1470

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 7, JULY 2014

Partial Parity Cache and Data Cache Management
Method to Improve the Performance
of an SSD-Based RAID

Ching-Che Chung, Member, IEEE, and Hao-Hsiang Hsu

Abstract—1In this paper, a partial parity cache and data
cache management method is presented for reducing the parity
updating cost of a solid-state disk (SSD) based redundant
array of inexpensive disk (RAID) system, thereby which the
input/output (I/O) performance of the RAID system can be
improved. SSDs have many advantages compared to hard disk
drives. However, it is not advisable to directly add SSDs into a
RAID system because doing so will decrease the performance
and the life-time of the SSDs. In the RAID-5 system, parity
generation includes read and write operations to the SSDs.
Whenever there is a new write request to the RAID, the related
parity must be updated and written to the SSDs. Such frequent
parity updates result in poor RAID performance and shortens
the life-time of the SSDs. This paper combines the prior methods
and the proposed efficient buffer management method with a
data cache. The proposed method reduces the number of read
and write operations for generating parities in the RAID system.
Experimental results show that the I/O performance of the RAID-
5 system can be improved by 76 % by using the proposed method.

Index Terms—Flash memory, hard disk drive (HDD),
redundant array of independent disks (RAIDs), solid-state disk
(SSD).

I. INTRODUCTION

ANY advancements have been made in the design of
central processing units (CPUs) for personal comput-
ers (PCs). The number of cores in a CPU has increased from
one to many, and thus there has been a clear improvement
in the performance of CPUs. Further, the other components
of a PC, such as dynamic random access memories (DRAMs)
and video cards, have also undergone substantial improvement.
However, because of certain physical limitations, the improve-
ment of hard disk drivers (HDDs) (which are composed
of platters and require a head actuator mechanism) is not
evident. In recent years, solid-state disks (SSDs) have become
increasingly popular because of the relatively low price of flash
chips [1].
As shown in Fig. 1, SSDs consist of many flash memory
chips and do not have a head actuator mechanism. All com-
ponents of the SSDs are electronic, so SSDs have many

Manuscript received February 6, 2013; revised June 9, 2013; accepted
July 25, 2013. Date of publication August 15, 2013; date of current version
June 23, 2014. This work was supported by the National Science Council of
Taiwan under Grant NSC-100-2221-E-194-051.

The authors are with the Department of Computer Science and Information
Engineering, National Chung Cheng University, Chia-Yi 621, Taiwan (e-mail:
wildwolf@cs.ccu.edu.tw; jack@s3lab.org).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI1.2013.2275737

Back side of SSDs Front side of SSDs

SATA INTERFACE SATA INTERFACE

PCB board PCB board

SSD
CONTROLLER

[Frash chip | | Fiash chip | [Fiash chip| | Fiash chip |

[Frash chip | | Fiash chip | [Frash chip | | Fiash chip |

| Flash Chip | | Flash Chip | | Flash Chipl | Flash Chipl

| Flash Chip | | Flash Chip | | Flash Chipl | Flash Chipl

Fig. 1. Front side and back side of SSDs.

TABLE 1
SPECIFICATIONS OF THE NAND FLASH CHIP [9]

Hynix 32GB NAND Flash Chip
Data Integrity 100,000 erase cycles
Page Read 0.025 ms
Page Program Time 0.2 ms
Block Erase Time 2 ms

advantages over HDDs, e.g., better shake resistance, lower
power consumption, and faster performance.

Flash memory is the basic component of the SSD. Flash
memory has the following characteristics: First, the unit for
read and write operations is a page, but the unit for an erase
operation is a block [2]-[4]. Therefore, the speeds in the
different operations are greatly different, as shown in Table I.
Second, the same physical page can be written upon only once
after each erase operation. Third, each block has a limited
number of erase times [11], [12].

When data are written to the flash memory, the amount
of free pages becomes small, and thus the flash controller
must erase a block to recycle free pages. Before the controller
erases a block, the controller must copy the valid data in the
block to another free block; this operation is called garbage
collection (GC). Table I shows that the block erase time
is 10 times longer than the page program time. Therefore,
the write operation, erase block operation, and GC take a
considerable number of cycles to complete. As a result, the
method for decreasing the number of write operations is very
important for the SSDs. When the number of write operations

1063-8210 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

CHUNG AND HSU: PARTIAL PARITY CACHE AND DATA CACHE MANAGEMENT METHOD

is decreased, the life-time of an SSD is extended and the input-
output (I/O) processing speed is improved.

In the data center, HDDs are used in a redundant array
of inexpensive disks (RAID) as the storage system because
of the low price of HDDs. However, the power consumption
and the heat dissipation of HDDs are critical problems. For
instance, 40% of the entire power consumption is required
for cooling down the data center [5]. Because SSDs are more
expensive than HDDs with the same capacity, SSDs cannot
replace HDDs even though they consume less power and
have faster I/O performance than HDDs. Therefore, there are
a few companies that are developing a RAID controller for
SSDs. In the future, when the price of flash chips decreases
substantially, SSDs can be used in the data center as the
storage system in order to reduce the costs of cooling down the
data center and to increase the I/O processing speed. Further,
the data center always uses the RAID technique to enhance
performance and ensure data integrity.

Some companies such as Hitachi and Samsung have pro-
posed solutions that involve the use of SSDs in the data
center [6], [7]. Hitachi [6] has developed a data center by using
a serial-attached SCSI (SAS) interface and a fiber channel (FC)
with SSDs. Reinsel and Janukowicz [7] have mentioned have
mentioned that, in the future, the challenges of the data center
are the reliability and price of SSDs. SSDs can save energy
and enhance the speed performance, as analyzed in [8].

There are products with RAID-0 SSDs in the market.
The I/0 processing speed of RAID-0 is very high, but
RAID-0 is not adequately reliable. When one of the flash chips
is damaged, the stored data are lost. From the perspective of
reliability, RAID-4 and RAID-5 are better solutions, as they
can use parity to recover data when one of the storage devices
gets damaged.

Table I shows the specifications of a NAND flash memory
chip [9]. The program time and the erase time are very slow as
compared to the read time. However, in RAID-4 or RAID-5,
there are many write operations for parity updates. This issue
adversely affects the I/O processing speed of the entire RAID
system.

As long as new data are written to the storage system of
RAID-4 and RAID-5, the parity must be updated with read
operations to generate a new parity. Then, the new parity will
be written to the storage system. The storage system must
reduce the parity generation overheads and parity write times.
Hence, we need an efficient parity cache management scheme
to increase the I/O processing speed of the RAID system while
ensuring that the system is reliable.

This paper combines the prior partial parity cache (PPC)
method [10] and the proposed efficient buffer management
method with a new data cache to merge parities. The experi-
mental results show that both read and write operations are
decreased by using the proposed method. Further, we add
a special data buffer that retains the old data. This data
buffer can reduce the read operations from SSDs for a partial
parity update, so that the I/O processing speed can be further
improved. An efficient buffer management method can reduce
the parity write times, and the proposed data cache can reduce
the number of read operations required for parity updates.

1471

In addition, the proposed method also extends the life-time
of SSDs.

The rest of this paper is organized as follows. Section II
discusses the RAID architecture. Section III discusses related
works and theirs problems. Section IV describes the proposed
parity check and data cache management method and its opera-
tions. Section V discusses the experimental results. Section VI
presents the conclusion.

II. RAID ARCHITECTURE

The RAID technique is commonly used in workstations and
data centers. It not only improves the I/O performance because
of the parallel data access scheme but also ensures the data
integrity by adding parity data.

RAID-0 uses block-level stripping, and data are written
to different storage devices simultaneously. The RAID-0 has
high-speed 1I/O performance, and RAID-0 can make use of
the storage device’s full capacity. However, RAID-0 is not
adequately reliable because of the fact that no redundant
data can be used for recovering data when a disk crashes.
RAID-1 copies the data to two different devices at the same
time. Therefore, the available capacity is only 50% of the total
capacity. Thus, the cost of RAID-1 is considerably high.

RAID-2 uses bit-level stripping and error collection by the
Hamming code. If one bit is wrong, that bit can be recovered.
However, the hardware logic scheme of error collection is
complicated. RAID-3, RAID-4, and RAID-5 use extra storage
devices to store parities so that they can tolerate the failure of a
storage device. RAID-3 uses byte-level stripping with parities.
Both RAID-4 and RAID-5 use block-level stripping with
parities. The minimum number of storage devices in RAID-3,
RAID-4, and RAID-5 is 3. Among these three storage devices,
two are responsible for storing data and the third is responsible
for storing the parity data in RAID-3, RAID-4, and RAID-5.

RAID-3 and RAID-4 dispose the parity to a fixed storage
device. However, when new data are written to the RAID
system, the related parity must be calculated and updated.
Therefore, the storage device that stores parities has a large
number of write operations, and this device is extremely busy
all the time. Since each block of a SSD has a limited number
of erase times, the storage device that stores parities will crash
in a short time.

RAID-5 disposes the parity into every storage device so that
the parity write operations are separated into different storage
devices. The storage capacity utilization and performance in
RAID-5 are acceptable. Therefore, we adopt the RAID-5
architecture because of the above-mentioned considerations.

The bottleneck of RAID-5 is the frequent parity update.
For example, the parity Py is generated by Dy & D; &
D, & D3, as shown in Fig. 2. The symbol “@®” represents the
exclusive-OR operator. When new data are written, for exam-
ple, Dy, the parity Py must be updated. Therefore irrespective
of the amount of data that is updated in the same stripe, the
parity must be computed again and written to the storage
device. The cost of parity generation includes read opera-
tions that read old data from the storage device and a write
operation.

1472

Partial RAID-5
Parity Cache Controller
| Data Buffer |—|
Stripe S, Do D, D, Ds Po
Stripe S; Dy Ds Ds P, D,
Stripe S, Ds Do P, D10 Dw

| P2osa

SsD_4

| D4z+3 I

SSD_3

| D41+2 I

SSD_2

| D41+1

SsD_1

Stripe S, Das.

S$SD_0

Fig. 2. Proposed 4 4+ 1 RAID-5 architecture.

This paper represents RAID-5 as n + 1, where n represents
the number of data storage devices and “1” denotes the parity
storage. For example, a 4 + 1 RAID-5 architecture is shown
in Fig. 2.

III. RELATED WORKS

Some earlier works have used SSDs and HDDs to construct
a hybrid RAID system [13]-[15]. For example, the hybrid
parity-based disk array (HPDA) [13] uses SSDs to store
data and two HDDs to store parities and to be a write
buffer. The SSDs and an HDD are constructed by using the
RAID-4 architecture. The remaining space of the parity disk
HDD and another HDD are constructed by using RAID-1 as a
write buffer. If the write requests are sequential, these requests
are written to the RAID-4 directly. In contrast, if the requests
are random access, these requests are written to the write
buffer. When the I/O is idle, the requests in the write buffer
are written back to the RAID-4. The HPDA [13] uses HDDs
to solve the frequent parity update problem to the parity disk
of the RAID-4. However, the I/O processing speed of HDDs
is less than that of SSDs, and thus the life-time of the SSDs
is extended, but the RAID performance is degraded.

When SSDs are directly disposed to the RAID architecture,
there are a number of problems, as discussed in [16]-[18].
In the case of the RAID-4 architecture, [16] finds that parity
disks have higher write times than the other disks. The exper-
imental results show that the write operations concentrate on
the parity disk, and hence their solution uses an HDD to
replace the SSD parity disk.

In the case of the RAID-5 architecture, [16] proposes a
wear leveling scheme that places the parity data dynamically
and creates a k-bit map table for recording the number of
parity write times. When one disk’s write time is larger than
a specific value, the wear leveling scheme exchanges those
parity data with the other parity data that have lower write
times. The wear leveling scheme balance only the write times
of the SSDs, but the root cause of the frequent parity update
problem is not solved.

To solve the frequent parity data update problem in the
RAID-5 architecture, previous researches [17], [18] add a

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 7, JULY 2014

parity buffer to reduce the parity data write times. This method
is called the “delay parity update scheme.” The parity data
are kept in the parity buffer until certain specific conditions
met. The delay parity update scheme can definitely reduce the
parity write times. Both [17] and [18] use the delay parity
update scheme. They reduce the parity data write times, but
the parity generation overhead is not considered.

The PPC scheme [10] also adopts the delay parity update
scheme, but it generates a partial parity and stores it into
the cache. When the cache is full, the partial parity must be
rebuilt to the full parity and written to the SSD. However, the
parity write times are almost the same as those of the other
approaches with parity buffers. The write operation takes a
considerable number of cycles, as shown in Table I. Thus if
the write times for parity data can be reduced, the entire RAID
performance can be significantly improved. Moreover, when
the PPC scheme updates the partial parity, it needs to read the
old data from the storage device, and thus the overhead for
the partial parity update should be reduced.

IV. EFFICIENT BUFFER MANAGEMENT
A. Overall Architecture

The proposed 4 4+ 1 SSD-based RAID-5 architecture is
shown in Fig. 2. The host system sends read or write requests
to the storage interface, and the RAID-5 controller handles the
write cache and distributes data access to the SSDs. The write
cache holds the data from the host system, and a nonvolatile
random access memory (NVRAM) is used as the write cache.
The PPC stores the partial parities; it also uses the NVRAM to
avoid losing data in the case of sudden power failures. A data
buffer is used for reducing the costs of the partial parity update.
The stored data in the data buffer can be reloaded from the
SSDs, and thus a static random access memory (SRAM) or
a DRAM can be used for implementing this buffer.

The concept of partial parity was proposed in [10]. A partial
parity contains only a part of the full parity. The PPC can help
merge parity write operations, e.g., if there are Py to P partial
parities in the cache. The new data written to the stripes So—S16
can merge their parity write operations in the PPC. Thus, the
number of write operations to the SSDs can be significantly
reduced.

In this paper, we propose an efficient buffer management
method to avoid the PPC being full. When the PPC is full,
one of the partial parities must be selected and written back
to the SSD. However, the RAID controller needs to read
the associated data from the SSDs to build the full parity.
In addition, the parity write operation takes a considerable
number of cycles. Therefore, the proposed efficient buffer
management method can reduce the costs of parity updates.

B. Structure of Each Buffer and Cache

Fig. 3 shows the data structure of the PPC, data buffer, and
write cache in the proposed RAID-5 controller. The variable
m denotes the number of entries in the PPC and the data
buffer, and w indicates the number of entries in the write
cache. T represents the total stripe number in the RAID-5,
and n denotes the number of storage devices in the n + 1

CHUNG AND HSU: PARTIAL PARITY CACHE AND DATA CACHE MANAGEMENT METHOD

Partial parity cache Data buffer
log,T bits n bits 1 page size n page size
) 1
I L v~ \ / \
Stripe Number ; | | | | | A Partial Parity Stripe S; I Dri | Drist| D | -+ - Dm+(n-1)|
m
m
Stripe Number 5 A Partial Parity Stripe Sj| | Drj | Drj+1|Drje2|* * * [Drjecnet
Stripe Number A Partial Parity Stripe Sk| | Dnk | Drk+1{Drk+2| * * * Daker(n-1
log;T bits n bits n page size
I L \/ ! \/ L \
Stripe Number i| I l | l Data Area
w
Stripe Number 5 Data Area
Stripe Number Data Area
Write cache

Fig. 3. PPC, data buffer, and write cache.

RAID-5 architecture. The data size of a partial parity is one
page. The n-bit field represents the data associated with the
partial parity. In addition, the associated data are stored in
the data buffer. For example, a 4-bit binary value “1100” for
the stripe number (Sp) means that the partial parity (Pp) is
generated with Dy and Dj. In addition, Dy and D; are stored
in the data buffer.

The data structure of the write cache is also shown in Fig. 3.
The data structure of the write cache is similar to that of the
PPC. The major difference is that the write cache contains
data values in each entry. The variable n denotes the number
of storage devices in the RAID. The size of the data area is
n x the page size.

C. Comparison With PPC

Fig. 4 shows the operation flowchart proposed by the
PPC [10]. The host transmits the data to the RAID controller.
The RAID controller determines whether the write cache is
free or not. If the write cache is free, the data can be cached
in the write cache, and from the perspective of the host system,
the write operation is complete. However, if the write buffer
is full, the RAID controller must select the victim stripe from
the write cache and write the data back to the storage device.

The selection of the victim stripe involves finding out which
stripe in the write cache contains the maximum amount of
data. When a stripe contains a considerable amount of data,
these data can be written to the SSDs in parallel. In addition,
the data in the selected stripe are used for generating a partial
parity.

After generating the partial parity, the controller checks
whether the PPC is free or not. If the PPC is free, the partial
parity is written to the PPC, and then the data in the selected
stripe are written to the storage devices. When the data are
removed from the write cache, the write cache releases some
free spaces.

If the PPC is full, the RAID controller selects the victim
partial parity by using the least recently used (LRU) algorithm.
Then, the controller rebuilds the full parity of the selected
partial parity. This operation may need to read the data that

1473

Write data to the
write cache

Is write cache
free ?

Selecting the stripe which has
maximum number of pages from
the write cache

!

. According to the selection of
the stripe to generate the partial parity
. Generating the partial parity requires
reading old data from storage devices

—

N

1. Save the partial parity to
the partial parity cache

2. Remove pages from the
write cache to the storage
device

Is partial parity
buffer free ?

1. Selecting the partial parity by
LRU algorithm

2. Rebuilding the full parity of the
selected partial parity that
requires reading old data from
the storage devices

Fig. 4. Flowchart of PPC [10].

are not a part of the selected partial parity from the SSDs, and
then the PPC can release some free spaces.

Fig. 5 shows the flowchart of the proposed efficient
buffer management method. The major difference between the
PPC [10] and the proposed method is in the selection of the
victim stripe. The victim stripe selection rule in the proposed
method is that, if the stripe in the write cache contains the
maximum number of pages and its partial parity can be merged
with the existing partial parity, this stripe will be selected
first. Otherwise, we follow the selection rule of PPC [10].
The proposed method can avoid the partial PPC from being
full often. When the PPC is full, the RAID controller needs
to compute the full parity and write back the parity data
to the storage devices; thus, the overhead is significantly
large.

Moreover, we use a data buffer to reduce the cost of the
partial parity update. In PPC [10], the RAID controller requires
reading old data from the storage devices for updating the
partial parity. In the proposed method, these old data are stored
in the data buffer, and thus the number of read operations from
the SSDs can be significantly reduced, and the I/O processing
speed of the RAID system can be further improved.

D. Operation of the Proposed Method

The operations of the PPC, the write cache, and the data
buffer are discussed in this section. The write cache stores the
data from the host system. When the write cache is full, the
RAID controller selects the victim stripe from the write cache.
For example, Fig. 6 shows that we select the stripe So to be

1474

Write data to the
write cache

In write cache, finding the stripe which contains
maximum number of pages and its partial parity
can be merged with the existing partial parity.
Otherwise, finding the stripe which contains
maximum number of pages.

l

1. According to the selection of
the stripe to generate the partial parity
2. Generating the partial parity by
reading old data from the data buffer

1. Save the partial parity to the
partial parity cache

2. Remove pages from the write
cache to the storage and
the data buffer simultaneously

Is partial parity
cache free ?

1. Selecting the partial parity by
LRU algorithm

2. Rebuilding the full parity of the
selected partial parity that
requires reading old data from the
storage devices

Fig. 5. Flowchart of the proposed scheme.
a victim stripe because Sy contains the maximum amount of
data (i.e., three pages). The other stripes S5 and Sg are still
kept in the write cache to incorporate more data.
When the stripe Sy is selected, the RAID controller performs
the following operations:
1) generating the partial parity Py by using Dy, D7, and D3
and storing the ingredient bit to the PPC;
2) writing Dy, D>, and D3 to the corresponding locations
of the data buffer;
3) writing Do, D2, and D3 to the corresponding locations
of the SSDs.

Fig. 6 shows the condition when the system is reset; thus
there is no partial parity in the PPC, and the RAID controller
directly creates a partial parity Py. The partial parity Py is held
in the PPC and does not write back to the SSD. When Py is
still in the PPC, there is no further full parity update for writing
Dy, D1, D>, and D3. Therefore, the PPC can help reduce the
full parity write times in the RAID-5 architecture. The data
buffer always stores the most recent data, and the new data
in the selected stripe directly overwrite the data in the data
buffer.

Both the PPC and the write cache do not have sufficient
free space as the host system keeps writing data to the
RAID system. Then, they perform frequent selections of
victim stripes and many partial parity updates. Fig. 7 shows
the merging of the partial parity. In this example, there are
many stripes stored in the write buffer that contain three
pages of data. Further, we assume that there is no free space
in the PPC.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 7, JULY 2014

Ingredient bit of Parity
——

Py |t[o[t]1|Pi=Do@D,@D;|| stripes, I Do | | D, | D3 |
m : .
Stripe Number ; Partial Parity Stripe S
Stripe Number Partial Parity Stripe Sk
Partial parity cache Data buffer
Ingredient bit of Stripe
——
v Sy |10|1|1| Do~ Dz~ D3 |<— Select
w
Ss 1jof10 D20 ~ D22 RAID
Sg |t|ofofo D3, Controller
Write cache
Stripe S, Do D, D3
Stripe S,
Stripe S,
stripess, || I ||l I8l |
SSD_0 S§SD_1 8SD_2 SSD_3 §SD_4
Fig. 6. Operation of the proposed scheme.
One page size
Po [1]0]1[1] Po=Do®D.©Ds3 StripeSu| Dy | I D, I Ds |
Pio [0{1]0|1| P1o=D4 @Dz
" T
P, |1]o|t|o| P;=Ds®Dsy Stripe 7| | Dog Dso
Stripe Syl Dy Da3
Partial parity cache Data buffer
Ingredient bit of Stripe
I_I_\
Sy |1folt]r D4~ D¢~ D
[S [ip[:lh] 000 RAlD
Controller
w
v 57 |1|1fofL D'y ~ Dyg ~ D3y Select
Sg [t|1]t]o D3y « D33~ Dag
Write cache
Stripe So| | Do D, Ds
Stripe S,
Stripe S,
stripe S7| [Dy || || || |[Dx]| |l || |
suwe sl | |[Coad| || || | (el
stripe’s; | | || IR ||l | (]
§SD_0 SSD_1 §8D_2 §8D_3 SSD_4
Fig. 7. Operation of computing partial parity.

In PPC [10], the RAID controller randomly selects any
stripe that contains the maximum amount of data to be a victim
stripe. If S is selected as a victim stripe, since there is no

CHUNG AND HSU: PARTIAL PARITY CACHE AND DATA CACHE MANAGEMENT METHOD

Ingredient bit of Parity Overhead

2 1{o]o[o|P';=D'g » read Dg and P, + 1 write

5 0{1]0[1|P's=D"2;®D'>3

read D, and D,; + 1 write

7 1{1]|1{0]| P';=D',3®D"® D'3o —— read Ds; + 1 write

10 11{1]11 P';p=D"4y® D'41® D'42® D's311— No read overhead

Partial parity cache

Fig. 8. Overhead of rebuilding the full parity.

free space in the PPC, the RAID controller needs to remove
a partial parity from the PPC by using the LRU algorithm in
order to release one free space for the new partial parity Pj.
If the RAID controller decides to remove the partial parity
P; from the PPC, the full parity generation costs for P; are
two read operations and one write operation to the SSDs.
The two read operations are performed to read Dyg9 and D3
from the SSDs because the partial parity P; is generated by
Dog and D3(. The one write operation is performed for writing
back the generated full parity to the SSD.

Therefore, in this example, the proposed efficient buffer
management method chooses S7 as the victim stripe in order
to reduce the cost of the parity update since the related partial
parity P; already exists in the PPC. Subsequently, the RAID
controller performs the following operations:

1) computing the new partial parity P; as follows:
P} = P; @ D2y @ Dyy @ Dyo @ D31 (Dag from the
data buffer);

2) writing D/zg’ Djg, and D3 to the data buffer (Dpg will
be replaced by Djg);

3) writing Dég, Dy9, and D31 to SSDs (in SSD_0, D»g will
be overwritten by D).

The new partial parity P, replaces the old partial parity
P; and does not occupy a new space in the PPC. Therefore,
we can reduce the number of full parity generation operations
and the full parity write times to the SSDs. In addition, when
the RAID controller computes the new partial parity, D»g can
be obtained from the data buffer. Thus the proposed method
reduces not only the parity write times to the SSDs but also
the read times from the SSDs.

E. Overhead of Writing Back Full Parity

Fig. 8 shows the overhead of rebuilding the full parity in
all possible situations. There are two methods to rebuild the
full parity as follows.

Method 1: Reading the corresponding old data and the old
full parity from the SSDs to rebuild the new full parity.

Method 2: Reading the data that are not a part of the partial
parity from the SSDs to rebuild the new full parity.

When the partial parity P; needs to be written back to the
SDDs, the RAID controller adopts method 1 to rebuild the full
parity rather than method 2. The reason for this preference is
that method 2 has three read costs (reading Dy, D19, and Dq1),
which are more than the costs of using method 1. The new
full parity P> can be computed as P, @& Dg @ P».

1475

Profiling benchmark
inputs

Y

RAID-5 Controller

SSD SSD SSD SSD

Fig. 9. 4 4 1 RAID-5 simulation environment.

The RAID controller will determine which method is more
efficient. When the partial parity P/ and P; must be written
back to the SSDs, the RAID controller adopts method 2 to
rebuild the full parity. The new full parity Ps can be computed
as PS’ @® Dy & D2y, and the new full parity P; can be
computed as P; & D3;. When the RAID controller needs to
rebuild the new full parity Pjo, there is no read overhead since
the partial parity is also the full parity.

V. EXPERIMENTAL RESULTS
A. Experiment Preparation

The RAID-5 controller with the proposed efficient buffer
management scheme was verified by the Socle Technol-
ogy Corporation MDK-3D development board. The CPU is
ARM1176JZF and the frequency is up to 1 GHz. The advanced
microcontroller bus architecture advanced high-performance
bus frequency is up to 200 MHz and it supports the
NOR-flash/NAND-flash/DDR2 memories. We implement the
RAID-5 controller and the proposed efficient buffer manage-
ment scheme with the field-programmable gate array. In addi-
tion, we set up the simulation environment to evaluate the
performance of the proposed RAID-5 controller as shown in
Fig. 9. The entire system consists of a RAID-5 controller
and SSDs [9].

The RAID-5 controller accepts the inputs from the bench-
mark profiling results. The stripe number and the SSD number
are generated by dividing the logical address by the total num-
ber of data storage devices; the quotient and the remainder are
used as the stripe number and the SSD number, respectively.
For example, if the RAID system is 4 + 1 RAID-5 architecture
and the logical address is 2045, 2045 is divided by 4, and
the quotient and the remainder are 511 and 1, respectively.
Therefore, the data with logical address 2045 are written to
SSD_1 at stripe Ss11.

The RAID controller also manages the write cache, PPC,
and the data buffer. We profile two benchmarks, lozone [19]
and Postmark [20], as the inputs. On the basis of the profiling
results, we use Iozone and Postmark for the sequential writing
tests and the random writing tests, respectively. The reason
for us to choose these two benchmarks is due to the fact
that most applications contain mixing sequential writes and
random writes. As a result, these two benchmarks can test the

1476

read Nwrite

1.4

1.2 7 7

1 % %

0.6 /§ %

il = . . \

RAID-5 Proposed

Fig. 10. Average write request overhead for generating the parity (Postmark).

best and worst performance of the proposed efficient buffer
management scheme.

In the simulation environment, the page size of the SSD
was 2 kB, and the size of the write cache was 16 kB. The size
of the data buffer and that of the PPC are 16 kB each. Further,
we rebuild four types of RAID architectures for comparison
as follows.

1) RAID-5 (only has write cache).

2) FPC (RAID-5 with full parity cache).

3) PPC (RAID-5 with PPC [10]).

4) Proposed (RAID-5 with proposed PPC and data buffer).

RAID-5 is the conventional RAID-5 architecture with a
write cache. FPC uses a full parity cache to reduce the parity
write times. In Figs. 10, 11, 13, 14, and 16-18, we show the
normalization of the number of read and write times to the
SSDs by the total input of 4000 write requests.

B. Overhead of Parity Generation

Fig. 10 shows the average write request overhead for gener-
ating the parity with Postmark benchmark inputs. The conven-
tional RAID-5 scheme does not have a parity cache, and hence
the number of read operations and that of write operations for
generating the parity are the highest. When the write cache in
the conventional RAID-5 scheme is full, the RAID controller
selects the victim stripe and writes back data to the SSDs.
According to the selection of the stripe, the RAID controller
builds the associate full parity and directly writes back the full
parity to the SSD. When the RAID controller generates the full
parity, it needs to read the remaining data of the victim stripe,
and these read operations are the overhead for the full parity
generation; hence the number of read operations is also the
highest in the conventional RAID-5 scheme. Therefore, it is
not suitable to directly add SSDs to the conventional RAID-5
architecture.

The FPC scheme has a full parity cache. The main dif-
ference between the FPC and RAID-5 is that the full parity
remains in the parity cache until the parity cache is full.
Therefore, some full parities can be merged in this cache, and
the write times for the parity can be decreased. However, the
read times for the parity generation are almost the same as
those in the conventional RAID-5 scheme. The reason for this
is that the full parity generation in FPC is the same as that in
the conventional RAID-5 scheme.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 7, JULY 2014

read Swrite

1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0

RAID-5 PPC Proposed

Fig. 11. Average write request overhead for generating the parity (Iozone).

The PPC scheme adopts the partial parity scheme, and this
can reduce the read times for the parity generation. The write
times of the parity are almost the same as those in the FPC
scheme. We can reach two conclusions from the previously
mentioned experimental results.

1) The parity cache can reduce the write times of the parity

data.

2) The partial parity scheme can decrease the read times

for generating the full parity.

The proposed scheme using an efficient buffer management
method with a data buffer can reduce both the read times
and the write times to the SSDs. The normalized write times
for the parity generation of RAID-5, FPC, PPC, and the
proposed scheme are 0.66, 0.37, 0.37, and 0.32, respectively.
The proposed scheme decreases the number of write times for
the parity as compared to PPC and RAID-5 by 13% and 51%,
respectively. The normalized read times for the parity gen-
eration of RAID-5, FPC, PPC, and the proposed scheme are
1.31, 1.31, 1.068, and 0.65, respectively. The proposed scheme
decreases the number of read times for parity generation as
compared to PPC and RAID-5 by 39% and 50%, respectively.

Fig. 11 shows the simulation results for the Iozone bench-
mark. The normalized write times for the parity generation of
RAID-5, FPC, PPC, and the proposed scheme are 0.3, 0.19,
0.19, and 0.18, respectively. The proposed scheme decreases
the number of write times for the parity as compared to PPC
and RAID-5 by 5% and 40%, respectively. The write times are
decreased because of the use of the PPC and the efficient buffer
method. The normalized read times for the parity generation
of RAID-5, FPC, PPC, and the proposed scheme are 0.28,
0.28, 0.5, and 0.32, respectively. The proposed scheme can
effectively decrease the number of read times for parity
generation by 36% as compared to PPC.

However, the read times for parity generation in both PPC
and the proposed scheme are larger than those in FPC and
RAID-5. The reason for this is that the inputs by the Iozone
benchmark are sequential with many file rewrite requests, and
hence there are many partial parity updates.

The read times in the PPC scheme [10] include the read
operations to the SSDs for the partial parity updates and the
write operations to the SSDs for the full parity write back.
In contrast, in the proposed scheme, the old data for the
partial parity updates can be obtained from the data buffer,
and thus the number of read operations to the SSDs for

CHUNG AND HSU: PARTIAL PARITY CACHE AND DATA CACHE MANAGEMENT METHOD

Biozone BEpostmark

o 20
el

= 18
e 1.6
s 14
- 12
g 10
o
2 02

00 1 | |

PPC Proposed

Fig. 12. RAID I/O performance.

partial parity updates can be significantly reduced. As shown in
Fig. 11, the normalized read times in PPC include 0.32 (for the
partial parity updates) and 0.18 (for the full parity generation).
Thus, the proposed data buffer can reduce the read times for
partial parity updates with a little additional hardware cost.

C. Overall Raid I/O Performance

Fig. 12 shows the comparisons of the I/O performance for
different RAID architectures. The performance is normalized
to the conventional RAID-5 scheme. The RAID I/O perfor-
mance with the Postmark benchmark inputs for RAID-5, FPC,
PPC, and the proposed scheme are 1.0, 1.13, 1.47, and 1.76,
respectively. The I/O performance of the proposed scheme is
improved by 76% and 19% as compared to RAID-5 and PPC,
respectively.

The detailed analysis of the total execution cycles after
many write requests for the RAID system is as follows.

number of cycles spent in the write cache;
number of cycles spent in writing data to the
SSDs and the data buffer;

number of cycles spent in the read operations for
generating a full parity or updating a partial parity;
WPcycle number of cycles spent in writing back the full
parity to the SSD;

number of cycles spent in the proposed efficient
buffer management method;

number of cycles spent in the least recently used
method;

total number of execution cycles.

chcle
Dcycle

Rcycle

EBF

LRU

Tcycle
In the proposed method, the total number of execution
cycles can be expressed as follows:

Teycle = Cyde"‘Dcycle"f‘Rcycle + WPeycle + EBF + LRU. (1)

In the PPC [10], the total number of execution cycles can
be expressed as follows:

Tcycle = chcle + Dcycle + Rcycle + WPcycle +LRU. (2)

Finally, the total number of execution cycles for RAID-5
and FPC can be expressed as follows:

Tcycle = chcle + Dcycle + Rcycle + WP cycle- (3)

The random write requests occur more often than the
sequential write requests in the RAID system. The proposed

1477

read_ppc Nread_proposed

Fig. 13. Average read times for generating the parity with different stripe
size (Postmark).

write_ppc write_proposed

0.4

0.3

0.2

01

0.0

Fig. 14. Average write times for generating the parity with different stripe
size (Postmark).

scheme handles the random write requests very well because
the parity merging often takes place in the PPC with random
inputs. The Reycle and WPcycle of the proposed scheme are
smaller than those of the PPC [10].

The 4 + 1 RAID-5 I/O performance with the Iozone bench-
mark inputs is nearly the same for different RAID architectures
because the RAID controller can easily find a stripe with four
pages of data with the sequential write requests. When the
RAID controller selects a stripe with four pages of data, the
partial parity associated with this stripe is also considered the
full parity, and thus both the PPC scheme and the proposed
scheme do not need to rebuild the full parity. The Rcycle and
WP¢ycle in each of the RAID architectures are almost the same
in this case.

D. Simulation With Difference Parameters

The average read times and write times for generating the
parity with different stripe sizes are shown in Figs. 13 and 14,
respectively. The write times of the proposed scheme for
generating the parity are smaller than those of the PPC [10]
because of the proposed efficient buffer management method,
as shown in Fig. 5. When the stripe size increases, the write
times for generating the parity decrease in both PPC and
the proposed scheme. This is attributed to the fact that the
partial parity can merge more data with a relative large stripe
size. For example, the partial parity Py in the 4 + 1 RAID-5
system can represent Do to D3. However, the partial parity
Py in the 7 + 1 RAID-5 system can represent Do to D7.
This means the possibilities of merging the partial parities are
increased.

1478

performance

normalized to 4+1
COO00ORREREEN
ONPOOONLALEONOD

441

Fig. 15. RAID I/O performance with different stripe size (Postmark).

The read times for generating the parity in the proposed
scheme is also smaller than in the PPC [10] with different
stripe sizes. There are two reasons for the fact that the read
times for generating the parity are relatively small in the
proposed scheme: First, the write times for generating the
parity of the proposed scheme is smaller than PPC, and thus
the related read times for rebuilding the full parities are also
reduced. Second, the proposed scheme adds a data buffer to
store the old data for the partial parity updates, and thus the
read times for generating the parity can be further reduced.

Fig. 15 shows the RAID 1I/O performance of the proposed
scheme with different stripe sizes. The performance is normal-
ized to the 4 4+ 1 RAID-5 system. The I/O performance of
44+ 1,5+ 1,6+ 1,and 7 + 1 RAID systems is 1.0, 1.15,
1.29, and 1.47, respectively. The read times and write times for
generating the parity are decreased gradually with an increase
in the stripe size as shown in Figs. 13 and 14. Further, the
RAID controller can easily write data to the SSDs in parallel
in the case of a relatively large stripe size. As a result, when
the stripe size increases, the I/O performance also improves.

Fig. 16(a) and (b) shows the ratio of the read times of the
PPC scheme [10] and the proposed scheme with the Postmark
benchmark inputs. In the case of the full parity write back
operations in PPC, the ratios are 0.73, 0.79, 0.64, and 0.51.
In the case of the partial parity update to the SSDs in PPC, the
ratios are 0.33, 0.40, 0.48, and 0.56. In the case of PPC, the
ratio of the read times for the partial parity update increases
gradually with an increase in the stripe size because the partial
parity is associated with more data in the case of a relatively
large data stripe. The proposed scheme adds a data buffer to
retain the old data for the partial parity updates, and therefore
there is no read operation to the SSDs for the partial parity
update, as shown in Fig. 16(b).

Fig. 17(a) and (b) shows the ratio of the read times of the
PPC scheme [10] and the proposed scheme with the Iozone
benchmark inputs. In the case of the full parity write back
operations in PPC, the ratios are 0.18, 0.64, 0.53, and 0.34.
In the case of the partial parity update to the SSDs in PPC,
the ratios are 0.32, 0.39, 0.47, and 0.54. The read times for
the full parity generation with sequential inputs are smaller
than those in the case of random writing inputs. In Fig. 17(b),
we see that the total read times in the proposed scheme are
reduced by adding the data buffer.

The average page size when the RAID controller selects
a victim stripe from the write buffer with the Iozone and the

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 7, JULY 2014

read (write back) I read (integrate)

5+1

1.4

1.0
0.8

0.4
0.2

4+1
(b)

Fig. 16. Ratio of read times for generating the parity (Postmark). (a) PPC.
(b) Proposed scheme.

Zread (write back) Nread (integrate)

1.4
1.2
1.0
0.8

0.4
0.2
0.0

(b)

Fig. 17. Ratio of read times for generating the parity (Iozone). (a) PPC.
(b) Proposed scheme.

Postmark benchmarks is 3.0 and 1.3 pages, respectively. In the
case of the Tozone benchmark, the RAID controller may need
a 1.0 read operation on average for generating the full parity.
In the case of the Postmark benchmark, the RAID controller
may need 2.7 read operations on average for generating the

CHUNG AND HSU: PARTIAL PARITY CACHE AND DATA CACHE MANAGEMENT METHOD

—&—Read Times (PPC)
—fi—Read Times (Proposed)

O N B OO0 O N D

normalized the total requests
© 0 o o0 o r PP

16 18 20 22 24 26 28 30 32
Partial Parity Cache and Write Cache (KB)

(a)
—&— Write Times (PPC)
v
n —— Write Times (Proposed)
2040
o \
o 0.35 n
5 030 \.\’\\.\
S 0.25
2020
= 0.15
2010
E 0.05
36 000 1 1 1 1 1 1 1 1]
= 16 18 20 22 24 26 28 30 32
Partial Parity Cache and Write Cache (KB)
(b)
Fig. 18. Average read times and write times for generating the parity with

different cache size. (a) Read times. (b) Write times.

full parity. Thus, the number of read operations in the case
of the Postmark inputs is larger than that in the case of the
Iozone inputs, as shown in Figs. 16 and 17.

Fig. 18(a) and (b) shows the read times and write times for
generating the parity of the PPC scheme [10] and the proposed
scheme with different cache sizes. Fig. 18(a) shows that the
read times for generating the parity of the proposed scheme
are always smaller than those in the case of PPC. The read
times in the case of the proposed scheme are 0.65 and 0.16
with the PPC and the write cache size of 16 kB and 32 kB,
respectively. The read times of the PPC scheme are 1.06 and
0.80 with the PPC and the write cache size of 16 kB and
32 kB, respectively. A relatively large PPC can merge the
partial parities more efficiently. Moreover, the data buffer in
the proposed scheme helps to reduce the read times required
for generating the parity.

Fig. 18(b) shows the write times for the full parity write
back operations to the SSDs of the PPC scheme [10] and
the proposed scheme with different cache sizes. The proposed
scheme can reduce the write times even with a relatively small
cache. As a result, we can process the full parity write back
operations well with limited hardware resources. In the case
of a relatively large cache size, the write times can be reduced
in both the PPC scheme and the proposed scheme. However,
with the proposed efficient buffer management scheme, the
write times of the proposed scheme will be always smaller
than those of the PPC scheme.

1479

VI. CONCLUSION

In this paper, we proposed a PPC and data cache manage-
ment method to improve the performance of an SSD-based
RAID system. There were many considerations for adding
SSDs to the RAID-5 architecture because the characteristics
of SSDs were different from those of traditional HDDs.

The proposed PPC with an efficient buffer management
method could merge the partial parity data more efficiently.
The proposed RAID controller selected the suitable victim
stripe from the write cache in order to prevent the PPC from
often being full. When the PPC was full, the RAID controller
used the LRU algorithm to select the victim partial parity,
rebuilt the full parity of the selected parity, and wrote it back
to the SSDs. We also added a data buffer to reduce the partial
parity update overhead. Experimental results revealed that both
the number of the read operations and the number of the write
operations to the SSDs for generating the parity were reduced
by the proposed scheme.

ACKNOWLEDGMENT

The authors would like to thank their colleagues at the
Silicon Sensor and System Laboratory, National Chung Cheng
University, Chia-Yi, Taiwan, for engaging in many fruitful
discussions, and the National Chip Implementation Center for
providing the EDA tools.

REFERENCES

[1] R. Ho, K. W. Mai, and M. A. Horowitz, “The performance of PC solid-
state disks (SSDs) as a function of bandwidth, concurrency, device archi-
tecture, and system organization,” in Proc. ACM/IEEE ISCA, Jun. 2009,
pp- 279-289.

[2] C. Lee, S. H. Baek, and K. H. Park, “A hybrid flash file system based on
NOR and NAND flash memories for embedded devices,” IEEE Trans.
Comput., vol. 57, no. 7, pp. 1002-1008, Jul. 2008.

[3] L.-P. Chang, “A hybrid approach to NAND-flash-based solid-state disks,”
IEEE Trans. Comput., vol. 59, no. 10, pp. 1337-1349, Oct. 2010.

[4] C.-C. Chung, D. Sheng, and N.-M. Hsueh, “A high-performance wear-
leveling algorithm for flash memory system,” IEICE Electron. Exp.,
vol. 9, no. 24, pp. 1874-1880, Dec. 2012.

[5] A. Nishi, “Datacenter power savings through high ambient datacen-
ter operation: CFD modeling study,” in Proc. IEEE SEMI-THERM,
Mar. 2012, pp. 104-107.

[6] Hitachi Global Storage Technologies (GST). (2010). Solid State
Drives for Enterprise Data Center Environments, San Jose, CA,
USA [Online]. Available: http://www.hgst.com/tech/techlib.nsf/techdocs/
F81A37DF296938BF8625763B00048D41/$file/SSD_techbrief.pdf

[7] D. Reinsel and J. Janukowicz. (2008). Datacenter SSDs: Solid Footing
for Growth [Online]. Available: http://www.samsung.com/us/business/
semiconductor/news/downloads/210290.pdf

[8] G. Schulz. (2007). Achieving Energy Efficiency Using Flash SSD
[Online]. Available: http://www.cristie.co.uk/uploads/media/Achieving_
Energy_Efficiency_Using_SSD.pdf

[9] Hynix Corporation. (2007). HY27UKOSBGFM NAND

Flash ~ Memories, Raunheim, Germany [Online]. Available:

http://www.hynix.com/inc/pdfDownload.jsp ?path=/datasheet/pdf/flash/

HY27UK08BGFM%20(Rev0.0).pdf

S. Im and D. Shin, “Flash-aware RAID Techniques for dependable and

high-performance flash memory SSD,” IEEE Trans. Comput., vol. 60,

no. 1, pp. 80-92, Jan. 2011.

H. Kim and U. Ramachandran, “FlashLite: A user-level library to

enhance durability of SSD for P2P file sharing,” in Proc. IEEE ICDCS,

Jun. 2009, pp. 534-541.

N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Dacis, M. Manasse, and

R. Panigrahy, “Design tradeoffs for SSD performance,” in Proc. USENIX

ATC, Jun. 2008, pp. 57-70.

(10]

[11]

[12]

1480

(13]

[14]

[15]

[16]

[17]

[18]

(19]
[20]

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 7, JULY 2014

B. Mao, H. Jiang, D. Feng, S. Wu, J. Chen, L. Zeng, and L. Tian,
“HPDA: A hybrid parity-based disk array for enhanced performance
and reliability,” in Proc. IEEE IPDPS, Apr. 2010, pp. 1-12.

J. Gen and Q. Yang, “I-CASH: Intelligently coupled array of SSD and
HDD,” in Proc. HPCA, Feb. 2011, pp. 278-289.

Y. Liu, J. Huang, C. Xie, and Q. Cao, “RAF: A random access first
cache management to improve SSD-based disk cache,” in Proc. NAS,
Jul. 2010, pp. 492-500.

K. Park, D.-H. Lee, Y. Woo, G. Lee, J.-H. Lee, and D.-H. Kim,
“Reliability and performance enhancement technique for SSD array
storage system using RAID mechanism,” in Proc. ISCIT, Sep. 2009,
pp. 140-145.

K. M. Greenan, D. D. E. Long, E. L. Miller, T. J. E. Schwarz,
and A. Wildani, “Building flexible, fault-tolerant flash-based storage
systems,” in Proc. HotDep, Jun. 2009.

Y. Lee, S. Jung, and Y. H. Song, “FRA: A flash-aware redundancy
Array of flash storage devices,” in Proc. Hardw./Softw. Codesign Syst.
Synthesis, Oct. 2009, pp. 163-172.

lozone File System Benchmark [Online]. Available: http://iozone.org
Postmark File System Benchmark, Network Appliance [Online]. Avail-
able: http://www.netapp.com

Ching-Che Chung (S’01-M’03) received the B.S.
and Ph.D. degrees in electronics engineering from
National Chiao-Tung University, Hsinchu, Taiwan,
in 1997 and 2003, respectively.

He was a Post-Doctoral Researcher with National
Chiao-Tung University from 2004 to 2008, on
system-on-chip design methodologies and high-
speed interface circuit design. In August 2008,
he joined the Faculty of the Computer Science
and Information Engineering Department, National
Chung Cheng University, Chia-Yi, Taiwan, where

he is currently an Associate Professor. His current research interests include
wireless and wireline communication systems, low-power and system-on-a-
chip design technology, mixed-signal IC design and sensor circuits design,
all-digital phase-locked loop, and all-digital delay-locked loop and its appli-
cations.

Hao-Hsiang Hsu received the M.S. degree in com-
puter science and information engineering from
National Chung Cheng University, Chia-Yi, Taiwan,
in 2012.

He is currently a Software Engineer with the
Research and Development Department, ALi Cor-
poration, Taipei, Taiwan, on set-top box system
applications. His current research interests include
system-on-a-chip design methodologies and flash-
based storage systems.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

