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Abstract

Dealing the image or video are often accompanied by data computing and data
storage. When the number of dealing image or video is very large makes computing
excessive and difficult to manage such condition, we call this problem is “Big data
analysis”.

When the personal computer (PC) met big data problems, are often faced the
execution time too long and use too much storage space problems. The processing
program of image or video is usually include a lot of matrix operations. If we send
matrix operations of the high repeat degree such as matrix multiplication to field
programmable logic gate array (FPGA), it will save a lot of time and storage space.

We send those matrix data from PCto tl‘le DDR memory or FPGA evaluation board,

and waits FPGA computing is: done Then the result lS sent from FPGA back to PC.

\ , f
That environment is one of the prlorltlés of thls the3|s We call the environment is

“FPGA-based hardware acceleratohglﬁ FP_(__B_A Cq{gﬁocessor platform”.

The application which is running on the F\IIDGA-based hardware accelerator is
another priorities of this thesis. Since many image processing algorithms used to matrix
multiplication to solve problem such as” Bilateral filter” and “weighted least squares”,
those algorithm are used matrix multiplication to enhance the “Edge-Preserving”, so
this thesis uses the feature of multiple sets of hardware to design a circuit of matrix
multiplication of no size limitation. This thesis will use the FPGA-based hardware
accelerator and application of matrix multiplication to accelerate and overcome the
bottleneck of PC.

Index Terms —Big data, FPGA-based hardware accelerator, Co-processor FPGA

platform, Matrix multiplication on FPGA.
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Chapter 1 Introduction

1.1 Introduction to Big Data

Big Data is the term for a collection of data set too complex and large that it make
difficult to manage, analyze and process using the traditional database system [1, 2].
Big Data include activity logs, business transaction, images, and surveillance videos
that can reach massive proportions over time [1, 2]. In some statistics, those data

generated exceed 2.5 quintillion bytes everyday [1].

Data

Data
Velocity

Fig. 1.1 3Vs Big Data models [3]

Fig. 1.1 shows the 3Vs Big Data models [3], it has three characteristics: volume,
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variety and velocity.

Volume indicates the number of byte of data sets, we can see the exponential
growth from inner channel to outer channel in Fig. 1.1. Image and photo are very easy
to have terabyte level, video even reach the petabytes level. Table 1.1 shows the volume

size of various data sets.

Table 1.1 Data set volume size [2]

Value Abbreviation Name
1000* KB Kilobyte
1000 MB Megabyte
1000° = LA Gigabyte
100" .‘ v lTI'B o | Torabyte
1000° T Petabyte
1000° EB Exabyte

Velocity represents that how fast the data sets are generated. We can see velocity
of data sets generation from batch of inner channel to real time of outer channel.
According the reference [2], there are over than 328 million Google searches every day,
2 terabyte of photos uploaded to community websites every day, 14 million hours of
video watched on YouTube every day. The velocity of data generated has gone beyond

our imagination.



Variety represents that the data stored in multiple formats. There are several
different formats in various applications. Some data can be stored in a text file, such as
database and Excel, but most of data are not in the traditional formats, such as image,
photo, video, audio and pdf. Those data must be organized, that make it meaningful. If
the data all in the same format, it will be easy to do, but it is impossible. Hence,
organizing the many different formats is one of the challenges with the Big Data.

Today, Big Data system has become an enterprises of technologies supplier, such
as IBM, Yahoo and Facebook [4]. There are many small enterprises, who also want to
use the Big Data techniques, but they don’t have enough capital to do, Cloud-based Big
Data processing is suggested by [4]. It has feature of elastic services framework, lets
user in a pay-as-you-go manner [4]. ThOﬁe lsmall enterprises do not have to spend a lot
of money to upgrade the hardware they can spend those money in core of design and
research. On the other hand, the user Who Want to use the Big Data techniques can
readily obtain data and application What they want hy environment of Cloud computing
supplier [5]. Users also can accompllsh the same Work in different operating system.

Cloud computing can be express a group of physical machine servers, it provides
services to users [6]. Services of Cloud computing is a platform of computing and
management of data in physical machines servers. It usually presents a virtual network
when user sends a service request. Virtual network is a set of virtual nodes and virtual
links, it can be expressed a group virtual machine that mapping on the physical machine
server. Fig. 1.2 shows the schematic view of Cloud computing.

In the above, brief introduction to the problem of the Big Data and Cloud
computing to handle the Big Data problem. Although Cloud computing provides a
powerful computing and management platform, but it has some problem. Problem 1:

-3-



Since user data must be placed on the Cloud computing servers, so users must take
some risks that data maybe stolen. Problem 2: Not all users can afford the cost of Cloud
computing services. Problem 3: If all of Big Data problem are using Cloud computing,
that is too waste. In fact, above problems can occur in everyday life, for example we
want to access the monitor videos and make it clearer by image processing. Assuming
the amount of videos has Big Data level, it faced the execution time too long and use
too much storage space problem for PC or server, and we can’t put processing of videos
immediately into Cloud computing serves to solve. There are many similar case in the

life.

Application

= E 9 &

Laptops Desktops

Monitoring —| Collaboration

Finance

Content Communication
Platform
Identity Queue T

Object Storage Runtime Database

Infrastructure

B 4
Compute Network

Block Storage

Phones Tablets

Cloud Computing

http://commons.wikimedia.org/wiki/File:Cloud_computing.svg?uselang=gan-hant#filelinks
Fig. 1.2 Cloud computing
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There are some application for data analysis such as traditional database system and
typical data mining. Traditional database system is not powerful for Big Data analysis.
Due to database system is not storage independent, database system take too much
storage space to construct data. In addition, database system uses a lot of loading and
indexing during the processing data, database system take a lot of time to query data.
There are many disadvantages of database system for Big Data. Typical data mining is
not efficient for Big Data analysis. Typical data mining algorithms require all data that
is loaded into the main memory, it maybe cause the memory full stage and take a lot of
time to load data.

In Big Data analysis application, there are many applications such as Big Data
mining and MapReduce. In reference [7}1.»’”’[{&1 Big Data mining is not the same as data
mining, big data mining has me__e_hanlsm of |nformauon exchange and information
integration. This mechanism W|II hake S;Jwre that aII mformatlon sources work together
to achieve a global optlmlzatlon‘goal In reference [11] - [13], MapReduce is an
effective tool for Big Data anaIyS|s because MapReduce has unique features which
include simplicity and communicative manners of its programming model. MapReduce
has mainly two functions map( ) and reduce( ).Function of map( ) performs filtering
and sorting, and function of reduce() that performs a summary operation.

Big Data is a significant problem in various application. One of Big Data
challenge is Big Data analysis. Traditional database system and typical data mining are
not enough to analyze Big Data. In recent, MapReduce replace the traditional database
system and Big data mining replace the typical data mining, they are two kind of

powerful analysis tool for Big Data.



According above case, we want proposed a new approach to solve Big Data
problems. In this thesis, first we against the speed of data processing with Big Data

problems to research a hardware accelerator.




1.2 Hardware Accelerator

In a general purpose processor, it usually can execute arithmetic unit at once, so it's
sequential execution. Because processor is executed one by one, it takes some time to
wait for previous execution end [14]. If a program has a lot of instructions, then the
waiting time is considerable. Suppose we want to improve processor performance, we
have to speed up the clock frequency, but speed up the clock frequency of the processor
that is not cost-effective, and it has bottleneck on increasing the clock frequency.

Hardware accelerator can be used to implement by FPGA or application-specific
integrated circuit (ASIC) [15]. Fig. 1.3 shows the Cyclone 111 FPGA development board.

Fig. 1.4 shows the ASIC chip. //;ir\\
N

http://www.altera.com/products/devkits/altera/kit-cyc3.html

Fig. 1.3 Cyclone 111 FPGA Development Board



http://mineforeman.com/2012/12, 'ﬁ&b’in-asic-mining-hardware-roundup/

S g

There are many techniquesl'\"tf_aal'tfi:_aﬂf\riﬁjp}é\;/e\—lé‘;(ecution performance, hardware
accelerator is one of them. Th%/ zﬁlffere\nce l\bbe\fween software and hardware is
concurrency. Due to we can design multi sets of arithmetic units in hardware, it does
not take a long time to wait for previous execution end. The number of arithmetic units
is limited by FPGA capacity or ASIC chip area.

Hardware accelerator is usually designed for computationally repeated or
computationally intensive software code [16]. The application range of hardware
accelerator can vary from a small functional unit to a large functional block, such as
motion estimation in H.264. Now, hardware accelerator has been used widely in
floating-point accelerator or graphics accelerator [17], etc. "Hardware accelerator” is

an older term, and nowadays we call video or graphic card. Fig. 1.5 shows the graphic

card [5].



http://www.bit-tech.net/hardware/graphics/2010/07/01/gigabyte-hd-5870-soc-graphics-card-review/1

& 4 g

7 g -.A_“S\‘s
Fig. 1.5 Graphic card

How to choose the development platform of hardware accelerator? Since the
development of the accelerator is in the beginning, first we choose FPGA to develop
our design, and finally we design ASIC until the development of design is almost done.
In this thesis, our purpose is focus on the acceleration of data computing which is
divided Big Data problems from PC into multi hardware accelerators, so that
communication interface between PC and FPGA is very important. According above
description, the first emphasis about choosing the development platform of hardware

accelerator is FPGA board with networking. Why we don’t use the Advanced
-9-



Microcontroller Bus Architecture (AMBA) FPGA, compiling the program into an
ARM CPU on a Zynq evaluation board, then uses the AMBA to connect the FPGA and
CPU. However, if we use the AMBA FPGA, then it is not possible to assign job to many
FPGAs. The second problem, the clock frequency of an ARM CPU integrated in a
FPGA is too slow as compared to Intel CPU used by PCs. The second emphasis about
choosing the development platform of hardware accelerator is FPGA board with
memory. The hardware accelerator in order to solve Big Data problem, so it must has

memory space to store those huge data.

-10 -



1.3 Matrix Multiplication on FPGA-Based

Hardware Accelerator

1.3.1 Matrix Multiplication complexity

According to the above introduction of the Big Data, one of big data challenges
are images or videos processing. Image or video processing is usually include many
matrix operations. In various image processing algorithms, there many algorithms use
the matrix multiplication to solve image processing problem, such as “Bilateral
Filter,” ”Weighted Least Squares” and ‘/"Mé‘)tion Estimation”. Two algorithms as we
mentioned before are used matr;x multlpllcatlon to enhance the “Edge-Preserving”. The
third algorithms as we mentloned before;used matrlx multiplication to find the vector
of moving object in image. A matrlx multlpllcatlon is repeated multiplications and
additions, so we believe that matrlx multlpllcatlon Wlth a high order of parallelism. Fig.
1.3.1 shows the relationship chart of matrix order and number of multiplication and
additions in matrix multiplication. As shown in Fig. 1.6, we can see that when the
matrix size is twice bigger than the original matrix size, the number of multiplications

and additions of matrix will be eight times than the number of multiplications and

additions of original matrix, this growth rate is very fast. There are “x” matrixes Of

“n” order are multiplied continuously, we can deduce that have (n)’+(x-1)

multiplications and (n)’ *(x—1) additions. Whether “n” and “x” are fixed values to

divide into four types of time complexity. Table 1.3.1.1 shows the time complexity of

-11 -



matrix multiplication.

Amount

35000
30000
25000
20000
15000
10000

5000

64

64 512 512

8

Matrix size n x n

32768 32768

4096 4096

16 32

Addition

B Multiplication

Fig. 1.6 Relationship chart of matrix size and number of multiplication and additions in

matrix multiplication

Table 1.2 Time complexity of matrix multiplication

Matrix order n Matrix number x Time complexity
Fixed Fixed o(1)
Fixed Non-Fixed O(x)
Non-Fixed Fixed O(n3)
Non-Fixed Non-Fixed O(n3 « x)

-12 -



When “n” or “x” is too large, there are huge operation of multiplications and
additions. The huge number of multiplications and additions is definitely a considerable
problem for PC. If we can divide the multiplications and additions into FPGA that
compute multiplications and additions in parallel, then we can save a lot of time in

matrix operation.

-13-



1.3.2 Related Work

In the recent, there are several research that handle the problem of performing
matrix multiplication in FPGA [18] - [20].

In the reference [18], it is use the peripheral component interconnect (PCI)-express
2.0 8 x endpoint to connect the PC and FPGA, its bandwidth is 4GB/s in two-way.
Using the PCI as a communication interface between FPGA and PC is a great choice,
because the transmission rate is higher than Ethernet. Although the communication
interface of PCI has a fast transfer rate, but it has a disadvantage that PC has limited
PCI slots, so the number of FPGA connected to PC is limited. Although communication
interface of Ethernet has a slower trans/gji§$'i‘brl\rate than PCI, it can connect number of
FPGA is unlimited through Etr}g{ﬂéf §th0_hF|g i.\?‘\g_r}gws the PCI connector. Fig. 1.8

shows the PCl-expressslot. % L | [0 &

4

- S 4

. e S

http://www.startech.com/Cards-Adapters/Slot-Extension/PCI-to-PCI-
Express-Adapter-Card~PCI1PEX1

Fig. 1.7 PCI connector
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http://gittagraciaevelyndlva.blogsp ot.tw/2014/0 1/kelompok—kaplten—patlmura— 12-ipa-2.html

- |I \
F/g ~f8 PCI eXpress slot

E~.~

The reference [18] probose two ﬂchltectures of floating-point matrix
\ L J 4
multiplication, it consists of a Imear Ilst 'ofmul_tl“pllerr adder processing elements (PES).

. : / N i
Fig. 1.9 shows the architecture “a <a§:;d “b” ofPESEet X and Y be two matrixes, that X

with dimensions p x qand Y with dimensions q x r. The nis number of PE. When p,

g, r > n, matrix X consists of i x jand matrix Y consists of j x k blocks, where i =
[p/n],j= [a/n] andk= [r/n]. (They pad zero on the under “n” part, like Formula

1.3.2.1.) The result matrix R with dimensions p x r, consists i x k blocks. The
architecture “a” of PE is use the algorithm 1 to operation, and architecture “b” of PE is
use the algorithm 2 to operation.

Algorithm 1: The PC consecutively sends the blocks of input matrixes X and Y
which the order of sending is correspond with result block. For example, the result
block R11 = Xi1 % Y11 + X2 % Yoy + -+ - + Xy, * Y1 IUs totals is sending (2 x i x

-15 -



j x K) of input block. Since the algorithm 1 has a problem of sending many repeated
matrix X blocks, author proposed the algorithm 2.

Algorithm 2: Let a row of result matrix R be a result unit. The PC consecutively
sends the blocks of matrix X and Y which order of sending is correspond with result
unit. Formula 1.1 shows the first row of result unit. In formula 1.2, it can be simplified
into formula 1.3 it can only sent once of the same block of X, then according the order
of formula 1.4 sent the matrix blocks of Y continuously, like
X1 Y11 Yio- - Yig, XpoYor---Yor, -oe--- . X1;Y;1Yj2 - Y. When accelerator
is completed a part of result unit, suchas X;1Y11Y12- - Y1, it will be sent to the PC to
store and waiting the other parts for adding. We can repeat above steps until the final
part of result unit finished that is done ofmbth multiplication. Totally, it sends (( (1 +

k) x j)x i)ofinputblock. .-

n T n
( I 1 1 | _ | 0
{E "\
N — 22\
A A\
\
( 0
- Lpq. = -

n= 0 0

\ L 0 L 0_

Formula 1.1 Padding 0 on under n parts
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Result unit :

Xi1p* Y, Xy Vg,
+ +

XigxYor, Xig* Yoo,
[ Ry, Ry, : ,le] = + +
+ +

_le*le, Xij* Yo,

Formula 1.2 Result unit

Xll * [3/117}/1273/13:' te 7}/1ki|
+ X1g % [Ya1, Yoy, Yog, - -+, Yay]
+ X1j * [leai/j%y}ﬁa"' ,Yik]

Formula 1.3/B(é$blt\‘unit simplify

/,.-' e B
&Es Y oo N s
e, Ry —
N " J
. — !
% | r ]
\ - 8
Ko : \
| Nas |
\
\‘ < . -
g N
.' S < \‘
[‘/é-" . \\
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o MEMY MEMY [ e J MEMY
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o
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S + X e o o 1 X
I\'\ \ '. ‘ ..‘I
Host | 4 b
computer .',,:, TG -
L S Ny B ]
PE 1 PE 2 PEn
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Floating- . - —— Control lines
% point @ Floating- MEM X Storage fgr MEM Y Storage for
o point adder elements of the elements of the ____ Data lines
multiplier first matrix second matrix
Storage for
MX Multiplexer MEMR | elements of the
result matrix

Fig. 1.9 Two architecture “a” and “b” of PE [18]

According to the above description, we make comparison with algorithm 1 and

algorithm 2, as following table 1.3
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Table 1.3 Comparison with algorithm 1 and algorithm 2

Algorithm1  with  Architecture of a of PE

Advantage The algorithm is simple.
Disadvantage Sending too many repeated block of input matrixes.
No. of pass delay of adder n stages

Algorithm 2 with  Architecture of b of PE

Advantage Sending lesser repeated block of input matrixes than
algorithm 1.
Disadvantage It needs the PC to help to temporarily store the some

parts of result matrix.

| T

No. of pass delay of adder

Y n -1 stages
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1.4 Motivation

The problems of Big Data has become importance, only improves clock frequency
of the computer is not enough, it still takes a lot of time to execution. So one PC link
multi general-purpose FPGA-based accelerator over the Ethernet to solve the Big Data
analysis problem of long execution time that is our vision. This vision is very broad, so
we first study the single-precision floating-point matrix multiplication in one FPGA-
based accelerator to solve the problem of long execution time of numerous floating-
point matrix multiplications.

In floating-point matrix multiplication, we survey the reference [18]. It has two
kinds of algorithms and architectures the Both of algorithms and architectures have
some disadvantages. We want to flnd out an method that to reduce the number of
sending input matrix blocks and thls n;thod does not need computer that help to
temporarily store the some parts of result matrrx We also want to research an
architecture of PE that to reduce the’gate delay and |t must meet our algorithm.

In Chapter 2, we will introduce the architecture of our FPGA-based hardware
accelerator and describe the operation flow. In Chapter 3, we will introduce the
architecture of our floating-point matrix multiplication circuit and describe the
operation flow. In Chapter 4, we will appear the execution time comparison chart which
is perform a matrix multiplication and one PC with FPGA accelerator and one PC

without FPGA accelerator. Finally, discuss the future works and make a conclusion in

Chapter 5.
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Chapter 2 Architecture of FPGA-Based

Hardware Accelerator

2.1 Architecture Overview

Fig. 2.1 shows the architecture overview of our vision that is one PC link multi

FPGA-based accelerator over the Ethernet.

FPGA FPGA FPGA [ «eeeeee FPGA

Q PC FPGA with Ethernet
or Switch FPGA | network cable
%\ Server function

Fig. 2.1 Architecture overview of multi FPGA-based accelerator

In Fig. 2.1 we can see a PC or a server that connects the multi FPGAs which with
network function. We use this architecture to speed up the computer which is going to

solve the problem of Big Data analysis
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2.2 FPGA Development Platform

Our accelerator is implemented using Xilinx Virtex-7 VC707 board (VX485T
FPGA). Fig. 2.2 shows the Xilinx Virtex-7 VC707 board. Table 2.2.1 describe the main

VC707 board component that we use.

Vé,« - —e— «.,‘bv
Fig. 2.2 Xilinx Virtex-7 VC707 Board

Table 2.1 VC707 Board Main Component Descriptions

Callout Component Description
1 Virtex-7 FPGA with cooling fan
2 DDR3 SODIMM memory (1GB)
3 10/100/1000 Mb /s Ethernet PHY
4 Ethernet port
5 Power on/off switch
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We mainly use two differential clock sources on VC707 board, namely system
clock and GTX transceiver clock. System clock is a 200MHz differential signal pair
named SYSCLK P and SYSCLK_N, it is a reference clock used to provide a high-
speed clock for designed top module. GTX transceiver clock is a 125MHz differential
signal pair named SGMIICLK_QO0_P and SGMIICLK_QO_N. Itis a reference clock of
high-quality and low-jitter for Ethernet IP core (SGMII GTX Transceiver). The

description about clock distribution will introduce in next section.
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2.3 Architecture of FPGA-Based Hardware

Accelerator

Fig. 2.3 shows the architecture of FPGA-based hardware accelerator and clock

distribution.
v
—sys_clk p
sys_clk
— sys_clk n Yo DDR3 Controller
Ethernet Block
) <gii_clk Interface
—sgii_clk p - =
—sgii_clk n & = o
~ «clkfb 20| 5 %)
o _J/‘l \i I‘ B 2 g
MAC Core “MMCM User Core

1

{
% d |
CN

D IBUFGDS

ZOOMHZ sy s_clk

125MHz : sgii_clk, uerclk2, app_clk
62.5MHz : txout_clk, userclkl

Fig. 2.3 Architecture of FPGA-based hardware accelerator and clock distribution

In Fig. 2.3, we can see the Ethernet block needs two reference clocks, namely

sys_clk and sgii_clk, that are 200MHz and 125MHz, respectively. Ethernet block also

generates a clock of 62.5MHz named txout_clk that is used as a reference clock for

Mixed-Mode Clock Manager (MMCM). MMCM is a Phase-locked loop (PLL)

component.

=24 -
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times. MMCM divided clkfb by 10 times and 5 times, then generate two clock of
62.5MHz and 125MHz respectively, namely userclkl and a userclk2. Userclkl is used
as a transmission clock for Ethernet block. Userclk2 is used as a reception clock,
memory interface clock and Media Access Control (MAC) clock for Ethernet block,
DDR3 controller interface and MAC core respectively. DDR3 controller interface
generates a clock of 125MHz named app_clk that is used as an operation clock for
user_core.

Fig. 2.4 shows the mainly data and control signal flow of FPGA-based hardware

accelerator.

«—UXp
«— X y DDR?3 Controller /Memory controller

XD Ethernet Block ﬂ -. Interface signal

IXn— : | ¥ % -

\ I‘.‘ { k*__! k' . 'II. g
T |« L app.rd_data[511:0]
J 4 d70 ) \ app_wdf data[511:0]
d[7:01 ¥ o tx_d[7:0} g
rx_d[7:0] A ? ? /l ,.—-‘}J'X_ [. ] :,. A 2ddr{27:0]
tx_data[y:0]
User rx USEr tX fam—e
Processing unit

¢ I

rx_data[x:0]

\
N\

matrix_element[511:0] A4 d result_matrix_element[511:0]

Matrix operation

User Core

X, v : Depending on the design

Fig. 2.4 Major data and control signal flow of FPGA-based hardware accelerator
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In Fig. 2.4, the Ethernet block is an IP core, it is used to receive a pair of rxp and
rxn differential signals and process the two signals into a one byte rx_d bus. The rx_d
[7:0] is the received packet. Ethernet block is used to process tx_d [7:0] that is
transmission packet into a pair of txp and txn differential signals and sends the two
signals into Ethernet PHY.

The DDR3 Controller Interface is an IP core, too. It is used to send app_wdf_data
and addr[27:0] to the memory. The app_wdf data bus is the data that write to the
memory. The addr[27:0] is the address for writing or reading the memory. The
addr[27:0] is also used to catch an app_rd_data bus from memory controller.

User Core includes the User rx, User tx, Processing unit and matrix operation
modules. The User rx module combin_@s’"int;'(;q into a received packet, then send the

rx_data to processing unit. In zg,e_(_:__ti'c‘)'ﬁ' 2,..531,»;v\/.‘ehv(/'i‘ll:q%‘scribe the packet processing in

User rx module. (| |

The User tx module is used tc;\.l bU|Idup tx_C\i b,.EJs into a transmission packet, then
transmit the transmission packet mtoEthernet block In section 2.5.2, we will describe
the packet processing of User tx module.

The Processing unit module controls the state machine and manages the data flow
of all sub modules in the User Core module. In section 2.4, we will use the control flow
to describe the state machine of the Processing unit module.

The Matrix operation module is used to compute matrix multiplication with parallel
floating point arithmetic unit that help the host PC to quickly complete matrix
multiplication. In section 3.3, we will describe the algorithm and architecture of matrix

multiplication.
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2.4 User Core Control Flow

Fig. 2.5 shows control flow of User Core. It actually is a state machine in User core,
we want to use the simple way of control flow to describe the operation of state machine.

o )

Idle <

No

Receive
packet?

Yes

What command
packet is received?

Sy

Matrix Matrix
l«—

S . Write—| Write data
multiplication operation

Read data —

A,

v

Send data to PC No

s all data read

Yes

Fig. 2.5 User Core control flow
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In Fig. 2.5, we can see the beginning procedure of control flow is idle, then waiting
the packets come from PC. After we receive a packet, Processing unit module will
check its command field. The command field actually is a data field in packet. In section
3.2,we will introduce the packet format. The command field includes three kind of
command, that are write, read and matrix operation. If we receive a write command,
control flow will go to procedure of writing data. When the control flow enters the
procedure of writing data, the Processing unit module will perform a procedure of
writing data. After writing data, procedure of control flow back to idle. In section 2.6.1,
we will describe the procedure of writing data. If we receive a read command, control
flow will go to procedure of reading data. When the control flow enters the procedure
of reading data, the Processing unit modt'j:le:"will perform a procedure of reading data,
After reading data, procedure otcontrol flow WI|| go to procedure of send data to PC.
When the control flow enters the procedure df send data to PC, the Processing unit
module will perform a procedure Of sendmg data After sending the data, Processing
unit module will check the condltlon that |f aII data has been read and sent. If all data
is not been read and sent completely then control flow go back to the procedure of read
data. If all data has been read and send the control flow go back to the procedure of idle.
In section 2.6.2, we will describe the produce of reading data. If we receive a matrix
multiplication command, control flow will go to procedure of matrix multiplication.
When the control flow enters the procedure of matrix multiplication, the Processing
unit module will compute matrix multiplication. After matrix multiplication, procedure

of control flow will go to read data.
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2.5 MAC control

In fact, the MAC core is a free IP core, so its function is simple. The function of
packet reception and packet transmission are performed in User rx and User tx module

respectively.

2.5.1 Packet Reception

Fig. 2.6 shows the timing diagram of packet reception. In Fig. 2.6, if rx_en signals

is active-hihg then rx_d is valid.

01 2 3 4 5 &6 7 &8 9 10 11 12 13 14 15 16 17 18 19 20 24 22 23 24 25 26 27 28 29 30 31 32 33 M4
Clock

wd70 ~ preamble )7 DA b SA data iD{padiD{ FCS )—
counter {06 YT 813 N 1419 Yoo 22X Xty ez X
n_en J L

X,Y and Z depending on the length value

Fig. 2.6 Packet reception timing diagram
When rx_en signals is high, we can use a counter to count the clock cycles and use
the value of counter to distinguish what is field of the packet. Table 2.5.1.1 describes
the field of packet. After receiving the DA and SA, User rx module will check whether
the SA equal to PC MAC address and check whether the DA equal to FPGA MAC
address. If the both of DA and SA are equal to the FPGA address and PC address,

respectively. Then the data is for us. After Uer rx module receives all data, it will sent
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data to Processing unit module.

Table 2.2 Packet field description
Field name | Counter value Length Description
Preamble 0~6 7 bytes Preamble contains a 0x55 pattern, it indicates forefront of a
packet. In usually, the preamble is not used.
SFD 7 1 bytes SFD field contains a 0xD5 pattern, it marks the start of the
frame. In usually, the SFD is not used.
DA 8~13 6 bytes DA contains destination MAC address.
SA 14~19 6 bytes SA co?t?‘!\ns source MAC address
Length 20~21 2bytes Lengthof d'é{'ta‘an\q pad field
Data 22~X 0-1500 bytes ., T'he ﬁelﬂ—lls always provided in the packet data for
'Transmlssmnand is always retained in the receive packet
Pad (X+1)~Y 0-46 bytes | The field is used to ensure that the frame length is at least
64bytes (the preamble and SFD field are not includes for this
calculation).
FCS (Y+1)~Z 4 bytes The value of the FCS field is calculated from the destination

address, source address, length, data and pad fields using a
32-bit cyclic redundancy check (CRC). In our design,
Ethernet environment is simple, so we don’t use CRC to

check packet.
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2.5.2 Packet Transmission

Fig. 2.7 shows the timing diagram of one packet transmission. User tx module is
similar to Use rx module, they are different operation direction. After User tx module
receives the tx_data from the Processing unit module, it uses a counter to count the
clock cycle from 0 to value of packet length. User tx module use the value of counter
to distinguish what field is sent to tx_d and pull up tx_en until the counter value equals

to the length value.

01 2 3 4 5 8 7 & 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
Clock

b dT-0] < preamble }@ DA b SA data H:XpadiD( FCS y—
counter (06 VT 813 1419 eoond 22-X feenrvX ez i
tx_en _/ \_

X.Y and Z depending on the length value

Fig. 2.7 Packet transmission timing diagram
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2.6 Memory control

Table 2.3 shows the major signals of memory controller interface of user side.

Table 2.3 major signals of DDR3 memory interface of user side.

Signal

Direction

Description

app_cmd[2:0]

Output

This output selects the command for current request.

Read = 001, Write = 000

app_addr[27:0] Output This output indicates the address for the current request.

app_en Output This is a request signal. The user must apply the desired value to
app_agdr",; ASp__pmd.

app_rdy Input ThISWIant |nd|catesthe memory interface is ready for accept
‘r""egu'eét, of uEEande

app_wdf_data[511:0] | Output Tﬁebusprowdes ;“".tlhe data currently begin written to external
memory.

app_wdf_end Output This output indicates that the data on the app_wdf _data in the
current cycle is the last data for the current request.

app_wdf_wren Output This input indicates that the data on the app_wdf _data is valid.

app_wdf_rdy Input This input indicates that write data FIFO is ready to receive data.
Write data accepted when both app_wdf _rdy and app_wdf_wren
are asserted.

app_rd_data[511:0] | Input This output contains the data reading from the external memory.

app_rd_data_valid Input This input indicates that the data on the app_rd_data is valid.
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2.6.1 Memory Write

Fig. 2.8 shows timing diagram of memory write. In Fig. 2.8, if we want to write a
data, we must follow the rules of writeing data. Writing data into memory can be
divided into two parts that are writing data and writing commands. First, we assign data
to the app_wdf_data of 512 bits and assert the app_wdf_wren and app_wdf_end signals
until app_wdf _rdy signal is high. Second, we assign a write command and an address
to app_cmd and app_addr, respectively. Then we assert the app_en signal until app_rdy

signal is high.

4 5 6

1 2 3
Clock f + $ 4+ $ f
app_cmd
app_addr

app_en
app_rdy

app_wdf _rdy

app_wdf_dat NN dafla T

app_wdf_wren

app_wdf_end

Fig 2.8 Memory write timing diagram

If we want to use memory bandwidth efficiently, we can write data in burst mode.
Fig. 2.9 shows timing diagram of burst mode operation with depth 8 times data write.

Writing data into memory can be divided into two parts that are writibg data and writing
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command, too. First, if app_wdf rdy signal is always high, and then we continuously
assign eight data to the app_wdf data of 512 bits and continuously assert the
app_wdf_wren signal. Then we assert the app_wdf_end in last clock cycle of writing
data. In writing data procedure, if app_wdf_rdy signal gives low, we must stop writing
data and assert the app_wdf wren signal until app_wdf _rdy signal is high. Second, if
app_rdy signal is high and, and then we continuously assign write commands and 8
address to the app_cmd and app_addr, respectively and continuously assert the app_en
signal. In writing command procedure, if app_rdy signal gives low then we must stop

writing address and assert app_en signal unitl app_rdy signal is high.

Clock f f f f f - f f f f f f f f f f - f f f
app_cmd |, write ) _write }_write }_write }_write »_write ) write _write @
app_addr [ addr 1% addr 2} addr 3 addr 4 %_addr 5¥_addr 6_addr 74_addr 880

app_en

app_rdy

app_wdf_rdy

app_wdf_datAN data 1 Xdata 2 X data 3 data 4)_data 5 data 6)data 7 ¥_data & /(e

app_wdf_wren

app_wdf_end

Fig. 2.9 Memory burst mode timing diagram of 8 times data write
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2.6.2 Memory Read

Fig. 2.10 shows timing diagram of memory read. In Fig. 2.10, if we want to read a
datum, we must follow the rules of reading data. Reading data from memory can be
divided into two parts that is read command and read data. First, we assign a command
and an address the app_cmd and app_addr, respectively and assert the app_en signal
until app_rdy signal is high. Second, if app_rd_data_valid is asserted then store the data

from app_rd_data.

1 2 3 4 5 6

Clock 1 I | f L S f I I
app_cmd I read /N
app_addr I addr T/
app_en

app_rdy

app_rd_data

app_rd_data_valid

Fig. 2.10 memory read timing diagram.

If we want to read data efficiently, we can read data in burst mode. Fig. 2.11 shows
timing diagram of memory burst read mode with depth 8. Reading data from memory
can be divided into two parts that are read command and read data. First, if app_rdy
signal is high, we can continuously assign read command and 8 addresses to app_cmd
and app_addr, respectively. Then we continuously assert the app_en signal, In read
command procedure, if app_rdy signal is low, we must stop the read operation and

assert the app_en signal until app_rdy signal is high. Second, if app_rd_data_valid is
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asserted then store the data from app_rd_data.

Clock

app_cmd

app_addr

app_en

app_rdy

app_rd_data

app_rd_data_valid “_/

read ) read ) read _read _tead _read _rcad _read )
I i 1 )(ackir 2 Y(addi 3 Yacdr4 ¥ adr& Y addr6 Yadar 7 {ecor s (N S
I data 1 ¥ data 2 ¥_daia 3 X_data 4 }_deia 5 X data 6 ) data 7 data 8

Fig. 2.11 Memory burst mode timing diagram of 8 times data read
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Chapter 3  Floating-point  Matrix
Multiplication on FPGA-Based

Hardware Accelerator

3.1 Matrix storage sequence in FPGA

board DDR3 Memory

In Formula 3.1 we can see that two 8 ILyB matrlx A and matrix B multiplication.

That is matrix A * matrix B = matnx e We flrst observe the [c11,...c14] in Formula

, 1 ;
3.2 In Formula 3.2 we can find a ‘r-ule\ abbut-matrlx--multlpl|cation If we divide matrix

Ainto several 1 by 4 matrix blocks"X and dIVIde matrlx B into several 4 by 1 matrix Y
like formula 3.5. Then formula 3.2 can be rewritten as formula 3.3. We can simplify
Formula 3.3 into formula 3.4. In formula 3.4, we can see a group of regular sequence
like X11,Y11,Y19,Y13, Y14 and Xy9,Y21, Y29, Ys 3, Yoy If we use this sequence to
store the data and computation, then we can simply multiply two matrixes of various

size by hardware. Before we use this sequence to operation, we must use order of

formula 3.5 to write matrix A and matrix B element into memory.
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a1,
as 1,
as 1,
Qg 1,
as 1,
ag 1,
ar 1,
108 1,

12,01 3,01 4,31 5,01 6,01 7,01 8
a2 2,02 3,02 4,025,026,027,028
as 2,03 3,03 4,43 5,03 6,03 7,03 8
Ag2,043,044,045,046,047,0438
52,05 3,a5 4,05 5,05 6,A5 7, A5 8
a6 2, A6 3, A6 4, A6 5,06 6,6 7, A6 8
a7 2,7 3, A7 4,7 5,07 6,077,078

ag 2,0 3,08 4,a8 5,A8 6, A8 7, A8 8 |

_bl lybl 27b1 3ab1 4

by 1,022,b23,b2 4,
b3 1,03 2,b33,b34,
by1,b42,b43,b44,
bs 1, b5 2, b5 3, b5 4,
be 1, b6 2, be 3, be 4,
bz 1,07 2,07 3,b7 4,

_b8 17b8 27b8 37b8 4,

by, big,bi7,bis]
ba5,b26,b2 7,028
b3 5,036,b37,b38
bis,big,ba7,bas
bs 5,05 6,b5 7, b5 8
b 5, b6 6, b6 7, b 8
b7 5,076,b77,b78

bS 55 b8 65 b8 77b8 8 |

Formula 3.1 two 8 x 8 matrix multiplication

[01 1,C12,C13,C 4] =

b1 b1 o
b b
[a11>¢112,a13-,a14}* bzi 7[1111,(1127(113,(114]* biz )[011,1112#137@14]*
_b4 1 _b4 2
b5 1] [5 5]
b b
[al 516,01 7,01 8} * b: ) [al 5,016,d1 7,01 8]/,.‘* | bii ) [Gl 5,016,d1 7,01 s] *
| bs 1] _/"/ ) L 82 |
Formula 3.2 c1'1~¢1 4 of matrix C
X ; I,« e, ) :/

y N o
[01 1,C12,C13,C1 4} = HXl 1} * hﬁxl] . [Xl 1]\*
/Jz_’“ o

[Xue] * Yoo [Xua] « [Yoo | [Xoo] # [You], [Xio] # [Y2]]

SR )

N
5
2 A

= _\\\\5

J

:\

[Via], [Xid) * M), [X o] * [h]] +

C11,€12,C13,C14,C15,C16,C1 7,
C21,C22,C23,C24,C25,C26,C27,
C31,C32,C33,C34,C35,C36,C37,
C41,€42,C43,C44,C45,C46,C47,
C51,C52,C53,C54,C55,C56,C5 7,
C615C625C63,C645C655,C66,C67;
C71,C72,C73,C74,C75,C76,C7 7,
|C81,C82,C83,C84,C85,C86,C87,

by 3 b4
by 3 by 4
b 7[011,a127a13,a14]* b

33 34
_b4 3] _b4 4]
_bs 3_ _bs n
be 3 be 4

a1 5,016,021 7,01 8] *
) ) J b

br 3 [ ] by 4

_bs 3] _bs 4]

Formula 3.3 use matrix block X and Y to indicate c1 1~c1 4 of matrix C

Cig
C28
C38
Cs8
Cs58
C6 8
Crs
Cs 8|

[011,012,0137014] = [X1 1} * [[Yl 1],[3/1 2],[Y1 3],[3/1 4“ =+ [X1 2} * HYQ 1],[3/2 2],[Y2 3],[Y2 4“

Formula 3.4 simplify the formula 3.3
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X1, X1 2]
X211, X22
X31,X32
Xg1,Xg2
Xs51, X502
X6 1, X6 2
X71,X72
Xg1, Xg2

matrictA =

matrizB — _}/1 17}/127}/137}/147)/1 57}/167Y177Y18:|

_}/217}/227)/237}/247%573/267}/277}/28

Ryq, Rao
Rs51,Rs52|
Rg 1, R 2} 1
]%7%1j£75 o~ L“\_'ﬂ
| Fs Tltaz | o NP

/
- n - /
o 90 W W
O ‘ g

matriczC =

i L Y . .
Formula 3.5 order of mla;rix‘A »matrix B and matrix C in memory
I /')/.) \\.\'\ 1

V- > 2 \ %
V - - o -\ &
& Y
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3.2 Packet Format

In order to communicate between the PC and FPGA, we must define the data fields
of a packet. Fig 3.1 shows the data field of one packet that sent from PC to FPGA. Fig
3.2 shows the data fields of one packet that sent from FPGA to PC. Table 3.1 describe

the data field of packet.

Packet from PC to FPGA

‘Write command packet :

1byte 1byte 1byte 64byte 64byte 3byte 3byte
16-element cnt >< 16-element X 16-element EX addr X addr X:
Read command packet :

1byte  1byte 1byte 3byte 3byte 3byte

{cnt addr cnt X addr X addr X addr X X pad

Matrix multiplication command pack"ét_‘f:f-'ff'- o NS
1byte: 1byte 2byte 2byte 3byte 3byte 3byte 3byte 3byte

en
addr addr addr addr

: . matrix A matrix A matrix B matrix B matrix
matrix A column num>< matrix B column numX 5?0"1 X d X start X end start pad
agdr

k!
\

7

Fig. 3.1 data field of packet from PC to FPGA

Packet from FPGA to PC

Read command report packet :
1byte 1byte 1byte B4byte Gdbyte
%cnt Xcmdx 16 element cnt X 16-element X 16-element X ------

Matrix multiplication result packet :

1byte 1byte 2byte 2byte 1yte 1yte B4byte

% cnt window num Xmatrix B column numX packet-end X 16-element cntX 16-element X ------

Fig. 3.2 data field of packet from FPGAto PC
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Table 3.1 data field description

Field name Description
cnt This field indicates the sequence number of packet.
This field indicates the operation which we want to execute.
Write command packet : 0x01
cmd Read command packet : 0x02

Read command report packet : 0x02
Matrix Multiplication command packet : 0x03

Matrix Multiplication result packet : 0x03

16-element cnt

This field indicates the number of 16-element in this packet.

16-element This field ingiicét‘ls'é‘a‘group of values of 16 4-bytes.
addr Thisszjg_[a indi cates the a\(t_{drgjss.
addr cnt This fié-lg liﬁdicate’s t’he. 'ng.rﬁber of address in this packet.

matrix A column num

This field indicatés the value of matrix A column.

matrix B column num

This field indicates the value of matrix B column.

matrix A start addr

This field indicates the starting address of matrix A.

matrix A end addr

This field indicates the end address of matrix A.

matrix B start addr

This field indicates the starting address of matrix B.

matrix B end addr

This field indicates the end address of matrix B.

matrix C start addr

This field indicates the starting address of matrix C.
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3.3 Architecture of Floating-point Matrix

Multiplication Circuit

3.3.1 Architecture overview

Fig. 3.3 shows the architecture overview of floating-point matrix multiplication
circuit. In Fig. 3.3, there are one matrix processor master and 4 matrix processors. The
matrix processor master reads numerous matrix elements from the DDR memory and
sends the elements to various matrix processors for computation. After matrix
processors finish computation, matrix pfr_pt::é’é"sg‘r master sample those results and writes
results into DDR memory. Fiz%v_-gjéw;ho\j\[s;»sg:‘r?ie‘r'ﬁ‘a__tvig._:diagram, there are 16 matrix

processors in the floating-point r‘ﬁgtrlxﬂ\mElti_[_)_l_iglatior_}fcircuit.

Matrix processor_1 Matrix processor_2

Matrix processor master

[127:0]

element_result

addr[27:0]
4 element

Matrix processor_4 Matrix processor_3

4

DDR3 Memory interface
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Fig. 3.3 Floating-point matrix multiplication circuit overview

3.3.2 Matrix Processor

Fig. 3.4 shows the architecture of matrix processor.

4_element_matrix_processor[127:0]

Control unit .
matrix_processor_state[2:0]
MEM MEM MEM MEM MEM MEM MEM MEM
X[127:96] Y[31:0] X[95:64] Y[31:0] X[63:32] Y[31:0] X[31:0] Y[31:0]

matrix_processor_result[31:0]

x | Floating-point " I quaﬁng'—pgint Storage for
multiplier AW D Daddert MEM X elements of the
S < B first matrix
\'\ & .= ‘.I.
' Storage for .
Storage for e elS = \l;\ h _ Control lines
MEMY | elements of the MEMRE| T clementsQithe
second matrix result matrix — [31:0]Data lines

Fig. 3.4 architecture of matrix processor
In Fig. 3.4, we can see an architecture of the matrix processor of full binary tree (4
level) structure. There are 4 PEs in the architecture. First, control unit catch the input
data of matrix block 127bits bus, the matrix block X is send to MEM X register and the
matrix Y is send to MEM Y register. After the matrix block X and matrix block Y are
send, computation starts, then waiting the multiplication results. Figure 3.4 shows the
schematic diagram, architecture of matrix processor is a full binary tree (6 level)

structure.
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In the architecture of matrix processor, the number of pass delay of adder is log, n

stages, it is less than n in reference [18], there are 16 matrix processor in matrix

processor, so number of pass delay is 8 stages.
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3.3.3 Matrix processor master

Fig. 3.5 shows architecture matrix processor master.

b b

Qo A~10 ~1 0 ~1.0 &~
Sl T8 T3l g
Sa|&8e|&8a|8a
2812312828
LTN 'O\ oD N e
—8 N=B N=2 N=B
SRS o2 SRS (RS
~ = ~ = ~ = ~ =
2l aFf | g | aF

matrix_processor_1_state[2:0]

matrix_processor_2_state[2:0]

> addr[27:0]

Matrix processor State

. Input data controller
matrix_processor_3_state[2:0] table D

matrix_processor_4_state[2:0]

4_element[127:0]

matrix_processor_state[2:0]

matrix_processor_1_result[31:0]

£ '-.\
matrix_processor_2_result[31:0] i,‘ \ 4_element_result[127:0]

N
A\

result™| P
. ~.._ " Output data controller
matrix_processor_3_result[31:0] - [register i W B ta:n

=

o Zz [ J12IS1S21 1[nsax

matrix_processor_4_result[31:0] L

Fig. 3.5 matrix processor master

In Fig. 3.5, we can see the mainly three blocks, Input data controller, Matrix
processor state table and Output data controller. First, Input data controller uses
information of matrix A and matrix B to read matrix X blocks and matrix Y blocks from
memory. After Input data controller receives the matrix blocks, it checks if the matrix
processor state is idle. If matrix processor is idle then the Input data controller assigns
the matrix blocks to matrix processor. Second, if matrix processor state is calculation
finish, then Output data controller will store the result from matrix processor. Third, if
result have not been calculated yet then it will be temporarily stored in Result register.

Final, if result is complete then result will be written into the memory. Figure 3.5 shows
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the schematic diagram, there are 16 element_matrix_process bus, 16

matrix_porcessor_state bus and 16 matrix_processor_result bus.

/ Y
- | N
£ i \
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& L &
.’ . 5 A
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Chapter 4 Experimental Results

4.1 Ethernet Transfer result

4.1.1 Ethernet Transfer rate

In this section, we transmit the 50 thousand 1500-byte in FPGA-based accelerator

and PC to test the transmission rate by using ethernet. Table 4.1 shows the transmission

rate in this measurement.

Table 4.1 FPGA-based acceler

el

ator and PC transmission rate

Direction Packet length | Number of Packet Time Transmission data rate
PCtoFPGA | 1500bytes “{ - 50,000 - ~11.025s 52.52Mbps

\ NI J
FPGAto PC 1500bytes 7 50,000 < | 8.698s 66.56Mbps

ki

We also test the transmission data rate withf'i}t}é DDR memory delay includes data

from PC to FPGA‘s external memory and data from FPGA external’s memory to PC.

Table 4.2 shows the transmission rate in this condition.

Table 4.2 transmission rate with the DDR memory delay

Direction Packet length | Number of Packet Time Transmission data rate
PC to FPGA 1500bytes 50,000 11.52s 52.08Mbps
FPGAto PC 1500bytes 50,000 9.262s 64.78Mbps

The Ethernet transmission data rate will be the bottleneck to the FPGA-based

accelerator, for large data computatiion. In the future, if company of Xillinx has

provided high transmission rate of Ethernet IP core then it will greatly enhance the
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efficiency of our architecture of FPGA-based accelerator.

4.1.2 Ethernet Tx FIFO Issue

Fig. 4.1 shows the transmission data flow. The packet from User Tx module to
Ethernet block is 125MHz and packet from Ethernet block run at PHY run at 62.5MHz.
If we transmit too many packets, in a short time then it causes transmission FIFO
overflow. Due to MAC core is a free IP, it can’t to solve the problem of transmission
FIFO overflow. We use an easy method to avoid this problem. We obtain the number
of waiting clock cycles by experimental result. The number of waiting clock cycles

between each packet transmission is equal to 6*(Total packet/10).

Y FPGA board

FPGA —
ﬁ, -
Ethernet
User Tx block PHY PC
62.5MHz
125MHz >

Fig. 4.1 transmission data flow

- 48 -



4.2 Matrix Multiplication Experimental

Result

In Fig. 4.2 ~ Fig. 4.10, we use three different computers to compute different matrix

sizes matrix multiplication, and then compare the execution time with the proposed

FPGA-based accelerator.

ms (time)

B
o
o

Small Size Matrix Multiplication

350
315 323
23
1 3
4 8 16

Matrix size n x n

Intel I5-
3230M(2.6GHz)

B FPGA

Fig. 4.2 compare Intel 15-3230M (2.60GHz) with FPGA at 4x4, 8x8, 16x16 matrix size
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Medium Size Matrix Multiplication

o)
S 139535
=

100000 500

80000 Intel 15-
60000 3230M(2.6GHz)

40000 rs0u7 H FPGA

20000 eSS 1131'
0 —_ |

32 64 128 256
Matrix size n x n

256x256 matrix size \“-::.; Vo __,_:‘\: —

Large Size Matrix Multiplication
120
100

80

60 Intel 15-
40 35.1 3230M(2.6GHz)

m FPGA
20 1219, oo I

101.59

S (execution time)

0.780.76
0 — |

512 1024 2048
Matrix size n x n

Fig. 4.4 compare Intel 15-3230M (2.60GHz) with FPGA at 512x512, 1024x1024,
2048x2048 matrix size
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Small Size Matrix Multiplication

595 606 621
500
400 Intel 15-2400
300 (3.10GHz)
200 B FPGA
100 41

1 7
0
4 8 16

Matrix size n x n

ms (time)
(o) IRN
o O
o O

Fig. 4.5 compare Intel 15-2400 (3.106;@)'%&1 FPGA at 4x4, 8x8, 16x16 matrix size
. \l

Medium Size Matrix Multiplication

@ 250000

g 210459

5 200000

5

o 150000

5 Intel 15-

g 100000 9130 2400(3.10GHz)

1926
10829
324582 2473 I
[ |

32 64 128 256
Matrix size n x n

Fig. 4.6 compare Intel 15-2400 (3.10GHz) with FPGA at 32x32, 64x64, 128x128,

256x256 matrix size
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Large Size Matrix Multiplication

120
100

80
60 Intel I5-
40 39.22 2400(3.10GHz)

20 B FPGA

8.27 6.8
0.741.06
0 — |

512 1024 2048
Matrix size n x n

100.19

s (execution time)

Fig. 4.7 compare Intel 15-2400 (3.10GHz) with FPGA at512x512, 1024x1024,
! ‘\
2048x2048 matrix size k.
A

G

Small Size Matrix Multiplication

563 577 586
Intel 17-

300 4770(3.4GHz)
200 H FPGA

100 =

2 9
0
4 8 16

Matrix size n x n

ms (time)
D Ul (e)) ~
o O O O
o O O O

Fig. 4.8 compare Intel 17-4770 (3.40GHz) with FPGA at 4x4, 8x8, 16x16 matrix size
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Medium Size Matrix Multiplication

T-E? 140000 131936
42 120000 1097
2 100000
-}
(O]
¢ 80000 Intel 17-
— 60000 4770(3.4GHz)
€ 40000 319357 B FPGA
20000 cosary 4655 I
— [ ]

32 64 128 256
Matrix size n x n

Fig. 4.9 compare Intel 17-4770 (3.4(;5,leﬁ‘with FPGA at 32x32, 64x64, 128x128,
a \‘

=S S

256x256 matrix size — N "

Large Size Matrix Multiplication

v 100
g 88.44
c 80
o
5
o 60
% Intel 17-
- 40 34.17 4770(3.4GHz)
20 B FPGA
5.6 4.81
0.58 0.74
0 - [ ]
512 1024 2048

Matrix size n x n

Fig. 4.10 compare Intel 17-4770 (3.40GHz) with FPGA at 512x512, 1024x1024,

2048x2048 matrix size
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In Fig. 4.2 ~ Fig. 4.10 we found that if the matrix size is larger than 1024 x1024
then accelerate can speed up the computation time. Due to Ethernet transmission rate
is a bottleneck in our hardware accelerator, if the computation time is large enough to
cover transmission time then the proposed accelerator can faster than PC. In addition,
accelerator is slower than PC in small computation that is acceptable, because we don’t
use the accelerator in a small size matrix computation.

InFig. 4.11 ~ Fig. 4.18, we use two different computers to compute different matrix
sizes in matrix multiplication of various numbers, and then compare the execution time

with the proposed FPGA-based accelerator.

64 x 64 Size Matrix Multiplication

)
g 8 6.871653
- 6

4 Intel I5-

3230M(2.6GHz)
2 1.6857
B FPGA
0.586785
0.01783%868 016959&
10 100 1000

Number of matrix

Figure 4.11 is the comparison at 64*64 size matrix of 10 /100 /1000 between Intel 15-

3230M (2.6GHz) and FPGA
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128 x 128 Size Matrix Multiplication

30 27.986431

s (time)

15 13.4997 Intel I5-
3230M(2.6GHz)

B FPGA
5 2.894026
0.1369296504 1'3570%
0 —

10 100 1000

Number of matrix

Figure 4.12 is the comparison at 128*1/2,8/5"29\matrix of 10 /100 /1000 between Intel
i \‘

< =2,

15-3230M (2.6GHz) and FPGA.~ .\ .

e e, _piitano e )
. e . 7

256 x 256 Size Matrix Multiplication

g 30 27.541243
= 25 23.0753
v
20
15 13.746231 Intel I5-

U

. 11.4707 3230M(2.6GHz)
< a1 5:872931 m FPGA
N
50 100 200

Number of matrix

Figure 4.13 is the comparison at 256*256 size matrix of 50 /100 /200 between Intel
15-3230M (2.6GHz) and FPGA
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s (time)

512 x 512 Size Matrix Multiplication

51.28
40.64
259 Intel I5-
20.79 3230M(2.6GHz)
I H FPGA
25 50

Number of matrix

Figure 4.14 is the comparison at 512*5}12/'§"2e\matrix of 25 /50 between Intel 15-
i \‘

b

3230M (2.6GHz) and FPGA . .~

s (time)

O R N W b U1 O

5:.,,‘__:::'. pe  ASER Yol A.A'_::-‘_;,'

& ¥ N " 4

64 x 64 Size Matrix Multiplication

6.452715
Intel 17-
4770(3.4GHz)

1.38783 B FPGA
0.56619
0.0528636017 0~19302i
10 100 1000

Number of matrix

Figure 4.15 is the comparison at 64*64 size matrix of 10 /100/1000 between Intel 17-

4770 (3.4GHz) and FPGA
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128 x 128 Size Matrix Multiplication
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Figure 4.16 is the comparison at 128*1/2,8/5"29\matrix of 10 /100/1000 between Intel
i \‘

- = b

7-4770 (3.4GHz) and FPGA .~ /.

R D e T g
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256 x 256 Size Matrix Multiplication
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= 25
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20 18.8100
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0
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Figure 4.17 is the comparison at 256*256 size matrix of 50 /100/200 between Intel 17-
4770 (3.4GHz) and FPGA
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512 x 512 Size Matrix Multiplication
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Figure 4.18 is the comparison at 5;2*!{12312e r\riat{[x of 25 /50/100 between Intel 17-

<o g =S i e

4770 (3.4GHz) and FPGA \ |’/r‘w—' == .____//

e w
S b
7 4 ]

In Fig. 4.11 ~ Fig. 4.18 » we can-find that t\ slarger computations will cause the
performance of FPGA equal to or larger than the performance of PC. However, because
of the waiting mechanism of Tx FIFO overflow in FPGA, the larger computations cause
the longer waiting time such that the performance of FPGA will decreases.

Table 4.3 shows time analysis that the PC and FPGA respective compute 30 matrix
those size is 512 x 512, and table 4.4 shows time analysis that the PC and FPGA

respective compute 30 matrix those size is 16 x 16.
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17-4770 (3.4GHz)

Total Memory read time 18.31459s | 73.42 %
E’::”tion 249439975 | Memory write time 0.033172s | 0.13 %
Computing time 6.592300 s | 26.46 %
FPGA (125MHz)
The time that PC send packets to FPGA 9.974400 s | 41.62%
Total The time that FPGA send packets to PC 0.658349 s 2.74%
execution | 23.973594s | The time of memory read in FPGA board | 8.842444 s | 36.88%
time The time of memory write in FPGA board | 0.028999s | 0.12%
FPGA computing time 4.469401 s | 18.64%

Table 4.3 is the time analysis that the PC ‘aqd\ FPGA respectively compute 30 matrix

those size is 512 x 512

[

17-4770 (3.4GHz)

Total Memory reafif:lgméa-w 4 : 0.002224 s | 69.93 %
E’:;uuon 00031818 | \emory writd time 0.000139s | 4.38 %
Computing time 0.000816 s | 25.67 %
FPGA (125MHz)
The time that PC send packets to FPGA 0.009031s | 93.41 %
Total The time that FPGA send packets to PC 0.000300 s 3.10 %
execution | 0.009668 s | The time of memory read in FPGA board | 0.000285 s 2.94 %
time The time of memory write in FPGA board | 0.000028s | 0.28 %
FPGA computing time 0.000023 s 0.23 %

Table 4.4 is the time analysis that the PC and FPGA respectively compute 30 matrix

those size is 16 x 16
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In table 4.3 and table 4.4, PC computes the multiplication of big size matrix that
takes a lot of time to reads data from memory. If the amount of data of matrix is larger
than the capacity of cache in PC, then PC will reads the data from memory that is called
cache miss. Reading data from memory that takes too many time that is more than the
time of reading data from cache. FPGA computes the matrix multiplication that takes a
lot of time to send data between PC and FPGA. According above, we only compare the

computing time of PC and computing time of FPGA.
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4.3 FPGA Utilization

Table 4.5 shows the slice utilization of the proposed accelerator without matrix
multiplication circuit. Table 4.6 shows the slice utilization of the proposed accelerator

with matrix multiplication circuit.

Table 4.5 Accelerator Environment without Matrix Multiplication Utilization

Slice Logic Utilization Used Available Utilization
Number of Slice Registers 60,054 607,200 9%
] N
Number of Slice LUTs 52,234~ 303,600 17%
Number used as logic 59’;135 — /303,600 16%

| /

Table 4.6 Accelerator Environment with Matrix Multiplication Utilization

Slice Logic Utilization Used Available Utilization
Number of Slice Registers 194,312 607,200 32%

Number of Slice LUTs 151,370 303,600 49%

Number used as logic 136,356 303,600 44%
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Chapter 5 Conclusion and Future

Works

5.1 Conclusion

In recent years, Big Data analysis becomes a serious problem in the data storage,
management and analysis. When the PC processes big data problems, they often faces
the execution time too long and use too much storage space problem. One of big data
challenges are image analyzing and progegsing. The processing of image or video
usually includes a lot of matrix oper.zigio’r/iisi.l IfWe ‘send parallel matrix operations such

as matrix multiplication to FPGA, it can save a lot ofzﬁgicecution.

@ - 1
In this thesis, we implement-a FPGA-—based hardware accelerator and design a

| .

floating-point matrix multiplicatiof;\/,.;if_-) at:_ytﬁ_e_l»e.rat"_t'?}g\f‘() help PC to reduce the execution
time of computation huge matrix mu]tiplication. )

The Ethernet transmission rate is a bottleneck for our accelerator architecture. If
the computation is large enough to cover transmission time then accelerator can be
faster than PC. In addition, the proposed accelerator is slower than PC in small matrix

computation that is acceptable, because we don’t use the accelerator with small matrix

computation.
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5.2 Future Works

For now, we can only assign the job to one FPGA. If we want to implement a real
multi-FPGA-based accelerator, it must write multi-thread program in PC. In this way,
PC can parallel assign the job to different FPGA accelerators.

In this thesis, we only implement one function of floating-point matrix
multiplication in accelerator, this is not enough to help various computation to enhance
the execution time.

According the above, the general purpose multi-FPGA-based accelerator are

necessary in the future.
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