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摘要 

在此論文中，我們針對全數位全矽晶片震盪器，探討了混合了製程、電壓

以及溫度的同時變化下，穩定一單一輸出頻率所會面臨到的各種問題及挑戰。

本論文所提出的架構，當晶片運作的時候，可以自動地估計當時的工作電壓及

溫度，並透過校正的方式將製程的漂移給消除，透過這樣的方法，使得此震盪

器可在不同的製程、電壓以及溫度的變化下，仍然可以作為系統中一個穩定的

頻率參考時脈。 

論文中包含各種傳統的矽晶片震盪器介紹，並且針對各種架構中的優缺點

加以分析，其中，傳統的架構大多為類比，需要客製化設計，且無法同時抵抗

製程、電壓以及溫度的同時變化。 

本論文中的全數位全矽晶片震盪器，利用多個環形震盪器的週期比值建立

相對參考模型，我們根據相對參考模型去建立了 1.使用多點校正的自動估計電

壓以及溫度範圍的全數位全矽晶片震盪器 2.使用四點校正的自動估計電壓以

及溫度範圍的全數位全矽晶片震盪器。 

在這篇論文中，我們提出了一個新的全數位全矽晶片震盪器，採用 90 奈

米製程技術實現。 該研究可在 1.0 伏特的電壓下工作，非常適用應用於低成本

以及低功率消耗的系統單晶片上。 

關鍵字：全數位，震盪器，抗製成電壓溫度飄移，低功耗。 
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Abstract 

In this thesis, we explore the problems and challenges for a cell-based on-chip 

silicon oscillator (CBOCSO) with combination of process, voltage and temperature 

(PVT) variations at the same time. The proposed CBOCSO architecture can 

estimate the supply voltage and operation temperature at chip run time, and thus, it 

can eliminate PVT variations by the proposed methodology. In this way, the 

proposed CBOCSO can provide a stable frequency output as the reference clock for 

the system. 

In this thesis, we introduce various kinds of conventional on-chip silicon 

oscillators, and we also analyze the advantages and disadvantages of each 

architecture. Actually, most of the conventional architectures are full-custom analog 

approaches, and most of them cannot resist PVT variations at the same time. 

The proposed CBOCSO uses a relative reference modeling (RRM), which are 

delay ratios among multiple ring oscillators. According to the RRM, we present the 

architecture and operation flows to perform automatic voltage and temperature 

range selection with two calibration methods: 1.multi-point and 2.four-point. 

In this thesis, we have presented a novel fully digital CMOS on-chip silicon 

oscillator implemented in 90nm CMOS technology. The CBOCSO can operate with 

a 1.0V supply voltage and is very suitable for low-power and low-cost 

system-on-a-chip applications. 

Keyword: all-digital, oscillator, tolerance PVT variations, low power 
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Chapter 1 

Introduction 

1.1 Reference Clock of the System 

In recent years, there are more and more complex integrated circuit designs, these 

complex circuits should be synchronized. Thus, we need a reference clock to synchronize 

between these different timing circuits. 

The integrated circuits and the system-on-chip(SoC) all require a reference clock. 

However, these circuits often use an external quartz crystal oscillator as the system 

reference clock. 

The quartz crystal is a combination of silicon and oxygen atoms, which chemical name 

called Silicon Dioxide (SiO2). When the quartz crystal is pressed by a direction of the 

electric field, the direction of the quartz crystal may be shocked because of the piezoelectric 

effect. 

When we grasp the quartz crystal characteristics of piezoelectric effect, we can use 

resonance phenomenon to generate precise oscillation frequency, which can be used as the 

reference clock for the clock generator. 

Fig. 1.1 shows various kinds of quartz crystal oscillators, including the quartz crystal 

oscillator (XO), Temperature compensated crystal oscillator (TCXO), Oven-controlled 

crystal oscillator (OCXO) and Voltage-controlled crystal oscillator (VCXO). The quartz 

oscillators are widely used in the market, such as, motherboards, CPU, and large-scale 



ical equipm

able quartz 

n use the TC

e, size, and 

e important.

h

Although u

uency outpu

t important 

ments. Acco

crystal osc

CXO, beca

power cons

. 

F

http://www.

using the qu

ut, the volum

is that it can

ording to 

cillator. In a

use TCXO

sumption ar

Fig. 1.

From the shi

.shimmer-co

uartz crysta

me of quart

nnot be inte

 

- 2 -

different ap

addition, in

can agains

re not majo

1: various q

immer ente

o.com.tw/qu

al oscillator

tz crystal os

egrated into 

pplications,

ntegrated ci

st temperatu

or considera

quartz oscill

erprise webs

uartz_crysta

r as a refer

scillator is to

the COMS

, these circ

ircuit or sy

ure variation

ation, but fr

lator.      

site of 

al_oscillator

ence clock 

oo large, an

process. 

cuits will 

ystem-on-ch

ns. In these

requency ac

         

r.htm 

has a high

nd has high 

choose a 

hip (SoC) 

e circuits, 

ccuracy is 

 

         

h accurate 

cost, and 

         



 

 - 3 -

1.2 Motivation 

In wireless sensor networks and biomedical devices, these systems operate with 

batteries and are highly integrated. Timing references are essential parts of these systems. 

However, these type circuits usually not require a very precise reference clock, but they are 

requested to be low cost, small size and low power. Therefore, we can integrate the 

reference clock into the chip for this requirement. 

Currently, the external quartz crystal oscillator can be replaced by Micro-Electro 

Mechanical Systems (MEMS) [45] or CMOS-compatible on-chip ring oscillator, two main 

technologies. The MEMS technology requires extra manufacturing handling and the cost is 

higher. In addition, as compare to CMOS-compatible on-chip reference clock, the MEMS 

technology is not convenient. 

In recent years, many researches had been devoted to develop CMOS-compatible 

on-chip oscillators [1]-[35] for replacing off-chip quartz crystal oscillators. When we use 

CMOS technology to design the reference clock circuit, the integrated circuit makes the 

volume of the system become smaller with lower power consumption and cost reduction. 

However, using CMOS technology to design the reference clock circuit has many 

challenges with process, voltage and temperature (PVT) variations. In order to overcome 

design problems, many approaches have been proposed for on-chip oscillator design to 

against process[2]-[4][21][27]-[31][34][39][40], or voltage[7][12]-[15][23] or temperature 

[1][6][8]-[11][21][22][24]-[26] variations, respectively. However, when the PVT variations 

both exist [16]-[18][27]-[31], these methods are not applicable. In the next section, we will 

discuss advantages and disadvantages of these architectures, and to explore some issues can 

be improved. 
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1.3 These Organization 

In this thesis, we discuss about the implementations of a cell-based on-chip silicon 

oscillator (CBOCSO) in TSMC 90nm CMOS technology. The proposed four-point 

calibration methodology can reduce the testing cost of the CBOCSO. The rest of the thesis 

is organized as follows. 

In chapter 2, we discuss about conventional on-chip silicon oscillator architectures. 

Subsequently, we discuss and analyze the relative reference modeling (RRM). 

In chapter 3, the first version of proposed CBOCSO with multi-points calibration is 

presented. In this chapter, we propose RRM with two delay ratios and explain how to build 

this model by the delay ratio estimator (DRE), the digital control oscillator (DCO) and the 

CBOCSO controller. In addition, we also propose the cell selection rules to choose the 

suitable cells for the delay ratio estimator from the TSMC 90nm standard cell library. 

In chapter 4, the second version of the proposed CBOCSO with four-point calibration 

is presented. In this version, we improve the resolution of the DCO with fine tuning delay 

line and the new CBOCSO controller, and with improve algorithms to reduce the testing 

cost in calibration. 

In chapter 5, the specifications and measurement results of the CBOCSO with 

four-point calibration are discussed. In chapter 6, we use the proposed CBOCSO with minor 

modifications for the all-digital temperature sensor application with voltage variations. In 

chapter 7, we make a conclusion and describe the further work about some design issues 

that can be improved in the near future. 
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Chapter 2 

Conventional On-Chip Silicon Oscillator  

2.1 The Band gap Voltage Reference-Based On-Chip Silicon 

Oscillator 

In the prior researches, most of the on-chip silicon oscillators use an external 

temperature sensor or an input reference voltage [1]-[5][34][35] to replace the external 

quartz crystal. These type of circuits, we call them band gap voltage reference-based 

on-chip silicon oscillator. 

 

Fig. 2.1: The architecture of the band gap voltage reference-based on-chip silicon 

oscillator. 

Fig. 2.1 shows block diagram of a band gap voltage reference-based on-chip silicon 

oscillator [4] compensation loop. When this circuit uses analog charge pump, it is composed 
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of a comparator, charge pump (CP), loop filter (LPF), a frequency sensor and a voltage 

controlled oscillator (VCO). When this circuit uses the digital approach, it is composed of a 

comparator, the digital controller, a frequency sensor and a digital controlled oscillator 

(DCO). When the VCO/DCO generates the difference frequency (out_clk) by the difference 

voltage (Vctrl) or the difference digital control code, the frequency sensor detects the 

VCO/DCO frequency, and the frequency is converted to the voltage value (Vspl) by the 

frequency sensor. 

When there has an external stable DC voltage reference (Vref). The comparator 

compares the difference between Vspl and Vref. When Vspl is smaller than Vref, this circuit 

will speed up the VCO/DCO by increasing the Vctrl or digital control code. Similarly, if Vspl 

is larger than Vref, this circuit will slow down the VCO/DCO by decreasing the Vctrl or 

digital control code. Therefore, this compensation mechanism can against process and 

temperature variations.  

Although, this circuit does not require a reference clock. However, it needs an external 

reference voltage (Vref) to eliminate the process and temperature variations. In addition, 

when the frequency sensor converts frequency into voltage value, it generates some errors. 

However, the band gap reference-based on-chip silicon oscillator cannot against process, 

voltage and temperature variations at same time. 

2.2 The Band gap Temperature Sensor-Based On-Chip Silicon 

Oscillator 

Fig. 2.2 shows the block diagram of the temperature sensor-based on-chip silicon 

oscillator [21] compensation loop. It is composed of a temperature sensor, a non-linear 
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mapper, a divider, a phase detector (PD), loop filter, a digital/voltage controlled oscillator 

(DCO/VCO) and an electrothermal filter (ETF)[24] /Oscillator(OSC).  

 

Fig. 2.2: The architecture of the band gap temperature sensor-based on-chip silicon 

oscillator. 

Firstly, this circuit uses a temperature sensor to estimate the operating temperature. In 

addition, they build a temperature compensation to the DCO control code tables. 

Subsequently, they use the PD to compare the phase difference between ETF/OSC and 

DCO/VCO. According to the temperature value, the non-linear mapping table can be used 

to calculate the control code to the DCO/VCO. Then the frequency of the DCO/VCO can be 

adjusted by the control code with temperature variation. 

A mobility-based frequency reference [21][22] and thermal diffusivity-based frequency 

reference [24]-[26] are based on the band gap temperature sensor-based on-chip silicon 

oscillator. They have high accuracy, low power, and they can cover wide temperature range 

variations, but they cannot against voltage variation. In addition, they have relatively small 

process variations, but their approaches have strong temperature dependency. Thus, they 

need accurate temperature sensors to compensate for the output frequency with temperature 

variations, and their approaches occupy a large chip area. 



 

 - 8 -

2.3 The Bias-Based On-Chip Silicon Oscillator 

Fig. 2.3 shows block diagram of a bias current compensation mechanism 

frequency-locked loop technique of on-chip silicon oscillator [12]. It is composed of a 

current comparator, a VCO, an amplifier (AMP), and a digital-to-analog converter(DAC). 

The bias circuit generates a bias current (IBIAS), and then the AMP will amplify the 

difference between IBIAS and IOUT into VOUT to the VCO, The frequency-to-current converter 

converts the frequency of fOUT into current IOUT, and these circuits form a feedback loop. 

The current comparator compares the difference between IBIAS and the converter output 

current IOUT. They will adjust the control voltage (VOUT) of the VCO until the IOUT equal to 

IBAS in this feedback loop. 

This type of architecture [12]-[15][32] improved the band gap voltage reference-based 

on-chip silicon oscillator, and this circuit do not require an external reference voltage  

[1]-[5][34][35], However, the design challenges of this circuit are the accuracy of the 

reference bias circuit with PVT variations and the conversion error in the 

frequency-to-current converter. 

 

Fig. 2.3: The architecture of the current comparator on-chip silicon oscillator. 
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Fig. 2.4 shows block diagram of a two voltages controlled on-chip silicon oscillator 

[15]. It is composed of a voltage-swing controller, a bias current controller, and a ring 

voltage controlled oscillator (RVCO). 

 

Fig. 2.4: The architecture of the two voltage controlled on-chip silicon oscillator. 

This architecture uses on-chip bias-current controller and voltage-swing controller to 

compensate for the RVCO frequency with process and voltage variations. 

The voltage-swing controller generates the difference voltage to control PMOS and 

NMOS of the RVCO, and the bias-current controller generates the different current to 

control PMOS and NMOS of the RVCO at the same time. 

Fig. 2.5 shows the simulation results of voltage-swing controller and the bias-current 

controller different voltage (Vswing) and different current (Ibias) to compensate the RVCO 

[15]. According to the Fig. 2.5, we can see that the output frequency of the RVCO remain 

stable with process and voltage variations. However, the voltage-swing controller and the 

bias-current controller are required to generate the difference voltage to compensate for the 

frequency of the RVCO with process and voltage variations. Thus, this circuit requires full 

custom design. In addition, this design method is not suitable to against temperature 

variations. 
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Fig. 2.6: The architecture of conventional RC-oscillator. 

Fig. 2.7 shows architecture of voltage averaging feedback (VAF) relaxation oscillator 

[16], it is composed of a VAF and a relaxation oscillator. 

The relaxation oscillators [16][17] with power averaging feedback can tolerate both 

temperature and voltage variations. However, the resistive divider for the voltage reference 

requires cancelling of temperature dependency. Thus, a small voltage variations on the 

reference voltage (i.e. 2mV) can cause 0.4% frequency error [16], and thus, they are 

sensitive to the supply noise and process variations. Relaxation oscillators [16]-[18][20] 

requires a bias generator to overcome voltage and temperature variations. However, the bias 

generator occupies a large chip area. 
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Fig. 2.7: The architecture VAF relaxation-oscillator. 

2.5 The Addition-based Current Source On-Chip Silicon 

Oscillator 

The addition-based Current Source On-Chip Silicon Oscillator [23] is shown in Fig. 

2.8. If we assume W/L ratio of M1 and M3 are the same and they are matched devices. 

Hence the current through M1 and M3 will be the same. In this circuit, when the current I1 

increase due to process variation, the current I2 will decrease. Oppositely, when the current 

I1 decrease, the current I2 will increase. Thus, we can adjust ratio of M1/M3 and M2, which 

can get a stable current source by I = I1 + I2 with process variations. 
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2.6 The Relative Reference Modeling On-Chip Silicon Oscillator 

An all-digital on-chip oscillator with the relative reference modeling (RRM) is 

proposed in [27]-[31]. The propagation delay time of the logic cells are easily affected by 

process, voltage, and temperature (PVT) variations. In RRM, They choose two logic cells 

from the standard cell library, and one of them uses as a reference delay cell (RDC), and the 

other cells use as the compare delay cell (CDC). With PVT variations, delay time of the 

RDC and the CDC will both increase and decrease. However, delay time variations in the 

RDC and the CDC are not the same. In RRM, they define the delay ratio between these 

logic cells can be expressed as Eq. 2.1. 

 (Eq. 2.1) 

where DRDC(P,V,T) and DCDC(P,V,T) are delay time of the RDC and CDC, respectively. 

The block diagram of the delay ratio estimator (DRE) is shown in Fig. 2.10. In DRE, 

two logic cells, RDC and CDC are used to create two ring oscillators, the reference ring 

oscillator (RRO) and the compared ring oscillator (CRO), respectively. The output of the 

ring oscillator is connected to the counter to record the oscillation cycles of the oscillator. 

The value of two counters can be used to calculate the delay ratio R(P,V,T) as Eq. 2.2. 

 (Eq. 2.2) 

where CROCNT and RROCNT are the output of the CRO counter and the RRO counter, 

respectively. The CRO counter will count from 0 to NTIME, and then the two ring oscillators 

are stopped. The value of NTIME is power of two, thus the delay ratio R(P,V,T) can be 

computed without a divider. 
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Fig. 2.12 shows the system architecture of the RRM. It is composed of a delay ratio 

estimator (DRE), a mapper and a DCO. The DRE computes the R(P,V,T) at chip run time 

with voltage and temperature variations. Firstly, the RRM requires multi point calibration. 

In the calibration mode, the DRE estimates the R(P,V,T) and DRDC at different voltage and 

temperature combinations. According to R(P,V,T) and DRDC values to build up the 

second-order curve modeling diagram as shown in Fig 2.11. The mapper is used to to 

replace the second order equation calculatio. Then the mapper outputs control code to the 

DCO. 

CodeR(P,V,T)

des  

Fig. 2.12: The architecture of the Relative Reference Modeling On-Chip Silicon 

Oscillator. 

The digital approach of the RRM makes it easy to design the on-chip oscillator. 

However, a high order polynomial is required to minimize the modeling error, and thus, a 

mapper is required to reduce the area cost. In addition, in RRM, multi-points calibration is 

required. The high testing cost make it is not suitable for mass production. 
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the R2(V, T) is a delay ratio between period of RRO and CRO2, the voltage coefficient of 

RRO and CRO2 are similar, and the ratio method would reduce the voltage coefficient 

between RRO and CRO2. Thus, in different operating temperature values, the R2(V, T) 

value are quite close with voltage variations. As a result, we can use the delay ratios R1(V,T) 

and R2(V,T) to estimate the current temperature and current voltage of the chip at run time. 

2.8 Summary 

Most of the conventional on-chip ring oscillators require an external band gap 

reference. In addition, the bias circuit and other current compensation circuit are full-custom. 

Also, these circuits cannot resist PVT variation at the same time. 

In this thesis, we design a CBOCSO circuit without an external band gap reference. 

The proposed design also uses the relative modeling to build up the on-chip oscillator. A 

voltage and temperature classifier is proposed to reduce the modeling error of the RRM 

[27]-[31] achieve a better accuracy of the output frequency.  

In addition, to make our design more suitable for mass production, the proposed 

four-point calibration methodology can effective reduce the testing cost of the CBOCSO 

during calibration. 
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Chapter 3 

Cell-Based On-Chip Silicon Oscillator with 

Multi-points Calibration 

3.1 Relative Reference Modeling with Two Delay 

Ratios 

The propagation delay time of the logic cells are easily affected by process, voltage, 

and temperature (PVT) variations. If we choose any three logic cells from the standard cell 

library. One of them uses as a reference delay cell (RDC), and the other cells use as the 

compare delay cell 1 (CDC1) and the compared delay cell 2 (CD2).The delay ratio between 

these logic cells can be expressed as Eq. 3.1 and Eq. 3.2. 

 (Eq. 3.1) 

 (Eq. 3.2) 

where DRDC(P,V,T), DCDC1(P,V,T), and DCDC2(P,V,T) are the delay time of the RDC, CDC1, 

and CDC2, respectively.  

For a fixed supply voltage (V) and certain process corner (P), DRDC(P,V,T) and 

DCDC1(P,V,T) are both increased and decreased with temperature variations. Thus, the range 

of R1(P,V,T) means the temperature coefficients difference between RDC and CDC1. 

Therefore, if there exists a RDC and CDC1 pair, which the range of the R1(P,V,T) at all 
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process corners with different voltages are not overlapped. Then, R1(P,V,T) can be used to 

roughly determine the current supply voltage of the chip. Similarly, for a fixed temperature 

(T) and certain process corner (P), DRDC(P,V,T) and DCDC2(P,V,T) are both increased and 

decreased with voltage variations. Thus, if there exists a RDC and CDC2 pair, which the 

range of the R2(P,V,T) at all process corners with different temperatures are not overlapped. 

Then, R2(P,V,T) can be used to roughly determine the current temperature of the chip. 

In this method, the R1(P,V,T) and R2(P,V,T) are used by the proposed voltage and 

temperature classifier, and the output frequency accuracy of the on-chip ring oscillator can 

be significantly improved. 

3.2 Design of Delay Ratio Estimator 

CRO1
COUNTER

RRO
COUNTER

CRO2
COUNTER

ENABLE
=

RROCNT

NTIME

÷

÷

R1(P, V,T)

R2(P, V,T)

CDC1 RDC CDC2

CRO2

CRO1

RRO

CRO1CNT

CRO2CNT

...

...

...

 

Fig. 3.1: The architecture of the delay ratio estimator. 

 

Fig. 3.2: Timing diagram of the delay ratio estimator. 
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The block diagram of the proposed delay ratio estimator (DRE) is shown in Fig. 3.1 

[46]. Fig. 3.2 shows the timing diagram of the DRE. In DRE, three logic cells, RDC, CDC1, 

CDC2 are used to create three ring oscillators, the reference ring oscillator (RRO), the 

compared ring oscillator 1 (CRO1), and the compared ring oscillator 2 (CRO2), 

respectively. 

The output of the ring oscillator is connected to the counter to record the oscillation 

cycles of the oscillator. The value of these counters can be used to calculate the delay ratio 

R1(P,V,T) and R2(P,V,T) as follows Eq. 3.3 and Eq. 3.4. 

      (Eq. 3.3) 

     (Eq. 3.4) 

where CRO1CNT, CRO2CNT and RROCNT are the output of the CRO1 counter, the CRO2 

counter, and the RRO counter, respectively. The RRO counter will count from 0 to NTIME, 

and then these three ring oscillators are stopped.  

The value of NTIME is set to 2047, thus the delay ratio R1(P,V,T) and R2(P,V,T) can be 

computed without divider circuits. When the value of NTIME is equal to 2047, the 

RRO_CLK will gating three cycles, then the CRO1_CLK and CRO2_CLK latch the 

CRO1CNT and CRO2CNT as R1 and R2, respectively. Thus, the values of R1 and R2 may 

occur ±1 error due to the asynchronous in three oscillators. 



 

 - 24 -

3.3 Design of Digitally Controlled Oscillator 

 

Fig. 3.3: The architecture of the DCO. 

OUT_CLK

DCO_CODE 9

RRO_CLK

RROCNT 0 1 2 ... 9 0 1 ... 9 1 22 0 ...

 

Fig. 3.4: Timing diagram of the DCO. 

 

The proposed DCO architecture is shown in Fig. 3.3 [46] and Fig. 3.4 shows the timing 

diagram of the DCO. The output of the RRO triggers the DCO counter, and when the output 

value of the DCO counter equals to the input control code (DCO_CODE), a pulse is 

generated, and then the DCO counter is reset. To generate the output clock with a 50% duty 

cycle, a divided-by-2 circuit is added before output. The output frequency of the DCO can 

be expressed as follows by Eq. 3.5. 

 (Eq. 3.5) 
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where PRRO(P,V,T) is the period of the RRO, and FDCO is the output frequency of the DCO. 

The period of RRO is easily affected by PVT variations, thus the input control code 

(DCO_CODE) can be used to adjust the output frequency with PVT variations. 

3.4 Cell Selection Rules for Delay Ratio Estimator 

 

Fig. 3.5: Flow chart of how to choose cells from the cell library. 

Fig. 3.5 shows the cell selection flow chart for RDC, CDC1, and CDC2. At first, any 

three logic cells are selected from the standard cell library to build up the delay ratio 

estimator DRE shown in Fig.3.1. 

Subsequently, we need to perform SPICE simulation of the DRE with PVT variations 

to obtain delay ratios, R1(P,V,T) and R2(P,V,T). In this chapter, the voltage varies from V1 

to V5 (V1=0.90V, V2=0.95V, V3=1.00V, V4=1.05V, and V5=1.10V), and temperature varies 

from T1 to T4, (T1=0ºC, T2=25ºC, T3=50ºC, and T4=75ºC).  

In addition, the process variations include typical process corner (TT), best process 

corner (FF), and worst process corner (SS). Therefore, it needs to simulate the DRE in 

totally 60=(3*5*4) different P,V,T combinations. 
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 (Eq. 3.6) 

 (Eq. 3.7) 

 (Eq. 3.8) 

 (Eq. 3.9) 

 (Eq. 3.10) 

 (Eq. 3.11) 

 (Eq. 3.12) 

 (Eq. 3.13) 

The DRE should be simulated with different process corners. In Eq. 3.10, GR1 of the 

current DRE is defined as the summation of ∆TTR1, ∆SSR1, and ∆FFR1, where ∆TTR1, ∆SSR1, 

and ∆FFR1 are the summation of the R1(V,T) curve spacing in typical process corner, worst 

process corner, and best process corner, respectively. 

Similarly, GR2 of the current DRE is defined as the summation of ∆TTR2, ∆SSR2, and 

∆FFR2, where ∆TTR2, ∆SSR2, and ∆FFR2 are the summation of the R2(V,T) curve spacing in 

typical process corner, worst process corner, and best process corner, respectively. In Eq. 

3.12, SR1 is the standard deviation of ∆TTR1, ∆SSR1, and ∆FFR1, and SR2 is the standard 

deviation of ∆TTR2, ∆SSR2, and ∆FFR2.  

We need to compute GR1, GR2, SR1, and SR2 all possible cell combinations, and the cell 

combination with largest values of GR1 and GR2, and smallest values of SR1, SR2 is the best 

choice for design the DRE. However, if we cannot find this best choice, the cell 

combination with a larger GR1value and smaller SR1 value is a better choice. In this chapter, 

we use a 90nm cell library to implement the DRE, and the best cell combination is 
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(AND3X1, NAND4XL, DLY1X1) for (RDC, CDC1, CDC2). 

3.5 System Architecture 

The proposed on-chip ring oscillator architecture which uses the relative reference 

modeling is shown in Fig. 3.7 [46], and Fig. 3.8 shows the timing diagram of this system 

architecture. It is composed of a delay ratio estimator (DRE), a voltage classifier, a 

temperature classifier, a linear calculator, and a digitally controlled oscillator (DCO). The 

DRE estimates the R1(V,T) and the R2(V,T) at chip run time under voltage and temperature 

variations.  

In this chapter, we need to measure the values of R1(V,T), R2(V,T), and PRRO(V,T) 

with five different voltages (V1 to V5) and four different temperatures (T1 to T4). Therefore, 

it needs to measure the values of R1(V,T), R2(V,T), and PRRO(V,T) in totally 20 different 

(V,T) cases. 

 

Fig. 3.7: System architecture of on-chip oscillator. 
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Fig. 3.8: Timing diagram of the System architecture. 

The maximum value and minimum value of R1(Vn, T) at voltage Vn with temperature 

variations (T1 to T4) will be found in the off-chip process, and are stored as R1MAX(Vn) and 

R1MIN(Vn), where Vn is V1 to V5. Similarly, the maximum value and minimum value of 

R2(V, Tn) at temperature Tn with voltage variations (V1 to V5) will be found in the off-chip 

process, and are stored as R2MAX(Tn) and R2MIN(Tn), where Tn is T1 to T4.  

In the off-chip process, we perform the linear regression on the R2(Vn, T) versus 

DCO_CODE at voltage Vn to obtain the coefficients a(Vn) and b(Vn), where Vn is V1 to V5. 

In addition, we also perform the linear regression on the R1(V, Tn) versus DCO_CODE at 

temperature Tn to obtain the coefficients c(Tn) and d(Tn), where Tn is T1 to T4. Thus there 

are totally 18 coefficients stored in the linear calculator for further voltage and temperature 

compensation at chip run time. 

When the values of R1MAX(Vn), R1MIN(Vn), R2MAX(Tn), and R2MIN(Tn), a(Vn), b(Vn), 

c(Tn), and d(Tn) for V1 to V5 and T1 to T4 are determined in the off-chip process, the 
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proposed on-chip oscillator are now ready for generating the required target frequency 

(FDCO).  

At chip run time, the DRE estimates R1(V,T) and R2(V,T) with an unknown supply 

voltage (V) and an unknown operation temperature (T). The voltage classifier uses the 

R1MAX(Vn) and R1MIN(Vn) to roughly estimate the unknown supply voltage. For example, if 

R1(V,T) is smaller than R1MAX(V2) but is larger than R1MIN(V2), and then, the current 

supply voltage can be estimated as V2. The temperature classifier uses the R2MAX(Tn) and 

R2MIN(Tn) to roughly estimate the unknown operation temperature. For example, if R2(V,T) 

is smaller than R2MAX(T3) but is larger than R2MIN(T3), and then, the current operation 

temperature can be estimated as T3. Then, the linear calculator uses Eq. 3.14 and Eq. 3.15 to 

calculate two DCO control codes (VCODE and TCODE). Finally, the DCO control code for the 

DCO is the average of the VCODE and TCODE as follows Eq. 3.16. 

 (Eq. 3.14) 

 (Eq. 3.15) 

 (Eq. 3.16) 

In some special cases, for example, if R1(V,T) is smaller than R1MIN(V3) but is larger 

than R1MAX(V2), the voltage classifier can only determine the unknown supply voltage is 

between V2 and V3. In this case, the VCODE can be expressed as Eq. 3.17. Similarly, if the 

temperature classifier determines the unknown operation temperature is between T2 and T3, 

the TCODE can be expressed as Eq. 3.18. 

 (Eq. 3.17) 

 (Eq. 3.18) 
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3.6 Experimental Results 

The proposed on-chip oscillator circuit is implemented in a standard 90nm 1P9M 

CMOS process. The operating voltage ranges from 0.90V to 1.10V, and temperature range 

is from 0ºC to 75ºC. The layout of the test chip is shown in Fig. 3.9. The active area is 

180μm×180μm, and chip area including I/O pads is 830μm×830μm. 

 

Fig. 3.9: Layout of the test chip. 

Figs. 3.10 and 3.11 show the output frequency of the proposed on-chip oscillator with 

PVT variations. The target frequency is 5MHz. The frequency error of the proposed on-chip 

oscillator with temperature variations is 0.21% in typical process corner. The maximum 

frequency error of the proposed design with voltage variations is 0.97% in typical process 

corner. The maximum output frequency error with PVT variations ranges from -2.83% to 

+2.49%. 
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3.7 Summary of the Proposed CBOCSO with 

Multi-Point Calibration 

In this chapter, a 5MHz cell-based on-chip silicon oscillator is presented. The 

maximum frequency error with temperature and voltage variations are 0.21% and 0.97%, 

respectively. 

The proposed on-chip oscillator with a relative modeling uses the voltage and 

temperature classifier to roughly estimate the supply voltage and operation temperature at 

chip run time. 

Therefore, the frequency error can be significant reduced by a linear equation-based 

compensation approach. The proposed design can be implemented by standard cells, and we 

also propose the cell selection rules to choose the cells for the delay ratio estimator. As a 

result, the proposed design provides a systematic way to automatically generate the on-chip 

oscillator with PVT variations tolerance. Thus the proposed design can operate with a low 

supply voltage, and is very suitable for low-power and low-cost system-on-a-chip 

application. 

However, in this version, we need to perform multi-point calibration after chip 

fabrication. Thus in the chapter 4, we proposed a new version design with only four-point 

calibration to reduce the testing cost. 
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Chapter 4 

Cell-Based On-Chip Silicon Oscillator with 

Four-point calibration 

4.1 Design of Delay Ratio Estimator 

The block diagram of the proposed delay ratio estimator (DRE) is shown in Fig. 4.1 

and 4.2 show the timing diagram of the DRE. In chapter 3, the frequency of RRO, CRO1 

and CRO2 of DRE are set to 1.0 GHz and the value of NTIME is set to 2047. In this chapter, 

the frequencies of RRO, CRO1 and CRO2 of DRE are slow down to about 200MHz for 

reducing power consumption and the value of NTIME is set to 1023. 

 

Fig. 4.1: The architecture of delay ratio estimator. 
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Fig. 4.2: Timing diagram of the delay ratio estimator. 

4.2 Design of Fine Tune Delay line 

In chapter 3, the frequency error of the period cell-based on-chip silicon oscillator 

(CBOCSO) with multi-points calibration is from -2.83% to +2.49%. 

 

Fig. 4.3: The proposed fine delay line. 

In order to decrease the output frequency error of the CBOCSO, it is necessary to 

improve the digitally controlled oscillator (DCO) resolution. Thus, we propose a fine-tuning 

circuit [36] which is design with standard cells as shown in Fig. 4.3 and add it to the 

proposed DCO. This fine-tuning circuit consists of 512 lattice delay unit (LDU). The LDU 

is composed with four NAND-gates, and this LDU can achieve the same function with one 
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NAND-gate and one inverted-multiplexer. With this approach, the fine-tuning resolution 

can enhance to two NAND-gates delay time, and the intrinsic delay is three NAND-gates 

delay time. In addition, the NAND-gate transition time is very small because it can be 

composed with only four transistors. This technique can make the DCO output frequency 

becomes more linearly.  

4.3 Design of Digital Control Oscillator 

The modified DCO architecture is shown in Fig. 4.4, and Fig. 4.5 shows the timing 

diagram of the DCO. The output of the CRO2 triggers the DCO counter, and when the 

output value of the DCO counter equals to the input control code (COARSE_CODE), the 

signal cdc_in of fine tune circuit will set to high. According to the fine code (0 to 511), the 

fine tune delay circuit can insert different delay between cdc_in and cdc_out. After the fine 

tune delay circuit, the cdc_out pulse will trigger a D flip-flop, a pulse is generated, and then 

the DCO counter.  

 

Fig. 4.4: The architecture of the DCO includes coarse-tuning and fine-tuning stages. 
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Fig. 4.5: Timing diagram of the DCO coarse-tuning and fine-tuning stages. 

To generate the output clock with a 50% duty cycle, a divided-by-2 circuit is added 

before output. The output frequency of the DCO can be expressed as follows by Eq. 4.1. 

(Eq. 4.1) 

where PCRO2(P,V,T) is the period of the CRO2, PLDU(P,V,T) is the delay time of the two 

NANDs delay cell which is fine tuning resolution, intrinsic delay is delay time of the three 

NANDs delay cell, and FDCO is the output frequency of the DCO. The period of CRO2 and 

fine tuning delay circuit are easily affected by PVT variations with a fixed 

COARSE_CODE. Thus, the input control code (Fine_code) can be used to adjust the output 

frequency with PVT variations.  

4.4 Cell Selection Rules for Delay Ratio Estimator 

Fig. 4.6 shows the cell selection flow chart for RDC, CDC1, and CDC2. At first, any 

three logic cells are selected from the standard cell library to build up the delay ratio 

estimator. 
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Fig. 4.6: Flow chart of how to choose cells from the cell library. 

Subsequently, we need to perform SPICE simulation of the DRE with PVT variations 

to obtain the delay ratios, R1(P,V,T) and R2(P,V,T). In this chapter, the voltage varies from 

V1 to V9 (V1=0.900V, V2=0.925V, V3=0.950V, V4=0.975V, V5=1.000V, V6=1.025V, 

V7=1.050V, V8=1.075V, and V9=1.100V), and temperature varies from T1 to T4, (T1=0ºC, 

T2=25ºC, T3=50ºC, and T4=75ºC). In addition, the process variations include typical process 

corner (TT), best process corner (FF), and worst process corner (SS). Therefore, it needs to 

simulate the DRE in totally 108=(3*9*4) different P,V,T combinations. 

The cell selection rule is different from section 3.4 and we add a rule for cell selection. 

The new rule is that the R1(P,V,T) values is required to be monotonically increasing or 

decreasing with temperature variations at different voltages. With temperature variations, 

the R1(P,V,T) curves may have overlap region at different voltages. In order to solve this 

problem, we can narrow down the temperature range, but we will not do it. Instead, we 

improve the cell selection rules. Thus we can use the estimated temperature to estimate 

the supply voltage. 
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Fig. 4.7 shows the delay ratios R1(V,T) versus temperature at different voltage in 

typical process. ∆TTR1n of Eq. 4.2 means the spacing between the delay ratio R1 curves 

with voltage Vn and voltage Vn+1 in typical process corner. If the delay ratios R1(V, T) is not  

monotonically increasing with temperature variation at different voltage, the delay ratio R1 

cell combination can be dropped. 

Fig. 4.8 shows the delay ratios R2(V,T) versus voltage at different temperature in 

typical process. In Fig. 4.8, with a fixed temperature value, the delay ratio R2 varies with 

voltage variations. ∆TTR2j of Eq. 4.3 means the spacing between the R2 delay ratio curves 

with temperature Tj and temperature Tj+1 in typical process corner. The values of ∆TTR1n 

and ∆TTR2j should be greater than zero, so that the delay ratios R1(V,T) and R2(V,T) can be 

used to roughly estimate the supply voltage and operation temperature at chip run time. 

Therefore, if the DRE fails to meet this requirement, the current cell combinations are 

dropped, and then, we need to choose other cell combinations and repeat the SPICE 

simulation of the DRE again. 

 (Eq. 4.2) 

 (Eq. 4.3) 

 (Eq. 4.4) 

 (Eq. 4.5) 

 (Eq. 4.6) 

 (Eq. 4.7) 

 (Eq. 4.8) 

 (Eq. 4.9) 
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The DRE should be simulated with different process corners. In Eq. 4.6, GR1 of the 

current DRE is defined as the summation of ∆TTR1, ∆SSR1, and ∆FFR1, where ∆TTR1, ∆SSR1, 

and ∆FFR1 are the summation of the R1(V,T) curve spacing in typical process corner, worst 

process corner, and best process corner, respectively. 

Similarly, GR2 of the current DRE is defined as the summation of ∆TTR2, ∆SSR2, and 

∆FFR2, where ∆TTR2, ∆SSR2, and ∆FFR2 are the summation of the R2(V,T) curve spacing in 

typical process corner, worst process corner, and best process corner, respectively. In Eq. 4.8, 

SR1 is the standard deviation of ∆TTR1, ∆SSR1, and ∆FFR1, and SR2 is the standard deviation 

of ∆TTR2, ∆SSR2, and ∆FFR2. We need to compute GR1, GR2, SR1, and SR2 of all possible cell 

combinations, and the cell combination with largest values of GR1 and GR2, and smallest 

values of SR1, SR2 is the best choice for design the DRE. However, if we cannot find this 

best choice, the cell combination with a larger GR1value and smaller SR1 value is a better 

choice. In this chapter, we use a 90nm cell library to implement the DRE, and the best cell 

combination is (MXI4X2, NOR4BBX1,NAND3BXL) for (RDC, CDC1, CDC2). 

4.5 Algorithm of Four-point Calibration 

In this section, the voltage varies from V1 to V9 (V1=0.900V, V2=0.925V, V3=0.950V, 

V4=0.975V, V5=1.000V, V6=1.025V, V7=1.050V, V8=1.075V, and V9=1.100V), and 

temperature varies from T1 to T4, (T1=0ºC, T2=25ºC, T3=50ºC, and T4=75ºC). The DRE 

estimates the R1(V,T) and the R2(V,T) at chip run time under voltage and temperature 

variations. The voltage classifier will compare R1(V,T) and R1det(Vn) to determine which 

R1det(Vn) is close to R1(V,T). For example, if the R1det(V3) is closed to R1(V,T), the voltage 

classifier estimates supply voltage is V3. Similarly, The temperature classifier will compare 

R2(V,T) and R2det(Tn), to determine which R2det(Tn) is close to R2(V,T). For example, if the 

R2det(T1) is closed to R2(V,T), the operating classifier estimates operating temperature is T1. 
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 (Eq. 4.12) 

 (Eq. 4.13) 

 (Eq. 4.14) 

 (Eq. 4.15) 

 (Eq. 4.16) 

 (Eq. 4.17) 

 (Eq. 4.18) 

Then R1det(Vn) has been calculated. At chip run time, the voltage classifier will 

compare R1(V,T) and R1det(Vn) and determines which R1det(Vn) is closed to R1(V,T). For 

example, if the R1det(V8) is closed to R1(V,T), the voltage classifier estimates supply 

voltage is V8. 

We need to measure the DCO period of OUT_CLK at two fine_codes: 0 and 511 with 

coarse code(∆code) to obtain coarse-tuning resolution of the DCO at (V3,T2), (V3,T4), 

(V7,T1), (V7,T3). The period of OUT_CLK with fine tune delay circuit set to maximum 

and minimum delay can be expressed as Eq. 4.19 and Eq. 4.20. 

 

      (Eq. 4.19) 

   (Eq. 4.20) 
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Table 4.1: The terms in Eq. 4.19 to Eq. 4.25. 

name description 

FINERES fine tuning resolution  

FINEINT 
intrinsic delay of the fine-tuning 

circuit 

CRES coarse tuning resolution 

∆CCODE coarse code by simulation 

CCODE coarse code by calculation 

MAX_POUT_CLK 
period with max fine tuning control 

code 

MIN_POUT_CLK 
Period with min fine tuning control 

code 

Table 4.1 shows the terms used in Eq. 4.19 to Eq. 4.25. When we have the maximum 

period and the minimum period of OUT_CLK with coarse code(∆co de), we can calculate 

the corresponding on-chip oscillator control code (Fine_code). The control code can be 

expressed as Eq. 4.21 to Eq. 4.25. We can use the maximum period and the minimum period 

of OUT_CLK to calculate the fine tuning resolution. In Eq. 4.21, the fine tuning resolution 

is two NAND delay time as indicated in Fig. 4.3. In Eq. 4.22, we use the simulation coarse 

code (∆CCODE) to calculate the coarse tuning resolution. The intrinsic delay of the 

fine-tuning circuit is three NAND delay fine as indicated in Fig.4.3. Thus, the intrinsic 

delay of fine-tuning circuit can be expressed as Eq. 4.23. In Eq. 4.24, the coarse code 

(CCODE) calculation will produce decimal point. Thus, we will eliminate the decimal point 

by Gaussian function. 

         (Eq. 4.21) 

                 (Eq. 4.22) 

                  (Eq. 4.23) 
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After computation of the coefficients a(V3), b(V3), a(V7) and b(V7), the coefficients of 

a(V1) to a(V9) and b(V1) to b(V9) can be calculated by interpolation and extrapolation 

method. The coefficients of a(V1) to a(V9) and b(V1) to b(V9) can be calculated as Eq. 4.26 

to Eq. 4.32. 

 (Eq. 4.26) 

 (Eq. 4.27) 

 (Eq. 4.28) 

 (Eq. 4.29) 

 (Eq. 4.30) 

 (Eq. 4.31) 

 (Eq. 4.32) 

4.6 System Architecture 

The proposed on-chip ring oscillator architecture which uses the relative reference 

modeling with four-point calibration is shown in Fig. 4.15, and Fig. 4.16 shows the timing 

diagram of this system architecture. It is composed of a delay ratio estimator (DRE), a 

voltage classifier, a temperature classifier, a linear calculator, and a digitally controlled 

oscillator (DCO). The DRE estimates the R1(V,T) and the R2(V,T) at chip run time under 

voltage and temperature variations. 
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Fig. 4.15: System architecture of on-chip oscillator at chip run time. 

 

Fig. 4.16: Timing diagram of the system architecture at run time. 

When the values of R1det(Vn), R2det(Tj), a(Vn), and b(Vn) for V1 to V9 and T1 to T4 are 

determined in the off-chip process, the proposed on-chip oscillator are now ready for 

generating the target frequency (FDCO) at 5MHz. 

At chip run time, the DRE estimates R1(V,T) and R2(V,T) with a unknown supply 

voltage (V) and a unknown operation temperature (T). The voltage classifier uses the 

R1det(Vn) to roughly estimate the supply voltage. The temperature classifier uses the R2det(Tj) 

to roughly estimate the operation temperature. When the voltage classifier and temperature 
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classifier determine the current supply voltage and operation temperature, the linear 

calculator uses Eq. 4.33 to calculate DCO control codes (fine_code). Than the DCO are 

controlled by the coarse code and the fine code to output the required frequency with 

voltage and temperature variations. 

   (Eq. 4.33) 

Fig. 4.17 shows the flow chart of the voltage classifier. The R1(V,T) curves maybe 

overlap at (Vn,T3) and (Vn+1,T0). Thus, it cause voltage estimation problem. However, from 

R2(V,T) curve, we can roughly estimate the operation temperature and in the cell selection 

rules, R1(V, T) should have a monotonic response. Then with the estimated temperature 

information, we can solve the problem when R1(V,T) curves overlap at (Vn,T3) and 

(Vn+1,T0).Thus, the supply voltage can be estimated more accurately. 

 If the distance between R1(V, T) and R1det(Vn) is shorter than the distance between 

R1(V, T) and R1det(Vn+1) as shown in Fig 4.11, the current supply voltage can be estimated 

as Vn. Similarly, if the distance between R1(V, T) and R1det(Vn+1) is shorter than the 

distance between R1(V, T) and R1det(Vn), the current supply voltage can be estimated as 

Vn+1. 

 

Fig. 4.17: Flow chart of the voltage classifier. 
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In addition, if the distance between R1(V, T) and R1det(Vn) is equal to the distance 

between R1(V, T) and R1det(Vn+1), we need to use R2(V,T) value to determine the current 

supply voltage. In this case, if the temperature classifier estimates current operation 

temperature is T3, the current supply voltage can be estimated as Vn. However, if the 

temperature classifier estimates current operation temperature is T0, the current supply 

voltage can be estimated as Vn+1. In some special cases, if the temperature classifier 

estimates current operation temperature is T2(25ºC0 to T3(50 ºC), the current supply voltage 

can be estimated as Eq. 4.34 and the fine_code can be expressed as Eq. 4.35. 

         (Eq. 4.34) 

 (Eq. 4.35) 

For example, if the distance between R1(V, T) and R1det(V5) is equal to the distance 

between R1(V, T) and R1det(V6), and temperature classifier estimates current operation 

temperature is T4(75ºC, the current supply voltage can be estimated as V5. Under the same 

conditions, if the temperature classifier estimates current operation temperature is 0ºC, the 

current supply voltage can be estimated as V6, if the temperature classifier estimates current 

operation temperature is T2(25ºC0 to T3(50 ºC), the current supply voltage can be estimated 

as Eq. 4.36 and the fine_code can be expressed as Eq. 4.37 

         (Eq. 4.36) 

     (Eq. 4.37) 
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4.7 Experimental Results 

The proposed on-chip oscillator circuit is implemented in a standard 90nm 1P9M 

CMOS process. The operating voltage ranges from 0.90V to 1.10V, and the temperature 

ranges from 0ºC to 75ºC. The layout of the test chip is shown in Fig. 4.18. The active area is 

250μm×200μm, and chip area including I/O pads is 815μm×765μm. 

 

Fig. 4.18: Layout of the test chip. 

Figs. 4.19 and 4.20 show the simulation results of the output frequency of the proposed 

on-chip oscillator with PVT variations. The target output frequency is 5MHz. The frequency 

error of the proposed on-chip oscillator with temperature variations is 0.28% in typical 

process corner. The maximum frequency error of the proposed design with voltage 

variations is 0.56% in typical process corner. The maximum output frequency error with 

PVT variations ranges from -1.36% to +0.91%. 



Fig. 4.1

Fig. 4.2

9: The simu

20: The simu

ulation resu

ulation resu

- 54 -

ults output fr

voltage)

ults output fr

temperatu

-

frequency w

). 

frequency w

ure). 

with PVT var

with PVT var

riations (x-a

riations (x-a

 

axis is 

 

axis is 



 

 - 55 -

4.8 Comparison of Proposed Two CBOCSO 

In chapter 3 and chapter 4, the proposed CBOCSO with multi-points calibration and 

with four-point calibration are introduced, respectively. In this section, we summarize the 

difference between them. 

In proposed CBOCSO with multi-points calibration (MPC) and the CBOCSO with 

four-point calibration (FPC), three are both composed of a delay ratio estimator (DRE), a 

voltage classifier, a temperature classifier, a linear calculator, and a digitally controlled 

oscillator (DCO). 

Table 4.2: Comparison between MPC and FPC 

Item 

with multi-points calibration 

(MPC) 

with four-point calibration 

 (FPC) 

Oscillator type 

Only coarse delay line 

(cyclic DCO) 

Coarse and fine delay line 

Combination 

Frequency of DRE  MPC > FPC 

Power Consumption MPC > FPC 

Area MPC < FPC 

Calibration costs  MPC > FPC 

Frequency Error  MPC > FPC 

Table 4.1 shows the comparisons between MPC and FPC. In the DRE circuit, if the 

frequency of RRO, CRO1 and CRO2 runs too fast, the power consumption of the DRE will 

be very large. In the MPC, we use a DCO with only a coarse delay line. In order to make the 

DCO has a fine resolution, the frequency of RRO should be at high frequency. However, 

when the frequency goes up, the power consumption is also increased. In the FPC, we slow 

down the frequency of RRO, CRO1 and CRO2, and thus the power consumption of DRE 

can be greatly reduced. However, the resolution of DCO will be worse. Thus, we spend 

extra area in the DCO circuit by adding the fine tune delay circuit, so that DCO has a better 
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resolution. 

In the MPC, we need to measure many voltage and temperature points, and thus the 

cost of calibration is too high. In the FPC, we proposed a four-point calibration with 

interpolation and extrapolation, the cost of calibration can be greatly reduced. In addition, 

we have improved the algorithm of voltage classifier and the temperature classifier, the 

voltage and temperature can be determined more accurately. So even with four-point 

calibration, the frequency error of the FPC is better than the MPC. 

IF we perform multi-point calibration in the FPC and named is as FPCCM. Figs. 4.21 

and 4.22 show the output frequency of the FPCCM with PVT variations. With the same 

setting with FPC, the frequency error of the FPCCM with temperature variations can be 

reduced to 0.18% in typical process corner. The maximum frequency error of the FPCCM 

with voltage variations can be also reduced to 0.39% in typical process corner. The 

maximum output frequency error of the FPCCM with PVT variations ranges from -0.92% 

to +0.85%. 

Table 4.3: Comparison between FPC and FPCCM 

Parameter FPC FPCCM

Temp. Range 0 ~ 75 

Vari. with Temp. 0.28% 0.18% 

VDD Range 0.9~1.1 

Vari. with VDD 0.56% 0.39% 

Max error % 1.36% 0.92% 

Table 4.3 shows the comparisons between FPC and FPCCM. In the FPCCM, although 

we increase the calibration point but the frequency error is not greatly reduced. The DRE 

circuit calculates values of R1(V,T) and R2(V,T), these two values may generate ±1 

calculation error. Temperature variations is not very linear, the linear calculator uses 

multi-point or two-point linear regression results would be similar. The FPCCM or the FPC 
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Chapter 5 

Circuit Measurement Results 

5.1 Specifications 

 

Fig. 5.1: Microphotograph diagram of the CBOCSO. 

The proposed on-chip oscillator circuit with four-point calibration is fabricated in a 

standard 90nm 1P9M CMOS process. The operating voltage ranges from 0.90V to 1.10V, 

and temperature range is from 0ºC to 75ºC. The microphotograph of the test chip is shown 

in Fig. 5.1. The chip is consisted of a coefficient register, a delay ratio estimator (DRE), a 

voltage classifier, a temperature classifier, a linear calculator, and a digitally controlled 

oscillator (DCO).The active area is 180μm×180μm, and chip area including I/O pads is 

830μm×830μm. The gate count is about 11396. 
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Fig. 5.2 shows the chip floor plan and I/O plan of the proposed CBOCSO with 

four-point calibration, and the pad description is shown in Table 5.1. The input pad 

I_RESET will reset the system pin. The I_OUT_CLK_0 is the CBOCSO DCO output pin, 

which output frequency should be kept at the 5MHz with PVT variations. 
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Fig. 5.2: Chip floor plan and I/O plan. 

 

Table 5.1: The I/O PAD information of CBOCSO. 

Pin Number Pin Name Input/Output Information 

1 I_G_IN_1 Input Input value pin[1] 
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2 VSSP1 Input Pad Power 

3 I_G_IN_2 Input Input value pin[2] 

4 I_G_IN_3 Input Input value pin[3] 

5 VDDP2 Input Pad Power 

6 I_MODE_0 Input Input / output Mode select [0] 

7 VSSC0 Input Core Power 

8 VSSP2 Input Pad Power 

9 I_EXT_REF_CLK Input External CLK 

10 VDDC0 Input Core Power 

11 VDDP3 Input Pad Power 

12 I_RESET Input Chip Reset Pin 

13 I_MODE_1 Input Input / output Mode select [1] 

14 VSSP3 Input Pad Power 

15 I_MODE_2 Input Input / output Mode select [2] 

16 I_MODE_3 Input Input / output Mode select [3] 

17 VDDP4 Input Pad Power 

18 I_MODE_4 Input Input / output Mode select [4] 

19 I_MODE_5 Input Input / output Mode select [5] 

20 I_MODE_6 Input Input / output Mode select [6] 

21 VSSP4 Input Pad Power 

22 I_G_OUT_0 Output output value pin[0] 

23 VDDC1 Input Core Power 

24 VDDP0 Input Pad Power 

25 I_OUT_CLK_0 Output DCO output clock 

26 VSSC1 Input Core Power 
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27 VSSP0 Input Pad Power 

28 I_G_OUT_1 Output output value pin[1] 

29 I_G_OUT_2 Output output value pin[2] 

30 I_G_OUT_3 Output output value pin[3] 

31 VDDP1 Input Pad Power 

32 I_G_IN_0 Input Input value pin[3] 

In addition, the input Pad I_G_IN_0 to I_G_IN_3 are the coefficient register input pins, 

and the output Pad I_G_OUT_0 to I_G_OUT_3 are the coefficient register output pins. The 

input pad I_MODE_0 to I_MODE_6 represents the input mode, and the input mode can be 

0 to 127. We use different code of mode[6:0] to input different value through G_IN[3:0]. 

The G_OUT[3:0] used as a debug register value in different mode. 

The Table 5.2 shows the corresponding inputs and outputs in each mode, which 

including the coefficients of the linear calculator. There are totally 102 modes can be used. 

The input pad I_EXT_REF_CLK is an external reference clock. The circuit input 

coefficients required a reference clock. When the coefficients have been input, the circuit 

starts operation, the input pad I_EXT_REF_CLK is not required. 

Table 5.2: The serial pin of mode[6:0] information of CBOCSO. 

mode[6:0] G_IN[3:0] G_OUT[3:0] 

1 G_IN[3:0] input to Coefficient_A_0.900V[11:8] None 

2 G_IN[3:0] input to Coefficient_A_0.900V[7:4] G_OUT[3:0] print Coefficient_A_0.900V[11:8]

3 G_IN[3:0] input to Coefficient_A_0.900V[3:0] G_OUT[3:0] print Coefficient_A_0.900V[7:4] 

4 G_IN[3:0] input to Coefficient_A_0.925V[11:8] G_OUT[3:0] print Coefficient_A_0.900V[3:0] 

5 G_IN[3:0] input to Coefficient_A_0.925V[7:4] G_OUT[3:0] print Coefficient_A_0.925V[11:8]

6 G_IN[3:0] input to Coefficient_A_0.925V[3:0] G_OUT[3:0] print Coefficient_A_0.925V[7:4] 
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7 G_IN[3:0] input to Coefficient_A_0.950V[11:8] G_OUT[3:0] print Coefficient_A_0.925V[3:0] 

8 G_IN[3:0] input to Coefficient_A_0.950V[7:4] G_OUT[3:0] print Coefficient_A_0.950V[11:8]

9 G_IN[3:0] input to Coefficient_A_0.950V[3:0] G_OUT[3:0] print Coefficient_A_0.950V[7:4] 

10 G_IN[3:0] input to Coefficient_A_0.975V[11:8] G_OUT[3:0] print Coefficient_A_0.950V[3:0] 

11 G_IN[3:0] input to Coefficient_A_0.975V[7:4] G_OUT[3:0] print Coefficient_A_0.975V[11:8]

12 G_IN[3:0] input to Coefficient_A_0.975V[3:0] G_OUT[3:0] print Coefficient_A_0.975V[7:4] 

13 G_IN[3:0] input to Coefficient_A_1.000V[11:8] G_OUT[3:0] print Coefficient_A_0.975V[3:0] 

14 G_IN[3:0] input to Coefficient_A_1.000V[7:4] G_OUT[3:0] print Coefficient_A_1.000V[11:8]

15 G_IN[3:0] input to Coefficient_A_1.000V[3:0] G_OUT[3:0] print Coefficient_A_1.000V[7:4] 

16 G_IN[3:0] input to Coefficient_A_1.025V[11:8] G_OUT[3:0] print Coefficient_A_1.000V[3:0] 

17 G_IN[3:0] input to Coefficient_A_1.025V[7:4] G_OUT[3:0] print Coefficient_A_1.025V[11:8]

18 G_IN[3:0] input to Coefficient_A_1.025V[3:0] G_OUT[3:0] print Coefficient_A_1.025V[7:4] 

19 G_IN[3:0] input to Coefficient_A_1.050V[11:8] G_OUT[3:0] print Coefficient_A_1.025V[3:0] 

20 G_IN[3:0] input to Coefficient_A_1.050V[7:4] G_OUT[3:0] print Coefficient_A_1.050V[11:8]

21 G_IN[3:0] input to Coefficient_A_1.050V[3:0] G_OUT[3:0] print Coefficient_A_1.050V[7:4] 

22 G_IN[3:0] input to Coefficient_A_1.075V[11:8] G_OUT[3:0] print Coefficient_A_1.050V[3:0] 

23 G_IN[3:0] input to Coefficient_A_1.075V[7:4] G_OUT[3:0] print Coefficient_A_1.075V[11:8]

24 G_IN[3:0] input to Coefficient_A_1.075V[3:0] G_OUT[3:0] print Coefficient_A_1.075V[7:4] 

25 G_IN[3:0] input to Coefficient_A_1.100V[11:8] G_OUT[3:0] print Coefficient_A_1.075V[3:0] 

26 G_IN[3:0] input to Coefficient_A_1.100V[7:4] G_OUT[3:0] print Coefficient_A_1.100V[11:8]

27 G_IN[3:0] input to Coefficient_A_1.100V[3:0] G_OUT[3:0] print Coefficient_A_1.100V[7:4] 

28 G_IN[3:0] input to Coefficient_B_0.900V[11:8] G_OUT[3:0] print Coefficient_A_1.100V[3:0] 

29 G_IN[3:0] input to Coefficient_B_0.900V[7:4] G_OUT[3:0] print Coefficient_B_0.900V[11:8]

30 G_IN[3:0] input to Coefficient_B_0.900V[3:0] G_OUT[3:0] print Coefficient_B_0.900V[7:4] 

31 G_IN[3:0] input to Coefficient_B_0.925V[11:8] G_OUT[3:0] print Coefficient_B_0.900V[3:0] 
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32 G_IN[3:0] input to Coefficient_B_0.925V[7:4] G_OUT[3:0] print Coefficient_B_0.925V[11:8]

33 G_IN[3:0] input to Coefficient_B_0.925V[3:0] G_OUT[3:0] print Coefficient_B_0.925V[7:4] 

34 G_IN[3:0] input to Coefficient_B_0.950V[11:8] G_OUT[3:0] print Coefficient_B_0.925V[3:0] 

35 G_IN[3:0] input to Coefficient_B_0.950V[7:4] G_OUT[3:0] print Coefficient_B_0.950V[11:8]

36 G_IN[3:0] input to Coefficient_B_0.950V[3:0] G_OUT[3:0] print Coefficient_B_0.950V[7:4] 

37 G_IN[3:0] input to Coefficient_B_0.975V[11:8] G_OUT[3:0] print Coefficient_B_0.950V[3:0] 

38 G_IN[3:0] input to Coefficient_B_0.975V[7:4] G_OUT[3:0] print Coefficient_B_0.975V[11:8]

39 G_IN[3:0] input to Coefficient_B_0.975V[3:0] G_OUT[3:0] print Coefficient_B_0.975V[7:4] 

40 G_IN[3:0] input to Coefficient_B_1.000V[11:8] G_OUT[3:0] print Coefficient_B_0.975V[3:0] 

41 G_IN[3:0] input to Coefficient_B_1.000V[7:4] G_OUT[3:0] print Coefficient_B_1.000V[11:8]

42 G_IN[3:0] input to Coefficient_B_1.000V[3:0] G_OUT[3:0] print Coefficient_B_1.000V[7:4] 

43 G_IN[3:0] input to Coefficient_B_1.025V[11:8] G_OUT[3:0] print Coefficient_B_1.000V[3:0] 

44 G_IN[3:0] input to Coefficient_B_1.025V[7:4] G_OUT[3:0] print Coefficient_B_1.025V[11:8]

45 G_IN[3:0] input to Coefficient_B_1.025V[3:0] G_OUT[3:0] print Coefficient_B_1.025V[7:4] 

46 G_IN[3:0] input to Coefficient_B_1.050V[11:8] G_OUT[3:0] print Coefficient_B_1.025V[3:0] 

47 G_IN[3:0] input to Coefficient_B_1.050V[7:4] G_OUT[3:0] print Coefficient_B_1.050V[11:8]

48 G_IN[3:0] input to Coefficient_B_1.050V[3:0] G_OUT[3:0] print Coefficient_B_1.050V[7:4] 

49 G_IN[3:0] input to Coefficient_B_1.075V[11:8] G_OUT[3:0] print Coefficient_B_1.050V[3:0] 

50 G_IN[3:0] input to Coefficient_B_1.075V[7:4] G_OUT[3:0] print Coefficient_B_1.075V[11:8]

51 G_IN[3:0] input to Coefficient_B_1.075V[3:0] G_OUT[3:0] print Coefficient_B_1.075V[7:4] 

52 G_IN[3:0] input to Coefficient_B_1.100V[11:8] G_OUT[3:0] print Coefficient_B_1.075V[3:0] 

53 G_IN[3:0] input to Coefficient_B_1.100V[7:4] G_OUT[3:0] print Coefficient_B_1.100V[11:8]

54 G_IN[3:0] input to Coefficient_B_1.100V[3:0] G_OUT[3:0] print Coefficient_B_1.100V[7:4] 

55 G_IN[2:0] input to index_R1_0.900V[10:8] G_OUT[3:0] print Coefficient_B_1.100V[3:0] 

56 G_IN[3:0] input to index_R1_0.900V[7:4] G_OUT[3:0] print index_R1_0.900V[10:8] 



 

 - 64 -

57 G_IN[3:0] input to index_R1_0.900V[3:0] G_OUT[3:0] print index_R1_0.900V[7:4] 

58 G_IN[2:0] input to index_R1_0.925V[10:8] G_OUT[3:0] print index_R1_0.900V[3:0] 

59 G_IN[3:0] input to index_R1_0.925V[7:4] G_OUT[3:0] print index_R1_0.925V[10:8] 

60 G_IN[3:0] input to index_R1_0.925V[3:0] G_OUT[3:0] print index_R1_0.925V[7:4] 

61 G_IN[2:0] input to index_R1_0.950V[10:8] G_OUT[3:0] print index_R1_0.925V[3:0] 

62 G_IN[3:0] input to index_R1_0.950V[7:4] G_OUT[3:0] print index_R1_0.950V[10:8] 

63 G_IN[3:0] input to index_R1_0.950V[3:0] G_OUT[3:0] print index_R1_0.950V[7:4] 

64 G_IN[2:0] input to index_R1_0.975V[10:8] G_OUT[3:0] print index_R1_0.950V[3:0] 

65 G_IN[3:0] input to index_R1_0.975V[7:4] G_OUT[3:0] print index_R1_0.975V[10:8] 

66 G_IN[3:0] input to index_R1_0.975V[3:0] G_OUT[3:0] print index_R1_0.975V[7:4] 

67 G_IN[2:0] input to index_R1_1.000V[10:8] G_OUT[3:0] print index_R1_0.975V[3:0] 

68 G_IN[3:0] input to index_R1_1.000V[7:4] G_OUT[3:0] print index_R1_1.000V[10:8] 

69 G_IN[3:0] input to index_R1_1.000V[3:0] G_OUT[3:0] print index_R1_1.000V[7:4] 

70 G_IN[2:0] input to index_R1_1.025V[10:8] G_OUT[3:0] print index_R1_1.000V[3:0] 

71 G_IN[3:0] input to index_R1_1.025V[7:4] G_OUT[3:0] print index_R1_1.025V[10:8] 

72 G_IN[3:0] input to index_R1_1.025V[3:0] G_OUT[3:0] print index_R1_1.025V[7:4] 

73 G_IN[2:0] input to index_R1_1.050V[10:8] G_OUT[3:0] print index_R1_1.025V[3:0] 

74 G_IN[3:0] input to index_R1_1.050V[7:4] G_OUT[3:0] print index_R1_1.050V[10:8] 

75 G_IN[3:0] input to index_R1_1.050V[3:0] G_OUT[3:0] print index_R1_1.050V[7:4] 

76 G_IN[2:0] input to index_R1_1.075V[10:8] G_OUT[3:0] print index_R1_1.050V[3:0] 

77 G_IN[3:0] input to index_R1_1.075V[7:4] G_OUT[3:0] print index_R1_1.075V[10:8] 

78 G_IN[3:0] input to index_R1_1.075V[3:0] G_OUT[3:0] print index_R1_1.075V[7:4] 

79 G_IN[2:0] input to index_R1_1.100V[10:8] G_OUT[3:0] print index_R1_1.075V[3:0] 

80 G_IN[3:0] input to index_R1_1.100V[7:4] G_OUT[3:0] print index_R1_1.100V[10:8] 

81 G_IN[3:0] input to index_R1_1.100V[3:0] G_OUT[3:0] print index_R1_1.100V[7:4] 
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82 G_IN[2:0] input to index_R2_00T[10:8] G_OUT[3:0] print index_R1_1.100V[3:0] 

83 G_IN[3:0] input to index_R2_00T[7:4] G_OUT[3:0] print index_R2_00T[10:8] 

84 G_IN[3:0] input to index_R2_00T[3:0] G_OUT[3:0] print index_R2_00T[7:4] 

85 G_IN[2:0] input to index_R2_25T[10:8] G_OUT[3:0] print index_R2_00T[3:0] 

86 G_IN[3:0] input to index_R2_25T[7:4] G_OUT[3:0] print index_R2_25T[10:8] 

87 G_IN[3:0] input to index_R2_25T[3:0] G_OUT[3:0] print index_R2_25T[7:4] 

88 G_IN[2:0] input to index_R2_50T[10:8] G_OUT[3:0] print index_R2_25T[3:0] 

89 G_IN[3:0] input to index_R2_50T[7:4] G_OUT[3:0] print index_R2_50T[10:8] 

90 G_IN[3:0] input to index_R2_50T[3:0] G_OUT[3:0] print index_R2_50T[7:4] 

91 G_IN[2:0] input to index_R2_75T[10:8] G_OUT[3:0] print index_R2_50T[3:0] 

92 G_IN[3:0] input to index_R2_75T[7:4] G_OUT[3:0] print index_R2_75T[10:8] 

93 G_IN[3:0] input to index_R2_75T[3:0] G_OUT[3:0] print index_R2_75T[7:4] 

94 

G_IN[3]  input to T75_enable 

G_IN[2]  input to T00_enable 

G_IN[1]  input to Half_enable 

G_IN[0]  input to DRE_enable 

G_OUT[3:0] print index_R2_75T[3:0] 

95 G_IN[3:0] input to DCO Coarse code 

G_OUT[3]  print T75_enable 

G_OUT[2]  print T00_enable 

G_OUT[1]  print  Half_enable 

G_OUT[0]  print DRE_enable 

96 None G_OUT[3:0] print DCO Coarse code 

97 None G_OUT[2:0] print DRE Estimate R1[10:8] 

98 None G_OUT[3:0] print DRE Estimate R1[7:4] 

99 None G_OUT[3:0] print DRE Estimate R1[3:0] 

100 None G_OUT[2:0] print DRE Estimate R2[10:8] 
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101 None G_OUT[3:0] print DRE Estimate R2[7:4] 

102 None G_OUT[3:0] print DRE Estimate R2[3:0] 

5.2 Measurement 

Fig. 5.3 shows the measurement environment of the CBOCSO test chip. There are a 

power supply (Agilent E3600), a signal generator (Agilent 81134A), an oscilloscope 

(Agilent 8000 Series), a seeeduino ADK main board, a chip and a test board. The power 

supply provides the Core power and Pad power for CBOCSO, and the Core power is 0.90V 

to 1.10V and the Pad power is 3.3V. The signal generator generates the external input clock 

for the reference clock. The oscilloscope is used for monitoring the frequency of DCO 

output clock waveform. 

 

Fig. 5.3: The measurement environment of the CBOCSO. 

Fig 5.4 shows the Seeeduino ADK Main Board to communicate with the test board. 

Seeeduino ADK Main Board is an Android Open Accessory Development Kit(ADK), with 

general purpose I/O (GPIO) function. The GPIO function can generate digital or analog 
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pluses. The GPIO function of the seeeduino, which providing 3.3V and 5V mode for users. 

We can use the GPIO function of the seeduino, produce a continuous input signal through 

test board and input to our chips. These input data are shown in Table 5.2. 

 

Fig. 5.4: The Seeeduino ADK Main Board to communicate with the chip schematic. 

Figs. 5.5 and 5.6 show the measurement results of three chips, the target frequency is 

5MHz. After four-point calibration mode, the maximum output frequency error with voltage 

and temperature variations ranges from -1.47% to +1.31%. The voltage is from 0.90V to 

1.10V, which step is 0.25V. The temperature is from 0ºC to 75ºC, which step is 25ºC. The 

simulation result of output frequency error is -1.36% to +0.91% with PVT variations. We 

can compare the measurement results and simulation results, there are very close between 

the two results. Thus, we can prove that the CBOCSO with four-point calibration method is 

highly effective. 
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5.3 Comparisons with Recent Research 

Table 5.3 shows the comparisons with the state-of-the-art designs. The power 

consumption when the calibration circuit turns on is 0.61mW. The power consumption of 

the free running DCO is 0.21mW. The calculation circuit can be turned off after calibration. 

This circuit only has a free run DCO. Thus, the average power consumption with 10% 

operation duty cycle can be calculated as 0.61 * 0.1 + 0.21 * 0.9 = 0.25(mW). The 

measurement frequency error of the proposed on-chip oscillator with temperature variations 

is 0.60%, which is smaller than [12][16][27]. Although [21][24] has a better accuracy with 

temperature variation, but [21] and [24] both cannot against process and voltage variations. 

A full-custom ring oscillator [1] has a very better accuracy, but it requires a band gap 

voltage reference to against process and voltage variations. Although [24] has a smaller 

temperature variations, it does not tolerate the voltage variations. The measurement 

maximum frequency error of the proposed design with voltage variations is 0.72%. 

Relaxation oscillators [16], can achieve relatively small voltage variations. However, a 

small voltage variations on the reference voltage (i.e. 2mV) can cause 0.4% frequency error 

[1][16], and thus, they are sensitive to the supply noise. The measured maximum output 

frequency error for three chips ranges from -1.47% to +1.31%. In addition, most of the prior 

researches are analog type design [1][8][12][16][24],which need full-custom design and are 

not suitable for design automation with poor portability. As compared to [27][46] which 

requires multi-point calibration, we not only reduce the calibration points, but also reduce 

the frequency error. 
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Table 5.3: Performance comparisons of CBOCSO. 

Parameter FPC [46]ISCAS’13 [21]JSSC’11 [24]JSSC’12 [8]JSSC’09 [12]ESSCIRC’09 [16]JSSC’10 [1]VLSIC’09 [27]TVLSI’12

Osc. Type ring oscillator ring oscillator 
Mobility ,band 

gap temp. sensor

Thermal-diffusivi

ty, band gap V 

reference 

RC VCO 
Real. need a 

current source 

ring Osc.,band 

gap voltage 

reference 

ring oscillator

Technology(nm) 90 90 65 160 65 350 180 180 90 

Frequency(MHz) 5 5 0.15 16 6 30 14 10 5 

Temp. Range 0 ~ 75 0 ~ 75 -55 ~125 -55 ~ 125 0 ~ 120 -20 ~ 100 -40 ~ 125 -20 ~ 100 0 ~ 75 

Vari. with Temp. 0.60% 0.21% 0.50% 0.10% 0.60% 0.70% 0.75% 0.40% 1% 

VDD Range 0.9~1.1 0.9~1.1 fixed 1.2v fixed 1.8v fixed 1.2v fixed 1.8v 1.7 ~ 1.9 1.2 ~ 3.0 0.9 ~1.1 

Vari. with VDD 0.72% 0.97% N/A N/A N/A N/A 0.16% 0.05% 1% 

Max error % 1.36% 2.83% N/A N/A N/A N/A 0.91% 0.45% 2.30% 

power(mW) 0.25 1.42 0.051 2.1 0.066 0.18 0.045 0.08 0.65 

area(mm2) 0.05 0.0324 N/A 0.5 0.03 0.08 0.04 0.09 0.04 

Design Approach cell-based cell-based full-custom full-custom full-custom full-custom full-custom full-custom cell-based 
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Chapter 6 

An Abnormal Temperature Warning Sensor 

6.1 Introduction 

 

Fig. 6.1: Schematic of the PTAT temperature sensor. 

Fig.6.1 shows the block diagram of a proportional to absolute temperature (PTAT) 

temperature sensor [48]. It is composed of a PTAT pulse generator and a time to digital 

converter (TDC). When the PTAT ring oscillator generates a pulse (PRO_out), the pulse 

triggers the PTAT ring oscillator counter (PRO COUNTER). When the output value of the 

PTAT ring oscillator counter is equal to the input cycle value (cycle_time), the Td,osc pulse is 

generated. The reference clock and Td,osc pulse connect a AND logic gate to generates a 

pulse (TDC_pulse), then triggers the TDC counter. In this TDC circuit, the PTATCODE is the 
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6.2 System Architecture 

The block diagram of the proposed delay ratio estimator (DRE) for temperature sensor 

application is shown in Fig. 6.4. In section 4.1, the value of NTIME is set to 1023. In this 

temperature sensor, we require a high resolution for this temperature sensor circuit. Thus, 

in the DRE circuit, the value of NTIME is changed to 16383, which greatly increases the 

bit number of the delay ratios R1(P,V,T) and R2(P,V,T). However, the higher NTIME value 

also means that the temperature sensor calculation time will become longer. Finally, the 

temperature sensor calculation time is about 200,000 ns to achieve a sampling rate higher 

than 1k sample/seL.  

 

Fig. 6.4: The architecture of the delay ratio estimator. 

Fig. 6.5 shows block diagram of the proposed ATWS. It is composed of a delay ratio 

estimator (DRE), a voltage classifier, and a temperature calculator. The DRE estimates the 

R1(V,T) and the R2(V,T) at chip run time under voltage and temperature variations. We 

need to measure the values of R1(V,T), R2(V,T) with two different voltages (V2 and V4) and 

four different temperatures (T1, T2, T6, and T7). In this chapter, the voltage varies from V1 to 

V5 (V1=0.900V, V2=0.950V, and V3=1.000V, V4=1.050V, V5=1.100V), and temperature 

varies from T1 to T7, (T1=40ºC, T2=45ºC, T3=50ºC, T4=55ºC, T5=60ºC T6=65ºC, and 

T7=75ºC) 
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supply voltage, then the temperature calculator uses Eq. 6.2 to calculate temperature sensor 

output code (temp_out). When the output a code (temp_out) is greater than 40°C, the 

warning code (overheating code) is output warning message to the system. For example, if 

the temperature sensor output code (temp_out) is greater than 40°C, the warning code 

(overheating code) is 3’b001, if the temperature sensor output code (temp_out) is greater 

than 50°C, the warning code (overheating code) is 3’b011. If the temperature sensor output 

code (temp_out) is smaller than 40°C, the warning code (overheating code) is 3’b000. 

Finally, if the temperature sensor output code (temp_out) is latger than 70°C, the warning 

code (overheating code) is 3’b111. 

6.3 Simulation Results  

 

Fig. 6.8: Layout of the ATWS. 
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In addition, in [49] and [51], they have provided the error of temperature sensor with 

voltage variations. The temperature error of [49] with voltage variations is -90ºC to +90ºC. 

The temperature error of [51] with voltage variations is -10ºC to +10ºC. With voltage 

variations, the accuracy of these architectures becomes very worse. Thus, these 

architectures are not suitable for used as a on-chip temperature sensor with voltage 

variations. 

 

 

Table 6.1: Performance comparisons of Temperature Sensors. 

Parameter proposed 
[38] 

TCASII'12 

[47] 

ISCAS'10

[48] 

TCASI'11

[49] 

TVLSI'12 

[50] 

VLSI'12 

[51] 

JSSC'10 

[52] 

ISSCC'09

Type 

three ring 

oscillator 

(all-digital) 

PTAT  

(all-digital) 

PTAT 

(all-digital)

PTAT 

(FPGA) 

Dual DLL 

(full-custom)

two ring 

oscillator  

(full-custom) 

two delay 

line 

(all-digital) 

Dual DLL

(all-digital)

Resolution(°C) 0.168 0.139 0.143 0.133 0.78 0.34 0.0918 0.66 

Error(°C) 

-3.42~3.66 

with 

variation 

-5.1~3.4 ~10~+10 -0.7~0.6 -4~4 -2.8~2.9 -0.25~0.35 -1.8~2.3

Calibration 

Point 
4 1 2 1 1 1 2 1 

Power (uW) 
530 uW@ 

1.0V 
150 uW 55 uW 175 uW 1200 uW 400 uW 36.7 uW 12000 uW

Area(mm2) 0.0625 0.01 0.01 N/A 0.12 0.0013 0.6 0.16 

Conversion 

Rate(samples/s) 
4k 10k 10k 1k 5k 366k 0.002k 5k 

Range (°C) 40~70 0~60 0~100 0~100 0~100 -40~110 0~90 0~100 

Technology(nm) 90 65 65 220 130 65 350 130 

VDD Range 0.9~1.1 fixed 1.0V fixed 1.0V fixed 2.5V fixed 1.2V fixed 1.2V fixed 3.3V fixed 1.2V
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6.5 Summary 

In this chapter, we propose an abnormal temperature warning sensor system (ATWS) 

with process and voltage variations. The proposed design can be implemented by standard 

cells. In addition, we also propose the four-point calibration method to against voltage 

variations and process variations. The proposed design can operate with a low supply 

voltage, and is very suitable for low-power and low-cost system-on-a-chip application. 
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Chapter 7 

Conclusion and Future Works 

7.1 Conclusion 

In this thesis, we propose an efficient method to build up a cell-based on-chip silicon 

oscillator (CBOCSO) for frequency compensation with PVT variations. We proposed two 

versions of CBOCSO with multi-points calibration (MPC) and four-point calibration (FPC), 

respectively. 

The proposed two CBOCSOs use a relative modeling and they use the voltage and 

temperature classifier to roughly estimate the supply voltage and operation temperature at 

chip run time. The CBOCSO with MPC requires many calibration points, and thus, its 

testing cost is high. In the CBOCSO with FPC, we make a change on the cell selection rules 

to choose the cells of the delay ratio estimator. With this method, the CBOCSO with FPC 

not only can reduce the calibration points but also improves the accuracy of the output 

frequency. 

These two CBOCSOs are both designed with standard cells. Therefore, the proposed 

CBOCSOs provide a systematic way to automatically generate the on-chip oscillator with 

PVT variations. The proposed design can operate with a low supply voltage, and is very 

suitable for low-power and low-cost system-on-a-chip applications. 
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7.2 Future Works 

In this thesis, the CBOCSO with FPC has improved some disadvantages of the 

CBOCSO with FPC. However, the CBOCSO with FPC still has some drawbacks. In our 

proposed of delay ratio estimator (DRE) in section 4.1, it is composed of three oscillators. 

The frequency of these three oscillators will affect the performance of CBOCSO. If the 

frequency of these three oscillators is faster, the voltage classifier of CBOCSO need to have 

a higher calculation speed, but the power consumption will become larger. Thus, there 

exists a tradeoff between the power consumption and the performance. We must consider 

the power consumption with SoC design. Thus, the frequency of these three oscillators can 

not be too fast.  

When the integrated circuit at the run time, there exists immediate voltage variation, 

the immediate voltage change is called the dynamic supply noise. However, the proposed 

CBOCSO requires a longer computation time, and thus, it cannot against dynamic supply 

noise. If we can provide a faster method of calculating, the issue of dynamic supply noise 

can be also compensated, and then the CBOCSO will become more stable. In addition, 

many researches design to against static voltage variations [7][12]-[15][23]. Only the ring 

VCO oscillator [15] can against dynamic supply noise, however, it only has 1% dynamic 

supply noise, most of the static voltage variations [7][12]-[15][23] has 5% to 20% drift 

amount. Thus, in most of research discusses about 5% to 20% drift amount of static voltage 

variations. Therefore, in this thesis has -10% to +10% drift amount of static voltage 

variations. 

In section 4.8, we summarize the difference between MPC and FPC, although we have 

reduced the testing costs, however, the FPC is still has too many in off-chip process. The 

FPC requires calculate two-point linear regression, interpolation, extrapolation, coarse code 
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and fine code. However, the two-point linear regression, interpolation and extrapolation can 

be integrated into the circuit automatically calculated. The coarse code and fine code require 

calculate coarse and fine resolution, these require more decimal arithmetic. Thus, the coarse 

code and fine code require calculating in off-chip. Therefore, if we want to reduce testing 

cost, we can only calculate coarse code and fine code in off-chip.  

In chapter 6, although the proposed abnormal temperature warning sensor (ATWS) can 

work with different voltages, but the accuracy of temperature sensor is not good enough. 

However, the accuracy of the PTAT architecture is good with a fixed voltage. Thus, if we 

can combine the PTAT architecture and the circuit of voltage classifier, the accuracy of 

temperature sensor may become better.	
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