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Abstract— This article presents a 2-D hierarchical convolu-
tional neural network (HCNN) hardware accelerator that is
implemented in a 40-nm CMOS technology for Case Western
Reserve University (CWRU) bearing fault diagnosis. The hier-
archical structure of the convolutional neural network (CNN)
contributes to a reduction in both power consumption and
computation time. The entire neural network parameters are
29k, and the total CNN computation is completed within
330 000 cycles, showcasing its real-time capability. The proposed
design substantially diminishes the number of cycles necessitated
for hardware calculations. Furthermore, this work incorporates
Gaussian white noise into the vibration signal dataset for signal-
to-noise ratio (SNR) analysis. A noisy training dataset is added to
the original dataset for neural network training to improve the
accuracy. In summary, the postlayout simulation of the proposed
design facilitates real-time fault diagnosis at a clock frequency
of 100 MHz, achieving an accuracy of 95.31%, and a power
consumption of 65.608 mW. Also, when the proposed HCNN
circuit was implemented on a field-programmable gate array
(FPGA) evaluation board, it consumed 0.533 W at 55 MHz.

Index Terms— Convolution, digital circuits, digital signal pro-
cessing, fault diagnosis, field-programmable gate arrays (FPGAs),
fixed-point arithmetic, neural networks, quantization, real-time
systems, signal sampling.

I. INTRODUCTION

RECENTLY, electronic devices have been widely used
in our daily lives. One of the most important types

of devices in manufacturing for improving efficiency is the
bearing device. The faults of these bearing devices can sig-
nificantly impact the efficiency of manufacturing. In other
words, if the faulty part of the bearing device can be diagnosed
earlier, the production line can be restored as soon as possible,
and maintenance costs can be reduced. Therefore, detecting
bearing faults is an essential research topic in this field.
Regarding bearing fault detection, researchers often utilize
publicly available datasets, such as Case Western Reserve Uni-
versity (CWRU) [1], Paderborn [2], and Mechanical Failure
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Prevention Technology (MFPT) [3], to conduct their
investigations.

First of all, the CWRU dataset is employed for computer
numerical control (CNC) machines, capturing the vibration
sensor data for normal, drive-end (DE), and fan-end (FE)
defective bearings. More specifically, CWRU bearing data
includes three kinds of faults: normal bearing, single-point DE,
and FE. The FE bearing data are acquired at 12 000 samples/s,
while the DE bearing data exhibit two sampling rates,
specifically 12 000 and 48 000 samples/s. In this articl, the
FE bearing data are utilized in experiments. Nevertheless,
it is important to note that certain noisy industrial settings
may introduce noise and subsequently give rise to unstable
factors.

Bearing failures due to minor damage are difficult to
identify. Therefore, prior researchers strive to classify and
identify these faults through various methodologies. For
instance, Waziralilah et al. [25] examined multiple studies that
employed convolutional neural networks (CNNs) for bearing
fault diagnosis and highlighted the existence of three principal
bearing faults: ball faults (BFs), outer race (OR) faults, and
inner race (IR) faults. Moreover, the fault types were further
subdivided into nine fault types in [4]; each characterized by
fault diameters ranging from 0.007 to 0.021 in, associated with
the three faults mentioned above (IR, OR, and BF) in the
CWRU dataset. In addition, the normal condition (NC), which
indicates a fault-free state, can be considered an additional type
so that the bearing fault types can be extended to the ten types
in the CWRU dataset.

In addition to the CWRU dataset, the Paderborn dataset [2],
[6], [7] is another popular dataset for bearing faults detection.
Compared with the CWRU dataset, the Paderborn dataset
gathers current and vibration signals, and the sampling
rate is 64 kHz. Furthermore, the Paderborn dataset can be
mainly divided into four types: normal, OR fault (ORF),
IR fault (IRF), and outer IR fault (OIRF). The data within the
Paderborn dataset are obtained through accelerated life testing
and the manual acquisition of damage data related to bearing
failures. On the other hand, the MFPT dataset is also a
commonly used dataset for fault detection and diagnosis, and
it consists of three sets of bearing vibration data, including
the IR and OR data under various loads from 0 to 1.34 kN.
There were several researchers [8], [9] used the MFPT dataset
as their research target.

While numerous outstanding researchers are actively
involved in this field, and their work boasts remarkable
accuracy, there has been little consideration given to the
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memory usage and power consumption associated with detect-
ing and classifying bearing faults. Notably, there have been
some excellent research efforts focused on reducing resource
requirements, such as memory usage and power consumption,
for machine learning models. For instance, MobileNet [23]
incorporates depthwise separable convolution to decrease the
model architecture size and reduce parameters. More recently,
microcontroller units (MCU) Net [24] further optimizes
parameters to enable its performance on the Internet-of-Things
(IoT) devices. However, these models are generally designed
for broader applications, and their memory usage and power
consumption might not be fully optimized for specific use
cases like bearing fault diagnosis. As a consequence, when
deployed in resource-constrained environments, the accuracy
of such solutions tends to decrease to some extent. In other
words, integrating the existing solutions into CNC machines
for real-time accurate detection is still a big challenge.

On the other hand, more and more hardware accelerators are
proposed in various excellent literature sources [26]. However,
in deep neural network (DNN) accelerators that utilize a
spatial architecture implemented on an application-specified
integrated circuit (ASIC) or field-programmable gate array
(FPGA), the critical constraint arises from the efficiency of
memory access. Therefore, among various hardware accel-
erator research endeavors, in-memory computing techniques
gain a lot of attention to accelerate DNN computation. For
example, in PattPIM [27], a resistive random-access memory
(ReRAM) crossbar array optimizes space and computation
via CNN weight pattern repetition for efficient compression
and reuse. To address the nondeterministic results in pro-
cessing in-memory technology, a framework was introduced
in [28] to systematically evaluate the accuracy of analog
in-memory computing across various network topologies. The
study investigates sensitivity and robustness to a broad spec-
trum of nonidealities. Although methods based on in-memory
computing significantly improve the computation time of deep
learning, they usually require special kinds of memory (such
as ReRAM), which typically raises the hardware cost.

Notably, the production cost is usually one of the most
critical considerations in the industrial field. In order to provide
a low-cost and real-time solution for analyzing bearing faults,
we believe that designing a specialized integrated circuit (IC)
could be a prudent choice. To the best of our knowledge,
there has been no prior work focusing on developing a low-
cost, real-time machine-learning-based hardware solution for
processing data from the CWRU dataset. As the pioneer work
in this research field, the primary objective is to develop a
solution that can be implemented as an IC and directly applied
to CNC machines for real-time fault detection. In addition
to the computing time and accuracy, to control the cost of
the designed IC, in this article, we minimize the memory
usage by reducing the bitwise and number of parameters in
our model. In addition, we also reduce power consumption
by the hierarchical structure and power gating technology.
More specifically, this article proposes a real-time hierarchical
CNN (HCNN) with a power gating feature for diagnosing
bearing faults. The hierarchical structure helps the model
terminate in the early stage in normal cases to prevent

unnecessary computing and reduce the computing time and
energy.

Moreover, the power gating technology turns off the compo-
nents’ power after being used to mitigate power consumption
further. On the other hand, this article demonstrates a design
flow of the IC design for a specific application and provides
other researchers with a framework to design other solutions.
Furthermore, the proposed solution has been compared with
other solutions in software simulations and implemented as
hardware for verification. Finally, the CWRU dataset is consid-
ered the most comprehensive and complex dataset for bearing
fault diagnosis. Thus, it has been selected as the study case in
this article.

The main contributions of this article can be summarized
as follows.

1) The proposed HCNN demonstrates reduced memory
and power requirements compared with the existing
methods.

2) The hardware implementation of the proposed HCNN,
with postlayout simulation results, indicates lower power
consumption and resource usage than other existing
solutions.

3) The computing time of the proposed HCNN satisfies
real-time requirements, making it suitable for implemen-
tation in hardware and adoption in CNC machinery for
real-time diagnostics.

The remainder of this article is organized as follows. Section II
presents an overview of the related work on bearing fault
diagnosis. Section III shows the architecture of the proposed
HCNN. Section IV describes the hardware implementation of
the proposed HCNN. Section V provides the postlayout simu-
lation and FPGA implementation results, while the conclusion
is presented in Section VI.

II. RELATED WORK

Bearing failure is a critical concern in manufacturing, lead-
ing to numerous studies focused on analyzing and classifying
bearing fault types in the past. Alessandro Paolo et al. [5]
asserted that the power spectrum density (PSD) diagram
of vibration data could distinguish between various faults.
Within the context of the PSD diagram, discrete frequency
components are identifiable across a broad frequency spectrum
in the signal captured by the accelerometer. Therefore, upon
the manifestation of a bearing fault, the fault frequency of
the bearing can be determined by analyzing the frequency
spectrum of the vibration signal.

After that, various methods and tools have been proposed
and assessed, particularly machine learning-based approaches
[10], [11], such as support vector machines (SVMs), random
forests, CNN, and DNN.

First, SVM is a supervised learning method that aims to
identify a classification decision boundary to separate two
distinct data types. As a result, SVM is better suited for
binary classification tasks. While SVM has been extensively
employed in bearing fault analysis applications, its accu-
racy in past architectures ranges from 60% to 90% [12].
Moreover, in the case of complex data, it will affect the
classification ability of SVM. Consequently, Lee et al. [13]
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combined autoencoder (AE) and SVM techniques to enhance
bearing faults diagnostics accuracy. Furthermore, previous
research [10], [11] has demonstrated that the accuracy of
existing bearing fault diagnostics using ML-based approaches
(e.g., deep belief network (DBN), k-nearest neighbors (KNNs),
CNN, and DNN) typically exceeds 90%, with CNN-based
methods generally achieving higher accuracy.

In [14], principal component analysis (PCA) and linear
discriminant analysis (LDA) were employed for three-phase
induction motor bearings. A learner composed of multiple
decision trees combines several “weak learners” to create a
more robust model called a “strong learner.” This approach is
also known as the ensemble method. In [15], random forest
and CNN were combined, with results demonstrating that the
random forest algorithm can effectively diagnose faults when
provided with appropriate feature extraction.

CNN is commonly employed for image recognition, with
numerous models built upon CNN architecture. The primary
goal of convolution is to extract local features from images
and subsequently perform image classification. However, the
output remains linear following the convolution layer, which
poses limitations when simulating and identifying more com-
plex data. Furthermore, the activation function is crucial for a
neural network to achieve nonlinear output. Therefore, if the
nonlinear activation function is not used, the model trained by
the neural network is meaningless.

In [7], an input feature mapping (IFMs)-based deep residual
network (ResNet) has been proposed for the Paderborn dataset,
and the accuracy can achieve almost up to 100%.

For the MFPT dataset, Sharma et al. [8] developed a
1-D CNN approach, which achieved an impressive accuracy
of up to 98.9%. Sun et al. [9] initially employed a
second-order time-assigned multisynchrosqueezing transform
to introduce a novel time–frequency analysis technique to
obtain higher resolution time–frequency images for training
the CNN model. The simulation outcomes demonstrated that
the proposed CNN network achieved recognition accuracies
of 99.83% and 98.67% for the CWRU and MFPT datasets,
respectively.

During calculations, neural networks undergo millions
of operations, resulting in significant power consumption
and posing challenges for hardware implementation.
Goel et al. [16] proposed a modular neural network tree
architecture to address this issue. This approach divides
the classification results into several groups and trains a
submodel for each group, organizing these submodels into a
tree structure. Once an image has been identified as belonging
to a group of categories, the corresponding submodel works
further to distinguish the target image within a more detailed
subgroup. This process is repeated across multiple modules
until the final classification comes out. Experimental results
demonstrate that this HCNN tree can reduce memory
requirements and power consumption by 50%–90%.

More recently, Chung et al. [21] introduced a 1-D CNN
model designed to process current data from the Paderborn
dataset while also aiming to devise a real-time hardware
solution. In their study, the authors proposed a down-sampling
method and a quaternary quantization technique to enhance

the model’s accuracy. Furthermore, they reduced the memory
requirements by limiting the bit usage within the model.

III. PROPOSED HCNN ARCHITECTURE

A. HCNN Architecture Overview

This article introduces a hierarchical CNN-based method,
called HCNN, for diagnosing bearing faults with low power
consumption and can be used for real-time diagnostics. As pre-
viously mentioned, the CWRU dataset is widely used and
recognized as the most comprehensive dataset for bearing fault
research. Therefore, this work employs it as the study case for
designing the method.

Initially, the CWRU dataset must be preprocessed to gen-
erate suitable input images for neural network architecture.
In this article, every 4096 vibration signal points in the CWRU
dataset are taken to produce a 64 × 64 image, resulting in a
total of 8424 generated images. After shuffling the images,
80% of them (i.e., 6744 images) are employed to train the
CNN model, while the remaining 20% (i.e., 1641 images) are
used to test the model.

Following image preprocessing, the HCNN is trained using
the images. This study groups datasets of the same faulty bear-
ing at different levels into the same category to establish the
hierarchy. More specifically, a three-layer root model performs
four classifications, followed by three two-layer submodels
for the final classification. Each convolutional layer comprises
three typical architectures: 3 × 3 kernels, batch normalization
(BN), and Rectified Linear Unit (ReLU).

When considering hardware implementation, it is crucial
to reduce the number of parameters as much as possible to
conserve resources. However, decreasing parameters directly
impacts the model’s accuracy, leading to a trade-off between
hardware resources and accuracy. This work conducts several
experiments to establish the final model (including the root and
child models) and determine the appropriate balance between
resource allocation and accuracy.

For a clearer understanding of the workflow, Fig. 1 shows
the flowchart for designing the software HCNN model.
As depicted in Fig. 1, the initial step involves converting
the signal data into the CWRU bearing fault dataset from
floating-point numbers to fixed-point numbers and arranging
them into images for training and testing. In the second step,
the images mentioned above are used to train the proposed
HCNN repeatedly until a predefined condition is satisfied.
Note that, the processes described above work on a famous
machine-learning framework, Pytorch. When the accuracy and
number of parameters meet the requirements in Pytorch, the
subsequent step involves training the neural network’s weights
and BN layers. While PyTorch is powerful and convenient
for developing machine learning models, it does not pro-
vide detailed implementation information for each application
programming interface (API) and does not support variable
bit length settings. Therefore, we then write Python code to
implement each API in detail and to test the influence of
various bit lengths on parameters to decide the bit lengths for
hardware design. Notably, the parameters are extracted from
the training results of PyTorch.
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Fig. 1. Flowchart for designing the software HCNN model.

TABLE I
LABEL AND FAULT TYPES IN CWRU DATASET

Moreover, Python code ensures that the computational
method closely resembles hardware implementation, so the
syntax used in the Python code is designed to be similar to
Verilog. Furthermore, to facilitate a better understanding of the
HCNN’s implementation in Python code, we have provided
the source code on GitHub (URL: https://github.com/fcu-
D0550770/Hierarchical-CNN-CWRU). Finally, the hardware
implementation can start once the accuracy and parameters
are confirmed.

The FE accelerometer data and FE bearing data used in
this article are gathered at 12 000 samples/s. Table I provides
a detailed summary of the fault types in the dataset, including
IRF, BF, and ORF with different fault diameters (i.e., 0.007,
0.014, and 0.021). The normal healthy bearing condition is
also considered as a different type, bringing the total number
of types in the classification model to ten.

The proposed HCNN model has two layers of classifications
for the final decision. More specifically, a root model is
initially used to distinguish fault types (i.e., healthy data, BF,

Fig. 2. Hierarchical CNN model corresponds to Table I.

TABLE II
INPUT AND OUTPUT DATA SIZES OF THE ROOT MODEL

TABLE III
INPUT AND OUTPUT DATA SIZES OF CHILD1–CHILD3 MODEL

IRF, and ORF). Then, three child models are employed to
classify fault diameters within each fault type. This means
that the first layer of the classification method represents
fault types. As shown in Table I, each type shares the same
root label number. On the other hand, the second layer of
the hierarchical CNN represents fault diameters, so the child
models determine the final decision of the bearing fault with
nine detailed labels. Fig. 2 illustrates the architecture of the
proposed HCNN model, with labels corresponding to those in
Table I. Note that the last column in Table I represents the
corresponding dataset IDs on the CWRU bearing data center
website [1].

To further elaborate on the architecture of the proposed
HCNN, Tables II and III present the number of layers and
channels in each layer for the root model and Child1–Child3
models, respectively.

Using the architecture of the proposed HCNN, the total
number of parameters is approximately 29k. The sum of the
model parameters is shown in Table IV.

The accuracy of the proposed HCNN software model before
hardware implementation is shown in Table V. A total of
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TABLE IV
PARAMETERS IN HCNN

TABLE V
FINAL ACCURACY BEFORE HARDWARE IMPLEMENTATION

1641 images were used to test the accuracy of the pro-
posed HCNN architecture, and 75 images were misclassified.
In Table V, input sensor data, weight, and BN values are
represented using fixed-point notation. Furthermore, when
solely expressing input sensor data with fixed-point notation,
the accuracy of the proposed HCNN reaches 97.7%.

B. CWRU Dataset With SNR Analysis

In addition to the classification model for the CWRU
dataset, this work adds the white Gaussian noise to the CWRU
dataset to assess the noise immunity capability of the proposed
HCNN. Different noise levels impact the original signal and
influence recognition accuracy. Generally, the signal-to-noise
ratio (SNR) value measures the magnitude of the noise to
the signal. A smaller SNR value indicates more significant
noise effects, while a larger SNR value signifies reduced noise
effects and less degradation of the original signal.

After considering the SNR range used in other papers, this
study adds white Gaussian noise to the CWRU dataset. The
SNR experimental range includes −4, −2, 0, 2, 6, 8, and 10,
comprising seven groups. Finally, a comparison of different
noise levels is provided to assess the antinoise performance of
the proposed HCNN model for the CWRU dataset, as shown
in Table VI.

When the white Gaussian noise is only added to the test
dataset, as shown in Table VI, the accuracy of both the root and
child models declines due to the reduced recognition accuracy
caused by noise. The results also reveal that Child2 model

TABLE VI
IMPACT OF NOISE ON THE PROPOSED HCNN FOR THE CWRU DATASET

TABLE VII
IMPROVE THE ACCURACY OF THE ROOT MODEL WITH NOISE

TABLE VIII
IMPROVE THE ACCURACY OF CHILD1 AND CHILD3

MODELS WITH NOISE

is relatively less affected by noise. Therefore, to enhance the
model’s resistance to noise, the training dataset with noise
will be incorporated into the training dataset in subsequent
experiments. As shown in Tables VII and VIII, the accuracy
of root and Child1 and Child3 models can be significantly
improved.

The results show that the accuracy of the overall model sig-
nificantly improves when noise is added to the training dataset.
Thus, it can be inferred from the experimental outcomes that
incorporating an appropriate amount of noisy training datasets
can enhance the resistance of the proposed HCNN to noise.
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Fig. 3. Proposed HCNN hardware architecture.

IV. HARDWARE IMPLEMENTATION

This section provides a detailed description of the mem-
ory allocation and the proposed hardware implementation.
The hardware architecture of the proposed HCNN is shown
in Fig. 3.

As depicted in Fig. 3, the register files and static random
access memory (SRAM) are utilized to read the input data and
write the feature map of each layer. In contrast, the read-only
memory (ROM) is responsible for storing the weights of each
layer. Moreover, the convolution block handles the calculations
for zero-padding and convolution. After the calculations are
completed, the resulting values are sent to the BN block to
compute the two parameters, gamma, and beta, of BN. The
max-pooling block carries out the pooling process, reducing
the size of the feature map. Finally, the ReLU block is respon-
sible for activation operations and activation quantization.
Then, the output of the final model judgment result of the
fully connected (FC) block is finally performed.

In hardware implementation, it is crucial to simplify the
preprocessing stage and ensure that it can be represented
in a fixed-point format for hardware operations. To achieve
this, one practical approach is to reduce the number of bits
required for data representation. By doing so, computational
efficiency can be enhanced during hardware implementation,
and memory requirements can be decreased. This contributes
to better resource utilization and enables faster and more
efficient processing, which is particularly important for
real-time applications.

In Section III-A, it was mentioned that to implement the
model in hardware, the image data input must be converted
into fixed-point representation. Similarly, for the convolution
operation with the weights and the subsequent operations with
the gamma and beta of BN, these values should also be
quantified using fixed-point representation to facilitate hard-
ware implementation. Before proceeding with the hardware
implementation, it is essential to determine the appropriate
bit width for all weights and BN values. This is because the
bit-width directly impacts the model’s accuracy. To ensure
that the selected bit width does not significantly compromise
the model’s performance, verification should be conducted
using Python code. By carefully choosing the appropriate
bit width, the trade-off between the resource usage and
model accuracy can be effectively managed, ultimately result-
ing in a hardware implementation that meets the desired
requirements.

TABLE IX
TEST ACCURACY FOR WEIGHT BIT WIDTH WITH BN FIXED AT 9 BITS

TABLE X
TEST ACCURACY FOR BN BIT WIDTH WITH WEIGHT FIXED AT 10 BITS

TABLE XI
MEMORY USAGE FOR THE FEATURE MAPS OF EACH LAYER

Table IX presents the experimental results, which indicate
that if the decimal bits of weight are too small, it can
significantly impact the overall accuracy. Several attempts
were made to determine the appropriate number of bit widths
during the software verification stage. The results show that
the model can maintain acceptable accuracy when the weights
are represented with two integer bits and eight decimal bits,
given that BN values are fixed at 9 bits. This configuration
strikes a balance between resource usage and model accuracy,
making it suitable for hardware implementation.

Table X presents the experimental results for various bit-
width configurations of BN values when the weights are
fixed with two integer bits and eight decimal bits. After
examining the results from Tables IX and X, it was determined
that the optimal configuration for hardware implementation
is the weights with two integer bits and eight decimal bits,
BN values with four integer bits and five decimal bits, and
input sensor data with four integer bits and five decimal
bits. This configuration achieves a balance between resource
usage and model accuracy, resulting in an acceptable accuracy
of 95.43%.

Table XI presents the memory requirements for the hard-
ware implementation of the proposed HCNN. Since the input
image size is 64 × 64, and each sensor data has 9 bits (4 bits
for integer and 5 bits for decimal), the memory allocation
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Fig. 4. Proposed design power control diagram.

for each register file (rf2-1, rf2-2, rf2-3, rf2-4, and rf2-5)
is calculated accordingly. For the second layer, rf2-1, rf2-2,
rf2-3, rf2-4, and rf2-5 are responsible for reading the initial
image data and the feature maps. For the fourth and fifth
layers, due to the reduction in image size resulting from max-
pooling, only one rf2-5 and rf2-1 are required for writing and
reading the data. In total, the memory requirement for rf2-1,
rf2-2, rf2-3, rf2-4, and rf2-5 is 65 536 bits, as shown in
Table XI.

In the proposed HCNN, since the feature map of the first
layer is too large and exceeds the size limitation by the register
file memory compiler, an additional SRAM memory compo-
nent, Sr1-1, is used to handle the read and write operations
for the first and third layer feature map data. The size used by
Sr1-1 is 163 840 bits. In the proposed design, Sr1-1 and the
five register files mentioned earlier (rf2-1, rf2-2, rf2-3, rf2-4,
and rf2-5) work interactively to manage the operations, reads,
and writes between layers. This approach helps to optimize
memory usage and maintain efficient processing across the
hierarchical CNN model. The overall memory reduction,
including register files, SRAM, and ROM, is 60.9%, ben-
efitting from quantizing the input sensor data, the model
parameter, and the feature map.

The power gating technology is employed further to reduce
power consumption in the proposed hardware architecture.
Power gating involves shutting off the power supply to idle
circuit modules, effectively minimizing the system’s overall
power consumption. As a result, the proposed HCNN can
achieve low power consumption and real-time performance
for diagnosing bearing faults by integrating power gating into
the hardware design.

In the proposed HCNN hardware implementation, power
gating is integrated to minimize power consumption while
maintaining real-time performance. Fig. 4 illustrates the archi-
tecture with power control features. As shown in Fig. 4, there
are multiple power gating switches included in the design.

1) pgen1, pgen2, pgen3, pgen4, and pgen5: These switches
control the power gating for the register files in the
design, effectively managing the power supply to the
register files based on their utilization.

TABLE XII
POWER GATING CONTROL WHEN RUNNING CHILD1 MODEL

2) pgen6, pgen7, pgen9, pgen10, and pgen11: These
switches control the power gating for the ROMs in the
design. By managing the power supply to the ROMs,
the power consumption can be optimized based on the
ROMs’ usage.

3) pgen8: This switch controls the power gating for the
Sr1-1 in the design, managing the power supply to the
SRAM based on its utilization.

These power gating switches enable the HCNN hardware
implementation to optimize power consumption by controlling
the power supply to different components based on their uti-
lization. This results in a more energy efficient for diagnosing
bearing faults.

Incorporating power gating technology into the proposed
HCNN architecture enables a more energy-efficient design by
dividing register, SRAM, and ROM components into multiple
power domains. These power domains can be powered on or
off interactively depending on the operational requirements of
each layer. This approach reduces power consumption during
idle periods, leading to a more power-efficient system overall.

In the TSMC 40-nm memory compiler, there is an option to
use memory modules with power-gating capabilities. By using
these memory modules and leveraging the power gating switch
control, the overall power consumption of the proposed HCNN
hardware can be significantly reduced.

In accordance with different modes, the initial three layers
constitute the root model, while the final two layers form the
child model. The power domains are activated or deactivated
accordingly, with the corresponding switches for each layer
shown in Table XII. As shown in Table XII, the memory uti-
lized in every layer is activated. Conversely, when the memory
is idle, it is deactivated. This design persists throughout the
entire neural network model operation, culminating with the
FC layer outputting the classification results.

The comprehensive operation flowchart for the entire
hardware is illustrated in Fig. 5. Once the third layer of
convolution is completed, the root classification result is output
through the FC layer, which determines which child models
(Child1, Child2, or Child3) to enter. Subsequently, the process
advances to the final two convolutional layers. Ultimately,
the classification is determined through the child model’s
FC output, yielding the final identification and classification
result. Finally, power gating is executed concurrently with
the hardware circuit operations, and idle memory is switched
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TABLE XIII
COMPARISONS WITH OTHER ARCHITECTURES IN THE SOFTWARE PLATFORM

Fig. 5. Flowchart for the proposed HCNN hardware circuit.

off via the signal line. This approach achieves the goal of
minimizing power consumption in the design.

V. EXPERIMENTAL AND SIMULATION RESULTS

To evaluate the proposed HCNN, it is implemented in both
software and hardware implementations. Consequently, in Sec-
tions V-A and V-B, the experimental results of software and
the postlayout simulation results of hardware implementation
will be reported in detail.

A. Software Implementation

First, Table XIII presents a comparison of the proposed
HCNN software implementation with other state-of-the-art
methods. As can be observed from Table XIII, the parameter
number of the proposed HCNN is significantly lower than that
of other recent studies focusing on the CWRU dataset. More
specifically, the overall parameter number is only 29 K with-
out sacrificing much accuracy. In other words, the proposed
HCNN can still achieve over 97% accuracy with merely 29k
parameters. Regarding quantization, the method of limiting
bits is used, and make adjustments continuously during the
process. This means that the experiment is not deemed com-
plete until the software stage reaches an acceptable level of
accuracy and falls within an appropriate range.

Conversely, a control group that employs the conventional
CNN architecture to explore the benefits of the proposed

TABLE XIV
CONTROL GROUP NEURAL NETWORK ARCHITECTURE

design’s hierarchical architecture is created. Under the same
CWRU training dataset and comparable accuracy to the HCNN
architecture, the control group also utilizes a five-layer net-
work structure incorporating BN and ReLU. The specifics of
the control group are outlined in Table XIV.

Table XIV reveals that, compared with the control group,
there is a substantial increase in the parameter count by 7.6k
in the control group when the accuracy between the two
architectural groups is comparable. This increase results in
additional overheads for subsequent hardware implementation.
Consequently, when contrasted with the control group, it is
evident that the HCNN architecture offers significant benefits
for hardware implementation.

In addition, floating-point operations (FLOPs) are a metric
used to assess the computational complexity of a neural
network. Consequently, the FLOPs of the control group and
the HCNN architecture are listed in Table XV. It is readily
evident that the FLOPs of the proposed HCNN architecture
are fewer than those of the control group. This indicates that
the computational complexity of the HCNN model is less than
that of the conventional neural networks.

B. Hardware Implementation

As previously mentioned, it is important to note that there
have been no previous works that have implemented their solu-
tions on hardware for handling the data from the same dataset.
As a result, for the evaluation of the hardware implementation
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TABLE XV
COMPARISONS WITH AN EXPERIMENTAL CONTROL GROUP

TABLE XVI
ACCURACY OF HCNN IN DIFFERENT STAGES

in this study, we are only able to provide the results from our
specific hardware implementation.

In order to minimize the resource utilization in hardware
implementation, it is necessary to implement quantization
and fixed-point operations, which could potentially lower the
accuracy. As such, experiments are conducted to examine
the impact of these hardware-specific operations on accuracy.
The outcomes of these different stage operations are presented
in Table XVI.

As shown in Table XVI, the accuracy of the proposed
HCNN can reach 97.7% before hardware implementation.
However, after each step in the hardware implementation
process (such as quantization and fixed-point operations), the
accuracy sees a marginal decrease, with the Verilog register
transfer level (RTL) implementation achieving the lowest
accuracy of 95.31%. This can be attributed to the fact that
during the transition of each value, there will be instances
where values exceed the bit width determined for that layer.
Consequently, a small number of values will invariably contain
errors due to the bit-width relationship across the five layers
of convolution, BN, and max pooling. Hence, it is nearly
impossible for the accuracy of the hardware implementation
to match the values in the software stage exactly.

In addition, to validate the real-time computational capabil-
ity of the proposed HCNN design, the computing cycles are
used as a measure to estimate computation time. If HCNN
model calculation can be executed within one data collection
period without significant data point loss, the proposed HCNN
design possesses real-time computational capability.

Therefore, the first step in validating the real-time capability
involves determining the computing cycles of the proposed
HCNN design. In the RTL simulation, the classification cycles
of the proposed design are shown in Fig. 6. According to
Fig. 6, the proposed HCNN requires a total of 330 000 cycles
to identify faulty bearing conditions. Of these 330 000 cycles,

Fig. 6. Different situations RTL-level cycles count.

the root model calculation accounts for 275 000 cycles, while
the child model accounts for the remaining 55 000. This
implies that if the input data corresponds to a normal (healthy)
condition, the classification cycles can be reduced to 275 000
rather than the full 330 000, as the results can be returned
without executing the child model.

It is worth noting that in the analysis of real-time computing
capability, the worst case scenario for computing time is
considered, i.e., 330 000 cycles. To elaborate, in the proposed
HCNN, all sensor data are collected at a rate of 12 000
samples per second, and each image includes 4096 data
points. Given a clock cycle of 10 ns for the circuit and a
requirement of 330 000 clock cycles for model inference in a
circuit implemented with TSMC 40-nm CMOS process, the
response time from receipt of 4096 sensor data points to the
output of bearing health status can be determined, as shown
in (1). It takes 3 300 000 ns (or 0.0033 s) to complete one
classification. Moreover, the response time from receipt of
4096 sensor data points to the output of the result takes
344 633 196 ns, as shown in (2)

(330000 × 10 ns) = 3 300 000 ns (1)
(83333.3 ns × 4096) + 330000 × 10 ns = 344 633 196 ns.

(2)

In the proposed HCNN, there may be instances where data
signals received during the computational process of classifi-
cation might be overlooked. A constant stream of vibration
signals will be sent to the circuit during the classification
process for real-time consideration. As such, an auxiliary
buffer is needed to keep these vibration signals when the
circuit has not yet finished its process. As indicated in the
following equation, the proposed HCNN circuit would need
to store an additional 40 points of vibration signals:

3 300 000 ÷ 83 333.3 ns = 40 points. (3)

From (1)–(3), if the operational speed of the proposed
HCNN circuit falls below 100 MHz, both the circuit’s opera-
tion time and the additional buffer memory requirements will
increase. Therefore, if the circuit’s running speed is too slow,
the real-time performance of the proposed HCNN could be
compromised.

Furthermore, the chip layout is shown in Fig. 7, where the
locations of the SRAM, register files, ROM, and I/O pads are
indicated. The total chip area is 980 × 980 µm2. The details of
the implementation of the proposed HCNN hardware design
are provided in Table XVII.

The power consumption of the proposed HCNN is
65.608 mW when operating at 100 MHz with a 0.9-V power
supply in the worst case scenario, which requires the execution
of the child model. Importantly, this power consumption
result is achieved through the implementation of the power
gating method, which effectively reduces power usage.
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Fig. 7. Layout of the proposed HCNN circuit.

TABLE XVII
HCNN HARDWARE IMPLEMENTATION RESULTS

Fig. 8. Timing report of the proposed HCNN hardware implemented in a
Virtex-7 FPGA.

To investigate the specific benefits brought about by the
power gating method, we conducted simulations without
implementing power gating, resulting in a power consumption
of 70.3 mW. This comparison demonstrates that the power
gating method successfully reduces power consumption
by approximately 6.7%. Moreover, the hierarchical design
of the HCNN model also contributes to power reduction
when the input data are in an NC. In such cases, the model
terminates at the root model without calculating the child
model. When combined with the power gating method, the
power consumption is further reduced to 52.296 mW when
classifying NCs. In other words, the proposed design achieves
even lower power consumption during the normal case.

Besides implementing the proposed HCNN using the TSMC
40-nm CMOS process and providing postlayout simulation
results, this article also utilizes an FPGA evaluation board
(Virtex-7 VC707) to prototype the HCNN circuit as a prelimi-
nary verification before chip tape-out. Fig. 8 shows the timing

Fig. 9. Power consumption of the proposed HCNN on FPGA (at 55 MHz).

report generated by the FPGA synthesis tool. As illustrated
in Fig. 8, the total delay on the critical path is less than
20 ns on the FPGA. Consequently, the proposed HCNN can
operate correctly at 55 MHz on the FPGA. Furthermore, Fig. 9
depicts the power consumption of the HCNN on the FPGA.
The proposed HCNN circuit, when implemented on the FPGA,
consumes 0.533 W of power at 55 MHz.

VI. CONCLUSION

In this article, an HCNN model for bearing fault analysis,
specifically designed for CWRU datasets, is presented.
Through the implementation of a two-step classification, the
proposed HCNN model significantly reduces both memory
usage and power consumption. Importantly, the proposed
HCNN model achieves an impressive accuracy rate of 97.7%
at the software stage, using only 29 K parameters.

When compared with other hardware implementations, the
proposed HCNN stands out for its real-time computing capa-
bility. Specifically, in the worst case scenario, the proposed
HCNN requires just 330 000 cycles to classify a bearing fault,
with no loss of incoming sensor data points. Furthermore, this
article also tests the effects of the white Gaussian noise and
improves the noise resistance of the proposed HCNN.

As for the hardware implementation, the proposed HCNN is
realized using TSMC 40-nm CMOS technology, incorporating
power gating features. The maximum operating frequency
of the proposed HCNN is 100 MHz. Under the 40-nm
technology, the HCNN consumes 65.608 mW of power and
achieves a classification accuracy rate of 95.31% in the final
hardware test. In addition, the proposed hardware circuit was
also deployed on a Virtex-7 FPGA to validate the feasibility
of this architectural circuit on a real, hardware-based platform.
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