of big data

challenges are image analyzing and processing. The processing of image or video

usually includes a lot of matrix operations. If we send parallel matrix operations such

as matrix multiplication to FPGA, it can save a lot of execution.

In this thesis, we implement a FPGA-based hardware accelerator and design a

floating-point matrix multiplication in accelerator to help PC to reduce the execution

time of computation huge matrix multiplication.

The Ethernet transmission rate is a bottleneck for our accelerator architecture. If

the computation is large enough to cover transmission time then accelerator can be

faster than PC. In addition, the proposed accelerator is slower than PC in small matrix

computation that is acceptable, because we don’t use the accelerator with small matrix

computation.

- 63 -

5.2 Future Works

For now, we can only assign the job to one FPGA. If we want to implement a real

multi-FPGA-based accelerator, it must write multi-thread program in PC. In this way,

PC can parallel assign the job to different FPGA accelerators.

In this thesis, we only implement one function of floating-point matrix

multiplication in accelerator, this is not enough to help various computation to enhance

the execution time.

According the above, the general purpose multi-FPGA-based accelerator are

necessary in the future.

- 64 -

References

[1] Udaigiri Chandrasekhar, Amareswar Reddy and Rohan Rath, ”A Comparative

Study of Enterprise and Open Source Big Data Analytical,” in Proceedings of

IEEE Conference on information & Communication Technologies (ICT), Apr.

2013, pp. 372-377.

[2] Jinson Zhang and Mao Lin Huang, “5Ws Model for Big Data Analysis and

Visualozation,” in Proceedings of IEEE Conference on Computational Science

and Engineering (CSE), Dec. 2013, pp. 1021-1028.

[3] Stamford, “Gartner Says Solving ‘Big Data’ Challenge Involeves More Than Just

Managing Volume of Data”, posted on June 27, 2011, http://www.

Garthner.com/newsroom/id/1731916

[4] Yi YUAN, Haiyang WANG, Dan Wang and Jiangchuan LIU, “On Interfernce-

aware Provisioning for Cloud-based Big Data Processing,” in Proceedings of

IEEE/ACM 21st International Symposium of Quality of Service (IWQoS), Jun.

2013, pp. 1-6.

[5] Z. Zheng, J.Zhu and M.R. Lyu, ”Service-Generated Big Data and Big Data-as-a-

Service: An Overview, ” in Proceedings of 2013 IEEE Internation Congress on

Big Data (BigData Congress), Jun. 2013, pp. 403-410.

[6] C. Ji, Y. Li, W. Qiu, U. Awada and K. Li, “Big Data Procesing in Cloud

Computing Enviroments, ” in Proceedings of 2012 12th International Symposium

on Pervasive Systems, Dec. 2012, pp. 13-15.

- 65 -

[7] X. Wu, X. Zhu, G. Wu and W. Ding, “Data Mining with Big Data, ” IEEE

Transactions on Knowledge and Data Engineering, vol. 26, no. 4, pp. 97-107,

Jan. 2014.

[8] Feng Ye, Zhijian Wang, Fachao Zhou, Yapu Wang and Yuanchao Zhou, “Cloud-

based Big Data Mining & Analyzing Services Platform integrating R, ” in

Proceedings of 2013 International Conference on Advanced Cloud and Big Data

(CBD), Dec. 2013, pp. 147-151.

[9] Jie Xu, Cem Tekin and Mihaela van der Schaar, “Learning Optimal Classifier

Chains for Real-tine Big Data Mining, ” in Proceedings of 2013 51st Annual

Allerton Conference on Communication, Control, and Computing (Allerton), Oct.

2013, pp. 512-519.

[10] Shuliang Wang and Hanning Yuan, “Spatial Data Mining in the Context of Big

Data, ” in Proceedings of 2013 International Conference on Parallel and

Distributed Systems (ICPADS), Dec. 2013, pp. 486-491.

[11] Shweta Pandey and Dr.Vrinda Tokekar, “Prominence of MapReduce in BIG

DATA processing, ” in Proceedings of 2014 Fourth International Conference on

Communication Systems and Network Technologies (CSNT), Apr. 2014, pp. 555-

560.

[12] Jie Yang and Xiaoping Li, “MapReduce based Method for Big Data Semantic

Clustering, ” in Proceedings of 2013 IEEE International Conference on Systems,

Man, and Cybernetics (SMC), Oct. 2013, pp. 2814-2819.

[13] Xiongpai QIN, Huiju Wang, Furong Li, Baoyao Zhou, Yu Cao, Cuiping Li, Hong

Chen, Xuan Zhou, Xiaoyong Du and Shan Wang, “Beyound Simple Integration

of RDBMS and MapReduce – Paving the Way toward a Unified System for Big

- 66 -

Data Analytics: Vision and Progress, ” in Proceedings of 2012 Second

International Conference on Cloud and Green Computing (CGC), Nov. 2012,

pp.716-725.

[14] I. Yasri, N.H. Hamid and N.B. Zain Ali, “VLSI Based Edge Detection Hardware

Accelerator for Real Time Video Segmentation System, ” in Proceedings of 2012

4th International Conference on Intelligent and Advanced System (ICIAS), Jun.

2012, pp. 719-724.

[15] Leonidas G. Bleris, Panagiotis D. Vouzis, Mark G. Arnold and Mayuresh V.

Kothare, “A Co-Processor FPGA Platform for the Implementaion of Real-Time

Model Predictive Control, ” in Proceedings of 2006 American Control

Conference, Jun. 2006.

[16] F. Pardo, P. L ópez and D. Cabello, “FPGA-based hardware accelerator of the

heart equation with applications on infrared thermography, ” in Proceedings of

International Conference on Application-Specific System, Architectures and

Processors, Jul. 2008, pp.179-184.

[17] http://en.wikipedia.org/wiki/Hardware_acceleratoration

[18] Z. Jovanovic and V. Milutionvic, “FPGA accelerator for floating-point matrix

multiplication, ” Institution of Engineering and Technology (IET) Computers &

Digital, vol. 6, no. 4, pp. 249-256, Jul. 2012.

[19] Kiran Kumar Matam and Viktor K. Prasanna, “Energy-Efficient Large-Scale

Matrix Multiplication, ” in Proceedings of 2013 International Conference on

Reconfigurable Computing and FPGAs (ReConFig), Dec. 2013, pp. 1-8.

- 67 -

[20] Nirav Dave, Kermin Fleming, Myron King, Michael Pellauer and Muralidaran

Vijayaraghavan, “Hardware Acceleration of Matrix Multiplication on a Xillinx

FPGA, ” in Proceedings of 5th IEEE/ACM International Conference on Formal

Methods and Models for Codesign, (MEMOCODE), May. 2007, pp. 97-100.

